

UL 60079-25

STANDARD FOR SAFETY

Explosive Atmospheres Part 25: Intrinsically Safe Electrical Systems

ULMORM.COM. Cick to view the full port of UL Good on the f

JUNE 12, 2020 - UL 60079-25

UL Standard for Safety for Explosive Atmospheres – Part 25: Intrinsically Safe Electrical Systems, UL 60079-25

Second Edition, Dated December 2, 2011

Summary of Topics

This revision of ANSI/UL 60079-25 dated June 12, 2020 is being issued to update the title page to reflect the reaffirmation of its ANSI approval. No changes in requirements have been made.

This is an Adoption of ANSI/ISA 60079-25, Standard for Explosive Atmospheres – Part 25: Intrinsically Safe Electrical Systems as ANSI/UL 60079-25.

These requirements are substantially in accordance with Proposal(s) on this subject dated January 24, 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of UL.

UL provides this Standard "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will UL be liable for any special, incidental consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this Standard, even if UL or an authorized UL representative has been advised of the possibility of such damage. In no event shall UL's liability for any damage ever exceed the price paid for this Standard, regardless of the form of the claim.

Users of the electronic versions of UL's Standards for Safety agree to defend, indemnify, and hold UL harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney's fees) resulting from any error or deviation introduced while purchaser is storing an electronic Standard on the purchaser's computer system.

<u>tr2</u> JUNE 12, 2020 - UL 60079-25

No Text on This Page

ULNORM.COM. Click to view the full poor of the Control of the Cont

ISA - International Society of Automation ANSI/ISA 60079-25-2011 (R2020) **Second Edition**

Underwriters Laboratories Inc. ANSI/UL 60079-25 Second Edition

December 2, 2011

(Title Page Reprinted: Time 12, 2020)

(Title Page Reprinted: Time 12, 2020) Explosive Atmospheres – Part 25: Intrinsically Safe Electrical Systems

Commitment for Amendments

This standard is issued jointly by ISA and Underwriters Laboratories Incorporated (UL). Comments or proposals for revisions on any part of the standard may be submitted to UL at any time.

ISBN 978-1-64331-103-69 Copyright © 2020 ISA

These materials are subject to copyright claims of IEC, ANSI, and ISA. All rights reserved. Not for resale. Printed in the United States of America. No part of this publication may be reproduced in any form, including an electronic retrieval system, without the prior written permission of ISA. All requests pertaining to this standard should be submitted to ISA.

Copyright © 2020 Underwriters Laboratories Inc.

UL's Standards for Safety are copyrighted by UL. Neither a printed nor electronic copy of a Standard should be altered in any way. All of UL's Standards and all copyrights, ownerships, and rights regarding those Standards shall remain the sole and exclusive property of UL.

This ANSI/UL Standard for Safety consists of the Second Edition including revisions through June 12, 2020.

The most recent designation of ANSI/UL 60079-25 as a Reaffirmed American National Standard (ANS) occurred on June 12, 2020. ANSI approval for a standard does not include the Cover Page, Transmittal Pages, Title Page (front and back), General Notes, and Preface (ISA). The IEC Foreword is also excluded from the ANSI approval of IEC-based standards.

Comments or proposals for revisions on any part of the Standard may be submitted to UL at any time. Proposals should be submitted via a Proposal Request in UL's On-Line Collaborative Standards Development System (CSDS) at https://csds.ulr.com.

To purchase UL Standards, visit UL's Standards Sales Site at http://www.shopulstandards.com/HowToOrder.aspx or call toll-free 1-888-853-3503.

CONTENTS

Ge	nera	l Notes	5
Pre	face	(ISA)	7
FΟ	REW	/ORD	11
FΟ	REW	/ORD	13
	1	Scope	15
	2	Normative References	15
	3	Terms, definitions and abbreviations	16
		3.1 Terms and definitions	16
		3.2 Abbreviations	17
	De	3.2 Abbreviationsscriptive system document	17
	5	Grouping and classification	18
	6	Levels of protection	18
		6.1 General	18
		6.2 Level of protection "ia"	19
		6.3 Level of protection "ib"	19
		6.4 Level of protection "ic"	19
	7	Ambient temperature rating	19
	8	Interconnecting wiring / cables used in an intrinsically safe electrical system	19
	9	Requirements of cables and multi-core multi-conductor cables	20
		9.1 General	20
		9.2 Multi-core Multi-conductor cables	20
		9.3 Electrical parameters of cables	
		9.4 Conducting screens (shields)	
		9.5 Types of multi-core multi-conductor cables	
	10	Termination of intrinsically safe circuits	
	11	Earthing and bonding of intrinsically safe systems	
	12	Protection against lightning and other electrical surges	
	13	Assessment of an intrinsically safe system	
		13.1 General	
		13.2 Simple apparatus	
		13.3 Analysis of inductive circuits	
		13.4 Faults in multi-core multi-conductor cables	
		13.5 Type verifications and type tests	
	14		
	15	Rredefined systems	26
An	nex /	A (informative) Assessment of a simple intrinsically safe system	
An	nex I	B (normative) Assessment of circuits with more than one source of power	
An	nex (C (informative) Interconnection of non-linear and linear intrinsically safe circuits	
	C.1	l General	34
	C.2		

C.3	Interconnection of intrinsically safe circuits with more than one source	43
	C.3.1 Determination of a resultant output characteristic	43
	C.3.2 Safety assessment of the interconnection and determination of the maximum	
	permissible capacitance and inductance	44
	C.3.3 Supplementary comments about the procedure using output characteristics	
0.4		
C.4	Illustration of the procedure using output characteristics by means of an example	
C.5	Summary	
C.6	Diagrams	51
Annex D	(normative) Verification of inductive parameters	
Annex E	(informative) A possible format for descriptive systems drawings and installation	
	(informative) Surge protection of an intrinsically safe circuit General Installation to be protected Lightning induced surges Preventive measures porting documentation	
	φ · · · · · · · · · · · · · · · · · · ·	
Annoy E	(informative) Surge protection of an intrinsically safe circuit	
Allilex F	(informative) Surge protection of an intrinsically safe circuit	
F.1	General	/ 8
F.2	Installation to be protected	78
F.3	Lightning induced surges	78
F.4	Preventive measures	78
F.5	porting documentation	78
F.6	Further protection	79
	porting documentation	
Annex G	(normative) Testing of cable electrical parameters	
, uniox o		
G.1	General Measurements Multi-conductor Multi-core cables.	01
	Manager and the second	01
G.2	Measurements	81
G.3	Multi-conductor Multi-core cables	81
	G.3.1 General	
	G.3.2 Type A multi-core multi-conductor cables	
	G.3.3 Type B multi-core multi-conductor cables	
	G.3.4 Type C multi core multi-conductor cables	82
Annex H	(informative) Use of simple apparatus in systems	
	(
H.1	General	83
H.2	Use of apparatus with 'simple apparatus' input description	
П.2	Ose of apparatus with simple apparatus input description	04
Annex I	normative) FISCO systems	
1.1	General	85
1.2	System requirements	
1.4	I.2.1 General	
1.0	Additional requirements of "ic" FISCO systems	
1.3	Additional requirements of 10 F1500 systems	ბს

Annex J (normative) US National Deviations

Bibliography

General Notes

This UL Standard is based on IEC Publication IEC 60079-25: Second edition, Explosive Atmospheres – Part 25: Intrinsically Safe Electrical Systems, and is copyrighted by the IEC.

Efforts have been made to synchronize the UL edition number with that of the corresponding IEC standard with which this standard is harmonized. As a result, one or more UL edition numbers have been skipped to match that of the IEC edition number.

This is the common ISA and UL standard for Explosive Atmospheres – Part 25: Intrinsically Safe Electrical Systems. It is the Second edition of ANSI/ISA-60079-25 (superseding ANSI/ISA-12.02.05)-2011 and the Second edition of ANSI/UL 60079-25. The document is a modification of the IEC document and includes U.S. national differences encompassing both additions and deletions of information.

Efforts have been made to synchronize the UL edition number with that of the corresponding IEC standard with which this standard is harmonized. As a result, one or more UL edition numbers have been skipped to match that of the IEC edition number.

As the publication of this standard by UL is being done as a result of a simple reaffirmation of ISA's currently published standard, National Differences are shown using ISA's format. All future publications of this standard will show National Differences using UL's format.

This common standard was prepared by the (ISA) – The International Society of Automation on November 23, 2011 but is now being maintained by Underwriters Laboratories Inc. (UL).

Note: Although the intended primary application of this standard is stated in its scope, it is important to note that it remains the responsibility of the users of the standard to judge its suitability for their particular purpose.

Level of harmonization

This standard adopts the IEC text with national differences.

The requirements in this Standard are not presented in different formats by UL and ISA as this is a simple reaffirmation of an existing ISA standard. Therefore, the UL version of the standard is being published as the ISA version of the standard which illustrates the national differences from the IEC text through the use of legislative text (strike-out and underline).

Interpretations

The interpretation by the SDO of an identical or equivalent standard shall be based on the literal text to determine compliance with the standard in accordance with the procedural rules of the SDO. If more than one interpretation of the literal text has been identified, a revision shall be proposed as soon as possible to each of the SDOs to more accurately reflect the intent.

No Text on This Page

ULNORM.COM. Click to view the full poor of the Grand Company of the Company of th

Preface (ISA)

The preface, as well as all footnotes and annexes, is included for information purposes and is not part of ANSI/ISA-60079-25-2011(R2015).

This document has been prepared as part of the service of ISA toward a goal of uniformity in the field of instrumentation. To be of real value, this document should not be static but should be subject to periodic review.

The ISA Standards and Practices Department is aware of the growing need for attention to the metric system of units in general, and the International System of Units (SI) in particular, in the preparation of instrumentation standards. The Department is further aware of the benefits to USA users of ISA standards of incorporating suitable references to the SI (and the metric system) in their business and professional dealings with other countries. Toward this end, this Department will endeavour to introduce SI-acceptable metric units in all new and revised standards, recommended practices, and technical reports to the greatest extent possible. Standard for Use of the International System of Units (SI): The Modern Metric System, published by the American Society for Testing & Materials as IEEE/ASTM SI 10-97, and future revisions, will be the reference guide for definitions, symbols, abbreviations, and conversion factors.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and interests in the development of ISA standards, recommended practices, and technical reports. Participation in the ISA standards-making process by an individual in no way constitutes endorsement by the employer of that individual, of ISA, or of any of the standards, recommended practices, and technical reports that ISA develops.

CAUTION – ISA DOES NOT TAKE ANY POSITION WITH RESPECT TO THE EXISTENCE OR VALIDITY OF ANY PATENT RIGHTS ASSERTED IN CONNECTION WITH THIS DOCUMENT, AND ISA DISCLAIMS LIABILITY FOR THE INFRINGEMENT OF ANY PATENT RESULTING FROM THE USE OF THIS DOCUMENT. USERS ARE ADVISED THAT DETERMINATION OF THE VALIDITY OF ANY PATENT RIGHTS, AND THE RISK OF INFRINGEMENT OF SUCH RIGHTS, IS ENTIRELY THEIR OWN RESPONSIBILITY.

PURSUANT TO ISA'S PATENT POLICY, ONE OR MORE PATENT HOLDERS OR PATENT APPLICANTS MAY HAVE DISCLOSED PATENTS THAT COULD BE INFRINGED BY USE OF THIS DOCUMENT AND EXECUTED A LETTER OF ASSURANCE COMMITTING TO THE GRANTING OF A LICENSE ON A WORLDWIDE, NON-DISCRIMINATORY BASIS, WITH A FAIR AND REASONABLE ROYALTY RATE AND FAIR AND REASONABLE TERMS AND CONDITIONS. FOR MORE INFORMATION ON SUCH DISCLOSURES AND LETTERS OF ASSURANCE, CONTACT ISA OR VISIT WWW.ISA.ORG/STANDARDSPATENTS.

OTHER PATENTS OR PATENT CLAIMS MAY EXIST FOR WHICH A DISCLOSURE OR LETTER OF ASSURANCE HAS NOT BEEN RECEIVED. ISA IS NOT RESPONSIBLE FOR IDENTIFYING PATENTS OR PATENT APPLICATIONS FOR WHICH A LICENSE MAY BE REQUIRED, FOR CONDUCTING INQUIRIES INTO THE LEGAL VALIDITY OR SCOPE OF PATENTS, OR DETERMINING WHETHER ANY LICENSING TERMS OR CONDITIONS PROVIDED IN CONNECTION WITH SUBMISSION OF A LETTER OF ASSURANCE, IF ANY, OR IN ANY LICENSING AGREEMENTS ARE REASONABLE OR NON-DISCRIMINATORY.

ISA REQUESTS THAT ANYONE REVIEWING THIS DOCUMENT WHO IS AWARE OF ANY PATENTS THAT MAY IMPACT IMPLEMENTATION OF THE DOCUMENT NOTIFY THE ISA STANDARDS AND PRACTICES DEPARTMENT OF THE PATENT AND ITS OWNER.

ADDITIONALLY, THE USE OF THIS DOCUMENT MAY INVOLVE HAZARDOUS MATERIALS, OPERATIONS OR EQUIPMENT. THE DOCUMENT CANNOT ANTICIPATE ALL POSSIBLE

R. Johnson

APPLICATIONS OR ADDRESS ALL POSSIBLE SAFETY ISSUES ASSOCIATED WITH USE IN HAZARDOUS CONDITIONS. THE USER OF THIS DOCUMENT MUST EXERCISE SOUND PROFESSIONAL JUDGMENT CONCERNING ITS USE AND APPLICABILITY UNDER THE USER'S PARTICULAR CIRCUMSTANCES. THE USER MUST ALSO CONSIDER THE APPLICABILITY OF ANY GOVERNMENTAL REGULATORY LIMITATIONS AND ESTABLISHED SAFETY AND HEALTH PRACTICES BEFORE IMPLEMENTING THIS DOCUMENT.

THE USER OF THIS DOCUMENT SHOULD BE AWARE THAT THIS DOCUMENT MAY BE IMPACTED BY ELECTRONIC SECURITY ISSUES. THE COMMITTEE HAS NOT YET ADDRESSED THE POTENTIAL ISSUES IN THIS VERSION.

The following people served as members of STP 60079 and participated in the review of this Reaffirmation:

FOILL GOOTO. 25 20' NAME COMPANY *B. Zimmermann, Chair R Stahl Inc. *T. Adam FM Approvals LLC R. Allen Honeywell Inc. *J. Anderson Thermon Mfg Co. D. Ankele **UL LLC** P. Becker nVent S. Bihler **Eurofine Met Labs** S. Blais Emerson/Appleton Group K. Boeali KBB Consulting Pepperl + Fuchs Inc. R. Brownlee Shell R&T - Innovation / R&D D. Burns Industrial Scientific Corp. R. Chalmers *C. Coache National Fire Protection Association *M. Cole Hubbell Canada LP D. Cook Shelby County Department of Development Services M. Coppler Det Norske Veritas Certification Inc. *R. Deadman **UL LLC** M. Dona Beach Energy T. Dubaniewicz NIOSH *G. Edwards **Det-Tronics** M. Egloff Montana Tech, University of Montana M. Ehrmann R Stahl Inc D. El Tawy Siemens Energy *A. Engler Det Norske Veritas DNV M. Fillip National Oilwell Varco W. Fiske Intertek Z. Fosse **DEKRA Certification Inc** G. Gurinder Gurinder Garcha Consulting D. Grady Talema Group R. Holub **DuPont** Solar Turbines Inc. E. Hong D. Jang National Research Council Canada *B. Johnson Thermon Mfg. Co.

Source IEC

NAME **COMPANY** *P. Kelly **UL LLC** S. Kiddle ABB Inc

*J. Kuntscher Thermon Mfg Co. S. Lambaz Littelfuse Inc. W. Lawrence FM Approvals LLC

E. Leubner Eaton's Crouse-Hinds Business

GE Gas Power W. Lockhart W. Lowers WCL Corp. *N. Ludlam FM Approvals Ltd.

R. Martin **USCG**

E. Massey ABB Motors and Mechanical Inc. W. McBride CONAM Construction Co. T. Michalski Killark Electric Mfg. Co. J. Miller MSA Innovation LLC *O. Murphy Honeywell Inc.

Bureau of Safety & Environmental Enforcement (BSEE) D. Nedorostek

A. Page Bud Page Consultant Inc. **National Instruments** R. Parks ExVeritas North America LLC L. Ricks Eaton Electric Ltd - MTL P. Rigling

*K. Robinson Occupational Safety and Health Adm.

General Machine Corp. J. Ruggieri S. Sam Tundra Oil & Gas

*J. Scheller ABB Motor and Mechanical Inc.

CSA Group P. Schimmoeller 3RM.OM.Click Rosemount Inc. *T. Schnaare **ARTECH Engineering** R. Seitz S. Sharma Lindsay Corp.

J. Silliman 3М

K. Singh Ex Safet Services and Solutions

G. Sitnik MET Laboratories Inc.

J. Smith SGS

G. Steinman **ABB Installation Products**

*R. Teather Det Norske Veritas Certification Inc.

T. Tedesco Magnetek L. Vlagea **General Monitors**

D. Wechsler American Chemistry Council

N. Wienhold Rosemount Inc.

E-x Solutions International Pty Ltd. R. Wigg

*K. Wolf Intertek T. Woods Bently Nevada R. Zalosh Firexplo

^{*} Non-voting member

No Text on This Page

ULNORM.COM. Click to view the full poor of the Grand Company of the Company of th

FOREWORD

INTERNATIONAL ELECTROTECHNICAL COMMISSION

EXPLOSIVE ATMOSPHERES – Part 25: Intrinsically Safe Electrical Systems

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by EC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60079-25 has been prepared by subcommittee 31G: Intrinsically safe apparatus, of IEC technical committee 31: Equipment for explosive atmospheres.

This second edition cancels and replaces the first edition published in 2003 and constitutes a technical revision.

The significant changes with respect to the previous edition are listed below:

- extension of the scope from Group II to Groups I, II and III;
- introduction of level of protection "ic";
- addition of requirements for cables and multi-core cables;
- reference to IEC 60079-11 regarding the termination of intrinsically safe circuit;

- requirements for the assessment of an expanded and clarified intrinsically safe system regarding level of protection "ic", simple apparatus and faults in multi-core cables;
- introduction of predefined systems and merging of the system requirements for FISCO from IEC 60079-27;
- addition of requirements for simple intrinsically safe systems containing both lumped inductance and lumped capacitance;
- addition of a method for testing the electrical parameters of cables;
- additional information for the use of simple apparatus in systems.

The text of this standard is based on the following documents:

FDIS	Report on voting
31G/202/FDIS	3(G)203/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the SO/IEC Directives, Part 2.

A list of all parts of IEC 60079 series, under the general title *Explosive atmospheres* can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed;
- · withdrawn;
- · replaced by a revised edition; or
- amended.

FOREWORD

All text of IEC 60079-25:2010 (Edition 2) is included. U.S. National Deviations are shown by strikeout through text deleted and <u>underline</u> under text added. Tables, or portions of tables, that are to be deleted are shown as shaded; figures to be deleted are marked with the overlay "X." There are ten annexes in this standard. Annexes \underline{B} , \underline{D} , \underline{G} , \underline{I} and \underline{J} are normative and are considered part of this standard. Annexes \underline{A} , \underline{C} , \underline{E} , \underline{F} , and \underline{H} are informative and are not considered part of this standard.

JI. NORM. Click to view the full POF of JI. GOOT 9-25-2020

No Text on This Page

ULNORM.COM. Click to view the full poor of the Grand Company of the Company of th

1 Scope

This part of IEC 60079 standard contains the specific requirements for construction and assessment of intrinsically safe electrical systems, type of protection "i", intended for use, as a whole or in part, in Class I, Zone 0, 1, or 2, or Zone 20, 21, or 22 hazardous (classified) locations as defined by the National Electrical Code® (NEC), ANSI/NFPA 70® in locations in which the use of Group I, II or III apparatus is required.

NOTE 1 This standard is intended for use by the designer of the system who may be a manufacturer, a specialist consultant or a member of the end-user's staff.

This standard supplements and modifies the general requirements of ANSI/ISA-60079-0 and ANSI/ISA-61241-0 IEC 60079-0 and the intrinsic safety standard ANSI/ISA-60079-11 and ANSI/ISA-61241-11 IEC 60079-14. Where a requirement of this standard conflicts with a requirement of ANSI/ISA-60079-0, ANSI/ISA-60079-11, ANSI/ISA-61241-0 IEC 60079-0 or ANSI/ISA-61241-11 IEC 60079-11, the requirement of this standard takes precedence.

This standard supplements IEC 60079-11, the requirements of which apply to electrical apparatus used in intrinsically safe electrical systems.

The installation requirements of Group II or Group III systems designed in accordance with this standard are specified in the National Electrical Code ANSI/NFPA 70 IEC 60079 14.

NOTE 2 Group I installation requirements are presently not provided in IEC 60079 14.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies

IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60079 0, Explosive atmospheres Part 0: Equipment General requirements

ANSI/ISA-60079-0 (12.00.01)-2009, Explosive atmospheres – Part 0: Equipment – General Requirements

IEC 60079 11:2006, Explosive atmospheres Part 11: Equipment protection by intrinsic safety "i"

ANSI/ISA-60079-11 (12.02.01), Explosive Atmospheres – Part 11: Equipment protection by intrinsic safety

IEC 60079 14:2007, Explosive atmospheres Part 14: Electrical installations design, selection and erection

IEC 60079-15, Electrical apparatus for explosive gas atmospheres Part 15: Construction, test and marking of type of protection "n" electrical apparatus

ANSI/ISA-60079-15 (12.12.02)-2009 Electrical Apparatus for Use in Class I, Zone 2 Hazardous (Classified) Locations: Type of Protection "n"

IEC 60079 27:2008, Explosive atmospheres - Part 27: Fieldbus intrinsically safe concept (FISCO)

ANSI/ISA-60079-27 (12.02.04)-2006, Fieldbus Intrinsically Safe Concept (FISCO) and Fieldbus Non-Incendive Concept (FNICO)

IEC 61158-2, Industrial communication networks – Fieldbus specifications – Part 2: Physical layer specification and service definition

IEC 61241-0, Electrical apparatus for use in the presence of combustible dust - Part 0: General requirements

ANSI/ISA-61241-0(12.10.02), Electrical Apparatus for Use in Zone 20, Zone 21 and Zone 22 Hazardous (Classified) Locations – General Requirements

IEC 61241-11, Electrical apparatus for use in the presence of combustible dust – Part 11. Protection by intrinsic safety "iD"

ANSI/ISA-61241-11 (12.10.04), Electrical Apparatus for Use in Zone 20, 21, and Zone 22 Hazardous (Classified) Locations – Protection by Intrinsic Safety "iD"

ANSI/NFPA 70:2011, National Electrical Code

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions, specific to intrinsically safe electrical systems, apply. They supplement the terms and definitions which are given in <u>ANSI/ISA-60079-0</u>, ANSI/ISA-60079-11, ANSI/ISA-61241-0 IEC 60079-0 and ANSI/ISA-61241-11 IEC 60079-11.

3.1.1

intrinsically safe electrical system

assembly of interconnected items of electrical apparatus, described in a descriptive system document, in which the circuits or parts of circuits, intended to be used in an explosive atmosphere, are intrinsically safe circuits

3.1.2

listed certified listed intrinsically safe electrical system

intrinsically safe electrical system conforming to 3.1.1 listed against for which a certificate has been issued confirming that the electrical system complies with ANSI/ISA-60079-25 IEC 60079-25

3.1.3

uncertified intrinsically safe electrical system

intrinsically safe electrical system conforming to 3.1.1 for which the knowledge of the electrical parameters of the items of certified intrinsically safe electrical apparatus, certified associated apparatus, simple apparatus and the knowledge of the electrical and physical parameters of the interconnecting wiring permit the unambiguous deduction that intrinsic safety is preserved

3.1.4

descriptive system document

document in which the items of electrical apparatus, their electrical parameters and those of the interconnecting wiring are specified

3.1.5

system designer

person who is responsible for the descriptive system document, has the necessary competence to fulfil the task and who is empowered to enter into the commitments on behalf of his employer

3.1.6

maximum cable capacitance

Cc

maximum capacitance of the interconnecting cable that can be connected into an intrinsically safe circuit without invalidating intrinsic safety

3.1.7

maximum cable inductance

 L_{c}

maximum inductance of the interconnecting cable that can be connected into an intrinsically safe circuit without invalidating intrinsic safety

3.1.8

maximum cable inductance to resistance ratio

 $L_{
m c}/R_{
m c}$

maximum value of the ratio inductance (L_c) to resistance (R_c) of the interconnecting cable that can be connected into an intrinsically safe circuit without invalidating intrinsic safety

3.1.9

linear power supply

power source from which the available output current is determined by a resistor; the output voltage decreases linearly as the output current increases.

3.1.10

non-linear power supply power

supply where the output voltage and output curvent have a non-linear relationship

NOTE For example, a supply with a constant voltage output that can reach a constant current limit controlled by semiconductors.

3.2 Abbreviations

FISCO Fieldbus Intrinsically Safe Concept FNICO Fieldbus Non-Incendive Concept

Descriptive system document

A descriptive system document shall be created for all systems. The descriptive system document shall provide an adequate analysis of the safety achieved by the system.

NOTE Annex E comprises examples of typical diagrams, which illustrate the requirements of the descriptive system document.

The minimum requirements are as follows:

- a) block diagram of the system listing all the items of apparatus within the system including simple apparatus and the interconnecting wiring. An example of such a diagram is shown in <u>Figure E.1</u>;
- b) a statement of the group subdivision (for Groups II and III), the level of protection for each part of the system, the temperature classification, and the ambient temperature rating in accordance with Clauses 5, 6 and 7;
- c) the requirements and permitted parameters of the interconnecting wiring in accordance with Clause 8;

- d) details of the earthing and bonding points of the systems in accordance with Clause 11. When surge protection devices are used, an analysis in accordance with Clause 12 shall also be included;
- e) where applicable, the justification of the assessment of apparatus as simple apparatus in accordance with ANSI/ISA-60079-11 IEC 60079-11 shall be included;
- f) where the intrinsically safe circuit contains several pieces of intrinsically safe apparatus the analysis of the summation of their parameters shall be available. This shall include all simple apparatus and <u>listed</u> certified intrinsically safe apparatus;
- g) a unique identification of the descriptive system document shall be created;
- h) the system designer shall sign and date the document.

NOTE The descriptive systems drawing is not the same as the Control Drawing referred to in ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11.

5 Grouping and classification

Intrinsically safe electrical systems shall be placed in a Group II or Group III as defined in ANSI/ISA-60079-0 IEC 60079-0. Groups II and III intrinsically safe electrical systems as a whole or parts thereof shall be given a further subdivision of the Group as appropriate.

Apparatus within Groups II and III intrinsically safe electrical system, intended for use in explosive gas or dust atmospheres, shall be given a temperature class or maximum surface temperature in accordance with ANSI/ISA-60079-0, ANSI/ISA-60079-0, ANSI/ISA-61214-0, IEC 60079-0, ANSI/ISA-61214-0, IEC 60079-0, ANSI/ISA-61214-0, IEC 60079-0, ANSI/ISA-61214-0, IEC 61241-11 as applicable.

NOTE 1 In Group II and Group III intrinsically safe electrical systems, or parts thereof, the subdivisions A, B, C may be different from those of the particular intrinsically safe electrical apparatus and associated electrical apparatus included in the system.

NOTE 2 Different parts of the same intrinsically safe electrical system may have different subdivisions (A, B, C). The apparatus used may have different temperature classes and different ambient temperature ratings.

6 Levels of protection

6.1 General

Each part of an intrinsically safe electrical system intended for use in an explosive atmosphere will have a level of protection of "ia", "ib" or "ic" in accordance with <u>ANSI/ISA-60079-11 or ANSI/ISA-61241-11</u> IEC 60079-11. The complete system need not necessarily have a single level of protection.

NOTE 1 For example, where an instrument is primarily an "ib" instrument but which is designed for the connection of an "ia" sensor, such as a pH measuring instrument with its connected probe, the part of the system up to the instrument is "ib" and the sensor and its connections "ia".

NOTE 2 An "ia" field instrument powered via an "ib" associated apparatus would be considered as an "ib" system.

NOTE 3 A system may be "ib" in normal operation with external power, but when power is removed under defined safety circumstances (ventilation failure) then the system could become "ia" under back up battery power. The level of protection will be clearly defined for foreseeable circumstances.

Clause 13 contains details of the required assessment.

6.2 Level of protection "ia"

Where the requirements applicable to electrical apparatus of level of protection "ia" (see <u>ANSI/ISA-60079-11 and ANSI/ISA-61241-11</u> <u>IEC 60079-11</u>) are satisfied by an intrinsically safe system or part of a system considered as an entity, then that system or part of a system shall be placed in level of protection "ia".

6.3 Level of protection "ib"

Where the requirements applicable to electrical apparatus of level of protection "ib" (see <u>ANSI/ISA-60079-11 and ANSI/ISA-61241-11</u> <u>IEC 60079-11</u>) are satisfied by an intrinsically safe system or part of a system considered as an entity, then that system or part of a system shall be placed in level of protection "ib".

6.4 Level of protection "ic"

Where the requirements applicable to electrical apparatus level of protection "ic" (see ANSI/ISA- 60079-11 IEC 60079-11) are satisfied by an intrinsically safe system or part of a system considered as an entity, then the system or part of a system shall be placed in level of protection "ic".

7 Ambient temperature rating

Where part or all the intrinsically safe system is specified as being suitable for operation outside the normal operating temperature range of –20 °C and +40 °C, this shall be specified in the descriptive system document.

8 Interconnecting wiring / cables used in an intrinsically safe electrical system

The electrical parameters of the interconnecting wiring upon which intrinsic safety depends and the derivation of these parameters shall be specified in the descriptive system document. Alternatively, a specific type of cable shall be specified and the justification for its use included in the documentation. Cables for the interconnecting wiring shall comply with the relevant requirements of Clause 9.

NOTE: The requirements for intrinsically safe wiring are contained within the National Electrical Code® (NEC) 504.10.

Where relevant, the descriptive system document shall also specify the permissible types of multi-core multi-conductor cables as specified in Clause 9, which each particular circuit may utilize. In the particular case where faults between separate circuits have not been taken into account, then a note shall be included on the block diagram of the descriptive system document stating the following: "where the interconnecting cable utilizes part of a multi-core multi-conductor cable containing other intrinsically safe circuits, then the multi-core multi-conductor cable shall be in accordance with the requirements of a multi-core multi-conductor cable type A or B, as specified in Clause 9 of ANSI/ISA-60079-25 IEC 60079 25".

A multi-core multi-conductor cable containing circuits classified as level of protection "ia", "ib" or "ic" shall not contain non-intrinsically safe circuits.

"ic" multi-core multi-conductor cables may contain more than one intrinsically safe "ia", "ib" or "ic" circuit subject to the applicable faults specified in Clause 13.

NOTE <u>Multi-core Multi-conductor</u> cables not complying with type A or B are permitted if the specific combination of circuits is examined against the requirements of <u>ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11</u>.

Intrinsically safe "ic" circuits shall only be run together with intrinsically safe "ia" and "ib" circuits provided they are run in a multi-core multi-conductor cable of type A or type B specified in 9.5.

9 Requirements of cables and multi-core multi-conductor cables

9.1 General

The diameter of individual conductors or strands of multi-stranded conductors within the hazardous area shall not be less than 0,1 mm. This information shall be added to the Descriptive System Document.

Only insulated cables with insulation capable of withstanding a dielectric test of at least 500 V a.c. or 750 V d.c. shall be used in intrinsically safe circuits.

NOTE This clause is not intended to prevent the use of bare conductors in a signalling system and these should be considered as simple apparatus and not interconnecting wiring.

9.2 Multi-core Multi-conductor cables

The radial thickness of the insulation of each <u>conductor</u> core shall be appropriate to the conductor diameter and the nature of the insulation with a minimum of 0.25 mm.

Multi-core Multi-conductor cables shall be capable of withstanding a dielectric test of at least:

- a) 500 V r.m.s. a.c. or 750 V d.c. applied between any armouring and/or screen(s) joined together and all the <u>conductors</u> cores joined together.
- b) 1 000 V r.m.s. a.c. or 1 500 V d.c. applied between a bundle comprising one half of the cable cores joined together and a bundle comprising the other half of the <u>conductors</u> cores joined together. This test is not applicable to <u>multi-core multi-conductor</u> cables with conducting screens for individual circuits.

The dielectric strength test shall be carried out in accordance with an appropriate cable standard or dielectric strength tests of ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11.

9.3 Electrical parameters of cables

The electrical parameters (C_c and L_c or C_c and L_c/R_c) for all cables used within an intrinsically safe system shall be determined according to a), b) or c):

- a) the most onerous electrical parameters provided by the cable manufacturer;
- b) electrical parameters determined by measurement of a sample, with the method of testing electrical parameters of cables given in Annex \underline{G} ;
- c) where the interconnection comprises two or three cores of a conventionally constructed cable (with or without screen): 200 pF/m and either 1 μ H/m or an inductance to resistance ratio (L_c/R_c) calculated by dividing 1 μ H by the manufacturers specified loop resistance per meter. Alternatively, for currents up to I_o = 3 A an L/R ratio of 30 μ H/ Ω may be used.

Where a FISCO or FNICO system is used, the requirements for the cable parameters shall comply with Annex <u>I</u>.

9.4 Conducting screens (shields)

Where conducting screens provide protection for separate intrinsically safe circuits in order to prevent such circuits becoming connected to one another, the coverage of those screens shall be at least 60 % of the surface area.

9.5 Types of multi-core multi-conductor cables

9.5.1 General

Multi-core Multi-conductor cables shall be classified as either type A, type B or type C for the purposes of applying faults and assessing the safety of the cabling within an intrinsically safe system. The cable types are specified in 9.5.2, 9.5.3, and 9.5.4.

The use of multi-core multi-conductor cables that do not comply with the requirements for types A, B, or C is not permitted.

9.5.2 Type A cable

A cable whose construction complies with 9.1, 9.2, 9.3 and has conducting screens providing individual protection for each intrinsically safe circuit according to 9.4.

9.5.3 Type B cable

A cable whose construction complies with 9.1, 9.2 and 9.3, is fixed and effectively protected against damage and does not contain any circuit with a maximum voltage U_0 exceeding 60 V.

9.5.4 Type C cable

A cable whose construction complies with 9.1, 9.2 and 9.3

10 Termination of intrinsically safe circuits

Intrinsically safe systems that contain junction boxes or marshalling cubicles where intrinsically safe circuits are terminated shall comply with the terminal requirements in the facilities for the connection of external circuits of ANSI/ISA-60079-11 or ANSI/ISA-61241-11 as appropriate IEC 60079-11.

11 Earthing and bonding of intrinsically safe systems

In general, an intrinsically safe circuit shall either be fully floating or bonded to the reference potential associated with a hazardous area at one point only. The level of isolation required (except at that one point) is to be designed to withstand a 500 V insulation test in accordance with the dielectric strength requirement of ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11. Where this requirement is not met, the circuit shall be considered to be earthed at that point. More than one earth connection is permitted on a circuit, provided that the circuit is galvanically separated into sub-circuits, each of which has only one connection to the grounding electrode system earth point.

Screens shall be connected to earth or the structure in accordance with the National Electrical Code ANSI/NFPA 70 IEC 60079 14. Where a system is intended for use in an installation where significant potential differences (greater than 10 V) between the structure and the circuit can occur, the preferred technique is to use a circuit galvanically isolated from external influences such as changes in ground potential at some distance from the structure. Particular care is required where part of the system is intended to be used in Class I Zone 0 or Zone 20 locations or when the system has a very high level of protection so as to conform to EPL Ma requirements.

The descriptive system document should clearly indicate which point or points of the system are intended to be connected to the plant reference potential and any special requirements of such a bond. This may be achieved by adding a reference to National Electrical Code ANSI/NFPA 70 IEC 60079 14 in the descriptive system document.

NOTE IEC 60079-14 does not apply to electrical installations in mines susceptible to firedamp.

12 Protection against lightning and other electrical surges

Where a risk analysis shows that an installation is particularly susceptible to lightning or other surges, precautions shall be taken to avoid the possible hazards.

If part of an intrinsically safe circuit is installed in Zone 0 in such a way that there is a risk of developing hazardous or damaging potential differences within Zone 0, a surge protection device shall be installed. Surge protection is required between each conductor of the cable including the screen and the structure where the conductor is not already bonded to the structure. The surge protection device shall be installed outside but as near to the boundary of Zone 0 as is practicable, preferably within 1 m.

Surge protection for apparatus in <u>Class I</u>, Zones 1 and 2 shall be included in the system design for highly susceptible locations.

The surge protection device shall be capable of diverting a minimum peak discharge current of 10 kA (8/20 µs impulse according to IEC 60060-1 for 10 operations). The connection between the protection device and the local structure shall have a minimum cross-sectional area equivalent to 4 mm² copper. The cable between the intrinsically safe apparatus in Zone 0 and the surge protection device shall be installed in such a way that it is protected from lightning. Any surge protection device introduced into an intrinsically safe circuit shall be suitably explosion protected for its intended location and comply with the applicable ordinary location standard.

The use of surge protection devices which interconnect the circuit and the structure via nonlinear devices such as gas discharge tubes and semiconductors is not considered to adversely affect the intrinsic safety of a circuit, provided that in normal operation the current through the device is less than 10 µA.

NOTE If insulation testing at 500 V is carried out under well-controlled conditions, then it may be necessary to disconnect the surge suppression devices to prevent them invalidating the measurement.

Intrinsically safe systems utilizing surge suppression techniques shall be supported by <u>a an adequately</u> documented analysis of the effect of indirect multiple earthing, taking into account the criteria set out above. The capacitance and inductance of the surge suppression devices shall be considered in the assessment of the intrinsically safe system.

Annex F illustrates some aspects of the design of surge protection of an intrinsically safe system.

13 Assessment of an intrinsically safe system

13.1 General

Where a system contains apparatus which does not separately conform to <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> IEC 60079-11, then that system shall be analysed as a whole, as if it were an apparatus. A level of protection "ia" system shall be analysed in accordance with the level of protection "ia" criteria of <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> IEC 60079-11. A level of protection "ib" criteria of <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> IEC 60079-11. A level of protection "ic" system shall be analysed in accordance with the level of protection "ic" criteria of <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> IEC 60079-11. In addition to the faults within the apparatus, the failures within the field wiring listed in 13.4 shall also be taken into account.

NOTE It is recognized that applying faults to the system as a whole is less stringent than applying faults to each piece of apparatus; nevertheless, this is considered to achieve an acceptable level of safety.

Where all the necessary information is available, it is permissible to apply the fault count to the system as a whole even when apparatus conforming to ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11 is being used. This is an alternative solution to the more usual straightforward comparison of input and output characteristics of the separately analysed or tested apparatus.

Where a system contains only separately analysed or tested apparatus conforming to ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079 11, the compatibility of all the apparatus included in the system shall be demonstrated. Faults within the apparatus have already been considered and no further consideration of these faults is necessary. Where a system contains a single source of power, the output parameters of the power source take into account opening, shorting and earthing of the external interconnecting cable, and consequently these failures do not need to be further considered. Annex A contains further details of the analysis of these simple circuits.

When a system contains more than one linear source of power, then the effect of the combined sources of power shall be analysed. Annex B illustrates the analysis to be used in the most frequently occurring combinations.

If an intrinsically safe system contains more than one source of power, and one or more of these sources are non-linear, the assessment method described in Annex B cannot be used. For this kind of intrinsically safe system, Annex C explains how the system analysis can be conducted if the combination contains a single non-linear power supply.

Figure 1 illustrates the principles of the system's analysis.

IIINORM. Cick to view the full put of

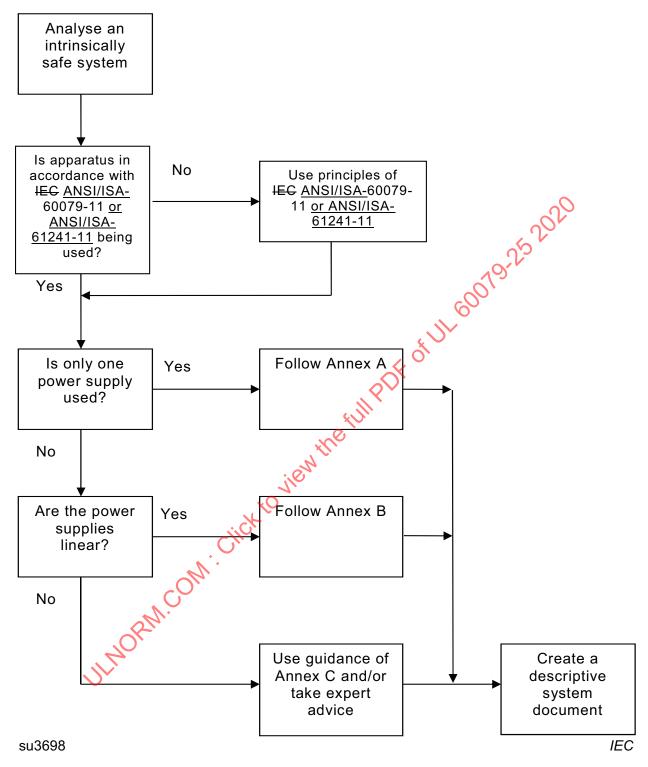


Figure 1
Systems analysis

13.2 Simple apparatus

Switches, terminals, terminal boxes, plugs and sockets complying with the simple apparatus requirements of <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> <u>IEC 60079-11</u>, may be added to a system without modifying the safety assessment. The possible heating effects on simple apparatus shall be considered. When other types of simple apparatus consisting of energy storing components for example capacitors or inductors complying with <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> <u>IEC 60079-11</u> are added to a system, the safety assessment shall take into account their electrical parameters. A typical system using simple apparatus is shown in Figure 2.

Where simple apparatus are intended to contain several separate intrinsically safe circuits, e. g. connectors, plugs and sockets or a resistance thermometer with two separate resistance windings, the separation requirements of ANSI/ISA-60079-11 or ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11 apply. If they do not conform, then the interconnected circuits shall be assessed as a single intrinsically safe circuit.

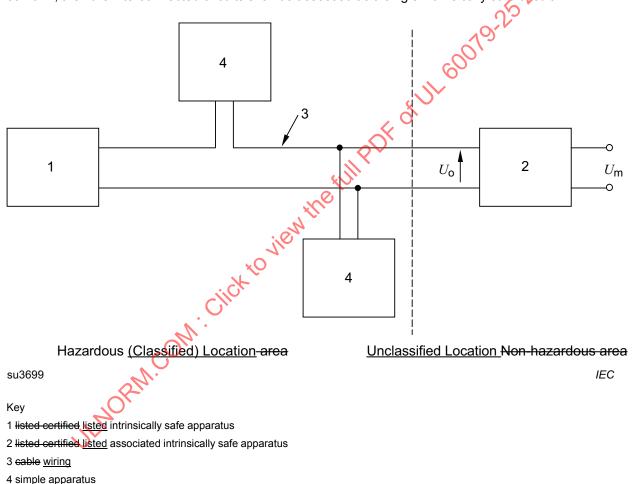


Figure 2
Typical system using simple apparatus

13.3 Analysis of inductive circuits

Where an apparatus has a well-defined inductance and resistance either by virtue of its documentation or construction, then the safety of the inductive aspects of the system shall be confirmed by the process defined in Annex D.

13.4 Faults in multi-core multi-conductor cables

13.4.1 Type of multi-core multi-conductor cables

The faults, if any, which shall be taken into consideration in multi-core multi-conductor cables used within intrinsically safe electrical systems depend upon the type of cable used. The following subclauses detail the cable faults to be assessed for each type of cable.

13.4.2 Type A cable

No faults between circuits shall be taken into consideration if the cable complies with 9.5.2.

13.4.3 Type B cable

No faults between circuits shall be taken into consideration if the cable complies with 9.5.3.

13.4.4 Type C cable

The combination of faults comprising of two short circuits between conductors and simultaneously up to four open circuits of conductors that result in the most onerous condition if the cable complies with 9.5.4.

All circuits in a multi-core multi-conductor cable subject to damage shall adopt the level of protection of the circuit with the lowest level of protection.

13.5 Type verifications and type tests

Where it is necessary to carry out type verifications and/or type tests to establish that a system is adequately safe, then the methods specified in <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> <u>IEC 60079-11</u> shall be used.

14 Marking

All apparatus within the system shall be readily identifiable. The minimum requirement is that the relevant descriptive system document shall be readily traceable. One acceptable technique is a clear instrument loop number, which identifies the loop documentation, which in turn lists the descriptive system document.

Where a system is assessed as a whole and is found to conform to <u>ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11</u>, each piece of apparatus shall be marked in accordance with that standard.

15 Predefined systems

A system and all of its individual devices may be predefined and previously assessed in such a way that the interconnection of the individual devices and cables is sufficiently well known. In such cases, the assessment requirements of this standard can be simplified. One such predefined system is the FISCO system, the assessment of a FISCO system is set forth in Annex I.

NOTE: The requirements for FISCO Power Supplies, Field Devices, and Terminators are contained within ANSI/ISA-60079-27.

Annex A (informative)

Assessment of a simple intrinsically safe system

The majority of intrinsically safe systems are simple systems, containing a single source of power in associated apparatus connected to a single piece of field mounted intrinsically safe apparatus. This standard uses the combination of the temperature transmitter and the intrinsically safe interface shown in Annex $\underline{\mathbf{E}}$ to illustrate the method of analysis.

The initial requirement is to establish the safety data of the two pieces of apparatus in the circuit. This data can be derived from a copy of the certificate, instructions or control drawing, which should be available to the system designer. In particular, any specific conditions of use should be taken into account in the system design. Precisely what information is transferred to the system drawing is determined by the necessity for the system analysis to be clearly justified and for it to be relatively simple to create the particular installation drawing from this reference drawing.

The compatibility of the two pieces of apparatus is established by comparison of the data of each apparatus. The sequence is usually as follows.

- a) Compare equipment grouping. If they differ then the system takes the least sensitive classification. For example, if one device is IIC and the other IIB then the system becomes IIB. It is usual for a source of power <u>listed</u> eertified as IIC to have permissible output parameters $(L_o, C_o \text{ and } L_o/R_o)$ for IIB and IIA equipment groups as well. If these larger values are used then the parameters used determine the system gas group.
- b) Compare levels of protection. If they differ then the system assumes the lowest level of protection. For example, if a device is "ia" and the other "ib" then the system becomes "ib". A source of power which is <u>listed</u> eertified "ib" may also have different output parameters for use in "ic" circuits. If these values are used in the system design then the system becomes "ic":
- c) Determine the temperature classification of the equipment mounted in the hazardous area. Apparatus may have different temperature classifications for different conditions of use (usually dependent on ambient temperature or I_i , U_i and P_i) and the relevant one should be selected and recorded. Furthermore, it should be noted that it is the apparatus which is temperature classified, not the system.
- d) The permissible ambient temperature range of each piece of apparatus should be recorded.
- e) The voltage (U_0) , current (I_0) and power (P_0) output parameters of the source of power should be compared with the input parameters $(U_i, I_i \text{ and } P_i)$ of the field device, and the output parameters should not exceed the relevant input parameters. Occasionally the safety of the field device is completely specified by only one of these parameters. In these circumstances the unspecified parameters are not relevant.
- f) Determine the permitted cable parameters.

The permitted cable capacitance (C_c) is derived by subtracting the input capacitance of the field device (C_i) from the permitted output capacitance of the source of power (C_o), that is

$$C_c = C_o - C_i$$
.

The permitted cable inductance (L_c) is derived by subtracting the input inductance of the field device (L_i) from the permitted output inductance of the source of power (L_o), that is

$$L_c = L_o - L_i$$
.

The permitted L/R ratio of the cable (L_c/R_c) is easily determined provided that the input inductance of the field device is negligible (L_i less than 1 % of L_o). L_c/R_c is then taken to be equal to that of the source of power L_o/R_o . If the inductance of the field device is significant then the equation given in Annex \underline{D} can be used to calculate the permitted L_c/R_c if this is thought to be desirable. Fortunately, this is not a frequently occurring requirement.

Where a system contains both lumped capacitances and lumped inductances the interaction of these may increase the risk of ignition capable sparks. This concern is confined to fixed inductance and capacitance and not to the distributed parameters of a cable. Consequently, on those rare occasions when **both** the lumped inductance (the sum of L_i of the source of power and the field devices) and the lumped capacitance (the sum of C_i of the source of power and the field devices) are greater than 1 % of the respective output parameters of the source of power L_0 and C_0 then the permissible output parameters are both to be divided by two. However, the maximum external capacitance C_0 derived by using this simple rule shall be limited to a maximum value of 1 μ F for Group IIB and 600 nF for Group IIC. It should be stressed that this reduction in output parameters is only applicable on very rare occasions since it is unusual for field devices to have **both** inductive and capacitive input parameters which are significantly large. Frequently, L_i and C_i of a power source are not quoted in the documentation and in these circumstances it can be assumed that they are negligible. There is no suggestion that it is considered necessary to go back and check the safety documentation on existing installations for this most recent requirement. However, new analyses should take this remote possibility into account.

To summarise, it must be checked that either the lumped capacitance or inductance is less than 1 % of the respective output parameters. If it is, then the original calculation is valid. If **both** parameters are greater than 1 % of the output parameters then C_0 and L_0 of the system should be reduced by a factor of two.

Where a source of power is <u>listed</u> eertified "ia" or "ib" then the permitted output parameters L_0 , C_0 and L_0/R_0 are derived using a factor of safety of 1,5 on U_0 or I_0 respectively. When such a source of power is used in an "ic" circuit, the permitted output parameters may be derived using a unity safety factor. This results in a significant change, which usually removes the necessity to consider cable parameters in detail. Accurate values can be ascertained using the methods and tables in the apparatus standard. An acceptable conservative technique is to multiply the output parameters by two, which normally removes any concern about cable parameters.

g) Check that the level of insulation from earth is acceptable, or that the system earthing requirements are satisfied.

If these criteria are all satisfied, the compatibility of the two pieces of apparatus has been established. A convenient way of recording the analysis is to create a table. The following example (see <u>Table A.1</u>) uses the values from the typical system's drawing (see <u>Figure E.1</u>) and compares the intrinsically safe interface and the temperature transmitter.

Table A.1 Simple system analysis

Step	Item	I.S. interface	Temperature transmitter	System
a)	Equipment group	IIC	IIC	IIC
b)	Level of protection	ia	ia	ia
c)	Temperature classification	not applicable	T4	
d)	Ambient temperature	-20 °C to +60 °C	-40 °C to +80 °C	
e)	Parameter comparison			
	Voltage	<i>U</i> ₀: 28 V	<i>U</i> _i : 30 V	√
	Current	I _o : 93 mA	<i>I</i> _i : 120 mA	√

Table A.1 Continued

Step	ltem	I.S. interface	Temperature transmitter	System
	Power	P _o : 650 mW	P _i : 1 W	\checkmark
f)	Cable parameters			
	Capacitance	C _o : 83 nF	C _i : 3 nF	C _c : 80 nF
	Inductance	L _o : 4,2 mH	<i>L</i> _i : 10 mH	L _c : 4,2 mH
	L/R ratio	$L_{\rm o}/R_{\rm o}$: 54 mH/ Ω		$L_{\rm c}/R_{\rm c}$: 54 μΗ/Ω
g)	Earthing	Isolated	Isolated	Isolated

JILNORM.COM. Click to view the full role of the contract of th

Annex B (normative)

Assessment of circuits with more than one source of power

This analysis is only applicable when the power sources considered use a linear resistive limited output. It is not applicable to power sources using other forms of current limitation.

IEC 60079 14 contains a simplified procedure of determining the maximum system voltages and currents in intrinsically safe circuits with more than one associated apparatus with linear current/voltage characteristics which gives conservative results, which ensure a safe installation and may be used as an alternative to this annex.

Where there is more than one source of power and the interconnections are made under controlled conditions so as to provide adequate segregation and mechanical stability in accordance with <u>ANSI/ISA-60079-11</u> or <u>ANSI/ISA-61241-11</u> <u>IEC 60079-11</u>, then the interconnections are considered to fail to open and short circuit but not so as to reverse the connections or to change a series into a parallel connection or a parallel connection into a series one. Interconnections made within a rack or panel constructed in a location with adequate quality control and test facilities are an example of the degree of integrity required.

<u>Figure B.1</u> illustrates the usual series combination. This series situation results in the open circuit voltage U_0 being $U_1 + U_2$ but the possibility of the voltage being $U_1 - U_2$ is not considered. Considering the safety of the system, three voltages U_1 , U_2 and $U_0 = U_1 + U_2$ are considered together with their corresponding currents I_1 and I_2 and the combined

$$I_o = \frac{U_1 + U_2}{R_1 + R_2}$$

Each of the three equivalent circuits has to be assessed for safety using the table showing the permitted short-circuit current corresponding to the voltage and the apparatus group of ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC-60079-11. The value of L_o , or optionally L_o/R_o and C_o shall then be established for each circuit and the most onerous value used together with its relevant equivalent circuit.

For level of protection "ia" and "ib a factor of safety 1,5 shall be used in determining these values in all circumstances. For "ic" a safety factor of 1,0 is sufficient

NOTE Where the two voltages add, the combined circuit will determine the capacitive figure. However, the inductance and if applicable the L_0/R_0 ratio may be determined by one of the separate circuits being considered on its own. The minimum inductance does not always coincide with the maximum circuit current and the minimum L_0/R_0 ratio, if used, may not be coincident with the minimum inductance.

The matched power available from each of the equivalent circuits shall be determined. The matched power of the combined circuit is the sum of the power available from each circuit only when the sources have the same output current.

When the sources of power are connected in parallel as in <u>Figure B.2</u>, then the three currents I_1 , I_2 and $I_0 = I_1 + I_2$ have to be considered with their corresponding voltages U_1 , U_2 and

$$U_o = \frac{U_1 R_2 + U_2 R_1}{R_1 + R_2}$$

Each of the three equivalent circuits has to be assessed for safety using the table showing the permitted short-circuit current corresponding to the voltage and the apparatus group of ANSI/ISA-60079-11 or ANSI/ISA 61241-11 IEC 60079-11. The values L_0 , or optionally L_0/R_0 and C_0 have to be established for each circuit and the most onerous value used together with its relevant equivalent circuit. The matched power available from each of the three equivalent circuits shall also be established. The matched

the combined circuit is the sum of the power available from each circuit only when the sources have the same output voltage.

Where two sources of power are connected to the same intrinsically safe circuit and their interconnections are not well defined by reliable interconnections as illustrated in Figure B.3, there is a possibility that the sources of power can be connected in both series and parallel. In these circumstances, all the possible equivalent circuits shall be evaluated, following both the procedures set out. The most onerous output parameters and equivalent circuits shall be utilized in establishing the integrity of the intrinsically safe system.

The hazardous area (classified) location apparatus may contain a source of power, which results in the apparatus having output parameters, for example from internal batteries. When this occurs, the analysis of the system shall include the combination of this source of power with any source of power in the associated apparatus. Such an analysis shall normally include the reversal of the interconnection because of the possible failure of the field wiring.

Having established the representative equivalent circuits, these circuits can be used as if there was a single source of power, and the procedure already discussed in Annex $\underline{\underline{A}}$ can be used to establish whether the system as a whole is acceptably safe.

When two or more sources of power with different output voltages are interconnected the resultant circulating current can cause additional dissipation in the regulating circuits. Where the circuits have conventional resistive current limiting, the additional dissipation is not considered to adversely affect intrinsic safety.

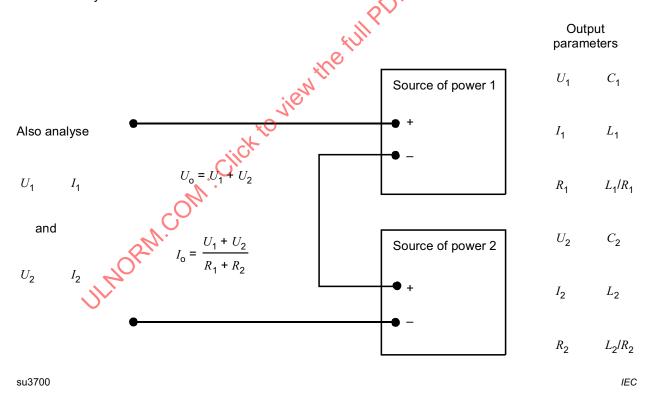
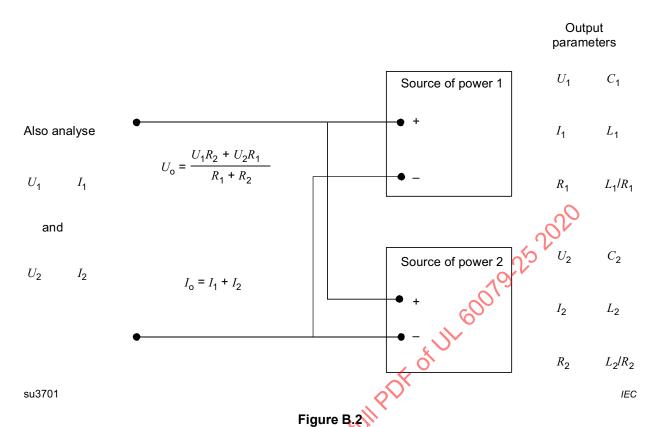
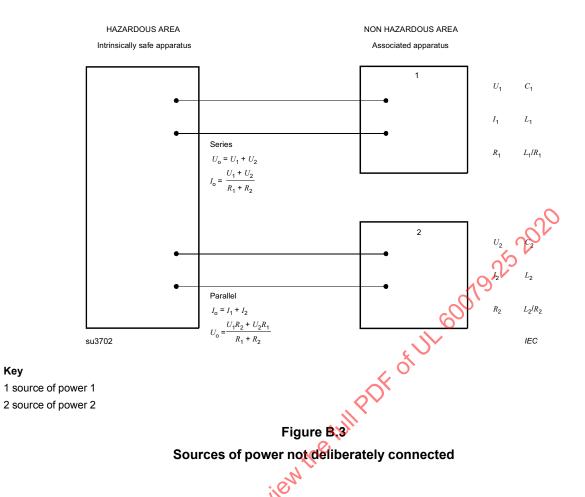




Figure B.1
Sources of power connected in series

Sources of power connected in parallel view in the connected in the connec

Mer no wer no view click to view Sources of power not deliberately connected

Annex C (informative)

Interconnection of non-linear and linear intrinsically safe circuits

C.1 General

This subject has been under active consideration for some considerable time and is still developing. It is the best knowledge currently available and is included so that wider experience of its use can be obtained.

The design and application of non-linear power supplies requires specialist knowledge and access to appropriate test facilities. Where the system designer is satisfied that a particular source of power is adequately safe it is permissible to design a system in accordance with this standard. Any particular conditions relating to such a system should be clearly stated in the accompanying documentation.

Where a safety analysis of a combination of power supplies using non-linear outputs is carried out, the interaction of the two circuits may cause a considerable increase in the dissipation in the regulating circuit components. This factor should be taken into account. It is recommended to have only one power supply containing regulating semiconductors combined with linear and/or trapezoidal sources.

The installation rules in IEC 60079-14 permit the operator in control of a hazardous area to combine several intrinsically safe circuits by interconnection. This also includes the case where several associated apparatus (that is, active in normal operation or only under fault conditions) are involved (see IEC 60079-14). Where this is done, it is not required to involve a certification body, test laboratory or an authorized engineer if a calculated or test based proof of the intrinsic safety of the interconnection is carried out.

The test-based proof should be performed using the standard spark test apparatus in accordance with ANSI/ISA-60079-11 or ANSI/ISA-61241-11 IEC 60079-11 considering the safety factor of the combined electrical apparatus. In this case, certain fault conditions leading to the most unfavourable ignition conditions, the 'worst case' approach, should be taken into account. Thus, this method of proof often meets with difficulties in practice and is usually reserved for a certification body or a test laboratory.

An assessment by calculation of the interconnection can be carried out easily at least for resistive circuits, if the electrical sources involved have a linear internal resistance as shown in Figure C.1a. In this case, the ignition limit curves or tables in ANSI/ISA-60079-11 IEC 60079-11 apply and the method described in IEC 60079-14, for the verification of intrinsically safe circuits with more than one associated apparatus with linear current/voltage characteristics; or the characteristics of Figure C.7 and Figure C.8 of this standard can be used.

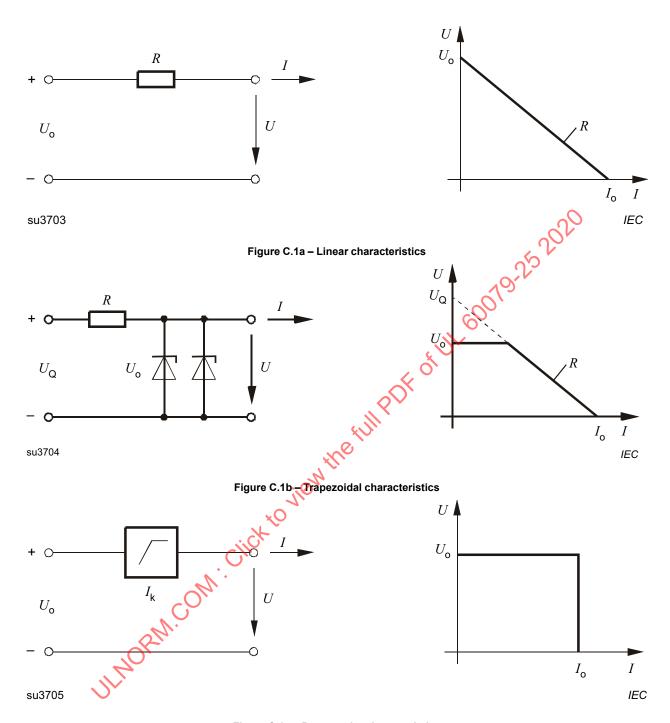


Figure C.1c – Rectangular characteristics

Figure C.1
Equivalent circuit and output characteristic of resistive circuits

The first step is to evaluate the new maximum values of voltage and current resulting from combining the associated apparatus. If the associated apparatus are combined as shown in <u>Figure C.2</u>a, there is a series connection. The maximum open-circuit voltage values, U_0 , of the individual sub-assemblies are added and the maximum value of the short-circuit currents, I_0 , of the sub-assemblies is taken. In an arrangement like that in <u>Figure C.2</u>c, there is a parallel connection. The short-circuit currents are added while the greatest value of the open-circuit voltage is taken.

If the arrangement of the apparatus is not clearly defined with respect to the polarity (as in <u>Figure C.2e</u>), then there may be a series or parallel connection depending on the fault condition considered. In this case, voltage addition and current addition should be assumed for both, but separately. The most unfavourable values have to be taken as a basis.

JINORM.COM. Click to view the full POF of IL. GOOTS PAR 2010

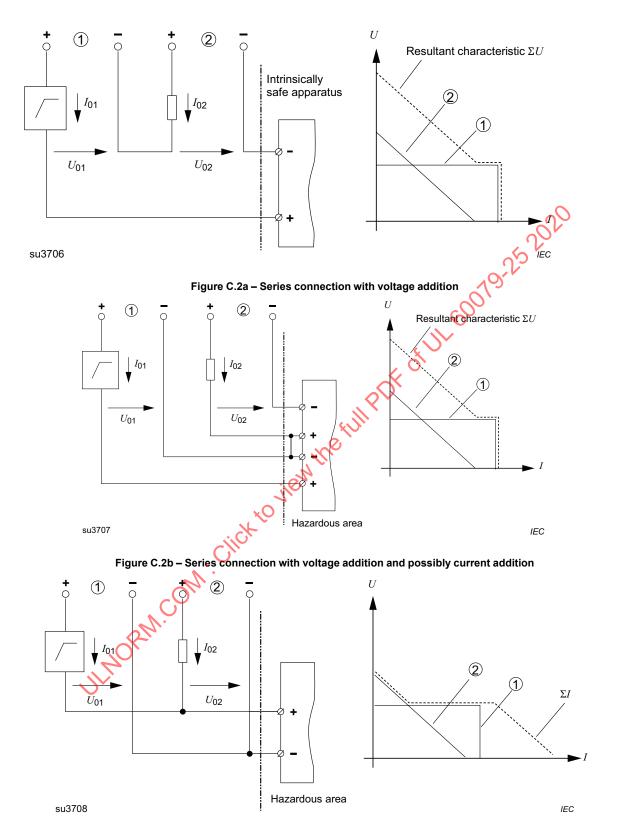
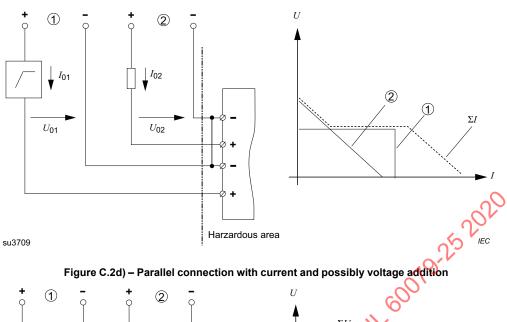



Figure C.2c - Parallel connection with current addition

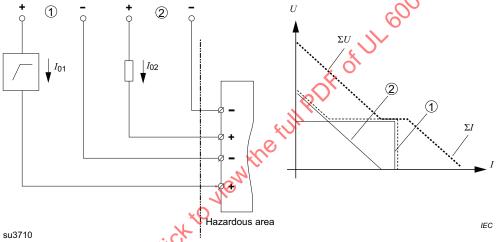


Figure C.2

Current and/or voltage addition for interconnections Figure C.2e – Series or parallel connection with current and voltage addition

After determining the new maximum values of current and voltage, the intrinsic safety of the combined circuit should be checked by means of the ignition limit curves given in ANSI/ISA-60079-11 IEC 60079-11, taking account of the safety factor for the resistive circuit, and the new maximum permissible values of external inductance $L_{\rm o}$ and capacitance $C_{\rm o}$ should be determined. Here, however, the procedure introduced in IEC 60079-14, for the verification of intrinsically safe circuits with more than one associated apparatus with linear current/voltage characteristics, shows a weakness, caused by the following:

- the maximum permissible inductances are valid only for a maximum voltage of 24 V;
- the occurrence of both inductance and capacitance is not taken into account.

If proceeding on the basis of open-circuit voltages and short-circuit currents only, the safety factor obtained really decreases from the desired value of 1,5 to approximately 1,0 in the voltage range above 20 V. This seems to be acceptable, since the interconnection in accordance with IEC 60079-14 can only meet level of protection "ib" generally, even if all the individual apparatus conforms to level of protection "ia". However, in the case of low voltages, the safety factor can drop considerably below the value of 1.0 Such an approach is thus not effective with regard to safety.

If one or more active sources within one circuit have non-linear characteristics, evaluation on the basis of noload voltages and short-circuit currents only cannot accomplish the original intention.

In practice, sources with trapezoidal shape (see Figure C.1b) are used and rectangular output characteristics (see Figure C.1c) occur often if electronic current-limiting devices are used. For such circuits, the ignition limit curves in ANSI/ISA-60079-11 IEC 60079-11 cannot be used. This standard therefore describes a method that allows the safety evaluation of the combination of networks including non-linear circuits by means of diagrams.

The procedure introduced here is applicable for Class Zone 1 and for equipment groups IIC and IIB and Zone 21, Group IIIC. It should be emphasized that an instrument for the assessment of the interconnection is being proposed here; using it for defining intrinsic safety parameters of individual circuits or apparatus makes sense only in the case of simple rectangular or linear circuits.

C.2 Basic types of non-linear circuits

C.2.1 Parameters

Whilst assessing the intrinsic safety of active circuits, it is necessary to know the internal resistance and the source voltage. In the simplest case, the source can be characterized by two (constant) electrical values, either by the voltage U_0 and the internal resistance R or by U_0 and the short-circuit current lo (see Figure C.1a). U_0 often is determined by zener diodes. U_0 and I_0 are maximum values that can occur under the fault conditions defined in ANSI/ISA-60079-11 IEC 60079-11. In the case of Figure C.1a, the characteristic is linear. Unfortunately, in practice, only a few circuits can be represented in this simple way.

A battery, for example, fitted with an external current limiting resistor has no constant internal resistance. Likewise, the source voltage changes as a function of the degree of charge. In order to study the behaviour of such practical circuits, they are represented by their simpler equivalent circuits that should obviously not be less capable of causing ignition than the actual circuit. In the above case of a battery, one would take the maximum open circuit as U_0 and the external resistance as R as in Figure C.1a. This equivalent circuit voltage has a linear characteristic.

Non-linear circuits can also be reduced, usually to the two basic types shown in <u>Figure C.1</u>b and <u>Figure C.1</u>c. The source with trapezoidal characteristic (<u>Figure C.1</u>b) consists of a voltage source, a resistance and additional voltage limiting components (for example, zener diodes) at the output terminals. The rectangular characteristic of <u>Figure C.1</u>c has the current limited by an electronic current regulator.

If one considers the output power of the different networks, it becomes obvious that different ignition limit values should apply, since the igniting spark is also a load and its matching to the source feeding it should be taken into account. The maximum available power from the source shown in Figure C.1a is

$$P_{\text{max}} = 0,25 \ U_{\text{o}} \times I_{\text{o}}$$

and for the trapezoidal characteristic (Figure C.1b):

$$P_{\text{max}} = 0,25 \ U_{\text{O}} \times I_{\text{o}}$$
 (for $U_{\text{o}} > 0,5 \times U_{\text{O}}$), or

$$P_{\text{max}} = U_{\text{o}} \times (U_{\text{Q}} - U_{\text{o}}) / R$$
 (for $U_{\text{o}} \le 0.5 \times U_{\text{Q}}$).

The trapezoidal characteristic of Figure C.1b becomes the rectangular characteristic of Figure C.1c as U_Q tends to infinity.

Here:

$$P_{\text{max}} = U_0 \times I_0$$
.

For the complete electrical description of a source, two parameters are needed for the linear and rectangular characteristics and three parameters for the trapezoidal characteristic (see Table C.1).

Table C.1

Parameters necessary to describe the output characteristic

Characteristic	Parameters necessary
Linear, Figure C.1a	U_0 , I_0 or U_0 , R
Trapezoidal, Figure C.1b	V_0 , U_Q , R or U_0 , R , I_0 or U_0 , U_Q , I_0
Rectangular, Figure C.1c	U_{o} , I_{o}

C.2.2 Information given in the certificates, instructions or control drawing

The first step in any safety-oriented assessment should be the determination of the type of characteristic and associated electrical parameters of the individual circuits. Since the circuit arrangements and the internal construction of the apparatus are not normally known to the user or operator, they will have to trust the electrical data given in the certificate, instructions or control drawing.

The values given usually are as follows: open-circuit voltage (here named U_0) and short-circuit current (here named I_0) and pormally the maximum available power P_0 . It is often possible to conclude information about the type of characteristic from these values.

Example (maximum values):

$$U_o = 12,5 \text{ V}$$

 $I_o = 0,1 \text{ A}$
 $P_o = 313 \text{ mW}$

Because P_0 is one-quarter of the product of open-circuit voltage and short-circuit current, it can be deduced that in this example a linear characteristic (Figure C.1a) is effective.

Example (maximum values):

$$U_o = 20,5 \text{ V}$$

 $I_o = 35 \text{ mA}$
 $P_o = 718 \text{ mW}$

Here P_0 is the product of the open-circuit voltage and the short-circuit current, and hence a rectangular characteristic is given (Figure C.1c).

In certain cases, the values for power, current and voltage do not correspond to the above because the power rating is specified for the stationary case (heating effect of components connected subsequently) and the current or voltage values for the dynamic case (spark ignition) are given. In situations where there is a doubt, it is essential to verify which characteristic to take as the basis for the interconnection with respect to spark ignition.

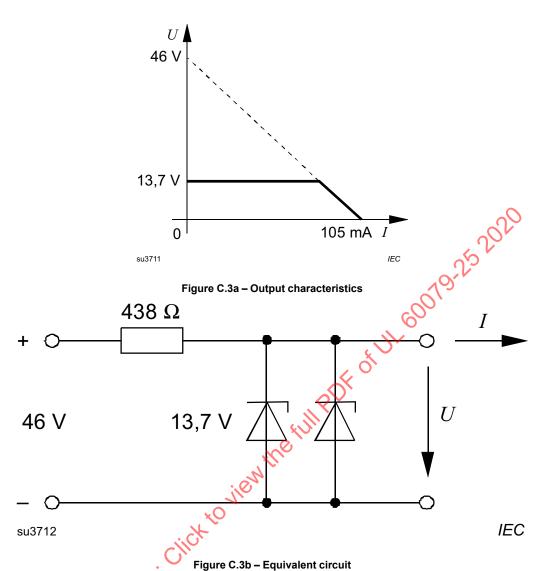
In the case of a trapezoidal characteristic, the information in the <u>documentation</u> test certificate is often not sufficient to determine the characteristic. The third parameter is missing (see Table C.1), either U_0 or R.

When R is given as the additional parameter, there is the least danger of confusion. Therefore R will generally be given in the <u>documentation-test certificates</u>. The parameter U_Q (Figure C.1b) can then be derived from $U_Q = I_0 \times R$.

In most cases, the <u>documentation</u> test certificate will also give the characteristic shape of any non-linear circuits.

An example may look as follows.

Maximum values (trapezoidal characteristic):


$$U_0 = 13.7 \text{ V}$$

 $I_0 = 105 \text{ mA}$
 $R = 438 \Omega$
 $P_0 = 1010 \text{ mW}$

The characteristic represented is shown in Figure C.3a; Figure C.3b shows the safety equivalent circuit.

Calculation is as follows:

$$U_{\rm O} = I_{\rm o} \times R = 46 \text{ V}$$
 and

$$P_{\rm o} = (U_{\rm Q} - U_{\rm o}) \times U_{\rm o} / R = 1.010 \text{ mW}$$

W .

Figure C.3

Output characteristic and equivalent circuit of a source with trapezoidal characteristic

The data needed for the interconnection can be obtained from the information given in the <u>documentation</u> certificate. If there is no data in the older certificates, the values should be obtained from the manufacturer of the apparatus.

In designing intrinsically safe circuits, an attempt should be made always to keep the interconnections and number of combined sub-assemblies low. This objective cannot always be achieved in practice, because it is also necessary to consider fault conditions. This means that some apparatus which are not acting in normal operation as sources have to be regarded as sources in the case of failures.

The passive inputs of devices, for example, measurement transducers, plotters etc., can, from the safety point of view, also act as active sources. Therefore the maximum values indicated in the <u>documentation</u> eertificates should be referred to. As a result, the operational characteristics of a circuit may deviate substantially from the safety characteristic. The values given in the <u>documentation</u> eertificates for open circuit voltage U_0 and short-circuit current I_0 for the circuit concerned are stated only for transient conditions in some cases. On the other hand, the power value applies for steady-state conditions which have to be considered for the temperature rise of connected components.

C.3 Interconnection of intrinsically safe circuits with more than one source

C.3.1 Determination of a resultant output characteristic

It is assumed that the output characteristics of the circuits making up the combination, and which are to be regarded as sources, are known (see Clause <u>C.2</u>). It is then necessary to ascertain from the type of interconnection whether, in normal operation and under fault conditions, it is necessary to consider the voltage sum, the current sum, or both current and voltage sums.

If the combined sources are connected in series and are not bonded, for example, to earth (<u>Figure C.2</u>a), then, irrespective of the polarity of the sources, voltage addition only is possible. The resultant output characteristic is conveniently found by graphical addition. Thus for each current value, the voltages of the individual sources are added. The dotted-line curve in <u>Figure C.2</u> shows the resultant characteristics in the different cases.

In the series circuit shown in <u>Figure C.2b</u>, where there is a common connection of both voltage sources at the load, current addition can be excluded only if the polarity of both sources in the direction shown here is fixed with respect to safety (for example, for certain safety barriers). With sources which can change the polarity operationally or under fault conditions, both voltage and current addition should be considered (see <u>Figure C.2e</u>).

In the parallel arrangement of <u>Figure C.2</u>c, current addition is only possible if, with bipolar sources, two poles are connected in each case. Voltage addition is not possible in this case and the resultant characteristic is generated by graphical addition of individual current values.

If only one pole of each source is connected to that of the other (Figure C.2d), then voltage addition can be excluded only if the polarity of the sources as shown here is fixed regarding all circumstances (for example, with safety barriers). Otherwise, both voltage and current addition should be considered (see Figure C.2e).

If several circuits are connected to a circuitry in which arbitrary interconnections should be assumed (Figure C.2e), then, depending on the fault conditions considered, a parallel or series connection may be set up, so that both current and voltage addition, should be considered. Because both cases are not possible at the same time, the resultant characteristic for current addition and that for voltage addition should be constructed separately. This procedure is necessary also in all cases of doubt for the circuits in Figure C.2b and Figure C.2d as well as with circuits with more than two conductors. The result so obtained will always be on the safe side.

C.3.2 Safety assessment of the interconnection and determination of the maximum permissible capacitance and inductance

When the resultant characteristic for the combination circuit has been determined as detailed in <u>C.3.1</u>, the next step is analysis of the intrinsic safety. For this purpose, the diagrams given in <u>Figure C.7</u> and <u>Figure C.8</u> are to be used. They show the permissible limit curve for linear source characteristics (dotted limit curve) and for rectangular characteristics (solid limit curve), with a given inductance and the new maximum values of current and voltage in the combined circuit. Further, curves are given to determine the highest permissible external capacitance for both cases. Table C.2 gives an overview.

Table C.2
Assignment of diagrams to equipment groups and inductances

Figure	Group	Permissible inductance <i>L</i> _o
Figure C.7a		0,15 mH
Figure C.7b		0,5 mH
Figure C.7c	IIC	1 mH
Figure C.7d		2mH
Figure C.7e		5mH
Figure C.8a	×	0,15 mH
Figure C.8b	40	0,5 mH
Figure C.8c	IIB	1 mH
Figure C.8d		2mH
Figure C.8e	Ø,	5mH

To assess the intrinsic safety, first select the explosion group and then the total inductance required for the combination. If only small inductances (that is no lumped inductances, only short cable lengths) are concerned, then the diagram with the lowest inductance should be selected (i.e. <u>Figure C.7</u> a for Group IIC and <u>Figure C.8</u> a for Group IIB).

The resultant output characteristic is then plotted in the diagram concerned. If, in accordance with <u>C.3.1</u> current and voltage additions are considered, then both resultant characteristics should be plotted.

It is now possible to determine directly whether the combination of sources together with the inductance for that diagram and the selected explosion group is intrinsically safe. The resultant sum characteristic should not intersect the limit curve for the rectangular source in the diagram at any point. In addition, the point in the diagram defined by the maximum voltage and the maximum current of the sum characteristic should be below the curve for the linear source.

The maximum permissible capacitance of the resulting circuit is found as the lowest value from the two C_0 limit curve families, being the highest C_0 value that is not intersected by the resultant output characteristic for the linear limit and for the rectangular limit. If a higher permissible capacitance C_0 is required for the purpose of an application, then this can be obtained by starting with a diagram for a lower inductance. The same approach can also be used where the resultant output characteristic intersects the curve for the inductive limit of the linear or rectangular source. If, even for the smallest inductance value in the diagrams (0,15 mH), the relevant limit curve(s) is exceeded in the IIC diagram, then the use of the IIB diagrams is recommended. If these limits are also exceeded, then the combination is not intrinsically safe for explosion Group IIB either.

C.3.3 Supplementary comments about the procedure using output characteristics

The procedure described above in $\underline{\text{C.3.1}}$ and $\underline{\text{C.3.2}}$ for the safety assessment of interconnections of intrinsically safe circuits is based on fundamental research work and model calculations. The actual calculation method gives results differing from those in former report.

In future, somewhat larger capacitances are permissible in the small voltage range. For higher voltages the difference can be up to a factor of 3. In contrast to the diagrams in a former report, the limit curve for the purely resistive circuit is omitted in Figure C.7 and Figure C.8; but it is inherently established through the inductive limits. Further, the limit curves for linear sources were inserted here. Apart from this, the graphic process remains the same in general.

The graphic method is based upon a reduction of the actual source characteristic in abstracted linear as well as rectangular sources and comparison with the associated limit curves. Only in the case where the actual source characteristic is either linear or rectangular can the safety factor be derived from the diagram with a guarantee to be exactly 1,5. In some of the more complex sources, it may be of benefit to construct an enveloping linear or rectangular characteristic and the safety factor is preserved. If both limit criteria are made use of, the actual safety factor can be slightly smaller (always greater than 1 however). This is a result of the reduction of the actual circuit conditions used in this simple graphic method. General expert opinion indicates that this is acceptable when considering Zone 1 installations.

When using the diagrams given in <u>Figure C.7</u> and <u>Figure C.8</u>, the interaction of inductance and capacitance (mixed circuit) is always covered. The procedure should be used also for the combination of purely linear circuits (output characteristic in accordance with <u>Figure C.1</u>a). The method specified does not distinguish between lumped inductances or capacitances and those derived from distributed cable parameters. When cables with transmission times of up to 10 ms occur, then the current view is that there is no need for this difference. The calculation based on concentrated elements lies on the safe side and does not, in contrast to earlier calculation methods, cause severe limitation in practice.

The advantage of this procedure is that all information relating to safety data can be taken from a single diagram. Nevertheless, an additional comparison of the maximum open-circuit voltage with the maximum capacitance in accordance with the permitted capacitance corresponding to the voltage and the apparatus group table in <u>ANSI/ISA-60079-11</u> <u>IEC 60079-11</u> should be made, because in certain cases the procedure described here gives a higher permissible capacitance. The values should then be taken from <u>ANSI/ISA-60079-11</u> <u>IEC 60079-11</u> because misunderstandings can arise otherwise.

The values obtained for the maximum permissible external inductance and capacitance are those for the total combination, that is the inductances and capacitances of all the individual devices, which are effective at the external terminals, should be considered.

The calculation procedure used for the diagrams shows no significant systematic deviations from the results obtained from the ignition tests during the research projects. It is known that the numerous experimental results have an uncertainty in the range of 10 %. The reason for this is the test method and the spark test apparatus itself. The method presented here is not estimated to have greater deviations.

C.4 Illustration of the procedure using output characteristics by means of an example

In the example shown in <u>Figure C.4</u>, an analyser with an amplifier (IV) is located inside the hazardous area and supplied by an intrinsically safe power supply (I). The intrinsically safe amplifier output signal (0 to 20 mA signal) is fed to a display (II) and a plotter (III).

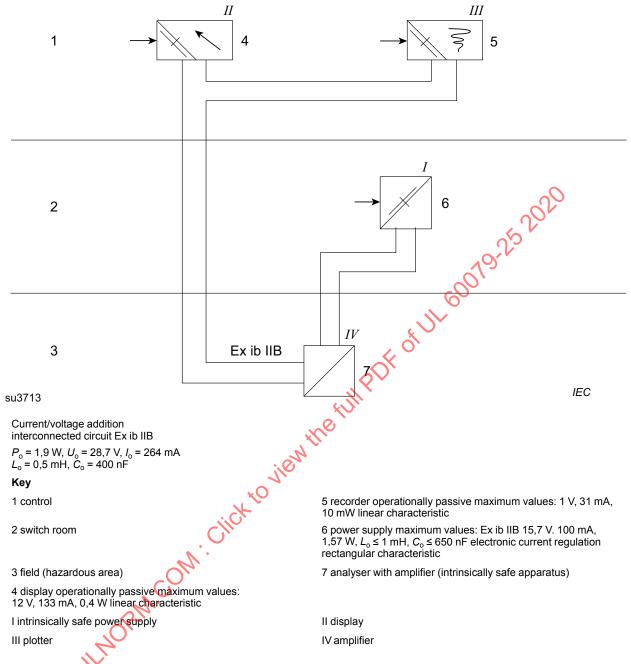


Figure C.4
Example of an interconnection

The analyser is an intrinsically safe apparatus; the power supply, the display and the plotter are associated apparatus within the meaning of ANSI/ISA-60079-11 IEC 60079-11. In normal operation, only the mains supply is effective as an active source, whilst display and plotter are passive. For safety analysis however, the highest possible values are taken as a basis which are found in the documentation test certificates for the three devices when in a fault condition.

The following information is available.

I Power supply

Output with type of protection Ex ib IIB

Maximum values

 $U_0 = 15,7 \text{ V}$ $I_0 = 100 \text{ mA}$ $P_0 = 1,57 \text{ W}$ $L_0 = 1 \text{ mH}$ $C_0 = 650 \text{ nF}$

to view the full PDF of UL 600 TO 25 2020 Rectangular output characteristic (Figure C.1c)

II Display

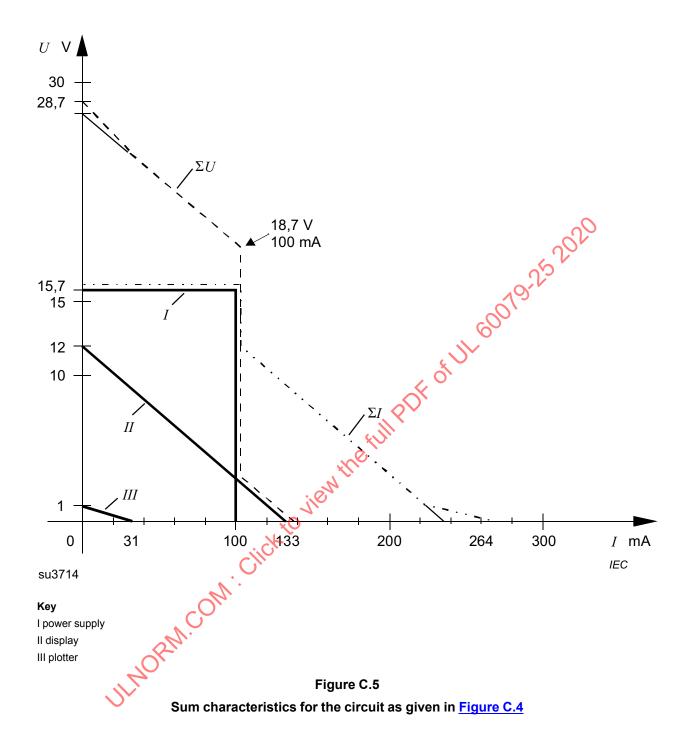
Input with type of protection Ex ib IIC

Maximum values

 $U_{0} = 12 \text{ V}$ $I_0 = 133 \text{ mA}$ $\tilde{P}_{0} = 0.4 \text{ W}$ $L_o = 1.8 \text{ mH}$ $C_o = 1.4 \mu\text{F}$

Linear output characteristic (Figure C.1a)

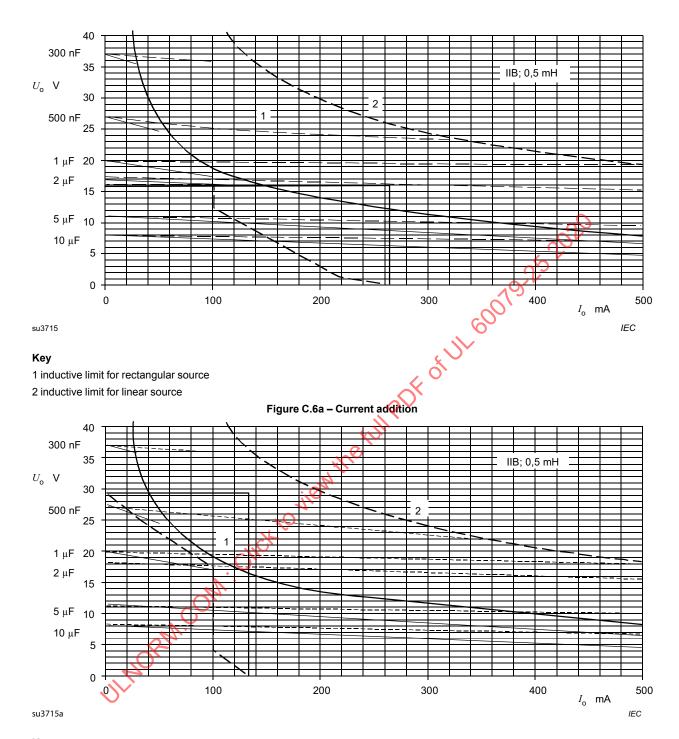
III Plotter


Input with type of protection Ex ib IIC

Maximum values

 $U_0 = 1 \text{ V}$ $I_0 = 31 \text{ mA}$ $P_0 = 10 \text{ mW}$ $L_{\rm o} = 36 \, {\rm mH}^{2}$ $C_0 = 200 \, \mu F$

Linear output characteristic (Figure C.1a)


With the circuit arrangement in Figure C.4, and depending on the fault conditions in the analyser, voltages or currents can be added as in Figure C.2e. The individual characteristics and the two sum characteristics for voltage and current addition are shown in Figure C.5.

In order to check the intrinsic safety, the two sum characteristics are drawn in <u>Figure C.8</u>b (explosion Group IIB, L = 0.5 mH) (Figure C.6a and Figure C.6b).

The corner point at 18,7 V and 100 mA in the voltage addition curve obviously is the critical point, it is nearest to the inductive limit of the rectangular source, but does not reach it. At this point the theoretically highest power of 1,9 W is reached.

Since both resultant characteristics of the combination do not intersect the inductive limit curves for the linear and rectangular sources in Figure C.6a and Figure C.6b, the safety test has come out positively. For the maximum voltage (28,7 V) of the resultant characteristic in the present example, the maximum Junoan.com. clickto vientne full port of the contract of the c permissible capacitance of the combination from the family of curves in Figure C.6b can be read off to be 400 nF. If the permitted capacitance corresponding to the voltage and the apparatus group table of ANSI/ISA-60079-11 IEC 60079-11 is checked for the value 28,7 V Group IIB, the permissible value of capacitance is 618 nF which is higher than the value of 400 nF established here.

- 1 inductive limit for rectangular source
- 2 inductive limit for linear source

Figure C.6b - Voltage addition

Figure C.6

Current and/or voltage addition for the example given in Figure C.4

The resultant values for the combination are as follows:

Explosion Group IIB

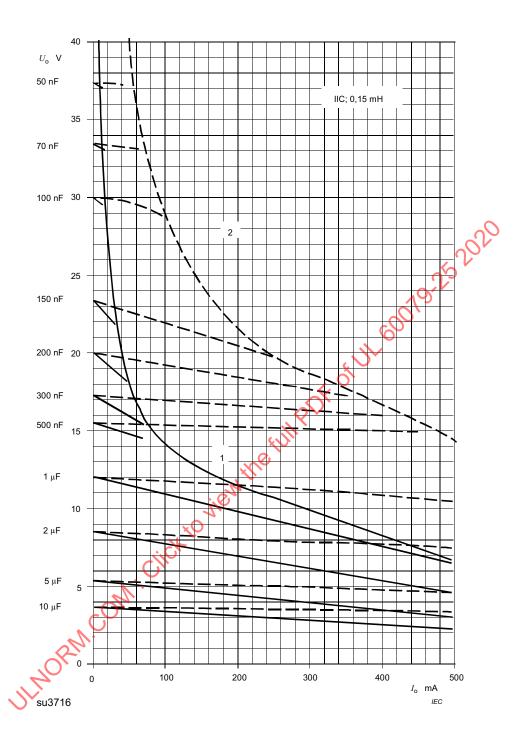
Maximum values

 $U_{o} = 28.7 \text{ V}$ $I_{o} = 264 \text{ mA}$ $P_{o} = 1.9 \text{ W}$ $L_{o} = 0.5 \text{ mH}$ $C_{o} = 400 \text{ nF}$

Because, in the present example, the associated apparatus (power supply, display and plotter) have no effective inductance or capacitance values at the intrinsically safe inputs/outputs, the maximum values for capacitance and inductance may be used for the intrinsically safe apparatus (analyser) and for the interconnection cables.

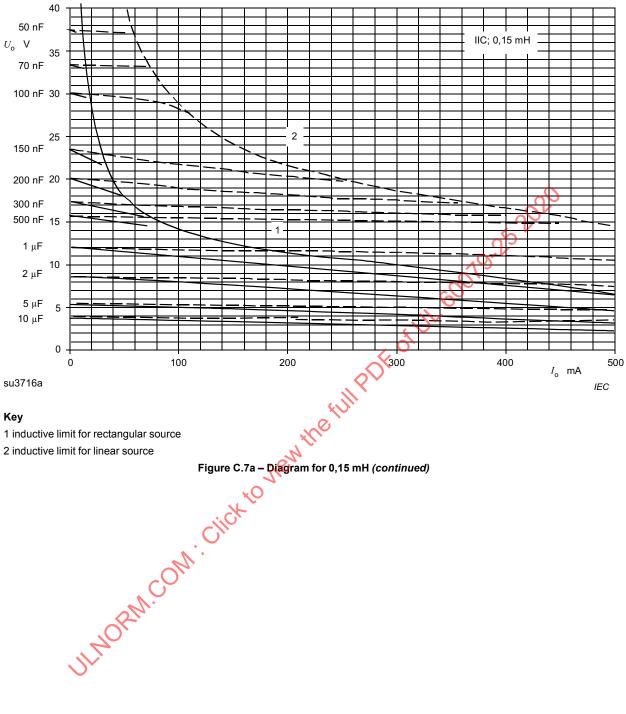
C.5 Summary

In the design and construction of measuring and process plant in the chemical and petrochemical industries, it is frequently necessary to combine several <u>listed</u> pieces of apparatus with intrinsically safe circuits.


The installation rules of IEC 60079-14 permits the designer, constructor or operator of an electric installation in a hazardous area to handle such combinations at his own responsibility if a calculated or measured proof of the safety of the interconnection is carried out. Since the operator has, generally, no facility for a measured proof (the required equipment is not available to the operator), the operator is left with a suitable calculation procedure. IEC 60079-14 has up to now provided only a procedure that can be used exclusively for sources with purely linear internal resistance and even this does not always result in safe configurations. In practice however, sources with non linear characteristic occur frequently, and up till now the combination of these were only possible with the support of a testing station.

A method was therefore developed which permits the safety assessment of the combination of networks with linear and non-linear circuits to be performed by means of diagrams. The procedure described here is applicable to explosion Groups IIB and IIC and for hazardous area Zone 1.

The basic part of the procedure is the graphical summation of the output characteristics of the intrinsically safe sources involved. The resultant characteristics are then plotted in a suitable diagram from which the intrinsic safety of the resistive, inductive, capacitive and combined circuits can be assessed (that is with a simultaneous inductive and capacitive load). A significant advantage of this procedure is that all information and boundary conditions relating to the safety data can be taken from just one diagram. The required safety factor of 1,5 is already incorporated into the diagrams.


C.6 Diagrams

The diagram in Figure C.9 is included so that it may be used for copying onto a transparency. The self-calculated diagrams for voltage sum or current sum then can be drawn and laid upon the different limit diagrams (common scale versions) for assessment. On the following pages the limit diagrams in accordance with to Table C.2 are given both in a common scale and in optimized scale.

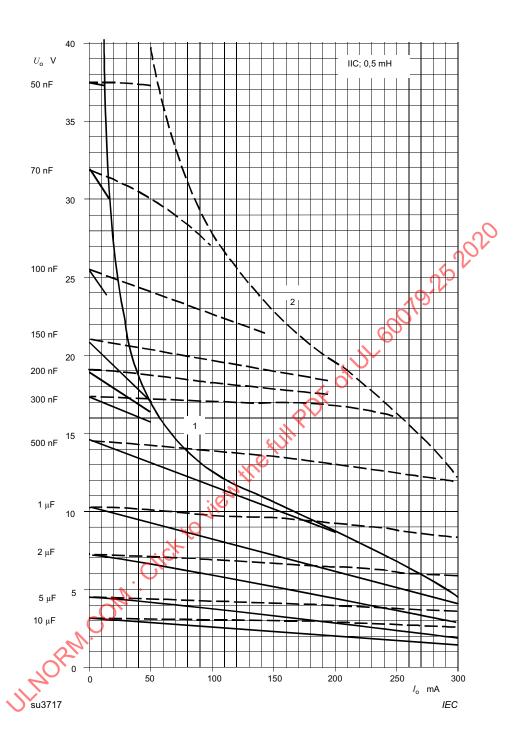
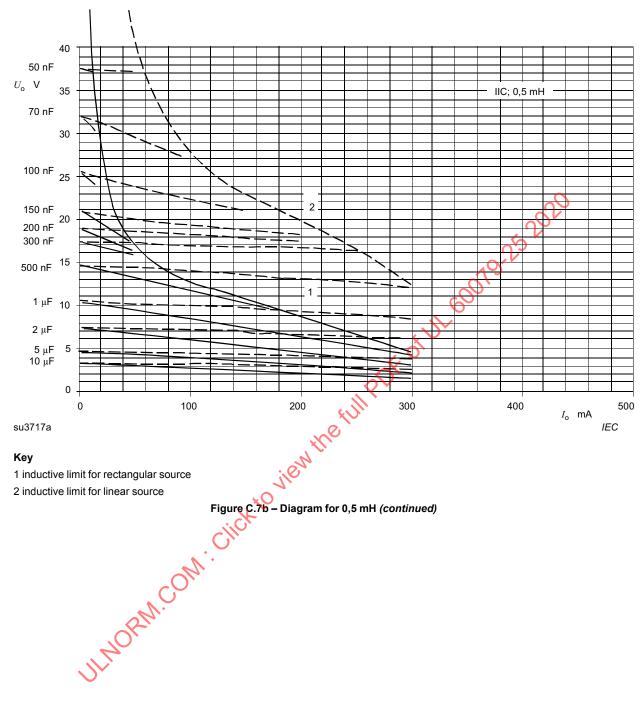
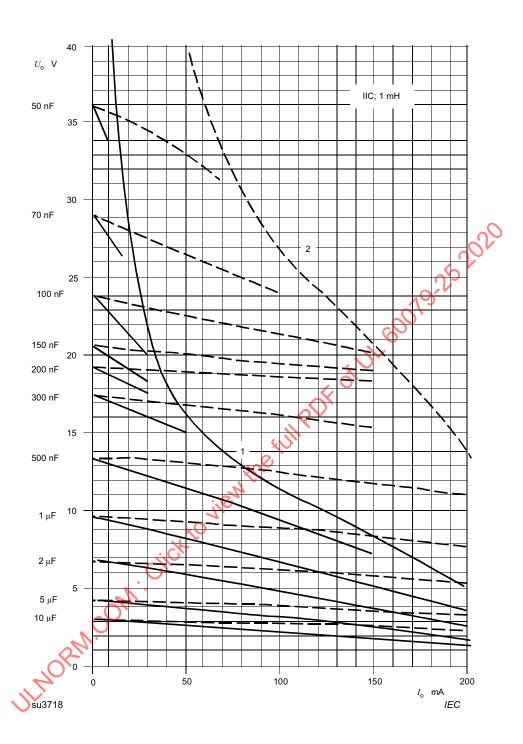
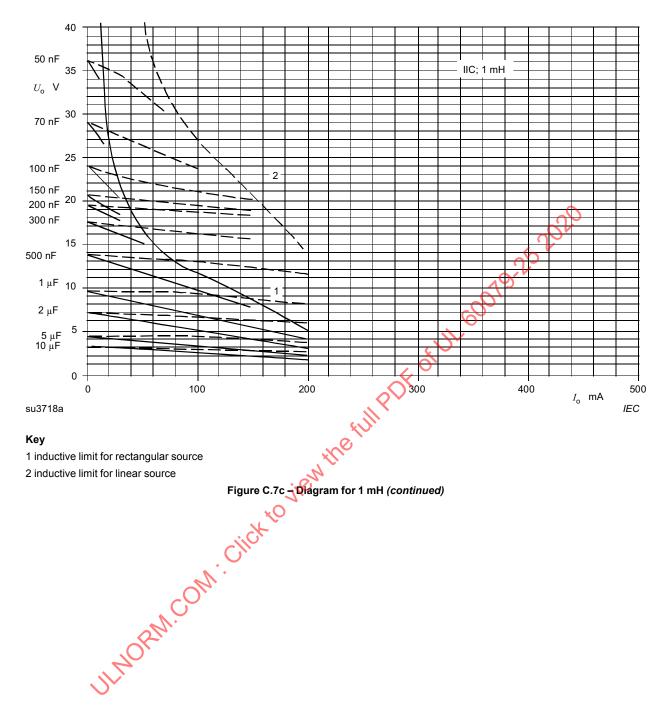

- 1 inductive limit for rectangular source
- 2 inductive limit for linear source

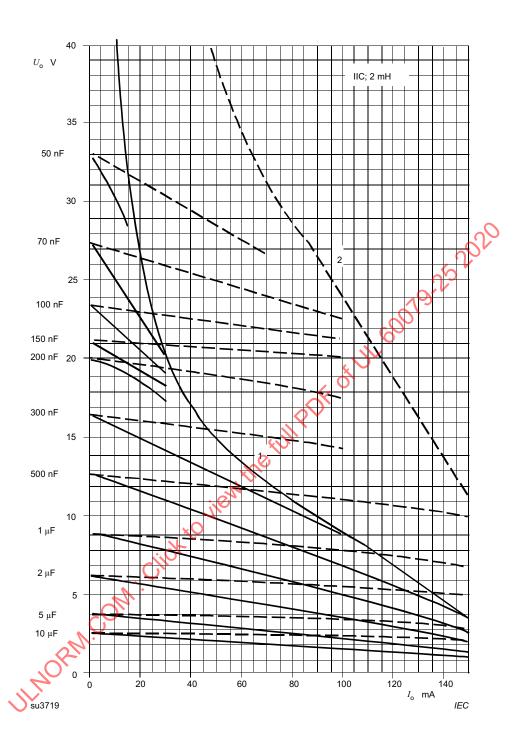
Figure C.7a – Diagram for 0,15 mH


1 inductive limit for rectangular source

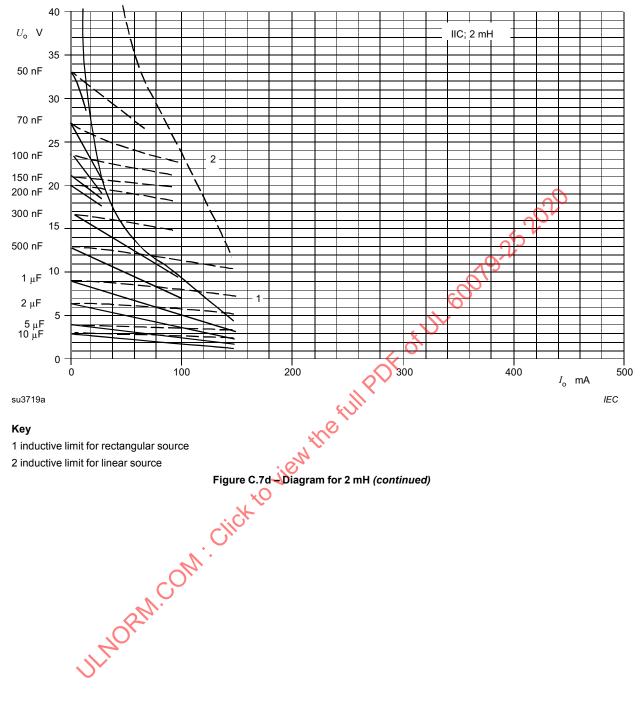

2 inductive limit for linear source

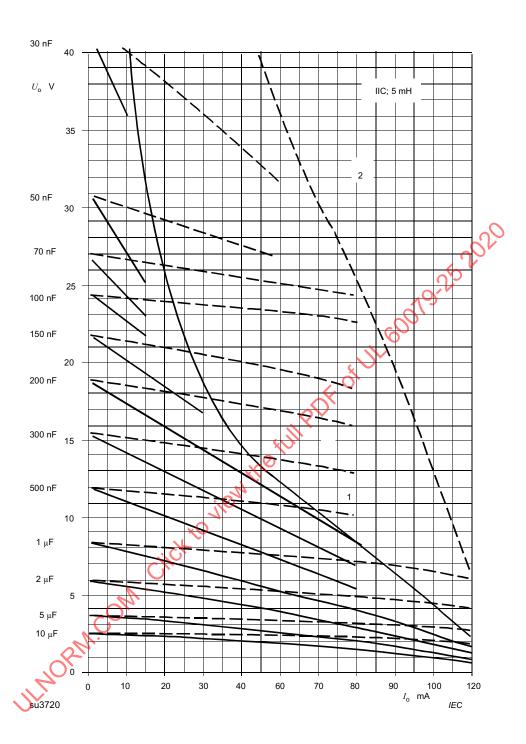
- 1 inductive limit for rectangular source
- 2 inductive limit for linear source


Figure C.7b - Diagram for 0,5 mH

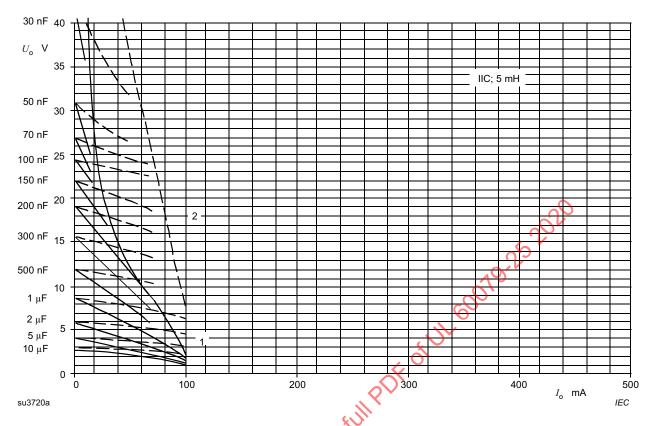


- 1 inductive limit for rectangular source
- 2 inductive limit for linear source


Figure C.7c – Diagram for 1 mH

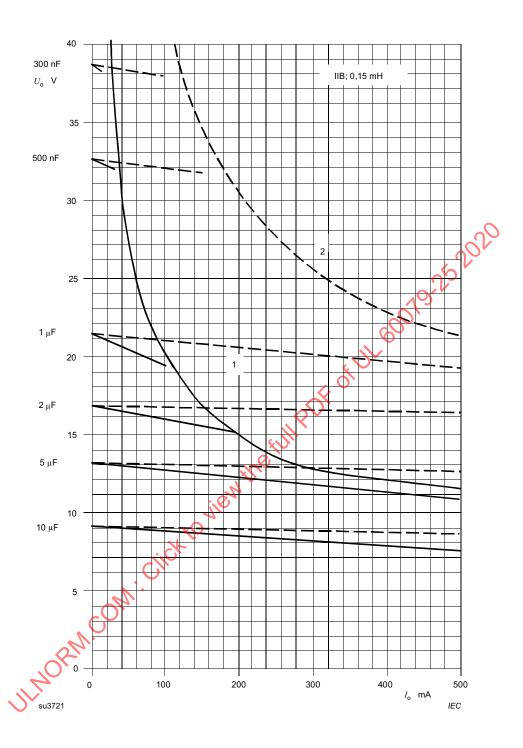


- 1 inductive limit for rectangular source
- 2 inductive limit for linear source


Figure C.7d – Diagram for 2 mH

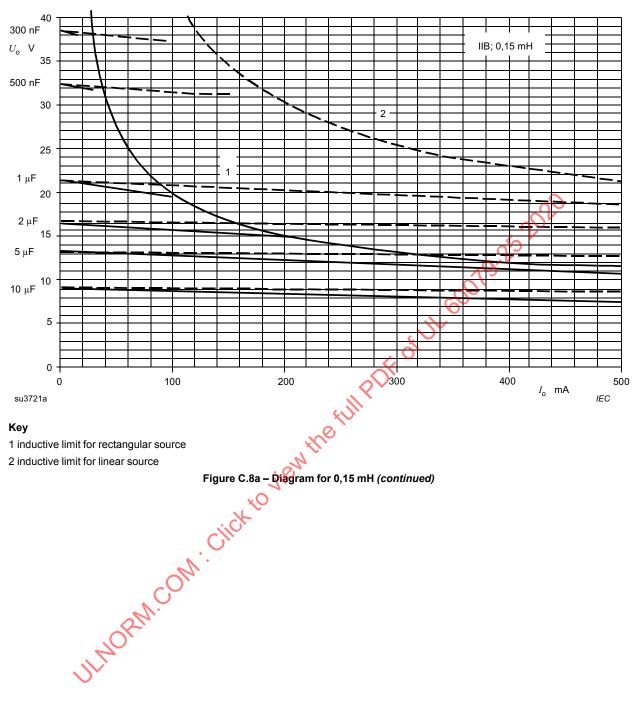
- 1 inductive limit for rectangular source
- 2 inductive limit for linear source

Figure C.7e – Diagram for 5 mH


1 inductive limit for rectangular source

2 inductive limit for linear source

Figure C.7e - Diagram for 5 mH (continued)


Figure C.7

Limit curve diagram for universal source characteristic - Group IIC

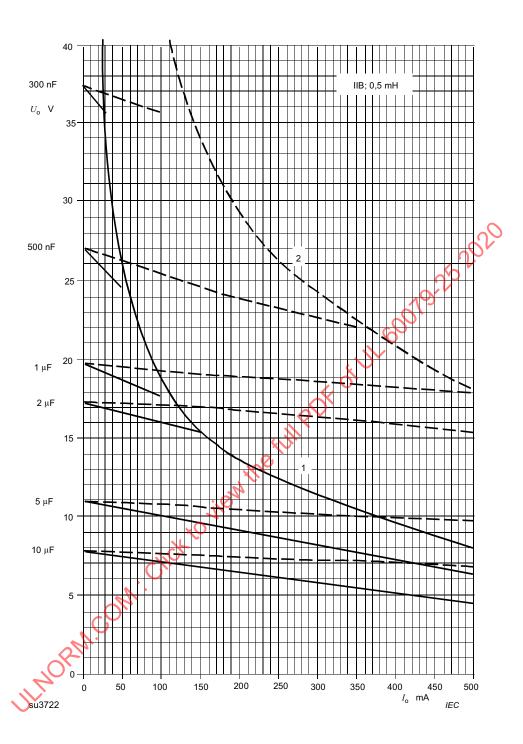
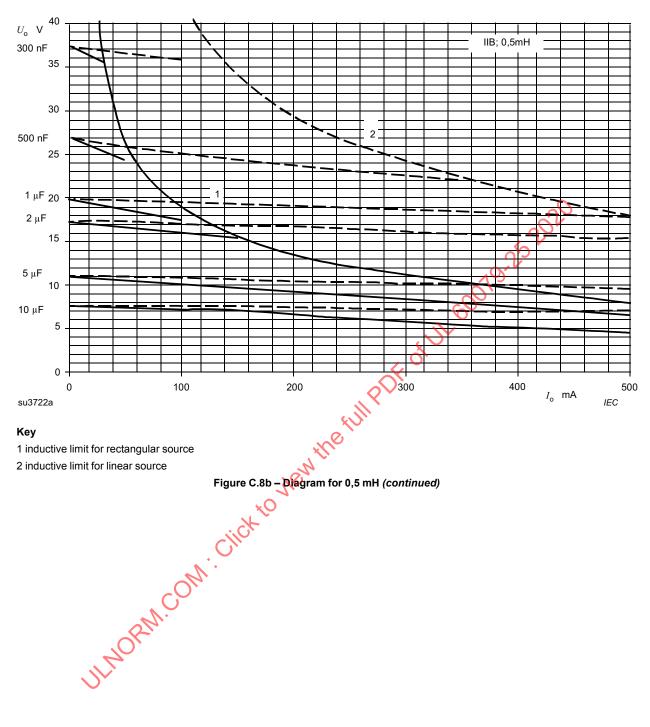

- 1 inductive limit for rectangular source
- 2 inductive limit for linear source

Figure C.8a – Diagram for 0,15 mH


1 inductive limit for rectangular source

2 inductive limit for linear source

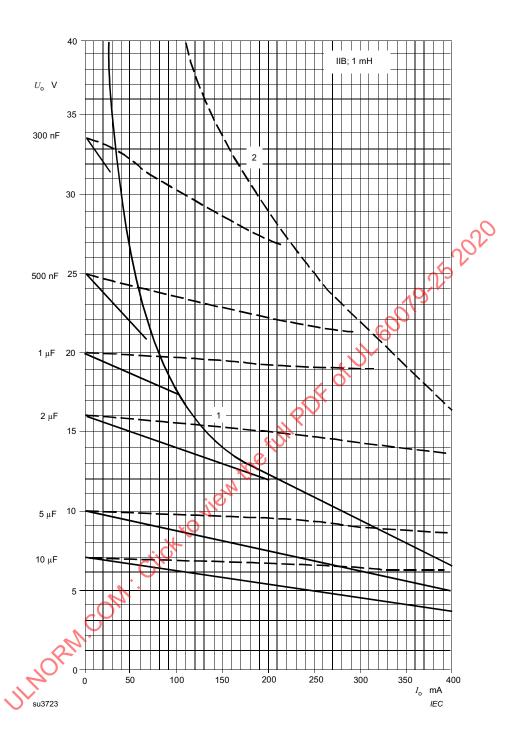
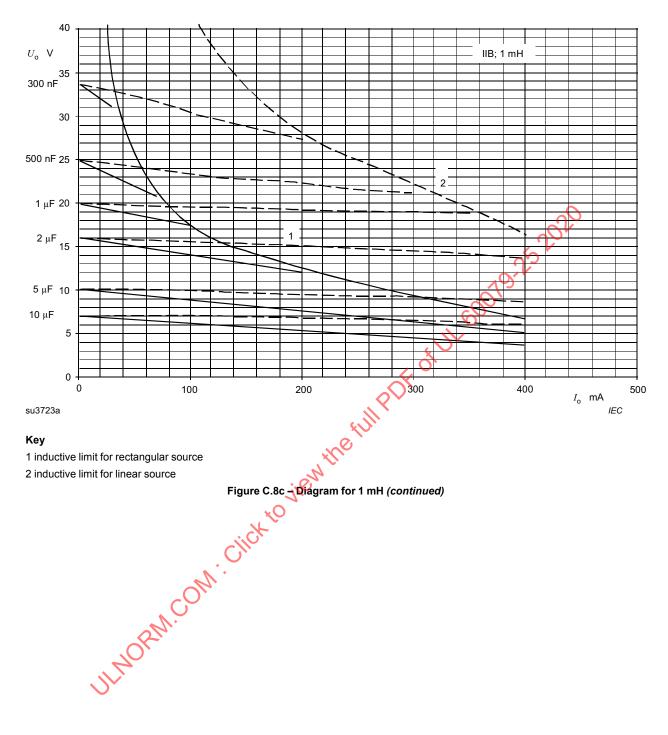
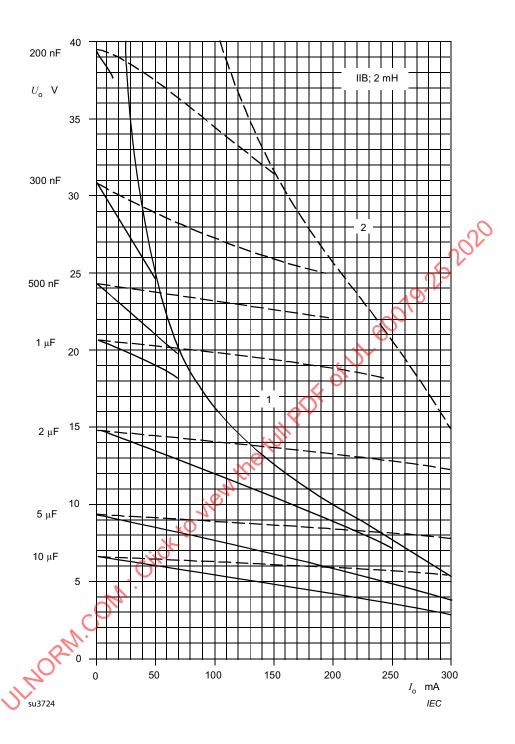
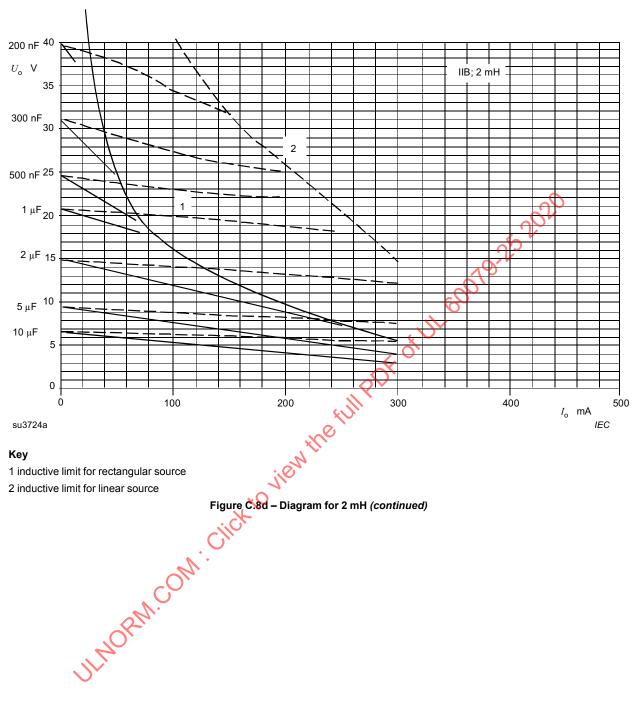

- 1 inductive limit for rectangular source
- 2 inductive limit for linear source

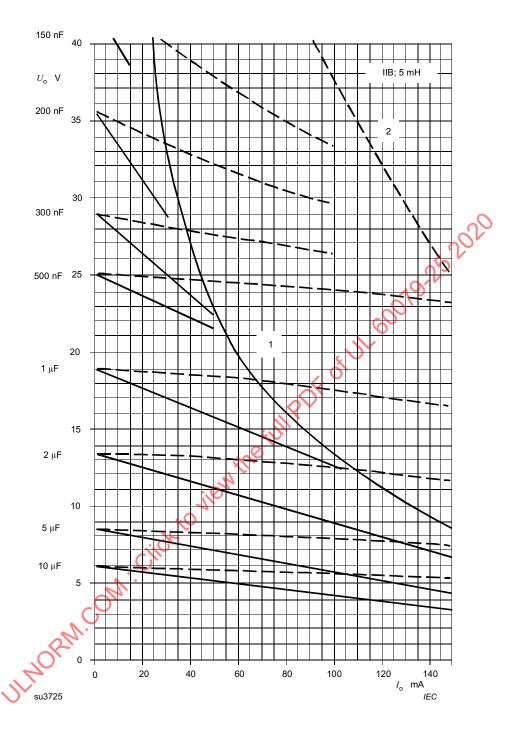
Figure C.8b - Diagram for 0,5 mH


1 inductive limit for rectangular source

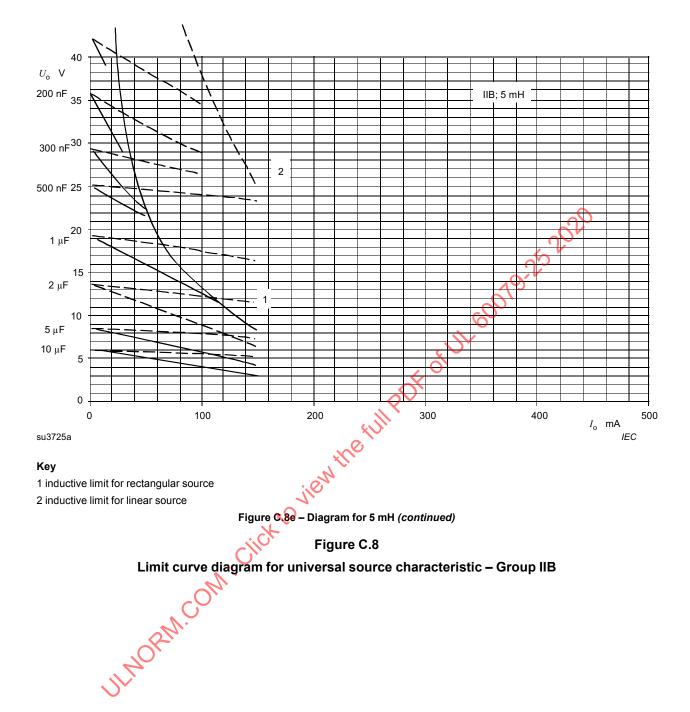

2 inductive limit for linear source

- 1 inductive limit for rectangular source
- 2 inductive limit for linear source


Figure C.8c – Diagram for 1 mH



- 1 inductive limit for rectangular source
- 2 inductive limit for linear source


Figure C.8d – Diagram for 2 mH

- 1 inductive limit for rectangular source
- 2 inductive limit for linear source

Figure C.8e – Diagram for 5 mH

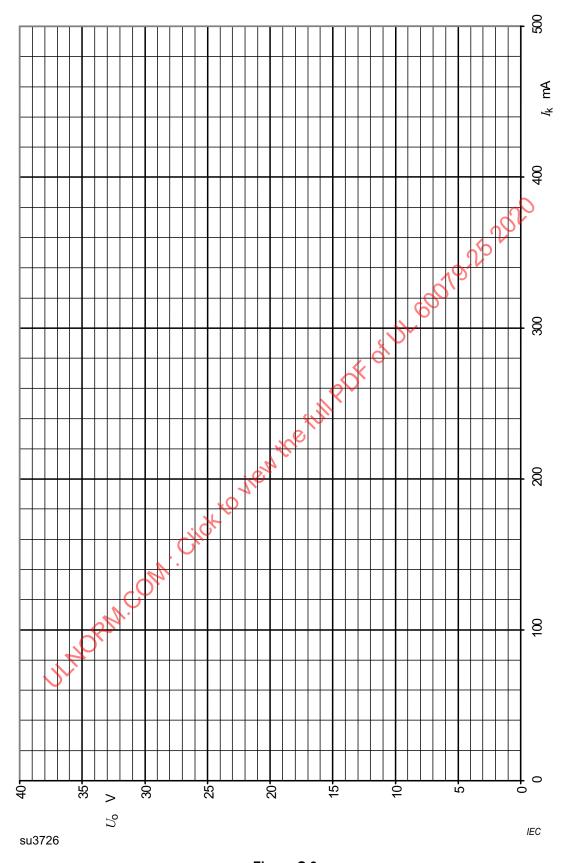


Figure C.9
Copy pattern for universal source diagrams