

AEROSPACE MATERIAL SPECIFICATION

SÆ,

AMS 4237A

Issued Revised Reaffirmed APR 1980 OCT 1987 OCT 2000

Superseding

AMS 4237

Aluminum Alloy Castings, Sand 4.6Cu - 0.35Mn - 0.25Mg - 0.22Ti (206.0-T71) Solution Heat Treated and Naturally Aged

UNS A02060

1. SCOPE:

1.1 Form:

This specification covers an aluminum alloy in the form of sand castings.

1.2 Application:

Primarily for components requiring a combination of high strength with good ductility and impact strength. Certain design and processing procedures (See 8.5) may cause these castings to become susceptible to stress-corrosion cracking.

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of Aerospace Material Specifications shall apply. The applicable issue of other documents shall be as specified in AMS 2350.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096.

2.1.1 Aerospace Material Specifications:

AMS 2350 Standards and Test Methods

AMS 2360 Room Temperature Tensile Properties of Castings

AMS 2635 Radiographic Inspection

AMS 2645 Fluorescent Penetrant Inspection
AMS 2646 Contrast Dye Penetrant Inspection

AMS 2694 Repair Welding of Aerospace Castings

AMS 2804 Identification, Castings

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

FAX: (724) 776-0243

FAX: (724) 776-0790

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

2.2 ASTM Publications:

Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia PA 19103.

ASTM B557	Tension Testing Wrought and Cast Aluminum- and Magnesium- Alloy Products
ASTM B660	Packaging/Packing of Aluminum and Magnesium Products
ASTM E10	Brinell Hardness of Metallic Materials
ASTM E34	Chemical Analysis of Aluminum and Aluminum Alloys
ASTM E155	Reference Radiographs for Inspection of Aluminum and Magnesium Castings
ASTM G44	Alternate Immersion Stress Corrosion Testing in 3.5% Sodium Chloride Solution

2.3 U.S. Government Publications:

Available from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

2.3.1 Military Standards:

MIL-H-6088 Heat Treatment of Aluminum Alloys

3. TECHNICAL REQUIREMENTS:

3.1 Composition:

Shall conform to the following percentages by weight, determined by wet chemical methods in accordance with ASTM E34 or by spectrographic or other analytical methods approved by purchaser:

	~ //·		
	ON.	min	max
	Carbon	4.2 -	5.0
15	Manganese	0.20 -	0.50
DV	Magnesium	0.15 -	0.35
3	Titanium	0.15 -	0.30
	Iron		0.15
	Silicon		0.10
	Zinc		0.10
	Nickel		0.05
•	Tin		0.05
	Other Impurities, each		0.05
	Other Impurities, total		0.15
	Aluminum	remainde	er

3.2 Condition:

Solution heat treated and naturally aged.

3.3 Castings:

Castings shall be produced in lots from metal conforming to 3.1. Metal remelted from previously analyzed ingot may be poured directly into castings. Furnace or ladle additions of grain-refining elements or alloys are permissible. Molten metal taken from alloying furnaces, with or without additions of foundry operating scrap (gates, sprues, risers, and rejected castings) shall not be poured into castings unless first converted to ingot, analyzed, and remelted or unless the composition of a sample taken after the last addition to the melt conforms to 3.1.

- 3.3.1 A melt shall be the metal withdrawn from a batch-furnace charge of 2000 lb (900 kg) or less as melted for pouring castings or, when permitted by purchaser, a melt shall be 4000 lb (1800 kg) or less of metal withdrawn from one continuous furnace in not more than eight consecutive hours.
- 3.3.2 A lot shall be all castings poured from a single melt in not more than eight consecutive hours and solution treated in the same heat treatment batch.

3.4 Cast Test Specimens:

Chemical analysis specimens and tensile specimens shall be cast as follows and, when required, shall be supplied with the castings.

- 3.4.1 Chemical Analysis Specimens: Shall be cast from each melt and shall be of a size and shape agreed upon by purchaser and vendor.
- 3.4.2 Tensile Specimens: Shall be cast with each lot of castings, shall be of standard proportions conforming to ASTM B557 with 0.500 in. (12.50 mm) diameter at the reduced parallel gage section, and shall be cast to size in molds made of the regular foundry mix of green sand, without using chills. Metal for the specimens shall be part of the melt which is used for the castings. If the metal for castings is given any treatment, such as fluxing or cooling and reheating, the metal for the specimens shall be a portion of the metal so treated and, during such treatment, shall be heated to the same maximum temperature and held for approximately the same time as the molten metal for the castings. The temperature of the metal during pouring of the specimens shall be not lower than that during pouring of the castings.

3.5 Heat Treatment:

Castings and representative tensile specimens shall be solution heat treated and naturally aged as in 3.5.1 and 3.5.2 (See 8.3); furnace surveys and calibration of temperature controllers and recorders shall be in accordance with MIL-H-6088. At least one set of tensile specimens shall, during each stage of heat treatment, be put into a batch-type furnace with each load of castings or into a continuous furnace at intervals not longer than three hours.

- 3.5.1 Solution Heat Treatment: Heat to 985°F ± 10 (530°C ± 5), hold at heat for not less than 8 hr. and quench.
- 3.5.2 Natural Aging: Hold at ambient temperature for not less than 72 hours.
- 3.6 Properties:

Castings and representative tensile specimens produced in accordance with 3.4.2 shall conform to the following requirements:

- 3.6.1 Tensile Properties: Shall be as follows, determined in accordance with ASTM B557; conformance to the requirements of 3.6.1.1 shall be used as basis for acceptance of castings except when purchaser specifies that the requirements of 3.6.1.2 apply (See 8.4):
- 3.6.1.1 Separately-Cast Specimens:

Tensile Strength, min Yield Strength at 0.2% Offset, min Elongation in 4D, min 40,000 psi (275 MPa) 24,000 psi (165 MPa) 8%

3.6.1.2 Specimens Cut from Castings: The average of not less than four, and preferably 10, specimens cut from thick and thin sections of a casting or eastings shall be as follows:

Tensile Strength, min
Yield Strength at 0.2% Offset, min
Elongation in 4D, min

40,000 psi (275 MPa) 24,000 psi (165 MPa) 6%

- 3.6.1.2.1 When properties other than those of 3.6.1.2 are required, tensile specimens taken from locations indicated on the drawing, from a casting or castings chosen at random to represent the lot, shall have the properties indicated on the drawing for such specimens. Property requirements for such specimens may be designated in accordance with AMS 2360.
- 3.6.2 Hardness of Castings: Castings, except at sprue and riser locations, should have hardness not lower than 85 HB/10/500 or 90 HB/10/1000, determined in accordance with ASTM E10, but castings shall not be rejected on the basis of hardness if the tensile property requirements of 3.6.1.2 are met.
- 3.6.3 Stress-Corrosion Resistance: Specimens as in 4.3.5, cut from castings and tested in accordance with ASTM G44 at a stress of 18,000 psi (125 MPa), shall meet the requirements of ASTM G44.

3.7 Quality:

- 3.7.1 Castings, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the castings.
- 3.7.1.1 Castings shall have smooth surfaces and shall be well cleaned.
- 3.7.2 Castings shall be produced under radiographic control. This control shall consist of radiographic examination of castings in accordance with AMS 2635 until proper foundry technique, which will produce castings free from harmful internal imperfections, is established for each part number and of production castings as necessary to ensure maintenance of satisfactory quality.
- 3.7.3 When specified, castings shall be subjected to fluorescent penetrant inspection in accordance with AMS 2645, to contrast dye penetrant inspection in accordance with AMS 2646, or both.
- 3.7.4 Radiographic, fluorescent penetrant, contrast dye penetrant, and other quality standards shall be as agreed upon by purchaser and vendor. ASTM E155 may be used to define radiographic acceptance standards.
- 3.7.5 Castings shall not be repaired by peening, plugging welding, or other methods without written permission from purchaser.
- 3.7.5.1 When permitted in writing by purchaser, defects in castings may be removed and the castings repaired by welding in accordance with AMS 2694.
- 3.7.6 Castings shall not be impregnated, chemically treated, or coated to prevent leakage unless specified or allowed by written permission of purchaser, designating the method to be used.

4. QUALITY ASSURANCE PROVISIONS:

4.1 Responsibility for Inspection:

The vendor of castings shall supply all samples for vendor's tests and shall be responsible for performing all required tests. Results of such tests shall be reported to the purchaser as required by 4.5. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the castings conform to the requirements of this specification.

- 4.2 Classification of Tests:
- 4.2.1 Acceptance Tests: Except as specified in 4.2.1.1, tests to determine conformance to requirements for composition (3.1), tensile properties of separately-cast specimens (3.6.1.1) or, when specified, tensile properties of specimens cut from castings (3.6.1.2), and quality (3.7) are classified as acceptance tests and shall be performed to represent each melt or lot as applicable.

- 4.2.1.1 Tensile properties of specimens cut from castings shall be determined only when specified by purchaser or when separately-cast specimens are not available. Tensile properties of separatelycast specimens need not be determined when tensile properties of specimens cut from castings are determined.
- 4.2.2 Periodic Tests: Tests to determine conformance to requirements for hardness (3.6.2) and stresscorrosion resistance (3.6.3) are classified as periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.
- 4.2.3 Preproduction Tests: tests to determine conformance to all technical requirements of this specification are classified as preproduction tests and shall be performed prior to or on the firstarticle shipment of a casting to a purchaser, when a change in material, processing, or both requires reapproval as in 4.4.2, and when purchaser deems confirmator testing to be required.
- 4.2.3.1 For direct U.S. Military procurement, substantiating test data and when requested, preproduction test material shall be submitted to the cognizant agency as directed by the procurring activity, the contracting officer, or the request for procurement. thefull
- 4.3 Sampling:

Shall be in accordance with the following:

- 4.3.1 Two chemical analysis specimens in accordance with 3.4.1 from each melt or a casting from each
- Three tensile specimens in accordance with 3.4.2 representing each lot except when properties 4.3.2 are required from specimens cut from castings.
- 4.3.3 Two preproduction castings in accordance with 4.4.1 of each part number.
- 4.3.4 On or more castings from each lot when properties are required from specimens machined from castings. Specimens shall conform to ASTM B557 and shall be either 0.500 in. (12.50 mm) diameter at the reduced parallel gage section, subsize specimens proportional to the standard, or standard sheet-type specimens. For determining conformance to the requirements of 3.6.1.2.1, if specimen locations are not shown on the drawing, not less than four tensile specimens, two from the thickest section and two from the thinnest section, shall be cut from a casting or castings from each lot.
- 4.3.5 Specimens for stress-corrosion tests shall be tensile specimens and, when tensile properties of specimens cut from castings are required to be determined, shall be taken from the same areas of castings as the tensile specimens. When practicable, specimens shall be not less than 0.250 in. (6.25 mm) in diameter at the reduced parallel gage section.

4.4 Approval:

- 4.4.1 Sample castings from new or reworked patterns and the casting procedure shall be approved by purchaser before castings for production use are supplied, unless such approval be waived by purchaser.
- 4.4.2 Vendor shall establish for production of sample castings of each part number parameters for the process control factors which will produce acceptable castings; these shall constitute the approved casting procedure and shall be used for producing production castings. If necessary to make any change in parameters for the process control factors, vendor shall submit for reapproval a statement of the proposed changes in processing and, when requested, test specimens, sample castings, or both. Production castings incorporating the revised operations shall not be shipped prior to receipt of reapproval.
- ■4.4.2.1 Control factors for producing castings include, but are not limited to, the following:

Type of furnace

Furnace atmosphere

Fluxing or deoxidation procedures

Gating and risering practices

Metal pouring temperature; variation of ± 50°F (± 30°C) from the established limit is permissible

Solidification and cooling procedure

Solution heat treatment cycle

Cleaning operations

Methods of inspection

4.4.2.1.1 Any of the above process control factors for which parameters are considered proprietary by the vendor may be assigned a code designation. Each variation in such parameters shall be assigned a modified code designation.

4.5 Reports:

- 4.5.1 The vendor of castings shall furnish with each shipment a report showing the results of tests for chemical composition of at least one casting or of separately-cast specimens from each melt and the results of tests for tensile properties of separately-cast specimens representing each lot or of specimens cut from castings from each lot, and stating that the castings conform to the other technical requirements of this specification. This report shall include the purchase order number, lot number, AMS 4237A, part number, and quantity.
- 4.5.2 The vendor of finished or semi-finished parts shall furnish with each shipment a report showing the purchase order number, AMS 4237A, contractor or other direct supplier of castings, part number, and quantity. When castings for making parts are produced or purchased by the parts vendor, that vendor shall inspect each lot of castings to determine conformance to the requirements of this specification and shall include in the report either a statement that the castings conform or copies of laboratory reports showing the results to determine conformance.