Ton-Mile Per Hour Test Procedure—SAE 1015

SAE Recommended Practice Editorial change June 1977

SAENORM. Click to view the full POF Of i THIS IS A PREPRINT WHICH IS SUBJECT TO REVISIONS AND CORRECTIONS. THE FINAL **VERSION WILL APPEAR IN THE** 1979 EDITION OF THE SAE HANDBOOK.

Society of Automotive Engineers, Inc. 400 COMMONWEALTH DRIVE, WARRENDALE, PA. 15096

PREPRINT

S.A.E. LIBRARY SAEMORM. COM. Click to view the full PUT of 1015 197706

Report of Construction and Industrial Machinery Technical Committee approved March 1974. Editorial change June 1977.

- 1. Purpose—This procedure provides a uniform method for determining the work capability or ton-mile per hour (TMPH) rating of an off-the-road tire as limited by its operating temperature. This practice is applicable to tires used on earthmoving machines as defined in SAE J1057a (June, 1975). It is also applicable to certain of the machines referenced in SAE J1116 (July, 1975).

 2. Scope—The TMPH rating defines another factor for evaluating the
- 2. Scope—The TMPH rating defines another factor for evaluating the performance capability of off-the-road tires. The TMPH rating is a measure of work per unit time and as such is intended to supplement information published by tire industry standards associations and by tire manufacturers.
- 2.1 The TMPH test was developed using Tire and Rim Association standards (Section 3, Off-the-Road, TRA Yearbook) and reference is made to these specifications throughout the procedure.
- 2.2 The test procedure is also applicable to tire and rim developments approved by the tire and rim manufacturers, although not published in the TRA Yearbook. (See paragraph 7.)
- 2.3 This test procedure does not define how the TMPH rating is applied in evaluating specific applications to machines or their performance.

3. Facilities

- 3.1 Test Machine—The tires are to be mounted on a suitable machine with a rim as specified in the TRA Yearbook. The test tires should be singles located on a drive (nonsteered) or trail axle. Care must be exercised to eliminate any camber or toe-in of the wheels to prevent nonuniform loading (or see paragraph 2.2).
- 3.2 Test Course—The test course shall be any dry, flat, highly compacted material or paved road, laid out in a closed loop configuration. The course length and arrangement should be such that tire loading will not be significantly affected by weight transfer due to turns and superelevations. The intent is to operate the tire with a known constant load. Provision for a turnaround should be made to reverse the direction of travel. TMPH measurements must be run only on a dry test course, as moisture will influence tire temperatures.

3.3 Instrumentation

- 3.3.1 TEMPERATURE MEASUREMENT SYSTEM—The system shall be capable of measuring tire test temperatures with an accuracy of $\pm 1.8^{\circ}F$ ($\pm 1^{\circ}C$).
- 3.3.2 THERMOCOUPLE PROBE ASSEMBLY—An instrument as described in Fig. 1 is required to provide the functions of holding, guiding, and inserting the thermocouple, and a handle with connection to the reading or recording device.
- 3.3.3 Pressure Instrument—An instrument capable of measuring tire pressure to an accuracy of ± 0.25 psi (± 1.7 kPa).
 - 3.3.4 Weight Scale—A weight scale with an accuracy of 2%.
- 3.3.5 Timing Device—A standard stopwatch or stopclock capable of measuring 60 min or more, with graduations of 0.01 min.

4. Preparation for Tests

- 4.1 Tires—Tires must be prepared for thermocouple probes by drilling 0.125 in. (3 mm) diameter holes from the tread surface to the top of the topmost reinforcement, re: breaker cord, belt cord, or carcass ply. These holes, drilled normal or perpendicular to the tread surface, must be located across the tread in such a pattern that one or more will be within 1.0 in. (25 mm) or less of the hottest point in the tire. To insure this, the following procedure is recommended.
 - 4.1.1 Drill Hole Location
- 4.1.1.1 With the caliper, measure the total tire thickness of each tread element around the tire at the centerline and shoulder. Determine the area around the circumference with the greatest total thickness.

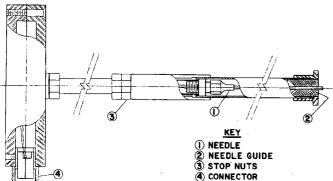


FIG. 1-THERMOCOUPLE NEEDLE AND HOLDER

The ϕ symbol is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. If the symbol is next to the report title, it indicates a complete revision of the report.

TABLE 1-LEVEL-OFF TIRE TEMPERATURES

Tire Type	Approximate Temperature Normalized for Ambient (paragraph 6.2)					
	°F	. °c				
Textile	200	93				
	225	107				
	250	121				
Wire	175	79				
	200	93				
	225	107				

- 4.1.1.2 Select a tread bar or contiguous tread element in this heavy gage area as the probe location.
- 4.1.1.3 For tires of 16.00 cross section and smaller, locate holes in the center of the cross lug or contiguous tread element and at maximum increments of 1.0 in. (25 mm) from the tire centerline to each shoulder. For larger tires, locate holes at 2.0 in. (50 mm) maximum increments.
- 4.1.1.4 Continuous rib design tree will require holes in the center of each rib. Ribs wider than 3.0 in. (76 mm) will require additional holes 1.0 in. (25 mm) either side of the center, but not closer than 0.5 in. (12.5 mm) from the nib edge.
- 4.1.1.5 Mark off increments as described in paragraphs 4.1.1.3 and/or 4.1.1.4 across the crown of the tire.

4.1.2 Drill Hole Depth Determination

- 4.1.2.1 Depth of the drilled holes should be such that the bottom of the hole is within 0.093 in. (2.4 mm) of the top of the highest reinforcement cord, but not into or through this cord.
- 4.1.2.2 If the carcass thickness is known, measure the total tire thickness at the location determined in paragraph 4.1.1.3 and subtract the known carcass thickness from this measurement; the remainder (less 0.093 in. (24 mm)) is the drill depth at that location.
- 4.1.2.3 If the total carcass thickness is not known, then the drill depth can be determined by drilling test core holes.
- 4.1.2.3.1 Make core drillings not to exceed 0.250 in. (6 mm) diameter at the prescribed intervals (see paragraphs 4.1.1.3 and 4.1.1.4) from the centerline to both shoulders on a trend element immediately adjacent to the intended probe location. On rib design tires, the cored hole must not be within 2 in. (50 mm) of the drill location. Cores should be drilled normal or perpendicular to the tread surface. Avoid excessive core depths and cord breakage.
- 4.1.2.3.2 Measure the reinforcement (carcass material) thickness on the plugs removed from the cored holes and subtract from the depth of the cored hole. This measurement (less 0.093 in. (2.4 mm)) determines the probe depth for that location.
- 4.2 Inflation—New tires are to be inflated for 24 h prior to the first test. Test tires should be inflated to the TRA Yearbook pressure for the subject ply rating or load range (or see paragraph 2.2).
- 4.3 Break-in—New test tires are to be run for between 80 and 100 miles (130 and 160 km) at a load and speed combination estimated to produce an actual stable temperature within the limits listed below:
 - 4.3.1 Textile tires, 190-225°F (87-107°C).
 - 4.3.2 Wire Tires, 160-200°F (71-93°C).

5. Test Procedures

5.1 Test Conditions

- 5.1.1 SELECTING TEST LOAD—The test load is determined by selecting a load between 80 and 90% of the TRA Yearbook 30 mph (48 km/h) capacity table for both test tires. The load must be measured for each tire within 2% of the selected test load. This load will be used throughout the test (or see paragraph 2.2).
- 5.1.2 Setting of Test Inflation Pressures—Immediately prior to the test, inflation pressures are to be adjusted with the tires at ambient conditions and the pressure corrected to a 60°F (15.6°C) standard (see paragraph 4.2).
- 5.1.3 SELECTION OF TEST SPEEDS—Three speeds are selected. These three speeds when multiplied by the test load (paragraph 5.1.1) will generate three corresponding TMPH values to be used in TMPH determination (paragraph 6.3).
- 5.1.3.1 Definition of Speed—Speed is an average speed calculated by using the total distance traveled divided by the total time from the initial machine start to the final stop.

- 5.1.3.2 Method of Speed Selection—Three average speeds are selected which will each produce level off tire temperatures in the approximate ranges shown in Table 1.
- 5.2 Test Cycle—The test cycle consists of running at a constant speed for approximately 60 min or 15 miles (24.1 km) and a fixed stop-period of minimum duration (not to exceed 10 min). The travel times or distances may be varied slightly to permit even laps around the course between stops. Once the speed or travel time of the cycle has been established, it must be accurately controlled within $\pm 1\%$.

5.3 Measurement and Recording of Data

- 5.3.1 Recommended Data Form—See Fig. 2.
- 5.3.2 Tire temperatures are measured in the predrilled probe holes with instrumentation per paragraphs 3.3.1 and 3.3.2. Temperatures should be taken as quickly as possible at the beginning of the stop-period. A specific measurement sequence should be maintained throughout the test. Measurements should be taken with the thermocouple probe within 0.050 in. (1.3 mm) of the probe hole depth. With each temperature recorded, record the elapsed time from the beginning of the stop-period.
- 5.3.2.1 Hot Area Measurement—It will not be necessary to probe each drilled hole after a sufficient number of readings have been obtained to determine the area of the hot spot or spots on either side of the centerline. After this area has been established, continue to record the hot point in each area and each point adjacent to make certain that the hottest points are being measured.
- 5.3.2.2 Cooling Rate Measurement—At the completion of the last probe measurement (hottest test condition, paragraph 5.1.3), when the level-off condition (paragraph 5.4) has been reached, each probe hole should again be

- measured in the same sequence as followed in the test (paragraph 5.3.2), recording the continuing time lapse from stop for each probe measurement, in the same manner as has been done throughout the test. With the timing device continuing to record the time after the final stop, a third set of probe hole temperature data should be taken with its appropriate stop times, approximately 15 min after the previous readings. This procedure should continue for several more 15 min intervals until sufficient data are obtained to plot a uniform descending rate temperature versus time curve.
- 5.3.4 Ambient temperature should be recorded at the beginning of the timed test and 30 min before each stop-period. These data are to be used for normalizing the tire temperatures to 100°F (38°C).
- 5.3.4.1 Minimum Ambient Limit for Valid Test—If the ambient is less than 50°F (10°C) during the last 3 h of test, the data are not valid.
- 5.4 Test Duration—Temperature data are to be recorded at each stopperiod until the level-off condition for each tire has been reached. The level-off condition is defined as when the variation in hot spot (paragraph 6) temperature corrected to 100°F (38°C) does not increase more than 5°F (2.8°C) total for three successive stop-periods.

6. Data Reduction and Analysis

TMPH DATA FORM

- 6.1 Temperature Correction for Time Lapse During Probe Measurements—See paragraph 5.3.2.2. An additive correction shall be applied to each probe measurement based on the time lapse after stop. The amount of the correction is determined at the completion of the test, using the cooling curve established at that time.
- 6.1.1 Cool Curve—The cooling curve is plotted from data obtained as described in paragraph 5.3.2.2. The curve is not normalized for the ambient because the cooling rate correction is applied directly to the recorded data.

	TEST NO PAGE of DATA BY				ву	DATE						
	TIRE BRAND		SIZE				TYPE			PR		
	POSITION: (DRIV) L	OAD	$\boldsymbol{\alpha}$	Lb	(kg) (kg)		SERIAL_				
	TEST PLAN: GEAR		CYCLE TIME				Min	TRAVEL	SPEED	ED MPH (km/h)		
	PROBE LOCATION	;(4)	Meas.	Time After Stop		Time After Stop	Meas. Temp.		Meas. Temp.	Time After Stop	REMARKS	
TI OI	TIRE C/L TEMP. OF OC) RIGHT TIRE C/L TEMP.	C/L										
SAL	°F(°C)											
	START TIME STOP TIME TRIP DIST. TOTAL MILES AMBIENT START OF(OC) 30 Min.PRIOR STOP OF(OC) TIRE PSI (kPa): (L) START (R) START TIRE TEMPERATURE: (L) HOT SPOT ACT. (R) HOT SPOT ACT. ACT. AMB. CORR. ± (L) CORRECTED (R) CORRECTED											
	SUMMARY: TOTAL DIST. LEVEL-OFF TEMPE LEFT: ACTUA	RATURES:	°F(°C)	AME	. CORR	·	OF (°C)	SPEED		тмен	
FIG. 2TMPH DATA FORM	RIGHT: ACTUA	L	OF(OC)	AME	. CORR.		Or (°C)				