

Standard for

Ventilation of

RESTAURANT COOKING EQUIPMENT

June 1959

Twenty-five Cents*

Copyright 1959

NATIONAL FIRE PROTECTION ASSOCIATION

International

60 Batterymarch Street, Boston 10, Mass.

National Fire Protection Association

International

Executive Office: 60 Batterymarch St., Boston 10, Mass.

The National Fire Protection Association was organized in 1896 to promote the science and improve the methods of fire protection and prevention, to obtain and circulate information on these subjects and to secure the cooperation of its members in establishing proper safeguards against loss of life and property by fire. Its membership includes two hundred national and regional societies and associations (list on outside back cover) and seventeen thousand individuals, corporations, and organizations. Anyone interested may become a member; membership information is available on request.

This pamphlet is one of a large number of publications on fire safety issued by the Association including periodicals, books, posters and other publications; a complete list is available without charge on request. All NFPA standards adopted by the Association are published in six volumes of the National Fire Codes which are re-issued annually and which are available on an annual subscription basis. The standards, prepared by the technical committees of the National Fire Protection Association and adopted in the annual meetings of the Association, are intended to prescribe reasonable measures for minimizing losses of life and property by fire. All interests concerned have opportunity through the Association to participate in the development of the standards and to secure impartial consideration of matters affecting them.

NFPA standards are purely advisory as far as the Association is concerned, but are widely used by law enforcing authorities in addition to their general use as guides to fire safety.

Definitions

The official NFPA definitions of shall, should and approved are:

Shall is intended to indicate requirements.

Should is intended to indicate recommendations, or that which is advised but not required.

APPROVED refers to approval by the authority having jurisdiction.

Units of measurements used here are U. S. standard. 1 U. S. gallon = 0.83 Imperial gallons = 3.785 liters.

Approved Equipment

The National Fire Protection Association does not "approve" individual items of fire protection equipment, materials or services. The standards are prepared, as far as practicable, in terms of required performance, avoiding specifications of materials, devices or methods so phrased as to preclude obtaining the desired results by other means. The suitability of devices and materials for installation under these standards is indicated by the listings of nationally recognized testing laboratories, whose findings are customarily used as a guide to approval by agencies applying these standards. Underwriters' Laboratories, inc., Underwriters' Laboratories of Canada and the Factory Mutual Laboratories test devices and materials for use in accordance with the appropriate standards, and publish lists which are available on request.

VENTILATION OF RESTAURANT COOKING EQUIPMENT

NFPA No. 96 — 1959

This Standard, on recommendation of the NFPA Committee on Chimneys and Heating Equipment, was adopted by the Association on June 4, 1959. It supersedes, and is a complete revision of, Section 500, Ventilation of Restaurant Type Cooking Equipment, NFPA No. 91, Blower and Exhaust Systems.

COMMITTEE ON CHIMNEYS AND HEATING EQUIPMENT

E. W. Fowler, Chairman, National Board of Fire Underwriters, 85 John St., New York 38, N. Y.

Richard G. Gewain, † Secretary, National Board of Fire Underwriters, 85 John Street, New York 38, N. Y.

- Paul E. Baseler (pro tem), Building Officials Conference of America.
- P. R. Bechtolt, Western Actuarial Bureau.
- John Bellein, Maryland Fire Underwriters Rating Bureau.
- Louis C. Beutler, Middle Department Association of Fire Underwriters.
- C. E. Blome, Gas Appliance Manufacturers
- David H. Bottrill, Oil-Heat Institute of America.
- John Clougherty, NFPA Fire Marshals' Section.

- Robert C. Hauffer, Liberty Mutual Insurance Co. (Personal)
- H. E. Kuhlman, Oklahoma Inspection Bureau.
- Edward N. Montgomery, East Boston, Mass. (Personal)
- Dean Olds, Institute of Appliance Manufacturers.
- C. G. Segeler, American Gas Association.
- L. W. Vaughan, Underwriters' Laboratories of Canada.
- J. H. Witte, Underwriters' Laboratories, Inc.

Alternate.

Joe Collins, Oil-Heat Institute of America. (Alternate to David H. Bottrill.)

†Non-voting member.

History

The subject of the ventilation of restaurant type cooking equipment was first considered by the NFPA Committee on Blower and Exhaust Systems. That Committee developed a new Section 500, Ventilation of Restaurant Type Cooking Equipment, to be included in NFPA Standard No. 91, Blower and Exhaust Systems, and on recommendation of the Committee, Section 500

was adopted by the Association in 1946. Revisions to the Section were adopted in 1947 and 1949. Successive editions of NFPA No. 91 have been adopted and published by the National Board of Fire Underwriters. The 1949 edition of the Standard for Blower and Exhaust Systems was approved by the American Standards Association on August 31, 1950 (ASA 233.1 — 1950).

When the NFPA Committee on Chimneys and Heating Equipment was organized in 1955, Section 500 of NFPA No. 91 was assigned to the Committee with the suggestion that the Section be revised and published as a separate standard.

References to NFPA Standards

The following standards are mentioned in the following text and are useful for reference. These standards will be generally found available for distribution from the same sources that distribute the Standard for the Ventilation of Restaurant Cooking Equipment. The number designations are those used by the National Fire Protection Association, the National Board of Fire Underwriters and the Canadian Underwriters' Association. The abbreviations after the titles indicate the publication sources. Where two or more sources are indicated, the texts are identical from each source, except for cover and introductory matter.

- NFPA Published by the National Fire Protection Association in pamphlet form and available from them at 60 Batterymarch Street, Boston.
- NBFU Published by the National Board of Fire Underwriters in pamphlet form and available from them at 85 John Street, New York 38; 222 West Adams Street, Chicago 6; or 465 California Street, San Francisco 4.
- CUA Published by the Canadian Underwriters' Association in pamphlet form and available from them at 460 St. John Street, Montreal.
- NFC I, II, III, IV, V or VI Published by the National Fire Protection Association in the National Fire Codes volume indicated. These codes, republished annually, are available from the National Fire Protection Association, 60 Batterymarch Street, Boston.
- 10. Standard for Portable Fire Extinguishers (NFPA, NBFU, CUA, NFC IV)
- 12. Carbon Dioxide Extinguishing Systems (NFPA, NBFU, NFC IV)
- Standard for Water Spray Systems for Fire Protection (NFPA, NBFU, NFC IV)
- 17. Standard for Dry Chemical Extinguishing Systems (NFPA, NFC IV)
- 70. National Electrical Code (NFPA, NBFU, NFC V)

Standard for VENTILATION OF RESTAURANT COOKING EOUIPMENT

NFPA No. 96

1. Where Required.

11. Restaurant cooking appliances such as ranges, deep fat fryers, grills and broilers shall be provided with exhaust ventilating equipment to carry away the grease laden vapor effectively in a safe manner.

2. System Design.

- 21. The system shall be so designed as to confine cooking vapors and residues within the hood or other primary collection means installed at the cooking appliance.
- 22. The hood or other portion of the system designed for primary collection of cooking vapors and residues shall be constructed of noncombustible material with tight joints and shall have a clearance of at least 18 inches to unprotected combustible material unless protection is provided in accordance with Appendix B.
- 23. Duct systems should be designed to create a conveying air velocity in the exhaust ducts of not less than that specified in Appendix A.
- 24. Exhaust systems shall be provided with grease filters conforming to paragraph 25 or other means of grease extraction or with fire extinguishing equipment conforming to paragraphs 51 and 52. In large systems, it is recommended that grease filters or other means of grease extraction be provided in addition to fire extinguishing equipment.
- 25. Grease filters or other means of grease extraction, if used, shall be of noncombustible construction designed for the specific purpose. The height of lowest edge of grease filters located above the cooking surface shall be not less than:
 - a. No exposed flame (grills, French-fryers, etc.) . 2½ feet
 - b. Exposed charcoal and charcoal type fires . . . 4½ feet
 c. Exposed fires other than item b. 3½ feet

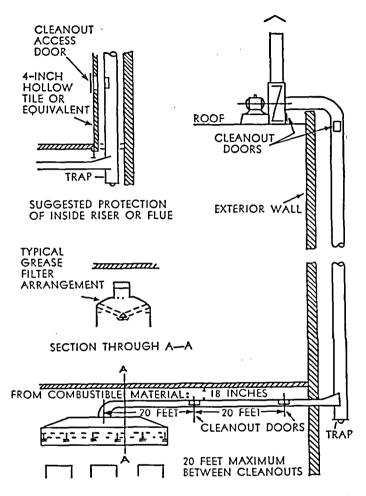


Fig. 1. Typical kitchen range exhaust system arrangement.

3. Ducts.

31. Ducts from hoods or other primary collection devices shall be constructed of No. 18 U. S. gage or heavier steel, or No. 20 U. S. gage stainless steel, with tight joints, and separated at least 18 inches from all unprotected combustible material

unless protection is provided in accordance with Appendix B. Inside laps in duct joints shall project in a direction against the air flow.

- 32. Ducts shall lead as directly as possible to outside.
- 33. Exhaust ducts shall constitute an independent exhaust system leading to the outside and shall not be connected with any other ventilating system.
- 34. Hand-holes, for inspection and cleaning purposes, equipped with tight-fitting sliding or swinging doors and latches, shall be provided in horizontal sections of exhaust duets. Such openings should be at the sides of the horizontal run in order to prevent dripping of residue. Spacing of such openings shall not exceed 20 feet. Opening shall have a minimum dimension of 6 inches.
- 35. Vertical risers should be located outside of the building and adequately supported. If absolutely necessary to locate the riser inside the building, it shall be enclosed in a shaft preferably constructed of masonry at least the equivalent of 4-inch hollow tile, extending continuously from the first floor pierced and through the roof. Access openings shall be provided in the enclosure at each clean-out point. (See Fig. 1.)
- 36. At the base of each vertical riser a residue trap shall be provided, with provisions for cleanout.
- 37. Exhaust ducts shall not pass through fire walls. Where ducts pass through partitions or walls of combustible construction the clearance shall be 18 inches unless protection is provided in accordance with Appendix B.
- 38. Dampers shall not be installed in any portion of the exhaust system except under either of the following conditions:
- a. Where a fixed pipe inert gas or dry chemical extinguishing system is provided, dampers may be installed at or near the outlet of the exhaust system to close automatically with the discharge of inert gas.
- b. Where an approved arrangement of baffles or other means that effectively extracts grease is provided, dampers may be installed at the inlet of the exhaust system provided a fixed pipe inert gas or dry chemical extinguishing system is installed in the area where the grease is extracted.

39. Where dampers are installed as in paragraphs 38a and b they shall be installed to shut down the fan motor upon the automatic or manual closing of the damper. Dampers shall not be adjustable to any position except fully opened or fully closed. Dampers shall be readily accessible for inspection and cleaning.

4. Electrical Equipment and Control.

- 41. In addition to the fan motor control located near the fan, a remote control shall be installed near the cooking appliance. Automatic shutdown of the motor by means of one or more thermal operated units, located over the cooking appliance, is recommended.
- 42. All electrical equipment including lighting fixtures shall be installed in accordance with the National Electrical Code (NFPA No. 70), with due regard to the effects of fumes and grease on equipment located in the hood or otherwise in the path of fume travel.

Note: Grease, vapors and heat may have a deteriorating effect upon ordinary electrical insulation; excessive deposits on electrical fixtures and devices tend to increase operating temperatures above normal. "Vaportight" fixtures reduce the accumulation of grease deposits on internal electrical parts and insulation. Electrical equipment may be placed outside the path of fume travel by locating it on the outside of the hood with illumination through suitable glass panels in the hood.

5. Fire Extinguishing Equipment.

- 51. Approved fire extinguishing equipment of the following types should be provided:
- a. Fixed pipe inert gas, dry chemical, or fine water spray systems, either manually controlled or provided with combined manual and automatic control; or
- b. Portable inert gas or dry chemical extinguishers or portable water spray equipment.
- 52. The equipment shall be of such type and extent as to be acceptable to the authority having jurisdiction. (See Standard for Carbon Dioxide Extinguishing Systems; Standard for Water Spray Systems for Fire Protection; Standard for Portable Fire Extinguishers; and Standard for Dry Chemical Extinguishing Systems appearing in National Fire Codes, Volume IV, Extinguishing Equipment, and NFPA Standards No. 12, 15, 10 and 17 respectively.)

6. Inspection and Cleaning.

- 61. The entire exhaust system shall be inspected periodically and cleaned as needed to remove deposits of residue and grease in the system. Thorough cleaning of ducts, hoods, and fans usually requires scraping, brushing, or other positive means.
- 62. Grease filters or other grease extraction means shall be cleaned whenever inspection indicates the need.

APPENDIX A

Methods for Determining Adequate Ventilation For Restaurant Cooking Equipment

Duct system should be designed to create a conveying air velocity in the exhaust ducts or not less than 1500 feet per minute and not more than 2200 feet per minute.

The following presents two methods for determining adequate air velocities or quantities of air to confine cooking vapors, convected heat and residues to the hood or other primary collection means installed at the cooking appliance.

- A1. Ventilating equipment in commercial kitchens should be designed to provide 20 to 30 air changes per hour in the room where the appliances are located. In calculating the cubical content of the room over-all dimensions should be used with no deduction for the volume occupied by refrigerators, storage cabinets, appliances, etc.
- A2. The average air velocity across the entire area of the hood opening of the exhaust system should be in the range of 50 to 100 feet per minute; or, the volume of air per lineal foot of cooking equipment should be in the range of 250 to 500 cubic feet per minute for hoods or other primary collection means installed at the cooking appliance.
- A3. The selection of fan capacity should be based on the larger air volume obtained by these methods.

APPENDIX B

Where 18 inches clearance is required to unprotected combustible material, the clearance may be reduced to that indicated below when the combustible material is protected as follows.

	Type of Protection	Clearance
(1)	1/4-inch asbestos millboard spaced out 1 inch on noncombustible spacers	12 inches
(2)	28 gage sheet metal on ¼-inch asbestos mill-board	12 inches
(3)	28 gage sheet metal spaced out 1 inch on non-combustible spacers	9 inches
(4)	28 gage sheet metal on 1/8-inch asbestos mill-board spaced out 1 inch on noncombustible spacers	9 inches
(5)	1/4-inch asbestos millboard on 1 inch mineral wool bats reinforced with wire mesh or equivalent	6 inches
(6)	22 gage sheet metal on 1 inch mineral wool bats reinforced with wire or equivalent	3 inches