

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE MATERIAL SPECIFICATION

AMS 7258B

Issued JUL 1985
Revised OCT 1990
Reaffirmed APR 2001

Superseding AMS 7258A

Rings, Sealing, Butadiene-Acrylonitrile (NBR) Rubber Fuel Resistant, Low Shrinkage

65 - 75

FOREWORD

This Reaffirm contains format/editorial changes only.

1. SCOPE:

1.1 Form:

This specification covers butadiene acrylonitrile (NBR) rubber in the form of molded rings.

1.2 Application:

Primarily for use in aircraft fuel systems operating from -55 to +125 °C (-67 to +257 °F). These rings contain less plasticizer than normally used in aircraft fuel seals; therefore, there is less shrinkage when the rings are dried out.

1.3 Safety-Hazardous Materials:

While the materials, methods, applications, and processes described or referenced in this specification may involve the use of hazardous materials, this specification does not address the hazards which may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and to take necessary precautionary measures to ensure the health and safety of all personnel involved.

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright 2001 Society of Automotive Engineers, Inc.
All rights reserved.

Printed in U.S.A.

QUESTIONS REGARDING THIS DOCUMENT:

(724) 772-7161

FAX: (724) 776-0243

TO PLACE A DOCUMENT ORDER:

(724) 776-4970

FAX: (724) 776-0790

SAE WEB ADDRESS:

<http://www.sae.org>

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

2.1.1 Aerospace Material Specifications:

- AMS 2817 Packaging and Identification, Preformed Packings
- AMS 3022 Reference Fluid for Testing Hydrocarbon Fuel Resistant Materials, 10% Aromatic Content
- AMS 4027 Aluminum Alloy Sheet and Plate, 1.0Mg - 0.60Si - 0.28Cu - 0.20Cr (6061; -T6 Sheet, -T651 Plate), Solution and Precipitation Heat Treated
- AMS 4037 Aluminum Alloy Sheet and Plate, 4.4Cu - 1.5Mg - 0.60Mn, (2024; -T3 Flat Sheet, -T351 Plate), Solution Heat Treated
- AMS 4045 Aluminum Alloy Sheet and Plate, 5.6Zn - 2.5Mg - 1.6Cu - 0.23Cr (7075; -T6 Sheet, -T651 Plate), Solution and Precipitation Heat Treated
- AMS 5513 Steel Sheet, Strip, and Plate, Corrosion Resistant, 19Cr - 9.2Ni (SAE 30304), Solution Heat Treated
- AMS 5630 Steel Bars and forgings, Corrosion Resistant, 17Cr - 0.52Mo (0.95 - 1.20C) (SAE 51440C)
- AMS 6350 Steel Sheet, Strip, and Plate, 0.95Cr - 0.20Mo (0.28 - 0.33C) (SAE 4130)

2.1.2 Aerospace Standards:

- AS568 Aerospace Size Standard for O-rings
- AS871 Manufacturing and Inspection Standards for Preformed Packings (O-rings)

2.1.3 Aerospace Information Reports:

- AIR851 O-ring Tension Testing Calculations

2.2 ASTM Publications:

Available from ASTM, 1916 Race Street, Philadelphia, PA 19103-1187.

- ASTM D 1414 Testing Rubber O-rings
- ASTM D 2240 Rubber Property - Durometer Hardness

2.3 U.S. Government Publications:

Available from Standardization Documents Order Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA 19111-5094.

2.3.1 Federal Specifications:

- QQ-A-250/4 Aluminum Alloy 2024, Plate and Sheet
- QQ-A-250/11 Aluminum Alloy 6061, Plate and Sheet
- QQ-A-250/12 Aluminum Alloy 7075, Plate and Sheet

2.3.2 Military Specifications:

MIL-H-6083 Hydraulic Fluid, Petroleum Base, for Preservation and Operation
MIL-S-18729 Steel Plate, Sheet, and Strip, Alloy 4130, Aircraft Quality

2.3.3 Military Standards:

MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes
MIL-STD-413 Visual Inspection Guide for Elastometric O-Rings

2.4 ANSI Publications:

Available from American National Standards Institute, 1430 Broadway, New York, NY 10018.

ANSI B46.1 Surface Texture (Surface Roughness, Waviness, and Lay)

3. TECHNICAL REQUIREMENTS:

3.1 Material:

Shall be a compound, based on a butadiene acrylonitrile (NBR) elastomer, suitably cured to produce sealing rings meeting the requirements of 3.2.

3.2 Properties:

Rings shall conform to the following requirements; except as otherwise specified herein, tests shall be performed in accordance with ASTM D 1414, insofar as practicable. Calculations of tensile strength and elongation may be made in accordance with AIR851.

TABLE 1

3.2.1	As Received:		
3.2.1.1	Specific Gravity	Preproduction Value \pm 0.02	
3.2.1.2	Hardness, Durometer "A" or equivalent	70 \pm 5	ASTM D 2240
3.2.1.3	Tensile Strength, minimum	1200 psi (8.27 MPa)	
3.2.1.4	Elongation, minimum	200%	
3.2.1.5	Corrosion and Adhesion	Slight corrosion allowed on 4130 steel, none on other metals	4.5.1

TABLE 1 (Continued)

3.2.2	Room-Temperature Fuel Resistance:		Medium:	ASTM Reference Fuel B
3.2.2.1	Volume Change	+25 to +50%	Temperature:	25 °C ± 1 (77 °F ± 2)
			Time:	70 hours ± 0.5
3.2.3	Elevated-Temperature Fuel Resistance:		4.5.2	Medium: AMS 3022
3.2.3.1	Hardness Change, Durometer "A" or equivalent	-15 to 0	Temperature:	125 °C ± 3 (257 °F ± 5)
3.2.3.2	Tensile Strength Change, maximum	-50%	Time:	70 hours ± 0.5
3.2.3.3	Elongation Change, maximum	-40%		
3.2.3.4	Volume Change	+15 to +40%		
3.2.4	Aliphatic Fuel Soak and Dry-out:		4.5.3	Medium: ASTM Reference
3.2.4.1	Volume Shrinkage, maximum	1.0%		Reference Fluid A
3.2.5	Aromatic Fuel Soak and Dry-out:		4.5.3	Medium: ASTM Reference Fluid B
3.2.5.1	Volume Shrinkage, maximum	1.0%		
3.2.6	Compression Set: Percent of Original Deflection, maximum	60%	Temperature:	125 °C ± 3 (257 °F ± 5)
			Time:	70 hours ± 0.5
3.2.7	Low-Temperature Resistance Temperature Retraction, TR ₁₀ point, maximum			
3.2.7.1	As Received	-40 °C (-40 °F)		
3.2.7.2	After Aging 70 hours ± 0.5 at 25 °C (77 °F) in AMS 3022			
		-60 °C (-76 °F)		

3.3 Quality:

Rings, as received by purchaser, shall be uniform in quality and condition, smooth, as free from foreign materials as commercially practicable, and free from internal imperfections detrimental to their performance. Surface imperfections shall be no greater than permitted by MIL-STD-413.

3.4 Sizes and Tolerances:

Shall be as specified on the drawing. Inspection for conformance to dimensional requirements shall be made in accordance with AS871. Standard sizes are as shown in AS568.

3.5 Part Numbers:

Part numbers shall consist of the following:

1. The specification identifier.
2. A dash followed by the appropriate dash number from AS568.

Example 1
AMS 7258-118

Example 2
AMS 7258-427

4. QUALITY ASSURANCE PROVISIONS:**4.1 Responsibility for Inspection:**

The vendor of rings shall supply all samples for vendor's tests and shall be responsible for performing all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the rings conform to the requirements of this specification.

4.2 Classification of Tests:**4.2.1 Acceptance Tests:** Tests for the following requirements are acceptance tests and shall be performed on each lot.

TABLE 2

Requirement	Reference Paragraph
Specific Gravity as received	3.2.1.1
Hardness as received	3.2.1.2
Tensile Strength as received	3.2.1.3
Elongation as received	3.2.1.4
Volume Change in Reference Fuel B	3.2.2.1
Compression Set	3.2.6
Examination for Surface Imperfections	3.3
Sizes and Tolerances	3.4

4.2.2 Preproduction Tests: Tests for all technical requirements are preproduction tests and shall be performed prior to or on the first-article shipment of rings by a purchaser, when a change in ingredients and/or processing requires reapproval as in 4.4.2, and when purchaser deems confirmatory testing to be required.

4.2.2.1 For direct U.S. Military procurement, substantiating test data and, when requested, preproduction test material shall be submitted to the cognizant agency as directed by the procuring activity, contracting officer, or request for procurement.

4.3 Sampling and Testing:

Shall be as follows:

4.3.1 For Acceptance Tests: Sufficient rings shall be taken at random from each lot to perform all required tests. The number of determinations for each requirement shall be as specified in the applicable test procedure or, if not specified therein, not less than three. When specified, sample rings conforming to AS568-214 and hardness discs shall be supplied with each lot.

4.3.1.1 Sample size for examination for appearance, workmanship, and dimensional conformance shall be in accordance with Inspection Level II of MIL-STD-105.

4.3.1.2 A lot shall be all rings of the same size produced from the same batch of compound in one continuous series of operations and presented for vendor's inspection at one time but shall not exceed 1000 rings or 200 pounds (91 kg), whichever is the greater mass. A lot may be packaged in smaller quantities and delivered under the basic lot approval provided lot identification is maintained.

4.3.1.3 A batch shall be the quantity of compound run through a mill or mixer at one time.

4.3.1.4 When a statistical sampling plan other than specified in 4.3.1.1, has been agreed upon by purchaser and vendor, sampling shall be in accordance with such plan in lieu of sampling as in 4.3.1 and the report of 4.6 shall state that such plan was used.

4.3.1.5 If rings smaller than AS568-010 are ordered, seven rings of -022 or -026 size shall be provided for determining tensile strength and elongation; such rings shall be from the same batch of compound, manufactured and, if required, post-cured under the same conditions as the production rings they represent.

4.3.1.6 Compression set shall be determined on not less than two rings.

4.3.2 For Preproduction Tests: Test samples shall be O-rings conforming in size to AS568-214 and hardness discs of at least 1/4 inch (6.4 mm) thickness.

4.4 Approval:

4.4.1 Sample rings shall be approved by purchaser before rings for production use are supplied, unless such approval be waived by purchaser. Results of tests on production rings shall be essentially equivalent to those on the approved samples.

4.4.2 Vendor shall use ingredients, manufacturing procedures, processes, and methods of inspection on production rings which are essentially the same as those used on the approved sample rings. If necessary to make any change in ingredients, in type of equipment for processing, or in manufacturing procedures, vendor shall submit for reapproval a statement of the proposed changes in ingredients and/or processing and, when requested, sample rings. Production rings made by the revised procedure shall not be shipped prior to receipt of reapproval.

4.5 Test Methods:

4.5.1 Corrosion and Adhesion: Size -214 O-rings, two for each metallic plate below and using whole uncut rings, shall be prepared for corrosion testing by inserting sufficient quantities of the seals in a desiccator or similar humidity chamber maintained at relative humidity not lower than 92% and 25 °C ± 3 (77 °F ± 5) for not less than 72 hours. Plates of the metals listed below shall be polished to a surface texture of 4 to 16 microinches (0.1 - 0.4 µm), determined in accordance with ANSI B46.1. The edges shall also be polished to reduce the formation of edge corrosion. The plates shall be washed with toluene, aliphatic naphtha, or similar degreasing agent that will produce a clean dry surface free from film. The metals used shall be as follows:

AMS 4037 or QQ-A-250/4 Aluminum Alloy
AMS 4027 or QQ-A-250/11 Aluminum Alloy
AMS 4045 or QQ-A-250/12 Aluminum Alloy
AMS 5630 - Corrosion Resistant Steel
AMS 5513 - Corrosion Resistant Steel
AMS 6350 or MIL-S-18729 Low-Alloy Steel

4.5.1.1 The humidified rings and the metallic plates shall be immersed in MIL-H-6083, Type I, fluid and drained to the drip point. The rings and plates shall be laid together in a stack so that at least two whole rings contact each specified metal. The stack shall be held together with a pressure of 20 - 30 pounds force (89 - 133 N) and placed in a desiccator maintained at relative humidity not lower than 92% at $25^{\circ}\text{C} \pm 3$ ($77^{\circ}\text{F} \pm 5$). This relative humidity may be produced by the use of a salt of sufficient concentration in solution with distilled water. No more than 15 minutes should be required for assembling the test samples. Time of humidity exposure for this portion of test shall be 14 days. At the termination of this test, the procedures outlined below shall be followed:

4.5.1.1.1 The surfaces of the plates which were in contact with the seals shall be inspected for discoloration, deposits, pitting, or other evidence of corrosion or adhesion. If any exist, the surfaces of the plates shall be washed in aliphatic naphtha. Deposits determined as rubber compounds or elements therefrom, which can be removed by this process and which do not occur on other surfaces of the plates, shall be construed as adhesion.

4.5.1.1.2 Any pits or eroded marks remaining after this process shall be construed to be corrosion. Discoloration or staining (marks which do not physically affect the surfaces of the plates and which easily wash or buff off) shall not be considered detrimental. If any doubt should arise about the presence of pitting, erosion, or corrosion on the metal plates from the O-rings, visual examination at 10 to 15X magnification shall be used to determine the actual condition.

4.5.2 Fuel Aging: The containers used for high-temperature fuel aging shall be fuel-aging bombs constructed of corrosion-resistant steel. A typical container is shown assembled in Figure 1 and unassembled in Figure 2. The containers shall be filled with approximately 325 mL of fluid to within 1/2 inch (12.7 mm) of the top of the cylinder. The O-rings or hardness discs, or both, shall be suspended on nichrome wires at different depths in the fluid so that the O-rings are not in contact with other O-rings or any part of the container. Both an O-ring and a 0.005-inch (0.13 mm) thick polytetrafluoroethylene gasket cut to fit the container flange bolt circle shall be used for sealing during assembly of the fuel-aging bomb. The container top shall be bolted in place using six hexagon head bolts. At the end of the aging period, the fuel-aging bomb shall be removed from the heat source (aluminum block heater or circulating-air oven) and cooled for 60 minutes ± 5 prior to disassembly. The O-rings and hardness discs shall be further cooled in new fluid for at least 30 minutes at $25^{\circ}\text{C} \pm 2$ ($77^{\circ}\text{F} \pm 5$) prior to properties testing.

4.5.3 Fuel Soak with Dry-Out, 3 Cycles: Two sets of three rings each shall be exposed to alternating fuel immersion and dry-out. One set shall be exposed to ASTM Reference Fuel A and the other set to ASTM Reference Fuel B. The O-rings shall be immersed in the applicable fuel for 70 hours ± 0.5 at $25^{\circ}\text{C} \pm 1$ ($77^{\circ}\text{F} \pm 2$). The rings shall be removed from the fuel and allowed to dry at $25^{\circ}\text{C} \pm 1$ ($77^{\circ}\text{F} \pm 2$) for 48 hours ± 0.5 . The rings shall then be immersed in fresh fuel and dried out under the same conditions for a total of three cycles. Volume change, based on the original volume of the O-rings, shall be determined after each dry-out period. The results shall be averaged after each dry-out. The average of the three rings shall be not less than the maximum shrinkage of 1.0% at the end of any dry-out period.

4.6 Reports:

The vendor of rings shall furnish with each shipment a report showing the results of tests to determine conformance to the acceptance test requirements and stating that the rings conform to the other technical requirements. This report shall include the purchase order number, lot number, AMS 7258B, vendor's compound number, part number, and quantity.

4.7 Resampling and Retesting:

If any ring used in the above tests fails to meet the specified requirements, disposition of the rings may be based on the results of testing three additional specimens for each original nonconforming specimen. Failure of any retest specimen to meet the specified requirements shall be cause for rejection of the rings represented and no additional testing shall be permitted. Results of all tests shall be reported.

5. PREPARATION FOR DELIVERY:**5.1 Packaging and Marking:**

Shall be in accordance with AMS 2817.

6. ACKNOWLEDGMENT:

A vendor shall mention this specification number and its revision letter in all quotations and when acknowledging purchase orders.

7. REJECTIONS:

Rings not conforming to this specification, or to modifications authorized by purchaser, will be subject to rejection.

8. NOTES:

- 8.1 A change bar (|) located in the left margin is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the "C" revision of this specification. An (R) symbol to the left of the document title indicates a complete revision of the specification, including technical revisions. Change bars and (R) are not used in original publications, nor in specifications that contain editorial changes only.
- 8.2 Dimensions and properties in inch/pound units and the Celsius temperatures are primary; dimensions and properties in SI units and the Fahrenheit temperatures are shown as the approximate equivalents of the primary units and are presented only for information.