

AEROSPACE MATERIAL SPECIFICATION

SAE AMS4	REV. E	
Issued	1976-07	
Revised	2003-04	
Noncurrent	2008-02	
Reaf Nonc	2012-10	

Titanium Alloy Wire 13.5V - 11Cr - 3AI Spring Temper

(Composition similar to UNS R58010)

Superseding AMS4959D

RATIONALE

AMS4959E has been reaffirmed to comply with the SAE five-year review policy.

NONCURRENT NOTICE

This specification has been declared "NONCURRENT" by the Aerospace Materials Division, SAE, as of February 2008. It is recommended, therefore, that this specification not be specified for new designs.

"NONCURRENT" refers to those specifications which have previously been widely used and which may be required for production or processing of existing designs in the future. The Aerospace Materials Division, however, does not recommend these specifications for future use in new designs. "NONCURRENT" specifications are available from SAE upon request. SAENORM. Click to

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2012 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

877-606-7323 (inside USA and Canada) TO PLACE A DOCUMENT ORDER: Tel: Tel:

+1 724-776-4970 (outside USA) Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/AMS4959E

SAE WEB ADDRESS:

- 1. SCOPE:
- 1.1 Form:

This specification covers a titanium alloy in the form of cold drawn wire.

1.2 Application:

This wire has been used typically for springs requiring corrosion resistance and high tensile strength, but usage is not limited to such applications.

- 1.2.1 Certain processing procedures and service conditions may cause this wire to become subject to stress-corrosion cracking; ARP982 recommends practices to minimize such conditions. FUIL DOE OF SINES
- 1.3 Classification:

Wire shall be classified as follows:

Centerless ground Type 1 -

Type 2 -As drawn

- 1.3.1 Either Type 1 or Type 2 may be supplied unless a specific type is ordered.
- 2. APPLICABLE DOCUMENTS:

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001 or www.sae.org.

AMS 2241 Tolerances, Corrosion and Heat Resistant Steel, Iron Alloy, Titanium, and Titanium

Alloy Bars and Wire

AMS 2249 Chemical Check Analysis Limits, Titanium and Titanium Alloys AMS 2809 Identification, Titanium and Titanium Alloy Wrought Products

ARP982 Minimizing Stress-Corrosion Cracking in Wrought Titanium Alloy Products

2.2 ASTM Publications:

Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 or www.astm.org.

ASTM E 8	Tension Testing of Metallic Materials
ASTM E 8M	Tension Testing of Metallic Materials (Metric)
ASTM E 120	Chemical Analysis of Titanium and Titanium Alloys
ASTM E 1409	Determination of Oxygen in Titanium and Titanium Alloys by the Inert Gas Fusion
	Technique
ASTM 1447	Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas
	Fusion Thermal Conductivity Method

3. TECHNICAL REQUIREMENTS:

3.1 Composition:

Shall conform to the percentages by weight shown in Table 1; oxygen shall be determined in accordance with ASTM E 1409, hydrogen in accordance with ASTM E 1447, and other elements by wet chemical methods in accordance with ASTM E 120, by spectrochemical methods, or by other analytical methods acceptable to the purchaser.

TABLE 1 - Composition

Element	min	max
Vanadium	12.50	14.50
Chromium	10.00	12.00
Aluminum	2.50	3.50
Iron		0.35
Oxygen		0.17
Carbon		0.05
Nitrogen		0.050 (500 ppm)
Hydrogen (3.1.3)		0.030 (300 ppm)
Yttrium (3.1.1)		0.005 (50 ppm)
Residual Elements, each (3.1.1)		0.10
Residual Elements, total (3.1.1)		0.40
Titanium	remainder	

- 3.1.1 Determination not required for routine acceptance.
- 3.1.2 When ASTM E 1447 is used, sample size may be as large as 0.35 gram.
- 3.1.3 Hydrogen shall be determined on the finished wire.

3.1.4 Check Analysis: Composition variations shall meet the applicable requirements of AMS 2249.

3.2 Melting Practice:

Alloy shall be multiple melted. Melting cycle(s) prior to the final melting cycle shall be made using consumable electrode, nonconsumable electrode, electron beam, or plasma arc melting practice(s). The final melting cycle shall be made under vacuum using consumable electrode practice with no alloy additions permitted.

- 3.2.1 The atmosphere for nonconsumable electrode melting shall be vacuum or shall be argon and/or helium at an absolute pressure not higher than 1000 mm of mercury.
- 3.2.2 The electrode tip for nonconsumable electrode melting shall be water-cooled copper.

3.3 Condition:

Spring temper, cold drawn to required size. When Type 1 is supplied, wire shall be centerless ground to size after the final cold drawing operation.

3.3.1 Wire ordered in coil form shall be coated with a lubricant suitable for use on automatic spring winding machines and containing not more than traces of halogen bearing compounds.

3.4 Properties:

Wire shall conform to the following requirements:

3.4.1 As Cold Drawn:

- 3.4.1.1 Wrapping: Wire shall withstand without cracking, wrapping at room temperature one full turn around a diameter equal to the nominal diameter of the wire.
- 3.4.1.2 Coiling: Wire shall show a uniform pitch with no splits or fractures when wound in a tightly closed coil on an arbor having a diameter as specified in Table 2 and the resultant coil stretched to a permanent set of four times its wound length.

TABLE 2A - Coiling Parameters, Inch/Pound Units

	Dia nch	meter (D) es	Arbor Diameter Inch
Up	to	0.034, incl	0.102
Over 0.034	to	0.045, incl	0.145
Over 0.045	to	0.055, incl	0.212
Over 0.055	to	0.125, incl	0.250
Over 0.125			2D

TABLE 2B - Coiling Parameters, SI Units

Nominal Diameter (D)	Arbor Diameter	
mm	mm	
Up to 0.86, incl	2.59	
Over 0.86 to 1.14, incl	3.68	
Over 1.14 to 1.40, incl	5.38	
Over 1.40 to 3.18, incl	6.35	
Over 3.18	2D	

- 3.4.2 After Aging: Wire shall have the following properties after being aged by heating to 800 °F \pm 10 (427 °C \pm 6), holding at heat for 10 hours \pm 0.25, and cooling in air:
- 3.4.2.1 Tensile Properties: Shall be as specified in Table 3, determined in accordance with ASTM E 8 or ASTM E 8M.

TABLE 3A - Minimum Tensile Properties, InchiPound Units

	Nomina	al Dia	ameter		Tensile Strength	Elongation (in 2 in. or 4D	Reduction of Area
		Inch	21110101		ksi	%	%
	Up	to	0.65,	incl	250 to 300	4	17
Over	0.65	to	0.100,	incl	240 to 2900	5	17
Over	0.100	to	0.160,	incl	230 to 280	5	18
Over	0.160	to	0.225,	incl	220 to 270	6	18
Over	0.225	to	0.376,	incl	210 to 260	6	20
Over	0.376	to	0.500,	incl	200 to 240	6	20
Over	0.500	to	0.561,	incl	180 to 220	6	20

TABLE 3B - Minimum Tensile Properties, SI Units

			Elongation	Reduction
	Nominal Diameter	Tensile Strength	in 4D	of Area
	Millimeters	MPa	%	%
	Up to 1.65, in	d 1724 to 2069	4	17
Over	1.65 to 2.54, in	d 1655 to 2000	5	17
Over	2.54 to 40.6, in	d 1586 to 1931	5	18
Over	40.6 to 5.72, in	d 1517 to 1862	6	18
Over	5.72 to 9.55, in	d 1448 to 1793	6	20
Over	9.55 to 12.70, in	d 1379 to 1655	6	20
Over	12.70 to 14.25, in	d 1241 to 1517	6	20

3.5 Quality:

Wire, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the wire.

3.5.1 The surface of the wire shall have a smooth finish free from pits and abrasions, and shall be cylindrical, clean, and free from kinks, twists, laps, seams, scrapes, splits, and other imperfections.

3.6 Tolerances:

Wire shall conform to all applicable requirements of AMS 2241.

4. QUALITY ASSURANCE PROVISIONS:

4.1 Responsibility for Inspection:

The vendor of wire shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the wire conforms to the specified requirements.

4.2 Classification of Tests:

Tests for all technical requirements are acceptance tests and shall be performed on each heat or lot as applicable.

4.3 Sampling and Testing:

Shall be in accordance with the following; a lot shall be all wire of the same nominal size from the same heat processed at one time:

- 4.3.1 Composition: One sample from each heat, except that for hydrogen determinations one sample from each lot obtained after thermal and chemical processing is completed.
- 4.3.2 Tensile Properties Wrapping, and Coiling: Two samples from each 1500 feet (457 m) of wire.

4.4 Reports:

The vendor of wire shall furnish with each shipment a report showing the results of tests for chemical composition of each heat and for the hydrogen content and tensile properties of each lot, and stating that the wire conforms to the other technical requirements. This report shall include the purchase order number, heat and lot numbers, AMS 4959D, size, and quantity.