NFPA 80

FIRE DOORS AND WINDOWS 1979

MATCHAL FIRE PROTECTION AREA.

AND ATLANTIC AVENUE

BOSTON: MASS. 02210

Copyright © 1979

All Rights Reserved

NATIONAL FIRE PROTECTION ASSOCIATION, INC.
470 Atlantic Avenue, Boston, MA 02210

5M-7-79-FP Printed in U.S.A.

NOTICE

All questions or other communications relating to this document should be sent only to NFPA Headquarters, addressed to the attention of the Committee responsible for the document.

For information on obtaining Formal Interpretations of the document, proposing Tentative Interim Amendments, proposing amendments for Committee consideration, and appeals on matters relating to the content of the document, write to the Assistant Vice President- Standards, National Fire Protection Association, 470 Atlantic Avenue. Boston. MA 02210.

Licensing Provision — This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Assistant Vice President Standards) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with law-making or rule-making powers only, upon written notice to the NFPA (Attention: Assistant Vice President Standards), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's law-making or rule-making process. B. Public authorities with advisory functions and all others desiring permission to reproduce this document or its contents in whole or in part in any form shall consult the NFPA.

All other rights, including the right to vend, are retained by NFPA.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

See Official NFPA Definitions at the back of this pamphlet.

Standard for

Fire Doors and Windows

NFPA 80 - 1979

1979 Edition of NFPA 80

This 1979 edition of NFPA 80, Standard for Fire Doors and Windows, was prepared by the Committee on Fire Doors and Windows, and was adopted by the Association on May 16, at its 1979 Meeting in St. Louis, Missouri, with amendments to paragraphs 1-3.3, 1-3.5, 2-7, and the definition of "Plant-ons" in 1-4. Pursuant to the Regulations Governing Committee Projects, the Technical Committee was balloted on the amendments and voted not to approve the amendments. (The Correlating Committee on Building Construction voted to release the action of the Technical Committee.) The Standards. Council released the Committee Report without the amendments on June 21, 1979.

Origin and Development of NFPA 80

The standard for the Protection of Openings in Walls and Partitions can be traced to the early days of the Association. Reports covering various phases of the problems of protectives for openings were submitted to the Association by several committees concerned and adopted in 1897, 1898, 1899, 1900, 1901, 1902 and 1908. In 1911 a standard on Door Openings was presented and adopted, and Rules for Fire Protection Coverings for Openings in Walls and Partitions on the Interior Buildings were adopted in 1912. In 1915 the existing rules were recodified and rearranged. A new name, the Committee on Protection of Openings in Walls and Partitions, was chosen in 1916. Revisions recommended by the Committee were adopted by the NFPA in 1916, 1917, 1918, 1926, 1927, 1928, 1931, 1937 and 1941.

In 1955 the name of the Committee was changed to the Committee on Fire Doors and Windows. In 1959 a complete revision of the 1941 edition was adopted including a change in name to correspond with the name of the committee. The 1959 edition was revised in 1961, 1962, 1965, 1966, 1967, 1968, 1970, 1973, 1974, 1975, and 1977.

Committee on Building Construction Correlating Committee

Donald W. Belles, Chairman Madison, TN

John R. Anderson,† Secretary National Fire Protection Association, Inc.

- John L. Bryan,† University of Maryland, Dept. of Fire Protection Engineering
- John G. Degenkolb, Glendale, CA
- George W. Flach,† (Rep. NFPA National Electrical Code Committee)
- † Nonvoting

- Harold E. Nelson, Center for Fire Research, U. S. National Bureau of Standards
- Chester W. Schirmer, Schirmer Engineering Corp.
- William A. Schmidt, Office of Construction (08H) U. S. Veterans Administration Richard H. Solomon, Naperville, IL

John G. Degenkolb, Chairman Glendale, CA V. C. Braun, Secretary

V. C. Braun, Secretary
Amweld Building Products, Rep. Steel Door Institute

Committee on Fire Doors and Windows

- M. A. Bridgham, Improved Risk Mutuals
- Robert A. Bullard, Bullard Associates, Inc. (Rep. Door & Hardware Institute)
- R. W. Cohrs, Sandia Laboratories (Rep. NFPA Industrial Fire Protection Section)
- Thomas D. Copeland, Division of Fire Prevention (Rep. Fire Marshals Association of North America)
- Edward A. Donoghue, National Elevator Industry. Inc. (Vote limited to matters pertaining to hoistways)
- Glenn Erickson, City Architect (Rep. Council of American Building Officials)
- Alfred Goldberg, Goldberg Research & Development Associates (Rep. American Rolling Door Inst.)
- Robert L. Gruehn, Kemper Insurance Cos. (Rep. Alliance of Ameraican Insurers)
- Richard A. Hudnut, Builders Hardware Manufacturers Association
- D. L. King, Steelcraft Manufacturing Co. (Rep Insulated Steel Door Systems Institute)
- S. M. Knight, Factory Mutual Research Corp.

- Eldredge H. Leeming, A. H. Leeming & Sons, Inc. (Rep. Architectural Woodwork Institute)
- Gerald E. Lingenfelter, American Insurance Assn.
- Harold A. Locke, Underwriters' Laboratories, Inc. of Canada
- George E. Meyer, Warnock Hersey International, Inc.
- E. E. Miller, Industrial Risk Insurers
- Edwin N. Naslund, Marketing Manager, Cal-Wood Door
- David C. Norton, Applied Research Labs of Florida (Rep. American Council of Industrial Labs, Inc.)
- William Rawls, Cornell Iron Works, Inc.
- Joseph N. Saino, F. L. Saino Manufacturing Co. (Rep. National Assn. of Architectural Metal Manufacturers)
- Michael J. Slifka, U. S Veterans Administration
- Bertram M. Vogel, Center for Fire Research, U. S. National Bureau of Standards
- Raymond Ziegler (Rep. American Inst. of Architects)
- B. A. Zimmer, Underwriters Laboratories Inc

Alternates

- William M. Bursk, Ever-Strait Division, Pease Company (Alternate to D. L. King)
- D. E. Christensen,† Hardwood Products Division, Weyerhaeuser Company
- Joseph G. Coutu, Industrial Risk Insurers (Alternate to E. E. Miller)
- Louis B. Dietz, Alexander Woodwork Co. (Alternate to E. H. Leeming)
- Howard S. Engerman, Underwriters Laboratories Inc. (Alternate to B. A. Zimmer)
- Joseph B. Klein, American Institute of Architects (Alternate to R. Zeigler)
- W. L. Meek,† Simpson Research Center (Rep. ASTM E.05.03)
- Jack McAuley, Engineering Center, Otis Elevator Co. (Alternate to E. A. Donoghue)

- James E. Pearce, Mesker Industries, Inc (Alternate to V. C. Braun)
- Walter K. Rothfuss, U. S. Veterans Administration (Alternate to M. J. Slifka)
- Edward R. Rutledge, Eggers Hardware Products Corp. (Alternate to E. Naslund)
- Isaac Siskind, Improved Risk Mutuals (Alternate to M. A. Bridgham)
- Raymond C. Tartre, HCI Corp. (Alternate to R. A. Bullard)
- Russell Wardlaw, The Cookson Company (Alternate to W. Rawls)
- G. M. Watson, American Insurance Assn. (Alternate to G. E. Lingenfelter)
- D. O. Williams, HPR Dept., Kemper Insurance Co (Alternate to R. L. Gruehn)

†Nonvoting

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

Contents

Introdu	ction	80-	7
Chapter	·1 General	80-	9
1.1	Scope	80-	9
1-2	New Developments	80-	9
1-3	General Limitations	80-	10
1-4	Definitions	80-	10
1-5	Listed and Labeled Products	80-	19
1-6	Classifications and Types of Doors	80-	20
1-7	Glass	80-	21
1-8	Types of Door Construction	80-	21
1-9	Classification of Hardware for Fire Doors	80-	22
1-10	Classification of Steel Door Frames	80-	23
1-11	Placement of Detectors	80-	24
Chapter	2 Use and Installation of Swinging Doors with Builders		
•	Hardware	80-	25
2-1	Doors	80-	25
2-2	Sills	80-	25
2-3	Wall Openings	80-	25
2-4	Lintels	80-	25
2-5	Frames	80-	26
2-6	Frames with Transoms, Side Lights, or Panels	80-	26
2-7	Astragals	80-	26
2.8	Builders Hardware	80-	27
Chapter	3 Use and Installation of Swinging Doors with Fire Door Hardware	80-	34
3-1	Mounting of Doors	80-	34
3-2	Vents	80-	34
3-3	Sills	80-	34
3-4	Walls	80-	35
3-5	Frames	80-	35
3-6	Clearances	80-	35
3-7	Coordinating Devices	80-	36
3-8	Fire Door Hardware	80-	36
3-9	Operating of Doors	80-	38
3-10	Closing Devices for Swinging Tinclad and Sheet Metal Fire Doors	80-	38
3-11	Automatic Fire Detectors	80-	38

Chapter	4 Use and Installation of Horizontally Sliding Doors	80-	39
4-l	Doors	80-	39
4-2	Sills	80-	40
4-3	Walls	80-	40
4-4	Lintels	80-	40
4-5	Fire Door Hardware	80-	40
4-6	Closing Devices for Horizontally Sliding Composite, Hollow Metal, Tinclad and Sheet Metal Fire Doors	80-	45
Chapter	5 Use and Installation of Vertically Sliding Fire Doors	80-	47
5-1	Doors	80-	47
5-2	Vents	80-	47
5-3	Clearances	80-	47
5-4	Sills	80-	47
5-5	Walls	80-	48
5-6	Lintels	80-	48
5-7	Fire Door Hardware for Tinclad and Sheet Metal Doors	80-	48
5-8	Fire Door Hardware for Steel Sectional Doors	80-	49
5-9	Closing Devices for Vertically Sliding Tinclad, Sheet Metal, and Steel Sectional Fire Doors	80-	50
Chapter		80-	52
6-1	Doors	80-	52
$6 \cdot 2$	Sills	80-	52
6-3	Walls	80-	52
6-4	Assembly of Rolling Doors	80-	
6-5	Closing Devices	80-	-
6-6	Automatic Fire Detectors	80-	
6-7	Power Operated Fire Doors	80-	55
Chapter	7 Use and Installation of Hoistway Doors for Elevators and Dumbwaiters	80-	56
7-1	Scope	80-	56
7-2	General Requirements	80-	56
7-3	Types of Doors	80	57
Chapter	8 Use and Installation of Chute Doors	80	59
8-1	General	80 -	59
8-2	Sills	80	59
8-3	Walls	80	59
8-4	Lintels	80	59
8-5	Closing Device	80	59

Chapter	9 Use and Installation of Fire Shutters	80-	60
9-1	General	80-	60
9-2	Installation	80-	60
9-3	Operation of Shutters	80-	60
9-4	Location of Detection Device	80-	60
Chapter	10 Use and Installation of Access Doors	80-	6 l
10-1	General	80-	61
10-2	Installation	80-	61
10-3	Walls	80-	61
Chapter	11 Use and Installation of Service Counter Doors	80-	62
11-1	Door Construction	80-	62
11-2	Installation	80-	62
11-3	Automatic Closers	80-	62
11-4	Automatic Fire Detectors	80-	63
Chapter	12 Use and Installation of Fire Windows	80-	64
12-1	Classification	80-	64
12-2	Wired Glass	80-	64
12-3	Types of Window Shash	80~	64
12-4	Installation	80-	65
12-5	Closing Devices	80-	66
Chapter	13 Use and Installation of Glass Blocks	80-	67
13-1	Classification	80-	67
13-2	Installation	80-	67
Chapter	14 Care and Maintenance	80-	69
14-1	General	80-	69
14-2	Specific Requirements	80-	69
Appendi	x A Drawings of Fire Door Assemblies and Components	80-	71
Appendi		00.1	00
	Exposed Glass Areas	80-1	υ y
Appendi	x C Fire Door: Protection of Conveyor Openings	80-1	13
Appendi	x D Referenced Publications	80-1	18
Appendi	x E Types and Definitions of Window Components	80 - 1	20
Appendi	x F Classification	80-1	22

Introduction

- 0-1 Each class of device (doors, shutters, windows, etc.) has certain advantages and limitations, and the importance of each of these characteristics must be considered for the specific opening under consideration. A device cannot be expected to perform properly except for the condition for which it was designed. Prospective users should first ascertain from the authority having jurisdiction which type device or material, if any, will be accepted in the location proposed and should make contract subject to the approval of the authority having jurisdiction.
- 0-2 Fire door assemblies for the protection of openings depend on the use of labeled fire doors and frames, listed or labeled latching devices, listed swinging and sliding hardware, and closing devices having the required fire protection ratings which will close or be closed at the time of fire. The effectiveness of the entire assembly as a fire barrier may be destroyed if any component is omitted or one of substandard quality is used.
- 0-3 Where fire doors also serve as exit doors, the Life Safety Code®, NFPA 101®, (see Appendix D) specifies that they must swing with the exit travel except for doors on individual small rooms which may swing in, and that on horizontal exits, where fire doors are required on both sides of the wall, one may be an automatic horizontally sliding door, normally open, and the other a self-closing door swinging with the exit travel, normally closed. This excludes the following types of doors from use on exits: rolling steel doors or shutters, vertical sliding doors, jackknife doors.
- 0-4 Labeled fire exit devices which meet the requirements for safety to life and for fire protection are available for use on labeled fire doors. Fire doors for use with this hardware bear the marking "Fire Door to be Equipped with Fire Exit Hardware" on the label.
- 0-5 Reference is directed to Recommended Practice for Protection of Buildings from Exterior Fire Exposures, NFPA 80A, (see Appendix D) for detailed guidance in determination of fire exposure severity and corresponding degree of protection of opening which may be warranted.
- **0-6** Exit doors should normally be closed. Fusible link or similar door-closing arrangements are of limited value for exit purposes because quantities of smoke may pass through the door opening before there is sufficient heat to fuse the link.
- **0-7** Doors of small to moderate size are more suitable for exit purposes than very large doors, owing to the relative ease of operation of the smaller doors.

- **0-8** Horizontally sliding doors are open to the objection, for exit purposes, of difficulty in reopening once closed in case of fire.
- **0-9** Doors swinging in pairs can be arranged satisfactorily for exit purposes, but single doors are preferable. Two single doors installed in a frame with a mullion can be arranged to provide satisfactory exit facilities
- 0-10 Structural requirements specified in this standard generally refer to materials and assemblies which, through field experience, have been found acceptable for such application. Walls and lintels, providing they are of fire rated construction, should provide the support required for the type of door to be installed. Materials and structural designs other than those specifically covered herein may be employed if judged equivalent by the authority having jurisdiction.
- **0-11** Despite the provision of protection specified in this standard, walls with openings have a lesser fire resistance than unpierced walls. Fire doors, shutters, and fire windows are designed to protect the opening under normal conditions of use, with a clear space on both sides of the opening. When the opening is not used and combustible material is piled against the door, window, or shutter, the designed protection cannot be expected. For this reason, combustible material should be kept well away from openings. When a door or window opening is no longer to be used, the opening should be closed with construction equivalent to that of the wall.
- **0-12** Any assembly provided in accordance with the provisions of this standard does not necessarily provide the same degree of protection against the spread of fire that is provided by the wall in which the assembly is installed assuming that the wall has fire resistance established in accordance with *Standard Methods of Fire Tests of Building Construction and Materials*, NFPA 251 (see Appendix D). Therefore the size and number of openings in any wall required to have fire resistance should be held to the minimum necessary to the normal or to emergency operation of the occupancy. The use of assemblies covered in this standard only for decorative, aesthetic and similar purposes in fire-resistive walls is not recommended.
- 0-13 Fire doors, shutters, or fire windows are of value only if properly maintained so that they will close or be closed at the time of fire. Periodic inspection of doors, shutters, and fire windows, with immediate attention to any necessary repairs and correction of any defects that may interfere with operation, is a very important responsibility of the management of the property. (See Chapter 14.)

Standard for Fire Doors and Windows

NFPA 80 - 1979

Chapter 1 General

1-1 Scope.

- 1-1.1 This standard shall cover the use, installation, and maintenance of fire door assemblies, windows, glass blocks, and shutters for the protection of openings in walls to restrict the spread of fire and smoke within buildings, whether from interior fire or from external fire, including arrangements for automatic operation in case of fire. It is not intended to establish the degree of protection required or to constitute the approval of any product.
- 1-1.2 Incinerator doors, record room doors, and vault doors are not covered in this standard. For their installation, see Standard on Incinerators, Waste and Linen Handling Systems and Equipment, NFPA 82 (see Appendix D); Standard for the Protection of Records, NFPA 232 (see Appendix D); and Standard for Fur Storage, Fumigation and Cleaning, NFPA 81 (see Appendix D).
- 1-1.3 For standards on the installation of hoistway doors for elevators and dumbwaiters, see Section 110 of Safety Code for Elevators, Dumbwaiters, Escalators, and Moving Walks, ANSI A17.1 (see Appendix D).

1-2 New Developments.

1-2.1 This standard shall not act as an obstruction to the development of new, modified, or improved devices which meet the intent of these requirements. It shall be the responsibility of the manufacturer to furnish the necessary information to effect the updating of the requirements pertaining to such new and improved devices.¹

¹ The development of fire doors and related devices is a continuous process, therefore this standard cannot be up-to-date at all times. This standard is intended to be current only to the date of publication.

1-2.2 For devices not described in this standard, the authority having jurisdiction shall request from manufacturers descriptive information provided by a testing laboratory concerning acceptable methods for satisfactory field installation based on fire tests and engineering studies for operation and maintenance considerations, where applicable.

1-3 General Limitations.

- 1-3.1 Fire doors and windows are classified by the authority having jurisdiction by designating a required fire protection rating expressed in hours or fractions thereof, an alphabetical letter designation, or combination of the former with an additional letter suffix. (See Appendix F.)
- 1-3.2 Fire doors equipped with automatic louvers or special closures for conveying systems shall be used only for protecting openings in required enclosures where the opening is not in an exit or otherwise located so that products of combustion flowing through the opening could jeopardize the use of exits prior to operation of the louver.
- 1-3.3 Sliding doors shall not be used on access openings to exit stairways, fire escapes, or exit ramps, nor on exits to the exterior of the building.

1-4 Definitions.

Access Door. A door assembly, with a fire protection rating, of smaller size than conventional doors and used to provide access to utility shafts, chases, manways, plumbing equipment, doors to service for elevators and dumbwaiters, or as a scuttle hole to gain entry into an attic or space above a ceiling.

Active Leaf. The first operating door of a pair; usually that one in which a lock is installed.

Ambient. The temperature of the room in which the test is being conducted.

Anchor. A device for attaching frames to the surrounding structure.

Approved. Acceptable to the authority having jurisdiction.

Astragal (Overlapping or Wrap-Around). A vertical molding attached to the meeting edge of one leaf of a pair of doors for protection against weather conditions, to minimize the passage of light between the doors, and/or to retard the passage of smoke, flame or gases during a fire.

Astragal (Split). A vertical molding attached to both leaves of a pair of doors at the meeting edges for protection against weather conditions. Can be used when both leaves are active.

Automatic Closing Device. A device attached to a door or window frame which causes the door or window to close when activated as a result of a predetermined temperature, rate of temperature rise, smoke, or other product of combustion detector.

Automatic Closing Door. Doors which are normally open but will close when the automatic closing device is activated at the time of fire.

Automatic Fire Detectors. Either individual devices or prescribed combinations of devices designed to detect flame, heat, smoke, or combustion gases resulting from fire.

Automatic Top and Bottom Bolt. (See Flush Bolts.)

Barrel (Rolling Steel Door). A cylindrical horizontal member at the head of the opening which supports the door curtain and contains the counter-balance springs.

Binders (Sliding Door, Horizontal and Vertical). Pieces of hardware used to hold a sliding door to the wall preventing lateral movement from the wall.

Biparting. Term describing a vertically sliding door in which one half of the door moves up and one half of the door moves down to open. Also, a horizontal sliding door in which one door moves to the right and one to the left to open.

Bottom Bar (Rolling Steel Door). A structural reinforcing member at the lower edge of the door curtain assembly.

Box Track. A type of track used with sliding door which is formed from a sheet of steel in the shape as shown:

Brackets (Sliding Door, Rolling Steel). Plates bolted to the wall or to extensions of the guide wall angles which serve to support the barrel and form end closers for the hood.

Builders Hardware. (See Section 1-9.)

Bumpers (Sliding Door). Stops to limit the closing or opening movement of a sliding door.

Center Latch. A latch used to hold the two halves of a centerparting, or biparting fire door together, usually two pieces surface applied to doors and interlocked in the closed position.

Chafing Strip (Sliding Door). Metal strip applied to the back surface of a sliding door to protect the door surface from damage from the wall.

Channel Frame. A frame that consists of head and jamb members of structural steel channels, either shop or field assembled, to be used with masonry walls.

Closing Device. A means of closing a door from the partial or full opened position.

Concrete Lintel. A precast concrete horizontal member spanning and carrying the load above an opening.

Coordinator. A device used on pairs of swinging doors that prevents the active leaf from closing before the inactive leaf closes.

Counterbalancing. A method by which the hanging weight of the door curtain is balanced by helical torsion springs or weights.

Cover Plate (Slide Door Vertical and Horizontal). A plate to cover the joint between the section of multiple panel doors, usually applied to front and back of door.

Crush Plates. Continuous steel-bearing plates provided when doors are mounted on concrete masonry unit walls with hollow cells to receive through-wall bolts to prevent crushing of the hollow concrete masonry unit.

Curtain (Rolling Steel). The door closure consisting of interlocked slats and bottom bar.

Curtain Slats (Rolling Steel). Formed sheet steel members which, when interlocked together, form the door curtain.

Detectors. (See Automatic Fire Detectors.)

Door, Access. (See Access Door.)

Door, Automatic Closing. (See Automatic Closing Door.)

Door Closer. A labeled device applied to a door and frame to cause the open door to close by mechanical force. The closing speed may be regulated by this device.

Door Holder/Release Device. A labeled, fail-safe device, controlled by a detection device, used on an automatic closing door to release the door at the time of fire.

Door, Power Operated. (See Power Operated Fire Doors.)

Door, Self-Closing. (See Self-Closing Doors.)

Door, Service Counter. (See Service Counter Door.)

Double Egress. A pair of swinging doors, each leaf of which swings in the opposite direction from the other.

Dutch Door. A door divided horizontally so that the lower part can be shut while the upper part remains open.

Egress Side. The side of an opening from which traffic exits.

Electric Contacts. An electrical device, the function of which is to prevent operation of the elevator driving machine by the normal operating device unless the hoistway door is in the closed position.

Finish Frame. A subframe attached to a rough buck to which the door is attached.

Fire Door. The door component of a fire door assembly.1

¹ The fire protection rating of a fire door presumes that the door is installed with the appropriate frame, hardware, and other accessories required by this standard. In any instance, where any of the required elements are omitted, the assembly rating is void by this standard and the opening protection is not considered equivalent to the labeled or otherwise indicated fire protection rating of the door component.

Fire Door Assembly. Any combination of a fire door, frame, hardware, and other accessories which together provide a specific degree of fire protection to the opening.

Fire Door Hardware. Fire door hardware is applied to both swinging and sliding doors and consists of the items referred to in Tables 3-8A, 3-8B, 3-8C, and 4-5A. (See also Figures A-29, A-31, A-34, A-37, and A-41-A-45 in Appendix A.)

Fire Exit Hardware. Labeled devices for swinging fire doors installed to facilitate the safe egress of persons. They consist of a crossbar and various types of latch mechanisms that cannot hold the latch in a retracted locked position. They are labeled for both fire and panic. Fire door hardware has a permanently attached metal label which is serially numbered and shows the manufacturer's name and type of approval. The label is extended to differentiate between panic hardware, which is not acceptable for use on fire doors, and fire exit hardware.

Fire Lock Angles (Sliding Door, Horizontal). A sheet metal angle designed to hold the assembly in position during a fire test.

Fire Shutter. A labeled door assembly that is used for the protection of a window opening in an exterior wall. (See Shutter.)

Flame Baffle (Sliding Door, Vertical). A hinged sheet metal piece within the hood which, when released, closes the space between the top of the curtain and the hood.

Flush Bolts, Automatic. A mortised bolt installed near the top or bottom of the inactive leaf of a pair of doors. The bolt holds the inactive leaf in a closed position until the active leaf is opened.

Flush Bolts, Manual. A mortised bolt installed near the top or bottom of the inactive leaf of a pair of doors. The bolts are manually extended and/or retracted into or out of the header or sill by means of a lever.

Frame (Window). The stationary part of a sash not including the ventilator.

Fusible Link. Two pieces of metal held together by low-melting-point solder.

Governor (Sliding, Vertical and Rolling Steel Doors). A mechanical device which limits the speed of descent of the door during automatic closure.

Guides (Sliding, Vertical and Rolling Steel Doors). Vertical assemblies in which the curtain travels and which are fastened to the jamb. The guides retain the edges of the door curtain and close the space between the curtain edges and the jamb.

Guide Rail (Sliding Door, Vertical). A steel member attached to wall or frame, used with vertical sliding doors to guide the door.

Guide Shoe (Sliding Door, Vertical). A member attached to vertical sliding doors used to guide and retain door on guide rail.

Guide Wall Angle (Sliding Vertical and Rolling Steel Doors). That component of the guide assembly which is fastened to the jamb.

Hanger (Sliding Door, Horizontal). A member used to attach horizontally sliding door to track and roll on or in track.

Heat Actuated Device. Heat actuated devices include fixed temperature releases, rate-of-temperature-rise releases, and door closers with hold-open arms embodying a fusible link.

Hoistway Door Interlocks. A locking device that prevents operation of the elevator-driving machine by the normal operating device unless the hoistway door is locked in the closed position and prevents the opening of the hoistway door unless the car is within the landing zone and is either stopped or being stopped.

Hollow Metal Frame. A frame formed from sheet metal.

Hood (Rolling Steel Door). A sheet metal housing which mounts horizontally between the brackets. It serves as an enclosure for the coiled curtain and closes the space between the door coil and the lintel.

Inactive Leaf. The one of a pair of doors that is ordinarily latched closed. The second operating door of a pair.

Interviewers. A viewing device installed in a door to permit observation of persons opposite the security side of the door without having to open the door.

Jackknife Door. A door which folds and unfolds like a jackknife while opening and closing.

Keeper. A guide and a restraint used on latching devices.

Labeled. Equipment or materials to which has been attached a label, symbol or other identifying mark of an organization accep-

table to the "authority having jurisdiction" and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

Lap Mounted (Sliding Door, Vertical, Horizontal, Rolling Steel, Swing Door). Refers to doors mounted on the face of a wall and overlapping the opening by a prescribed dimension.

Latching Device. A spring loaded latch bolt or a gravity operated steel bar that after release by physical action returns to its operating position and automatically engages the strike plate when it is returned to the closed position.

Lintel. A horizontal member spanning and carrying the load above an opening.

Listed. Equipment or materials included in a list published by an organization acceptable to the "authority having jurisdiction" and concerned with product evaluation, that maintains periodic inspection of production of listed equipment or materials and whose listing states either that the equipment or material meets appropriate standards or has been tested and found suitable for use in a specified manner.

NOTE: The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. The "authority having jurisdiction" should utilize the system employed by the listing organization to identify a listed product.

Louver, Automatic. An opening in a door with a series of slats or blades to allow passage of air, designed to close automatically in the event of fire.

Mullion. Vertical member set in a double door opening which will allow both leaves to be active. May be fixed or removable. A mullion may also occur between a door and a sidelight or a separate, framed, glazed area.

Mullion, Window. A mullion is the vertical or horizontal member in a window, between the sash.

Muntin. A bar member supporting and separating panes of glass within a sash, door or glazing frame.

Muntin, Window. A muntin is a tee-shaped bar in a frame or ventilator, dividing the glass.

Noncombustible. (See NFPA 220, Types of Building Construction, see Appendix D.)

Open Back Strike. Strike applied to the inactive leaf of a pair of doors and cut away at the back to permit either leaf to open or close independently.

Power Operated Fire Doors. Doors which are normally opened and closed electronically, pneumatically, or mechanically.

Rolling Steel Door. A closure consisting of an interlocking steel slat curtain, bottom bar, wall guides, and an automatic release device, which, on release, will cause the curtain to close.

Rough Buck. A subframe, usually channel shaped, attached to an existing wall to which the finish frame is attached.

Round Track. A circular roll formed steel track used for supporting and/or guiding horizontal or vertical sliding doors.

Safety Meeting Edge (Elevator Doors). A resilient member used on the leading edges of elevator doors to prevent crushing or shearing edges.

Sash. An integral arrangement of a steel frame with or without a ventilator, which purpose is to hold glass in place. When the sash is stationary, it includes the frame and muntins. When the sash is arranged to open, it includes the frame and ventilator and all attached parts.

Sash, Window. A sash is an integral arrangement of a steel frame, which purpose is to hold glass in place in a window. If the glass is stationary, the sash includes the frame, vertical muntins, and horizontal muntins. If the sash is arranged to open, the sash includes the frame and ventilator and all parts attached, except mullions.

Self-Closing Doors. Doors which, when opened and released, return to the closed position.

Self-Latching Bolt. An automatic latching device which engages in a keeper to hold a door leaf in a closed position.

Service Counter Door. A labeled fire door assembly used for the protection of openings in walls where the primary purpose of the

opening is for nonpedestrian use, such as counter service for food, pharmaceutical dispensary, package and baggage transfer, or observation ports.

Shutter. A labeled door assembly that is used for the protection of a window opening in an exterior wall. (See Fire Shutter.)

Side Light. A frame, prepared for glass installation in the field, attached to the door frame

Single Point Latch. A latch located in the edge of a door to engage either in the frame or in the edge of the inactive leaf of a pair.

Sliding Hardware. A system of rails, hangers, rollers, guides, binders, and closing devices that may be made self-closing by gravity, weights, and pulleys or spring actuated devices.

Smoke Detector. A device which senses visible or invisible particles of combustion.

Solid Section Frame. (See Channel Frame.)

Spring Hinge. A door closer in the form of a hinge with a built-in spring used to hang and close the door, automatically causing it to latch.

Spring Release Device (Sliding Door, Vertical, Horizontal, Rolling Steel Door). A device, which, when activated, releases part of the spring counterbalancing force and causes the door to close.

Snub Rollers. (See Stay Rollers.)

Stay Rollers (Sliding Door, Horizontal). A device used on horizontally sliding doors at the back lower corner to guide the door and prevent the door from moving away from the wall under fire conditions.

Strike Plate. A wear plate for projecting hardware or a wear plate and keeper for a latchbolt.

Struts. Adjustable, vertical members that extend from the head of the hollow metal frame to the ceiling to hold the frame rigidly in place.

Swing-In. A door that swings into a room or building.

Swing-Out. A door that swings out of a room or building.

Three Point Latch. A self-latching device designed to latch a door at the top, bottom and edge by an interconnected mechanism so that all latches operate simultaneously.

Track Binders (Sliding Doors, Sheet Metal). A device mounted on a sheet metal sliding door and projecting behind the track to prevent the door from moving away from the wall under fire conditions.

Transom. An opening in a frame above the door opening separated by a horizontal member having glass, panel or louver installed.

Transom Panel. A panel installed in a frame above the door opening.

Vents (Sliding Door, Horizontal Tinclad Only). A hole cut in a fire door to allow for venting of the products of combustion.

Ventilator. The part of the sash that opens.

Ventilator, Window. A ventilator is that part of a sash that opens.

Vertical Sliding Door. Labeled single piece and section doors operating in a vertical direction.

Wedge (Sliding Door, Horizontal Tinclad and Flush Sheet Metal). A plate mounted on the face of a slide door designed to force the door against the wall.

Wired Glass. Glass with wire netting embedded in it.

- 1-5 Listed and Labeled Products. (See Definitions, Section 1-4.)
- 1-5.1 Listed items shall be identified by a label, a listing, or a classification mark.¹
- 1-5.2 The label, the listing, or the classification mark shall be considered as evidence that samplings of such devices or materials have been evaluated by test and that these devices or materials are produced under an in-plant follow-up program.

¹ Labels or classification marks may be metal, paper, stamped, or diecast.

1-5.3 Specification of items of a generic nature, such as hinges, that are not labeled shall comply with the specifications contained herein.

1-6 Classifications and Types of Doors.

- 1-6.1 Only labeled or listed doors shall be used.1
- 1-6.2 The label on doors covers only the design and construction of the door.

Exception No. 1: On fire doors bearing the "Fire Door to Be Equipped with Fire Exit Hardware" label, the label shall cover the reinforcements or construction features necessary for the exit devices which shall bear the "Fire Exit Hardware" label.

Exception No. 2: On doors bearing the "Fire Door" label, the label shall include:

- (a) On counterbalanced freight elevator doors the guides, latching, and counterbalancing mechanisms.
- (b) On rolling steel doors wall guides, counterbalancing, and automatic mechanisms.
- (c) On steel sectional (overhead) doors hinged steel panels, wall guides, interlock at top edge, vertical and horizontal tracks, roller wheels, counterbalancing, automatic closing mechanisms, and governors.
 - (d) On elevator doors see Section 7-3.

Exception No. 3: On doors bearing the "Frame and Fire Door" assembly label, the label also shall include:

- (a) On access doors the frame, hinging, and latching mechanism.
- (b) On acoustical doors the frame, sill, and latching mechanism.
- (c) On chute doors the frame, hinging, latching, and closing mechanism.
 - (d) On dumbwaiter doors see 7-3.4.
- (e) On service counter doors frames, sills, wall guides, counterbalancing, and automatic closing mechanisms.
- (f) On material conveying systems the frame, sill guides, and automatic closing systems (refer to Appendix C for guidelines).

¹ Doors are of several classifications, types, and methods of operation. Fire door assemblies consist of individually labeled components which are essential to satisfactory performance of the complete assembly. Some labels cover one or more components in addition to the door. (For specific information see 1-6.2 and Appendix F.)

1-6.3 Authorities having jurisdiction shall be consulted as to the size of oversize doors which may be deemed acceptable in a given location.¹

1-7 Glass.

- 1-7.1 Only labeled wired glass, not less than ¼ in. (6.35 mm) thick, labeled for fire protection rating and installed in approved steel frames, shall be used. The glass shall be well imbedded in putty and all exposed joints between the metal and glass shall be struck and pointed.
- 1-7.2 Glass shall *not* be used in *either* doors having a 3-hour fire protection rating or doors having a 1½-hour fire protection rating for use in severe exterior fire exposure locations.
- 1-7.3 Wired glass shall be permitted in doors having the following fire protection ratings, when so tested:

Door Rating (hr)	Max. Area of Glass per Door Leaf (sq in.) (m ²)					
1/2 & 1/3	limited to the maximum area tested1					
3/4	limited to the maximum area tested1					
1 & 11/22	100 sq in. (.065 m ²)					

NOTE 1: Maximum area of individual exposed lights 1296 sq in. (.84 m²) with no dimension exceeding 54 in. (1.37 m).

NOTE 2: See also requirements in 1-7.2.

NOTE 3: See also requirements for elevators in 7-2.2.3.

1-7.4 Devices used to view through fire doors rated at $1\frac{1}{2}$ hours or less shall be labeled.

1-8 Types of Door Construction.

1-8.1 General. The following types of door construction generally follow terminology of the industry and of testing laboratory classification and are offered for descriptive identification of available doors.

¹ Testing laboratories may provide a label or certificate of inspection for doors larger than the maximum sizes indicated in Appendix B. Doors exceeding those size limitations have not been subjected to the Standard Fire Test. In certain cases the testing laboratory may be prepared to furnish a label or certificate of inspection for such oversize doors. They do not indicate that the doors are capable of furnishing standard fire protection, but only that they conform to the requirements of design, materials, and construction as established by the individual listings.

- 1-8.2 Composite Doors. Composite fire doors consist of wood, steel, or plastic sheets bonded to and supported by a solid core material.
- 1-8.3 Hollow Metal Doors. Hollow metal fire doors are of flush or panel design with not less than 20-gage steel faces. Flush door designs include steel stiffeners or honeycomb core material to support the faces. The voids between stiffeners may be filled with insulating material. Panel door designs are of stile and rail construction with insulated panels.
- 1-8.4 Metal Clad (Kalamein) Doors. Metal clad fire doors are swinging type only and are of flush or panel design consisting of metal covered wood cores or stiles and rails and insulated panels covered with steel of 24 gage or lighter.
- 1-8.5 Sheet Metal Doors. Sheet metal fire doors are formed of 22 gage or lighter steel and are of corrugated, flush sheet, or panel design.
- 1-8.6 Rolling Steel Doors. Rolling steel fire doors consist of steel or stainless steel interlocking slats to form a curtain of not less than 22 gage attached to an overhead barrel mounted on brackets for attachment to walls. The complete assembly includes the operating counter-balance enclosed in the barrel, automatic closing mechanism, the door guides, metal hood enclosure, and flame baffle.
- 1-8.7 Tinclad Doors. Tinclad fire doors are of two- or three-ply wooden core construction, covered with 30-gage galvanized steel or terne plate (maximum size 14 in. by 20 in. [.36 m by .51 m]) or 24-gage galvanized steel sheets not more than 48 in. (1.22 m) wide. Face sheets shall be vented.
- 1-8.8 Curtain-type Doors. Curtain-type doors consist of interlocking steel blades or a continuous formed spring steel curtain installed in a steel frame.
- 1-8.9 Wood Core Type. Wood core-type doors consist of wood, hardboard or plastic face sheets bonded to a wood block or wood particle board core material with untreated wood edges.

1-9 Classification of Hardware for Fire Doors.

1-9.1 Hardware required for the installation of all types of fire doors appears in this standard as:

- (a) Described in those sections covering installation.
- (b) Listed in Tables 2-8A, 2-8B, 3-8A, 3-8B, 3-8C and 4-5A. (See illustrations of typical applications in Appendix A.)
- 1-9.2 Hardware for fire doors shall be referred to as "Builders Hardware" and "Fire Door Hardware." Within the category of "Builders Hardware" is "Fire Exit Hardware."
- 1-9.3 In this standard, builders hardware is applied only to swinging doors and consists of the items referred to in Tables 2-8A and 2-8B. (See illustrations in Figures A-20-A-28.) These include hinges (full mortise, half mortise, half surface, full surface, olive knuckle, paumelle or spring); single-, two-, or three-point locks and latches; top and bottom bolts (flush, surface, or concealed); and door closers. This type of hardware is not usually shipped from the factory with the fire doors.

Fire exit hardware consists of exit devices which have been labeled both for fire and panic protection. (See fire exit hardware as illustrated in Figures A-24 and A-25.)

1-9.4 Fire door hardware is applied to both swinging and sliding doors and consists of the items referred to in Tables 3-8A, 3-8B, 3-8C, and 4-5A. (See illustrations in Figures A-29, A-31, A-34, A-37, and A-41-A-45.) Fire door hardware that is applied to swinging doors consists of surface mounted strap hinges, surface applied latches, and closing devices. In this standard, all hardware for sliding doors is fire door hardware. This type of hardware is normally shipped from the factory with the fire doors.

1-10 Classification of Steel Door Frames.

- 1-10.1 Single Unit Type (Pressed Steel). These frames consist of head and jamb members with or without solid or glazed transom panels, glazed side lights, solid side panels, transom bars, and/or mullions. These frames may consist of one or more units which may be factory or field assembled. They may be designed for erection before or after walls are built.
- 1-10.2 Two Section Type. Frames of this type shall consist of a rough buck, either pressed steel or steel channels designed to be erected before masonry walls are built, or may be installed in finished masonry wall openings. Finish head and jamb members are secured to rough bucks.
- 1-10.3 Single Unit Type (Steel Channel). Frames of this type shall consist of head and jamb members of structural steel channels,

either shop or field assembled, to be erected before masonry walls are built. The design and construction shall meet the requirements of 2-5.1.

1-11 Placement of Detectors.

- 1-11.1 All detectors, including fusible links, shall not be placed in the so-called dead air space developed at the intersection of the wall and ceiling directly above the fire door. (See Figures A-58 and A-59.)
- 1-11.2 Detectors for the release of fire doors may be part of an overall system, such as a fire alarm, water flow alarm, or carbon dioxide release system, which will release the door.

Chapter 2

Use and Installation of Swinging Doors with Builders Hardware

- 2-1 Doors. Swinging composite, hollow metal, flush sheet metal, metal clad (Kalamein) and wood core doors with builders hardware shall be flush mounted in steel frames.
- 2-2 Sills.
- 2-2.1 In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- 2-2.2 In buildings with combustible floors, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.
- 2-2.3 Sills shall be constructed of noncombustible materials. For frames having a jamb depth of 4 in. (102 mm) or less, the sill width shall be equal to the jamb depth. When frames have a greater jamb depth, the sills shall have a minimum width of 4 in. (102 mm) and shall be installed so that the sill extends from the face of the frame on the door side into the frame. (See Figure A-2.)
- 2-2.4 Flush concrete sills shall extend to the wall opening on both sides.
- 2-2.5 Raised noncombustible sills or thresholds shall be acceptable whenever combustible floor coverings are contemplated or are in use on one or both sides of the door openings. (See Figure A-2.)
- 2-2.6 Combustible floor covering shall not be permitted to extend through door openings.
- 2-3 Wall Openings. Wall openings shall be constructed to readily accept the fire door frame. The frame shall be considered to be non-load-bearing except when specifically designed to carry loads. Frames shall be securely anchored to the wall construction.
- 2-4 Lintels. Separate reinforcing units shall be provided for pressed steel door frames, when necessary, to support overhead wall loads over door openings. Reinforcements of head members of pressed steel door frames shall not be permitted. (See Figures A-5-A-8.)

2-5 Frames.

- 2-5.1 Only labeled steel door frames shall be used.
- 2-5.2 Methods of anchoring shall be as shown in the listing or as provided in Safety Standard for Fire Door Frames (UL 63 or ANSI A155.1, see Appendix D.)
- 2-5.3 Wood or plastic-faced composite or wood core doors shall be installed in pressed steel frames of the single unit type. Steel-faced composite, hollow metal, metal clad (Kalamein), and flush sheet metal doors shall be installed in pressed steel or steel channel frames.
- 2-5.4 The clearance between the door and the frame and between meeting edges of doors swinging in pairs shall not exceed ½ in. (3.18 mm). The clearance between the bottom of the door and a raised noncombustible sill shall not exceed ½ in. (9.53 mm). Where there is no sill, the maximum clearance between the bottom of the door and the floor shall not exceed ¾ in. (19.1 mm).

2-6 Frames with Transoms, Side Lights, or Panels.

- **2-6.1** Side lights, side panels and/or transoms shall be non-operable when installed in labeled frames.
- 2-6.2 The combined area of door or doors, transom lights or panels, and side lights or panels shall not exceed 120 sq ft (11.15 m²) and neither height nor width shall be greater than 12 ft (3.66 m).
- 2-6.3 Frames with transom (lights or panels) only shall not exceed 40 sq ft (3.72 m²) when a single door is used or 80 sq ft (7.43 m²) when doors in pairs are used.
- **2-6.4** Frames with solid transoms and/or panels shall be permitted in situations where 3-, $1\frac{1}{2}$ -, 1- or $\frac{3}{4}$ -hour fire protection is required.
- 2-6.5 Frames with glazed transoms and/or side lights shall be permitted in situations where ¾-hour fire protection is required.
- 2-7 Astragals. Doors swinging in pairs requiring astragals shall have at least one astragal attached in place so as to project approximately 34-inch. (See Figures 21, 23 and 31, Appendix A.)

Exception: The authority having jurisdiction may require the use of pairs of doors without astragals in exit locations.

¹ Some manufacturers provide doors swinging in pairs without astragals with fire protection ratings of up to 1½ hours, as indicated in the individual published listings.

- 2-8 Builders Hardware. (See Figures A-20-A-27.)
- 2-8.1 Hinges.
- 2-8.1.1 Hinges shall be as required in Table 2-8A.
- 2-8.1.2 Attaching Hinges to Doors. Mortise hinges shall be secured to reinforcements in the doors with steel machine screws and surface hinges shall be attached with steel through-bolts.

Exception: Mortise hinges shall be secured to wood and plastic covered composite or wood core doors with No. 12 by 1¼-in. (31.75-mm) flat threaded-to-the-head, steel wood screws.

2-8.1.3 Attaching Hinges to Frame. Hinges shall be secured with steel machine screws to reinforcements of pressed steel frames or directly to steel channel frames.

2-8.2 Locks or Latches.

- 2-8.2.1 Only labeled locks and latches or labeled fire exit hardware (panic devices) meeting both life safety requirements and fire protection requirements shall be used.¹
- 2-8.2.2 All single doors and active leaves of pairs of doors shall be provided with an active latch bolt (one that cannot be held in a retracted position), as specified in Table 2-8B.

Exception No. 1: Doors other than those used in means of egress may be permitted to be provided with dead bolts in addition to the active latch bolts or as otherwise permitted by the authorities having jurisdiction.

Exception No. 2: Locks with dead bolts which are interconnected with latch bolts and retract when the latch bolt is retracted may be used on fire doors within a means of egress.

2-8.2.3 Where both leaves are required for exit purposes, they shall be provided with labeled fire exit hardware.

Exception: Where acceptable to the authority having jurisdiction, pairs of doors not provided with an astragal are permitted to have labeled fire exit hardware and an open back strike installed on the inactive leaf, and either labeled fire exit hardware or any labeled latch capable of being opened by one obvious operation from the egress side on the active leaf.

¹ See Section 0-3. Introduction.

Table 2-8A Builders Hardware

Mortise and Surface Hinges or Pivots for Swinging Doors Including Spring Hinges.

Doors up to 60 in. (1.52 m) in height shall be provided with two hinges and an additional hinge for each additional 30 in. (.762 m) of door height or fraction thereof. The distance between hinges may exceed 30 in. (.762 m).

						Fo	or 13/4-In. (44	.5-mm) or Thick	er Doors	
	Do	or Ra	ating,	Hr		Maximum 1 Width, Ft (m)	Door Size Height, Ft (m)	Minimun Height, In. (mm)	n Hinge Size Thickness, In. (mm)	Type Hinge
3,	11/2,	1,	3/4 .	⅓,	1/3	4 (1.22)	10 (3.05)	41/2 (114.3)	0.180 (4.57)	Steel, Mortise or Surface
3,	11/2,	1,		1/2	1/3	4 (1.22)	8 (2.44)	41/2 (114.3)	0.134 (3.40)	Steel, Mortise or Surface
	11/2,	3/4 .		1/2,	1/3	3 ft 2 in. (.96)	8 (2.44)	6 (152.4)	0.225(5.72)	Steel-Olive Knuckle or Paumelle
3,	11/2,	3/4.		1/2.	1/3	4 (1.22)	10 (3.05)	4 (101.6)	0.225 (5.72)	Steel Pivots (including top, bottom and intermediate)
	11/2,	1,			1/3	3 (.91)	5 (1.52)	4 (101.6)	0.130 (3.30)	Steel, Mortise or Surface
	11/2.	1,	3/4,	1/2,	1/3	2 (.61)	3 (.91)	3 (76.2)	0.092(2.34)	Steel, Mortise or Surface
3,	1½,	1,	3/4 .	1/2,	1/3	3 (.91)	7 (2.13)	4½ (Ì14.3)	0.109 (2.77)	Steel, Mortise (spring closing)
							For 1%-In	. (34.93-mm) Do	ors	
3.	11/2,		3/4 .	1/2,	1/3	3 (.91)	7 (2.13)	31/2 (88.9)	0.123 (3.12)	Steel, Mortise or Surface
	11/2,	1,	3/4 ,	1/2,	1/3	2 ft 8 in. (.81)	7 (2.13)	31/2 (88.9)	0.109(2.77)	Steel, Mortise (spring closing)

NOTE 1: All hinges or pivots, except spring hinges, shall be of the ball bearing type. Hinges or pivots employing other antifriction bearing surfaces are permitted if they meet the test requirements of Standard for Butts and Hinges (ANSI A156.1, see Appendix D).

NOTE 2: 4½-in. (114-mm) high, 0.180-in. (4.57-mm) thick hinges should be used on doors which are unusually wide and heavy or which will receive high frequency use or unusual stresses.

NOTE 3: Some manufacturers may provide fire doors with hinges of lighter weight which are not ball bearing when they are part of a listed assembly and meet the text requirements of ANSI A156.1 and have been tested to a minimum of 350,000 cycles.

Table 2-8B Builders Hardware

Latching Devices for Swinging Doors For alternate assemblies and exceptions, see Section 2-8

		Single S Doo		Doors in Pairs			
	Door Rating Hours	Maximum Opening Height	Minimum Latch Throw	Maximum Opening Height	Active Leaf Minimum Latch Throw	Inactive Leaf	
Composite Wood (flush)	11/2	10 ft (3.05 m)	½ in. (12.7 mm)	8 ft (2.44 m)	¾ in. (19.05 mm)	Top & Bottom Bolts	
•	1	10 ft (3.05 m)	½ in. (12.7 mm)	8 ft (2.44 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
	3/4	10 ft (3.05 m)	½ in. (12.7 mm)	8 ft (2.44 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
Composite Plastic (flush)	11/2	8 ft (2.44 m)	½ in. (12.7 mm)	_ ′		. –	
•	1	8 ft (2.44 m)	½ in. (12.7 mm)	_	_	_	
	3/4	10 ft (3.05 m)	⅓ in. (12.7 mm)		_	_	
Composite Steel (flush)	3	8 ft (2.44 m)	3 Pt.	_		_	
• , ,		, ,	Surface				
	3	8 ft (2.44 m)	% in. (15.88 mm)	7 ft 6 in. (2.29 m)	% in. (15.88 mm)	Top & Bottom Bolts	
	11/2	8 ft (2.44 m)	½ in. (12.7 mm)	7 ft 6 in. (2.29 m)	% in. (15.88 mm)	Top & Bottom Bolts	
	3/4	8 ft (2.44 m)	1/2 in. (12.7 mm)	7 ft 6 in. (2.29 m)	% in. (15.88 mm)	Top & Bottom Bolts	
Hollow Metal (flush)	3	10 ft (3.05 m)	½ in. (12.7 mm)	8 ft (2.44 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
	11/2	10 ft (3.05 m)	½ in. (12.7 mm)	9 ft (2.74 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
	3/4	10 ft (3.05 m)	½ in. (12.7 mm)	9 ft (2.74 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
Hollow Metal	3 or	10 ft (3.05 m)	3 Pt.	10 ft (3.05 m)	3 Pt	2 Pt.	
			Concealed	•	Concealed	Concealed	
(Panelled or flush)	11/2						
	or 3/4						
Metal Clad	1 1/2	8 ft (2.44 m)	1/2 in. (12.7 mm)	8 ft (2.44 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
(Panelled or flush)	or 3/4			, ,	, ,	•	
Sheet Metal	11/2	8 ft (2.44 m)	1/2 in. (12.7 mm)	8 ft (2.44 m)	34 in. (19.05 mm)	Top & Bottom Bolts	
Panelled or flush)	or 3/4	. ,	,	•	, ,	•	
Wood Core	1/3	10 ft (3.05 m)	⅓ in. (12.7 mm)	_	-	_	
Wood Core	1/2	9 ft (2.74 m)	½ in. (12.7 mm)			_	

2-8.2.4 Where the inactive leaf of a pair of doors is not required for exit purposes, it shall be provided with labeled self-latching or automatic latching top and bottom bolts or labeled two-point latches.

Exception: Manually operated, labeled top and bottom flush or surface bolts on the inactive leaf of a pair of doors shall be permitted to be used when acceptable to the authority having jurisdiction provided they do not pose a hazard to safety to life. This provision limits their use to rooms not normally occupied by humans (e.g. transformer vaults, storage rooms). The inactive leaf shall not require a closer.

- 2-8.2.5 The throw of single point latchbolts shall not be less than the minimum shown on the fire door label. If the minimum throw is not shown or the door does not bear a label, the minimum throw shall be as required in Table 2-8B.
- 2-8.2.6 Attaching Locks, Latches, Top and Bottom Bolts, and Fire Exit Hardware. Locks, latches, surface mounted top and bottom bolts, and fire exit hardware shall be secured to reinforcements in the doors with machine screws or be attached with through-bolts. Flush mounted top and bottom bolts shall be secured to reinforcements in the doors with machine screws.

Exception: Locks and latches shall be attached to wood and plastic covered composite or wood core doors with not less than No. 8 flat, threaded to the head, wood screws or be attached with throughbolts. Fire exit hardware and surface mounted top and bottom bolts shall be attached to wood and plastic covered composite doors with through-bolts.

- 2-8.2.7 Attaching Strikes. Strike plates for single swing doors shall be secured to reinforcements in the frame with machine screws. Channel frames for single swing doors shall be provided with rectangular holes to receive the latch bolts. Strike plates for top bolts shall be secured to reinforcements in the frame with machine screws. Channel frames shall be provided with holes to receive top bolts. Strike plates for bottom bolts shall be secured to the sill or the threshold.
- 2-8.2.8 Strike plates for doors swinging in pairs shall be secured to reinforcements in the inactive leaf with machine screws.

Exception: Strike plates for wood and plastic covered composite doors swinging in pairs shall be attached to the inactive leaf with not less than No. 8 flat, threaded-to-the-head, wood screws.

- 2-8.2.9 Open back strikes shall be permitted to be used in lieu of conventional strikes only where specifically provided for in the published listings. (See Section 2-7 and Figure A-28.)
- 2-8.3 Kick and Mop (Protection) Plates. The top of the plate shall be a maximum of 12 in. (305 mm) above the bottom of the door. No other plates shall be installed.

Exception: Where otherwise tested and approved.1

2-8.4 Closing Devices.

- 2-8.4.1 When there is an astragal or projecting latch bolt that prevents the inactive door from closing and latching before the active door closes and latches, a coordinating device shall be used. A coordinating device shall not be required where each door closes and latches independently of the other.
- 2-8.4.2 A closing device shall be installed on every fire door.

Exception: Where pairs of doors are provided for mechanical equipment rooms to permit movement of equipment, the closing device may be omitted on the inactive leaf.

- 2-8.4.3 Attachment. All components of closing devices used shall be securely attached to doors and frames by steel screws or throughbolts.
- 2-8.4.4 Adjustment. All closing mechanisms shall be adjusted to overcome the resistance of the latch mechanism so that positive latching is achieved on each door operation.²

¹ Some manufacturers provide doors with protection plates of other sizes or materials, as indicated in their individual published listings.

² Adequate spring power is essential for hydraulic door closers to close a fire door with sufficient force to overcome the resistance of the latching mechanism. However, too much spring power causes opening resistance and makes it difficult for the handicapped, infirm and young children to open doors.

Closers are classified in sizes from 2 to 6 with an increased closing force for higher numbers. Generally a size 4 minimum closer should be used on exterior fire doors and a size 3 minimum on interior fire doors. Door widths greater than 3 ft 2 in. (.97 m) exterior and 3 ft 4 in. (1.02 m) interior, parallel or single lever arm applications and abnormal air pressures will usually require increasing to the next closest size. A combination of these factors could require increasing two sizes. Individual manufacturers' recommendations should be consulted.

2-8.5 Door Holder/Release Devices. Holder/release devices shall be permitted in conjunction with doors illustrated in Figures A-20 through A-28 and as shown in Figure A-51 when acceptable to the authority having jurisdiction.

2-8.6 Automatic Fire Detectors.

- 2-8.6.1 Detectors for the release of fire doors shall be permitted to be part of an overall system, such as a fire alarm, water flow alarm, or carbon dioxide release system, which will release the door.
- 2-8.6.2 When smoke detectors are used they shall be located as shown in Figure A-51.
- 2-8.6.3 Installation. Detectors and their components shall be installed in accordance with the manufacturer's instructions.
- **2-8.7 Operation of Doors.** All swinging doors shall be closed and latched at the time of fire. For the purposes of this section the operation of doors is divided into three categories.
- **2-8.7.1 Self-closing Doors.** The door shall swing easily and freely and shall be equipped with a closing device to cause the door to close and latch each time it is opened. The closing mechanism shall not have a hold-open feature.
- 2-8.7.2 Automatic Closing Doors. A door may be made automatic closing by the installation of a closing device and a separate, labeled, fail-safe door holder/release device or a hold-open mechanism which may be an integral part of the basic closing device, provided the hold-open mechanism is released by one or a combination of automatic fire detectors acceptable to the authority having jurisdiction.
- 2-8.7.3 Power Operated Fire Doors. Power operated fire doors shall be equipped with a releasing device which will automatically disconnect the power operator at the time of fire, allowing a self-closing or automatic device to close the door irrespective of power failure or manual operation.

2-8.8 Application of Door Holder/Release Devices.

2-8.8.1 Door holder/release devices shall be installed in accordance

with the manufacturer's instructions and only in conformance with the individual manufacturer's published listings.¹

2-8.8.2 Location of smoke detectors used to control door holder/release devices shall be as shown in Figure A-51.

Exception: A detector shall not be required on the exterior (outside) wall.

- 2-8.9 Application, Installation and Adjustment.
- 2-8.9.1 The installation of all components of a fire door assembly shall be in accordance with the specific listing of each component.
- 2-8.9.2 All components shall be installed in accordance with the manufacturer's installation instructions and shall be adjusted to function as described in the listing.
- 2-8.9.3 All components of a fire door assembly shall be firmly attached to walls, doors and frames in a manner acceptable to the authority having jurisdiction.
- 2-8.9.4 Mounting to masonry walls shall be by means of throughbolts except where steel shells are permitted elsewhere herein.
- 2-8.9.5 All mounting screws, bolts, or shields shall be steel except where permitted elsewhere herein.
- 2-8.9.6 Attachment to doors with composite cores shall provide firm anchorage for anticipated use.

Labeled door holder/release devices for swinging doors should, whenever possible, be installed at the top of the door as close as possible to the lock edge and shall be located to avoid interference with any other hardware. If necessary, holder/release may be located at the bottom of the door as close as possible to the lock edge with the device installed on the wall or floor.

Chapter 3

Use and Installation of Swinging Doors with Fire Door Hardware

3-1 Mounting of Doors.

- 3-1.1 Swinging tinclad doors and flush- or corrugated-type sheet metal doors with fire door hardware shall be flush or lap mounted.
 - **3-1.2** Flush mounted doors shall be hung in steel channel frames securely anchored to the wall construction.
 - 3-1.3 Lap mounted doors shall be hung on the surface of the wall and shall lap the opening at least 4 in. (102 mm) at the top and on each side.

3-2 Vents.

- 3-2.1 Each tinclad door formed of 14-in. by 20-in. (.36-m by .51-m) sheets shall be provided with 3-in. (76.2-mm) diameter vent holes located as shown in Figure A-33.
- 3-2.2 The vent holes shall be cut through the sheets on the face of the door to be provided with the fire door hardware, care being taken so as not to interfere with the hardware or to injure the wood core when cutting the holes in the sheets. The metal covering around the opening shall be secured with small nails spaced about 1 in. (25.4 mm) apart and the exposed wood thoroughly painted.

3-3 Sills.

- 3-3.1 In buildings with noncombustible floors, special sill construction shall not be required, if the floor structure is extended through the door opening.
- 3-3.2 In buildings with combustible floors, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.
- 3-3.3 Sills shall be constructed of noncombustible materials.
- 3-3.4 Sills shall extend at least the depth of the door frame for flush mounted doors. For lap mounted doors, sills shall extend beyond the opening by an amount equal to the projection of the installed door or doors. (See Figures A-1, A-3, and A-4 for recommended construction.)

3-4 Walls.

- 3-4.1 Walls shall be plumb and true and present smooth surfaces. They shall be of brick, concrete, or concrete masonry unit construction except that when hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for doormounting hardware equal to that of brick or concrete as illustrated in Figure A-16. In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates) $\frac{3}{16}$ in. by 3 in. (4.76 mm by 76.2 mm) minimum, may be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks (see Figure A-17). Door assemblies, if used on walls of other construction, shall be as listed.
- 3-4.2 Mounting bolts shall pass through walls.

Exception: When doors are mounted on corner walls or on walls more than 18 in (.46 m) thick, as shown in Figures A-9 and A-10.

3-5 Frames.

- 3-5.1 Frames shall not be required for lap mounted doors.
- **3-5.2** Only labeled frames of the structural steel type shall be used for flush mounted doors. The frames shall be erected before the wall is built.

3-6 Clearances.

- 3-6.1 Flush Mounted. The clearance between the bottom of flush mounted doors and a raised, noncombustible sill shall not exceed $\frac{3}{6}$ in. (9.53 mm). Where there is no sill, the maximum clearance between the bottom of the door and the floor shall not exceed $\frac{3}{6}$ in. (19.05 mm). Clearances at the meeting edges of doors in pairs shall not exceed $\frac{1}{6}$ in. (6.35 mm) for 3-ply tinclad doors or $\frac{1}{6}$ in. (3.18 mm) for other doors.
- 3-6.2 Lap Mounted. The clearance between the bottom of lap mounted doors and a raised noncombustible sill shall not exceed \(^3\)k in. (9.53 mm). Where there is no sill, the maximum clearance between the bottom of the door and the floor shall not exceed \(^3\)k in. (19.05 mm). The clearance between the door and the wall when the door is in the closed position shall not exceed \(^3\)k in. (9.53 mm).

¹ Structural steel frames consist of head and jamb members, either shop or field assembled.

- 3-7 Coordinating Devices. When there is an astragal or projecting latch bolt that prevents the inactive door of a pair of doors from closing and latching before the active door closes and latches, a coordinating device shall be used. A coordinating device shall not be required where each door closes and latches independent of the other door.
- 3-8 Fire Door Hardware. (See Figures A-29 and A-31.)
- 3-8.1 Only labeled fire door hardware shall be used. The design and construction of typical fire door hardware for swinging fire doors is illustrated in Swinging Hardware for Standard Tin-Clad Fire Doors, ANSI A133.1. (See Appendix D.)
- 3-8.2 Fire door hardware includes hinge brackets, hinges, latches, latch keepers, and operating handle mechanism; for the inactive door of pairs of doors, top and bottom bolts and keepers.
- 3-8.3 Hinges and Latches, Number and Length. (See Tables 3-8A, 3-8B and 3-8C.)
- 3-8.4 Attaching Fire Door Hardware to Doors. Upper and lower hinges and latches shall be spaced not less than 8 in. (203 mm) nor more than 11 in. (279 mm) from the top and bottom of the door.
- 3-8.5 Attaching Fire Door Hardware to Frames for Flush Mounted Doors. Hinges and latch keepers shall be bolted, riveted or welded to the frame.

Table 3-8A
Fire Door Hardware

Table Giving Number of Hinges and Latches for Different Size Doors of Tinclad Construction.

Width of Door		0 ft- 2 ft 0 in.	2 ft 0 in 3 ft 0 in.		4 ft 0 in 5 ft 0 in.	
Height of Door	No. of Latches	No. of Hinges	No. of Hinges	No. of Hinges	No. of Hinges	No. of Hinges
0 ft to 5 ft 0 in.	2	2	2	2	2	2
5 ft 0 in. to 6 ft 6 in.	2	2	2	2	3	3
6 ft 6 in. to 8 ft 6 in.	3	2	2	3	3	4
8 ft 6 in. to 10 ft 6 in.	4	3	3	3	4	4
10 ft 6 in. to 12 ft 0 in.	5	4	4	4	4	4

For SI Units: 1 ft = 0.3048 m.

Table 3-8B

Fire Door Hardware

Table Giving Length of Hinges and Latches for Different Widths of Doors of Tinclad Construction.

Width of Door	*Length of Hinges	No. of Holes in Hinge	Length of Latches					
1 ft 6 in. to 1 ft 9 in. (incl.)	16 in.	2	Not	less	than	143/4	in.	
1 ft 9 in. to 2 ft 0 in.	19 in.	2	"	"	~	"	•	
2 ft 0 in. to 2 ft 4 in.	22 in.	3	"	#	~	*	*	
2 ft 4 in. to 2 ft 8 in.	25 in.	3	n	,	*	*	"	
2 ft 8 in. to 3 ft 0 in.	28 in.	3	"	"	"	"	*	
3 ft 0 in, to 3 ft 4 in.	31 in.	3	*	"	*	*	*	
3 ft 4 in. to 3 ft 8 in.	34 in.	4	"	,,	*	*	*	
3 ft 8 in, to 4 ft 0 in.	37 in.	4	"	"	*	*	"	
4 ft 0 in. to 4 ft 4 in.	40 in.	4	"	"	*	*	*	
4 ft 4 in. to 4 ft 8 in.	43 in.	4	"	"	*	*	"	
4 ft 8 in. to 5 ft 0 in.	46 in.	5	"	*	"	"	,	
5 ft 0 in. to 5 ft 4 in.	49 in.	5	*	*	*	"	*	
5 ft 4 in. to 5 ft 8 in.	52 in.	5	"	*	,,	*	*	
5 ft 8 in. to 6 ft 0 in.	55 in.	5	*	*	"	"	*	

^{*}The intermediate hinge straps (when three or more are used) may be not more than 8 in. shorter than is indicated.

For SI Units: 1 ft = 0.3048 m; 1 in. = 25.4 mm.

Table 3-8C
Fire Door Hardware

Table Giving Numbers of Latches and Hinges for Sheet Metal Doors.

Height of Door	No. of Latches	No. of Hinges		
0 ft to 5 ft 3 in.	2	2		
5 ft 4 in. to 8 ft 3 in.	3	3		
8 ft 4 in. to 10 ft 3 in.	4	4		
10 ft 4 in. to 12 ft 4 in.	5	4		

NOTE: For heights in fractional inches, use next higher full inch. For SI Units. 1 ft = 0.3048 m, 1 in = 25.4 mm.

3-8.6 Attachment of Wall Strips for Lap Mounted Doors. Hinges and latch keepers shall be mounted on wall strips bolted through the wall. Not less than ¾-in. (19.05-mm) through-bolts shall be used for attaching hinge wall strips and not less than ½-in. (12.7-mm) through-bolts for latch keeper wall strips. (See Figure A-31.)

- **3-9 Operation of Doors.** The doors shall swing easily and freely on their hinges. The latches shall operate freely.
- 3-10 Closing Devices for Swinging Tinclad and Sheet Metal Fire Doors. Swinging tinclad and sheet metal fire doors shall be equipped with self-closing or automatic closing devices to ensure that they will be closed and latched at the time of fire. Other arrangements acceptable to or required by the authority having jurisdiction shall be permitted.

3-11 Automatic Fire Detectors.

3-11.1 Detectors or fusible links shall be installed on both sides of the wall, interconnected so that the operation of any single detector or fusible link will permit the door to close and latch. (See Figures A-30 and A-32.)

Exception: A detector or fusible link shall not be required on the exterior (outside) wall.

- 3-11.1.1 When fusible links are used, one fusible link shall be located near the top of the opening and additional links shall be located at or near the ceiling on each side of the wall.
- **3-11.1.2** When smoke detectors are used, they shall be located as shown in Figure A-51.
- 3-11.2 Installation. Detectors and their components shall be installed in accordance with the manufacturer's instructions.

¹ Self-closing devices for these doors consist of a system of weights suspended by ropes, wire cables or chains over pulleys arranged to return the door to the normally closed position each time it is used.

Automatic closing devices consist of a system of weights suspended by ropes, wire cables or chains over pulleys and a hold-open device with a release mechanism which is activated by an automatic fire detector.

The weights, ropes, cables or chains, and hold-open device are arranged to keep the door in a normal open position. When fire occurs the detector causes the release to disconnect the hold-open device from the door which is then free to close. (Typical arrangements are shown in Figures A-30 and A-32.)

Chapter 4

Use and Installation of Horizontally Sliding Doors

- **4-1 Doors.** Sliding tinclad, composite, hollow metal and sheet metal (flush and corrugated) doors shall be wall mounted (hung on the surface of the wall).
- 4-1.1 Doors shall lap openings at least 4 in. (102 mm) at the sides and top. Where doors provide protection of openings located in walls above floor level and no projecting sill is provided, the doors shall lap the bottom of the opening at least 4 in. (102 mm).
- **4-1.2 Astragals.** Center parting doors shall have an astragal securely attached in place so as to project approximately 3/4 in. (19.05 mm). (See Figure A-37.)

4-1.3 Vents.

- **4-1.3.1** Each tinclad door formed of 14-in. by 20-in. (.36-m by .51-m) sheets shall be provided with 3-in. (76.2-mm) diameter vent holes located as shown on Figure A-40. Each section of spliced single doors and each leaf of center parting doors shall be vented as provided for two-hanger doors in Figure A-40.
- 4-1.3.2 The vent holes shall be cut through the sheets on the face of the door opposite the rear binder pockets, care being taken so as not to injure the wood core when cutting the holes in the sheets. The metal covering around the opening shall be secured with small nails spaced about 1 in. (25.4 mm) apart and the exposed wood thoroughly painted.
- **4-1.4 Clearances.** The clearance between the wall and the door when in the closed position shall not be more than ¾ in. (19.05 mm). The clearance between any door and the sill shall not be more than ¾ in. (9.53 mm).

4-1.5 Sectional Door Units.

4-1.5.1 Tinclad or Sheet Metal. These units shall not be furnished in more than two sections. Channels or reinforcing angles shall be installed horizontally across each section and shall be through-bolted. One section shall have two cover plates through-bolted to that section, forming a channel. The other section shall be field installed by inserting it into the channel formed by the cover plates and shall be through-bolted.

4-1.5.2 Hollow Metal or Composite. These units shall be furnished in not more than five panels, constructed for either field or factory assembly. For center parting doors, not more than four panels shall comprise a single leaf.

4-2 Sills.

- **4-2.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- **4-2.2** In buildings with combustible floors, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.
- 4-2.3 Sills shall be constructed of noncombustible material and extend 6 in. (152 mm) past the edge of the opening on each side and at least 4 in. (102 mm) out from the face of the wall. (Figures A-1, A-3, and A-4 show constructions that are acceptable.)

4-3 Walls.

- 4-3.1 Walls shall be plumb and true and present smooth surfaces. They shall be of brick, concrete, or concrete masonry unit construction except that when hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for doormounting hardware equal to that of brick or concrete as illustrated in Figure A-18. In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates) may be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks (see Figure A-19). Door assemblies, if used on walls of other construction, shall be as listed.
- 4-3.2 Mounting bolts shall pass through walls.

Exception: When doors are mounted on corner walls or on walls more than 18 in. (46 m) thick, as shown in Figures A-9 and A-10.

- 4-4 Lintels. Lintels shall be brick, concrete or masonry arches, steel, or reinforced concrete. If of steel or reinforced concrete, they shall be constructed as shown in Figures A-5, A-6, A-7 or A-8 or as acceptable to the authority having jurisdiction.
- 4-5 Fire Door Hardware. (See Figures A-31, A-37, and A-41-A-44.)

- 4-5.1 Only labeled fire door hardware shall be used. The design and construction of typical fire door hardware for sliding fire doors is illustrated in *Sliding Hardware for Standard*, Horizontally Mounted Tin Clad Fire Doors, ANSI A143.1 (see Appendix D).
- 4-5.2 Fire door hardware shall include tracks, hangers, track brackets, bumpers, binders, pull handles, stay rolls, and center latch assembly for center parting doors.

4-5.3 Track.

4-5.3.1 Mounting Flat Track, Single Door. For tinclad and sheet metal fire doors the length of track shall be equal to twice the width of the wall opening plus 21 in. (.53 m). Wall bolts shall be so spaced that one bolt will be located directly opposite each hanger when the door is closed to permit attachment of front and back bumpers. Wall bolts securing the track in position shall be installed through the wall with track bracket at each bolt.²

The space "A" in Table 4-5A, giving spacings for wall bolts, shall always be on the side of the door opening to which the door closes. This will be the lower end of the track when the track is inclined. The track shall have an incline of ¾ in. (19.05 mm) to 1 ft (3.05 m) if door is intended to close by gravity.

- 4-5.3.2 Mounting Track, Hollow Metal Doors. For hollow metal doors, wall bolts shall be located 2 in. (50.8 mm) from each end of track, opposite hangers when the door is in a closed position, and additional bolts on centers not to exceed 24 in. (.61 m). Wall bolts shall be installed through the wall except as provided in 4-3.2.
- 4-5.3.3 Mounting Flat Track, Center Parting Doors. The mounting is similar to the requirements of 4-5.3.1. For tinclad and sheet metal doors the track for each door shall be 10 in. (254 mm) shorter. In Table 4-5A, giving the length of track, 10 in. (254 mm) shall be subtracted from the total length, the first bolt hole shall be omitted, and 10 in. (254 mm) is to be subtracted from each other bolt hole dimension.

 $^{^1}$ This length of track is given in terms of the wall opening, 12 in. (3.05 m) being allowed for the lap and width of the door, 8 in. (203 mm) for attaching front and back bumpers and 1 in. (25.4 mm) for clearance when the door is wide open.

² Refer to Table 4-5A for bolt spacing (except as provided in 4-3.2). Figures in heavy type in the table indicate spacings for bolts opposite door hangers and number of hangers required.

Table 4-5A

Table Giving Dimensions for Punching Flat Track for Tinclad and Sheet Metal Fire Doors.

Size of Opening	Length of Track	Space A 1st Bolt In	Space B 2nd Bolt In.	Space C 3rd Bolt In	Space D 4th Bolt In	Space E 5th Bolt In	Space F 6th Bolt In	Space G 7th Bolt In	Space H 8th cBolt In.	Space I 9th Bolt In.	Space J 10th Bolt In.	Space K 11th Bolt In.
3'0" 3'3" 3'6" 3'9" 4'0"	7'9" 8'3" 8'9" 9'3" 9'9"	1 3/4 1 3/4 1 3/4 1 3/4 1 3/4	121/4 121/4 131/4 131/4 141/4	24 27 28 31 32	26½ 28 30 31½ 33½	26¾ 28¼ 30¼ 31¾ 33¾						
4'3" 4'6" 4'9" 5'0" 5'3"	10'3" 10'9" 11'3" 11'9" 12'3"	1 3/4 1 3/4 1 3/4 1 3/4 1 3/4	14¼ 15¼ 15¼ 16¼ 16¼	35 36 191/2 20 211/2	35 37 19½ 20 21½	35 1/4 37 1/4 38 1/2 40 1/2 28	38¾ 40¾ 28	281/4				
5′6″ 5′9″ 6′0″ 6′3″ 6′6″	12'9" 13'3" 13'9" 14'3" 14'9"	1 3/4 1 3/4 1 3/4 1 3/4 1 3/4	17¼ 17¼ 18¼ 12¼ 12¼	22 23½ 24 31½ 33	22 23½ 24 31½ 33	30 31 32 31 32	29 30 32 31 32	29¼ 30¼ 31¼ 30¼ 31¼				
6'9" 7'0" 7'3" 7'6" 7'9"	15'3" 15'9" 16'3" 16'9" 17'3"	1 3/4 1 3/4 1 3/4 1 3/4 1 3/4	131/4 133/4 141/4 141/4 141/4	33½ 35 35½ 37 19¼	33½ 35 35½ 37 19¼	33 34 36 37 191/4	33 34 35 36 191/4	33 ¼ 34 ¼ 35 ¼ 36 ¼ 38	37	371/4		
8'0" 8'3" 8'6" 8'9" 9'0"	17'9" 18'3" 18'9" 19'3" 19'9"	134 134 134 134 134	141/4 141/4 141/4 141/4 141/4	20 20¾ 21½ 22¼ 23	20 20 ³ / ₄ 21 ¹ / ₂ 22 ¹ / ₄ 23	20 20¾ 21½ 22¼ 23	20 20¾ 21½ 22¼ 23	39 40 41 31 3134	38 39 40 31 3134	38¼ 39¼ 40¼ 31 31¾	31 1/4 32	
9'9" 9'9" 10'0"	20'3" 20'9" 21'3" 21'9" 22'3"	134 134 134 134 134	15¼ 15¼ 16¼ 16¼ 17¼	231/4 24 241/4 25 251/4	23½ 24 24¼ 25 25¼	23¼ 24 24¼ 25 25¼	231/4 24 241/4 25 251/4	32¾ 34 35 35¼ 36¼	32¾ 34 35 35¼ 36¼	32¾ 33 34 35¼ 36¼	33 33¼ 34½ 35½ 36½	
10'6" 10'9" 11'0" 11'3"	22'9" 23'3" 23'9" 24'3" 24'9"	134 134 134 134 134	17¼ 18¼ 18¼ 19¼ 19¼	26 26¼ 27 27¼ 28½	26 26 ¹ / ₄ 27 27 ¹ / ₄ 28 ¹ / ₂	26 26¼ 27 27¼ 28½	26 26 ¹ / ₄ 27 27 ¹ / ₄ 28 ¹ / ₂	37 38 38 ³ / ₄ 39 ³ / ₄ 40	37 38 38 ³ / ₄ 39 ³ / ₄ 40	37 38 3834 3934 40	37 ¼ 38 ¼ 39 40 40 ¼	
11'9"	25 '3" 25 '9"	1 3/4 1 3/4 1 3/4	20¼ 20¼ 20¼	291/4 30	29 ¹ / ₄ 30	29¼ 30	29 ¹ / ₄ 30	40½ 33	401/ ₂ 33	401/ ₂ 33	40¾ 40¾ 33	331/4

NOTE: Figures in heavy type indicate bolts opposite door hangers For SI Units: 1 ft. = 0.3048 m; 1 in. = 25.4 mm.

4-5.3.4 Mounting Round Track. When round track is used, the number of brackets provided shall be such that one bracket is located directly under each hanger when the door is closed, one at each end, and at points between end brackets not exceeding 24 in. (.61 m) apart. Wall bolts securing brackets in position shall be installed through the wall, except as provided in 4-3.2.

- 4-5.3.5 Mounting Box-type Track. When box-type track is used, the number of track brackets provided shall be such that a bracket is located directly over each hanger when the door is closed, on each end, and such intermediate brackets so that bracket centers shall not exceed 39½ in. (1.0 m). Bolts securing brackets in position shall be installed through the wall except as provided in 4-3.2.
- **4-5.4** Hangers. Not less than two hangers shall be provided for each door. Tinclad, sheet metal, and composite doors for openings in excess of 6 ft (1.83 m) shall have an additional hanger. (See Table 4-5A.) Two hangers shall be provided on each section of vertically spliced sheet metal or tinclad doors. (See 4-1.5.)

4-5.5 Binders.

- 4-5.5.1 Binders for tinclad and sheet metal doors shall meet the following requirements:
- (a) At least two front binders are required for tinclad and sheet metal doors. The upper binder shall be placed approximately 24 in. (.61 m) from the top of the door and the lower binder approximately 24 in. (.61 m) above the sill.
- (b) In addition to the above front binders, doors for openings exceeding 8 ft (2.44 m) in height shall be provided with an additional front binder spaced midway between the upper and lower binders.
- (c) Sheet metal doors for openings not exceeding 10 ft (3.05 m) in height and tinclad doors 7 ft (2.13 m) but not more than 10 ft (3.05 m) in height shall be provided with one rear binder located midway between the top and bottom of the door. Both sheet metal and tinclad doors for openings exceeding 10 ft (3.05 m) in height shall be provided with two rear binders located at the quarter points for sheet metal and third points for tinclad doors.
- (d) The space between the top of the door and the track for sheet metal doors shall be at least $\frac{3}{4}$ in. (19.05 mm) to permit upward expansion on exposure to fire. Track binders or other approved means shall be provided to prevent door leaving track during exposure to fire. The track binder shall lap the track about $\frac{1}{2}$ in. (12.7 mm) and be located 2 in. (50.8 mm) to one side of the center line of the wall bolts. (See Figures A-34 and A-37.)
- (e) Front and rear binders for tinclad and sheet metal doors shall be fastened to the wall with bolts having a diameter of not less than ¾ in. (19.05 mm) and which extend through the wall.
- (f) For center parting doors, the head binder shall be bolted to the track and the sill binder securely fastened to the masonry of the sill.

¹ The bolt holes should not be made larger than necessary.

- 4-5.5.2 Binders for Composite Doors. Composite fire doors shall have one front binder near the sill, one or more intermediate front binders, and one or more intermediate rear binders.
- 4-5.5.3 Binders for Hollow Metal Doors. Hollow metal doors shall have front binders as specified for tinclad doors. In addition to front binders, hollow metal doors shall be provided with continuous interlocking binders at rear and head. The interlocking rear and head binders shall be either secured directly to the masonry wall by steel bolts and steel expansion shields or to the opening framing by means of steel machine bolts. (See Figures A-43 and A-44.)
- **4-5.5.4** Binders for Center Parting Doors. All center parting sliding doors shall be provided with sill binders or center guides to maintain the doors in proper alignment when they are closed. (See Figures A-37, A-42 and A-44.)

The sill binder or center guides shall be securely attached to concrete sills with machine screws and steel shields or to metal thresholds drilled and tapped to receive machine screws.

4-5.6 Stay Rolls.

- **4-5.6.1** Stay rolls shall be installed in an approved manner. (See Figures A-11-A-15.)
- **4-5.6.2** Wedge. On tinclad and sheet metal doors, a wedge shall be attached at the end of the roller stays, so the door will be close to, but not tight against the wall when in closed position. (See Figures A-34 and A-37.)
- 4-5.7 Latches, Center Parting Doors. All center parting doors shall be provided with a latch. (See Figures A-37 and A-44.) All tinclad and sheet metal doors shall be provided with a center pin located midway between the latch and the top of the door. (See Figure A-37.)
- 4-5.8 Chafing Strips. Tinclad doors shall be provided with chafing strip assemblies consisting of half-oval strips on the back or wall side of the door bolted through the door to washer strips on the front of the door. The length of the chafing strip assemblies shall be 8 in. (203 mm) less than the door width. Two chafing strip assemblies shall be required for doors 8 ft 4 in. (2.54 m) in height or less. Three chafing strip assemblies shall be required for doors exceeding 8 ft 4 in. (2.54 m) in height. The chafing strip assemblies shall be parallel to the track and the top strip assembly shall be located one-third the

distance from the top of the door and the bottom strip assembly 24 in. (.61 m) from the bottom edge of the door. When three chafing strip assemblies are required, the middle strip shall be located midway between the other two. For doors equipped with two rear binders a flat strip shall be used in place of the top half-oval strip when three chafing strip assemblies are used.

- **4-5.9** Bumper Shoes. Bumper shoes shall be required on tinclad doors, one opposite each bumper and one opposite each binder, fastened to the faces and edges of the door by wood screws. (See Figures A-34 and A-37.)
- **4-5.10 Handles.** Means shall be provided for opening the doors from either side. If flush pulls are used they shall not be back-to-back. Handles shall be securely attached.
- 4-6 Closing Devices for Horizontally Sliding Composite, Hollow Metal, Tinclad and Sheet Metal Fire Doors.
- **4-6.1** Horizontally sliding fire doors shall be equipped with self-closing or automatic closing devices to insure that they will close or be closed at the time of fire.¹
- **4-6.2** Power operated fire doors shall be equipped with a releasing device which will automatically disconnect the power operator at the time of fire, allowing a self-closing or automatic device to close the door irrespective of power failure or manual operation.

4-6.3 Automatic Fire Detectors.

4-6.3.1 Detectors or fusible links shall be installed on both sides of

¹ Self-closing devices for these doors consist of a system of weights suspended by ropes, wire cables, or chains over pulleys arranged to return the door to the normal closed position each time it is used.

Automatic closing devices for tinclad and sheet metal fire doors consist of a system of weights suspended by ropes, wire cables or chains over pulleys, and a hold-open device with a release mechanism which is activated by a device for the detection of fire.

Automatic closing devices for composite and hollow metal fire doors may be of the type described above or may consist of a labeled tension spring device with hold-open and detector controlled release. (See Figures A-42 and A-43.)

The weights, ropes, cables or chains and hold-open device are arranged to keep the door in a normal open position. When fire occurs the detector causes the release to disconnect the hold-open device from the door, which is then free to close. (*Typical arrangements are shown in Figures A-35, A-36, A-38 and A-39.*) Other arrangements of weights, ropes, cables or chains, hold-open devices and detectors, acceptable to or required by the authorities having jurisdiction, may be used.

the wall and interconnected so that the operation of any single detector or fusible link will permit the door to close.

Exception: A detector or fusible link is not required on the exterior (outside) wall.

- (a) For tinclad and sheet metal doors, one fusible link shall be mounted on an arm projecting from the leading edge of the door or doors near the top of the opening, and a second fusible link shall be at or near the ceiling on each side of the wall. (See Figures A-35 and A-38.)
- (b) For composite and hollow metal doors, one fusible link shall be centered just above the opening and another at or near the ceiling at each side of the wall. (See Figures A-41-A-44.)
- (c) When smoke detectors are used, they shall be located as shown in Figure A-51.
- **4-6.3.2** Detectors and their components shall be installed in accordance with the manufacturer's instructions.

Chapter 5

Use and Installation of Vertically Sliding Fire Doors

- 5-1 Doors. Vertically sliding doors of the tinclad, sheet metal (flush and corrugated), and steel sectional (overhead) types shall be wall mounted.
- 5-1.1 The tinclad and sheet metal doors shall lap the opening at least 4 in. (102 mm) at the sides and top. The steel sectional doors shall lap the opening at least 2 in. (50.8 mm) at the sides and top. The sides of the sectional door shall be mounted within wall guides, and the top edge shall engage in an interlock along the lintel.
- 5-2 Vents. Each tinclad door shall be provided with 3-in. (76.2-mm) diameter vent holes located as shown in Figure A-40. Doors up to 6 ft (1.83 m) wide shall be provided with three vents and doors over 6 ft (1.83 m) wide shall be provided with four vents, as shown for two-hanger doors.
- 5-2.1 The vent holes shall be cut through the sheets on the face of the door to be provided with the guide shoes, care being taken not to interfere with the hardware or injure the wood core when cutting the holes in the sheet. The metal covering around the opening shall be secured with small nails spaced about 1 in. (25.4 mm) apart and the exposed wood shall be thoroughly painted.
- 5-3 Clearances. The clearances between the door and the wall when the door is in the closed position and between the door and sill shall not exceed $\frac{3}{8}$ in. (9.53 mm).

5-4 Sills.

- **5-4.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- 5-4.2 In buildings with combustible floors, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.
- 5-4.3 Sills shall be constructed of noncombustible material and shall extend 6 in. (152 mm) past the edge of the opening on each side and 4 in. (102 mm) out from the face of the wall. (See Figures A-1, A-3, and A-4.)

5-5 Walls.

- 5-5.1 Walls shall be plumb and true and present smooth surfaces. They shall be of brick, concrete, or concrete masonry unit construction except that when hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for doormounting hardware equal to that of brick or concrete as conceptually illustrated in Figure A-16, and shall include anchorage of the wall mounted pulleys which carry the weight of the door and counter balances. In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates), $\frac{1}{16}$ in. by 3 in. (4.76 mm by 76.2 mm) minimum, may be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks (see Figure A-17). Door assemblies, if used on walls of other construction, shall be as listed.
- 5-5.2 Mounting bolts shall pass through walls.

Exception: When doors are mounted on corner walls, or on walls more than 18 in. (.46 m) thick, as shown in Figures A-9 and A-10.

- 5-6 Lintels. Lintels shall be brick, concrete, or masonry arches, steel, or reinforced concrete. If of steel or reinforced concrete, they shall be constructed as shown in Figures A-5, A-6, A-7, or A-8 or as acceptable to the authority having jurisdiction.
- 5-7 Fire Door Hardware for Tinclad and Sheet Metal Doors. (See Figure A-45.)
- 5-7.1 Only labeled fire door hardware shall be used.
- 5-7.2 Fire door hardware shall consist of tracks, brackets, guides, bumpers and counter-balancing mechanisms.
- 5-7.3 Track. Two tracks, each with a length equal to twice the height plus 9 in. (229 mm), shall be provided. The track shall be attached with track brackets at each bolt.
- 5-7.4 Guides. Two track guides shall be provided for each track for openings 5 ft (1.52 m) or less in height. An additional guide for each track shall be provided for each 2½ ft (.76 m) or fraction thereof in excess of 5 ft (1.52 m) in height. Each of the track guides shall be bolted through the door.

¹ The length of the track is given in terms of height of the opening, 4 in. (102 mm) being allowed for the lap of the door, 4 in. (102 mm) for attaching the bumper and 1 in. (25.4 mm) clearance when the door is wide open.

5-7.5 Cables. Cables shall be of sufficient strength to support the load. Cable brackets are required and shall be bolted through the door. Cable fasteners and thimbles are required. Cable pulleys with frames and sheaves shall be bolted through the wall with ¾-in. (19.05-mm) bolts.

5-7.6 Chafing Strips

- 5-7.6.1 Tinclad and flush-type sheet metal doors shall be provided with two half-oval chafing strips for the back of doors not exceeding 8 ft (2.44 m) in width. The length shall be 2 in. (50.8 mm) less than the height of the door. The strips shall be held by ¼-in. (6.35-mm) through-bolts with countersunk heads and with nuts bearing against washers. When doors exceed the above dimension, three strips shall be required.
- 5-7.6.2 Chafing strips shall not be required for corrugated doors.

5-7.7 Bumpers and Bumper Shoes.

- 5-7.7.1 One bumper shall be bolted to the top of each track with wall bolts.
- 5-7.7.2 Four bumper shoes shall be located at the top and bottom corners of the door. Each bumper shall be fastened to the faces and edges of the door by wood screws.
- 5-7.8 Rear Binders. Doors shall be provided with one rear binder located at the center of the lintel and attached with \(\frac{3}{4} \)-in. (19.05-mm) through-bolts. (See Figure A-45.)
- 5-7.9 Handles. Flush pull handles on the wall side of the door shall be countersunk flush with the surface of the door. Bow shaped handles shall be bolted to the flush pull by through-bolts or otherwise securely attached.

5-8 Fire Door Hardware for Steel Sectional Doors.

- 5-8.1 The "Fire Door" label on a sectional door shall include the hinged steel panels, wall guides, interlock at the top edge, vertical and horizontal tracks, roller wheels, counterbalance, automatic closing mechanism, and governors.
- 5-8.2 The horizontal track section shall extend from the wall a distance of the wall opening height plus 3 ft (.91 m) and shall be connected by a fusible track link to the vertical track section such that it can break away from the vertical track section if subjected to damage from falling materials at the time of fire.

- 5-8.3 The wall guides shall be plumb, bolted through the wall, and threaded into nuts on the opposite side. The guides shall extend above the wall opening a distance of $2\frac{1}{2}$ in. (63.5 mm).
- 5-8.4 An angle-type interlock shall be bolted to the lintel and shall engage a matching pocket on the top edge of the door when in the closed position.
- 5-8.5 Counterbalancing Mechanism. The sectional door shall be counterbalanced by an overhead horizontal helical spring on a shaft. The shaft shall be attached to a reel with a steel cable, which is attached to both sides of the door near the bottom edge.
- 5-9 Closing Devices for Vertically Sliding Tinclad, Sheet Metal, and Steel Sectional Fire Doors.
- 5-9.1 Vertically sliding tinclad, sheet metal, and sectional steel doors shall be equipped to close automatically so they will close or be closed at the time of fire.

5-9.2 Automatic Closers.

- 5-9.2.1 Automatic closing, vertically sliding doors shall be suspended by a system of weights and ropes, wire cables, or chains over pulleys.
- 5-9.2.2 The automatic mechanism for vertically sliding tinclad and sheet metal doors shall employ a system of weights suspended by wire cables over pulleys. One of these weights shall be so arranged that the operation of a fusible link or detector will release this weight and permit the door to close by gravity. The total weight of the remaining weights shall be sufficient to prevent the door from dropping suddenly, but not enough to prevent it from closing in a positive manner.
- 5-9.2.3 Vertically sliding sectional doors shall close automatically upon operation of a fusible link or detector which releases the overhead sectional door, and the governor shall control the rate of descent.

5-9.3 Automatic Fire Detectors.

5-9.3.1 Detectors or fusible links shall be installed on both sides of the wall and shall be interconnected so that the operation of any single detector or fusible link will permit the door to close.

Exception: A detector or fusible link is not required on the exterior (outside) wall.

- (a) For tinclad and sheet metal doors, one fusible link shall be located at the center near the bottom of the door, and additional links shall be located at or near the ceiling on each side of the wall. (See Figures A-45 and A-46.)
- (b) For steel sectional doors, one fusible link shall be located near the top of the opening near the automatic release mechanism on the door in an area where there is no obstruction to the circulation of air, and additional links shall be located at or near the ceiling on each side of the wall. (See Figure A-47.)
- (c) When smoke detectors are used they shall be located as shown in Figure A-51.
- **5-9.3.2** Installation. Detectors and their components shall be installed in accordance with the manufacturer's instructions.

Chapter 6

Use and Installation of Rolling Steel Doors

6-1 Doors.

- 6-1.1 The mounting for rolling steel doors shall be either face-of-wall mounted (see Figure A-48) or between-the-jamb mounted. (See Figures A-49 and A-50.)
- **6-1.2** The opening shall be protected by either a single or double door installation, as determined by the authority having jurisdiction.
- **6-1.3** Doors mounted on the face of the wall and subject to damage from falling debris shall be protected by the building structure.

6-2 Sills.

- **6-2.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- **6-2.2** In buildings with combustible floors, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.
- 6-2.3 Sills shall be constructed of noncombustible material. They shall extend 6 in. (152 mm) past the edge of the opening on each side and at least 4 in. (102 mm) out from the face of the wall. (Figures A-1, A-3, and A-4 show acceptable constructions.)

6-3 Walls.

6-3.1 Walls shall be plumb and true and present smooth surfaces. They shall be brick, concrete, or concrete masonry unit construction except that when hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for door-mounting hardware equal to that of brick or concrete as conceptually illustrated in Figure A-16. In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates) %16 in. by 3 in. (4.76 mm by 76.2 mm) minimum mounted on the side of the wall opposite the door may be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks as conceptually illustrated in Figure A-17. Door assemblies, if used on walls of other construction, shall be as listed.

- **6-3.2** Lintels. Heads of door frames shall be reinforced or suitable lintels shall be provided, depending on the type of wall construction and loads to be supported.
- **6-3.3 Frames.** Frames are not required for rolling steel door installations. When frames or jambs only are provided, only structural steel or formed steel plate shall be used. Pressed steel frames are not permitted.

6-4 Assembly of Rolling Doors.

6-4.1 Guides.

- **6-4.1.1** The guides shall be mounted plumb and with sufficient clearances allowed for vertical expansion when exposed to fire.
- **6-4.1.2** The guides for between jamb mounted doors shall be either exposed or concealed in a pocket or wall reveal.
- **6-4.1.3** On brick and concrete walls, the guide-mounting bolts shall pass through the wall and thread into nuts on the opposite side. Nuts shall be provided with suitable washers. Through-bolts, not less than $\frac{1}{2}$ in. (9.5 mm) diameter, shall be used.

Exception: When guides are mounted on corner walls or on walls more than 18 in. (.46 m) thick, as shown in Figures A-9 and A-10.1

6-4.1.4 When structural steel frames are used at jambs, guides shall be secured to the frame with machine bolts of not less than $\frac{3}{6}$ in. (9.5 mm) diameter.

6-4.2 Brackets.

- 6-4.2.1 Brackets mounted on the face of the wall shall be bolted either to the wall or to an extension of the guide wall angle with not less than two ½-in. (12.7-mm) diameter through-bolts or machine bolts to each bracket.
- 6-4.2.2 Brackets mounted between the jambs shall be secured to the lintel or to the side of the jambs by not less than two machine bolts of $\frac{1}{2}$ in. (12.7 mm) diameter.

¹ Because anchor bolts must be set at the time the wall is being constructed, their use is not recommended. A structural steel frame provided at the jamb for mounting the guides is acceptable.

6-4.3 Hoods and Housings. When the door is mounted on the face of the wall or between jambs, the metal hood and housing shall be tightly secured to the brackets and/or wall.¹

6-5 Closing Devices.

- **6-5.1** An automatic closing device shall be installed on every rolling steel door.
- **6-5.2** Rolling steel doors shall be made automatic closing by the incorporation of an integral escapement system consisting of either a spring-releasing device or an auxiliary push-down spring which, when activated by release of a fusible link or detector, will cause the door to close.
- 6-5.3 The automatic closing mechanism shall be enclosed in a metal housing to protect the mechanism from debris and ensure proper operation in the event of fire.
- **6-5.4** A governor, when employed on a door, shall be an integral mechanism working in coordination with the closing device and shall control the closing speed of the door.

6-6 Automatic Fire Detectors.²

6-6.1 Detectors or fusible links shall be installed on both sides of the wall and interconnected so that the operation of any single detector or fusible link will permit the door to close.

Exception: A detector or fusible link is not required on the exterior (outside) wall.

- **6-6.2** When fusible links are used, one fusible link shall be located near the top of the opening and additional links shall be located at or near the ceiling on each side of the wall. (See Figures A-48-A-50.)
- **6-6.3** When smoke detectors are used, they shall be located as shown in Figure A-51.

¹ A flame baffle may be an integral part of the hood or curtain and utilized where required to protect the opening.

² The arrangements shown in Figures A-48, A-49, and A-50 are recommended to give the performance intended. Other arrangements acceptable to the authority having jurisdiction may be used.

- **6-6.4** Detectors and their components shall be installed in accordance with the manufacturer's instructions.
- 6-7 **Power Operated Fire Doors.** Power operated fire doors are those which normally are opened and closed by power. They shall be equipped with a releasing device which will automatically disconnect the power operator at the time of fire, allowing a self-closing or automatic closing device to close the door irrespective of power failure or manual operation.

Chapter 7

Use and Installation of Hoistway Doors for Elevators and Dumbwaiters

7-1 Scope. This section covers only fire door assemblies in hoistway entrances directly connected with elevator or dumbwaiter operation and used in the vertical hoistway enclosure for the purpose of preventing the passage of fire through such entrances. Fire door assemblies not connected with access to cars shall be installed as provided in other sections of this standard.

7-2 General Requirements.

- 7-2.1 Doors shall be 1 hour (B) or 1½ hour (B) and shall be hollow metal or steel-covered composite types as defined in Section 1-8.
- 7-2.1.1 Labeled hoistway doors for elevators and dumbwaiters shall be installed in walls of brick, concrete or concrete block construction unless otherwise tested or listed.

7-2.2 Hoistway Door Vision Panels.

7-2.2.1 Manually operated or self-closing hoistway doors of the vertically or horizontally sliding type, for elevators with automatic or continuous-pressure operation, shall be provided with a vision panel.¹

Exception: Where a corridor position indicator is provided at the landing of automatic-operation elevators.

- **7-2.2.2** In multiple section doors, the vision panel shall be required in one section, but shall be permitted in all sections. All swinging elevator doors shall be provided with vision panels.
- 7-2.2.3 Where required or used, vision panels shall conform to the following requirements:
- (a) The area of any single vision panel shall be not less than 25 sq in. $(.016 \text{ m}^2)$, and the total area of all vision panels in any hoistway door shall be not more than 80 sq in. $(.052 \text{ m}^2)$.

¹ Vision panels may be provided for any type of hoistway door, irrespective of the type of operation of the elevator.

- (b) The clear opening of each vision panel shall not permit passage of a ball 6 in. (152 mm) in diameter.
- (c) Muntins used between panel sections shall be of noncombustible material and of substantial construction.
- (d) Vision panel openings shall be glazed with labeled clear wire glass not less than $\frac{1}{4}$ in. (6.35 mm) thick.
- (e) The center of the panel shall be located not less than 54 in. (1.37 m) nor more than 66 in. (1.68 m) above the landing.

Exception: For vertically sliding biparting counterbalanced doors, it shall be located to conform with the dimensions indicated insofar as the door design will permit.

- (f) The vision panels in swinging doors shall be located for convenient vision when opening the door from the car side.
- 7-2.3 Elevator doors shall be closed when not in use and shall remain closed in a fire emergency.

Exception: When under the control of the fire department.

7-3 Types of Doors.

- 7-3.1 Labeled Swinging Hoistway Doors for Elevators Fire Rated Entrance Assembly. (See Figure A-52.) The major components of a typical assembly (single swinging or double swinging) shall include sill and attachments, frame with attachments, door panel and hinges, closing devices, and latching device.
- 7-3.2 Labeled Horizontally Sliding Hoistway Doors for Elevators Fire Rated Entrance Assembly. (See Figures A-53 and A-54.) The major components of a typical assembly (single- or multi-section, side or center opening) shall include landing sill with attachments, header with vertical struts or other supports, frame with attachments, hanger track assembly, hangers, door panel, and door-closing devices where required.
- 7-3.3 Labeled Vertically Sliding Hoistway Doors for Elevators Fire Rated Entrance Assembly. (See Figure A-55.) The major components of a typical assembly (vertically sliding biparting counterbalanced or vertically sliding counterweighted, single- or multi-section) shall include frame and attachments, landing sills, guide rails, door panel with guides, counterbalancing mechanism or counterweight, and door-locking device for elevator operation.

7-3.4 Labeled Hoistway Doors for Dumbwaiters — Fire Rated Entrance Assembly. The major components of a typical assembly are preassembled and shall conform to 7-3.1 for swinging doors; 7-3.2 for horizontally sliding doors; and 7-3.3 for vertically sliding doors. (See Figure A-56 for vertically biparting doors.)

Chapter 8 Use and Installation of Chute Doors

8-1 General.

- **8-1.1** Chute doors shall be of the swinging type, hinged on side or bottom for intake and on side or top for discharge.
- **8-1.2** Chute doors shall have a fire protection rating of 1 hour (B) or $1\frac{1}{2}$ hour (B).
- 8-2 Sills. Chute door assemblies shall be installed on masonry sills and shall be securely fastened to the sill or the chute.
- 8-3 Walls. Walls shall be plumb and true and shall be of brick, concrete or concrete masonry unit construction. Door assemblies, when used on walls of other construction, shall be as listed. No part of the assembly shall project into the chute.
- **8-4** Lintels. The lintel shall be constructed of noncombustible materials and adequate for the service.
- 8-5 Closing Device. Doors shall be arranged for automatic closing operation as described in 3-10.1 for swinging doors.

¹ Some chute doors, depending on location, may be required to have a temperature rise of not more than 250°F (121°C) at the end of 30 minutes exposure to the standard fire test as described in *Standard Methods of Fire Tests of Door Assemblies*, NFPA 252.

Chapter 9 Use and Installation of Fire Shutters

9-1 General.

- 9-1.1 Fire doors without glass lights shall be used as fire shutters.
- 9-1.2 Shutters shall be of three general types:
 - (a) Swinging door
 - (b) Horizontally or vertically sliding door
 - (c) Rolling steel door.

9-2 Installation.

- 9-2.1 The installation of shutters shall be in accordance with the requirements for installation of swinging, sliding, and rolling steel doors.
- 9-2.2 When shutters are installed on the outside of an opening, they shall be protected against the weather to ensure proper operation.¹

9-3 Operation of Shutters.

- **9-3.1** All shutters shall be equipped to close automatically in the event of fire.
- 9-3.2 The operation of shutters shall be in accordance with the requirements for operation of swinging, sliding, and rolling steel doors.
- 9-4 Location of Detection Device. Fusible links shall be located in the proximity of the shutter near the top of the opening and in an area where there is no obstruction to the circulation of air.

¹ Shutters may be installed on the inside or outside of an opening or between jambs, but preferably on the inside or between jambs for ease of maintenance and protection from adverse weather conditions.

Chapter 10 Use and Installation of Access Doors

10-1 General.

- 10-1.1 Each access door shall either be an integral unit including door, frame, hinges, and latch bearing the "Frame and Fire Door Assembly" label, or consist of a labeled door, frame, and latch with hinges that conform to Table 2-8A.
- 10-1.2 Doors shall be self-latching. Doors shall be openable from the inside without the use of a key or tool.
- 10-1.3 Access doors shall be kept in the closed and latched position when not in use.

10-2 Installation.

- 10-2.1 Access doors shall have a fire protection rating of 1 hour (B) or $1\frac{1}{2}$ hour (B).
- 10-2.2 When installed in a vertical surface, access doors shall be self-closing. This shall be accomplished by use of a closer or by top hinging to provide gravity closing.
- 10-2.3 A horizontally mounted access door shall be self-closing and shall be used only if it has been tested as a component of a fire rated floor, floor-ceiling, or roof-ceiling assembly.
- 10-3 Walls. Walls shall be plumb and true and shall be of brick, concrete or concrete masonry unit construction. Door assemblies, when used on walls of other construction, shall be as listed. When door assemblies are used in fire rated ceiling assemblies, they shall be tested in the horizontal position and be installed as listed.

¹ Some access doors, depending on location and the proximity of combustibles, may be required to have a temperature rise of not more than 250°F (121°C) at the end of 30 minutes exposure to the standard fire test as described in *Standard Methods of Fire Tests of Door Assemblies*, NFPA 252.

Chapter 11

Use and Installation of Service Counter Doors

11-1 Door Construction. Door construction shall be as follows:

- (a) Door panels of a single or multiple section vertical type, integrally mounted in a four-sided frame to form a labeled door and frame assembly; or
- (b) Door curtains of the interlocking slat type integrally mounted in a four-sided frame to form a labeled door and frame assembly; or
- (c) Door curtains of the interlocking slat type including guides, brackets and hoods for mounting directly to masonry walls or non-combustible opening framing.

11-2 Installation.

- 11-2.1 Service counter doors shall be either factory or field assembled and shall be installed during construction of the wall or in a prepared wall opening.
- 11-2.2 When service counter doors are mounted in walls other than solid masonry, the frame or guides shall be anchored to steel struts running from the floor to a supporting member above.
- 11-2.3 Heads of integral door frame assemblies shall not support a wall above. Separate lintels shall be provided of a size based on the type of wall construction and loads to be supported.
- 11-2.4 Walls. Walls shall be plumb and true and shall be of brick, concrete, or concrete masonry unit construction. Door assemblies, if used on walls of other construction, shall be as listed.

11-3 Automatic Closers.

- 11-3.1 All service counter doors shall be equipped to close automatically in the event of fire.
- 11-3.2 A service counter door of the rolling type shall be made automatic closing by incorporation of an escapement system consisting of a spring-release device or an auxiliary push-down spring.

- 11-3.3 A service counter door of the swinging or sliding type shall be made automatic closing by a system of weights suspended by ropes, cables, or chains over pulleys which, when activated by release of an automatic fire detector, will cause the door to close.
- 11-3.4 A governor, when employed on a service counter door, shall work in coordination with the closing device and shall control the closing speed of the door.

11-4 Automatic Fire Detectors.

- 11-4.1 Detectors or fusible links shall be installed on both sides of the wall and interconnected so that the operation of any single detector or fusible link will permit the fire door to close.
- 11-4.1.1 When fusible links are used, one fusible link shall be located near the top of the opening and additional links shall be located at or near the ceiling on each side of the wall.
- 11-4.1.2 When smoke detectors are used, they shall be located as shown in Figure A-51.
- 11-4.1.3 Detectors and their components shall be installed in accordance with the manufacturer's instructions.

Chapter 12 Use and Installation of Fire Windows

12-1 Classification.

12-1.1 Only labeled window sash shall be used in wall openings (see Appendix F).

12-1.2 Labels.

- 12-1.2.1 The label on ¾-hour window sash for wall openings shall read "Fire Window Frame."
- 12-1.2.2 The label on window sash shall cover the design and construction of the frame, ventilator, glass retaining members, and hardware. (See Appendix E for types of window sash.)
- 12-1.2.3 The label on hot-rolled or extruded steel section window sash shall include the hot-rolled or extruded steel mullions.
- 12-1.2.4 The label on hollow metal and hollow metal plate steel combination section window sash shall include hollow metal mullions.
- 12-1.3 Bearing mullions shall be fire protected with materials acceptable to the authority having jurisdiction.

12-2 Wired Glass.

- 12-2.1 Only labeled wired glass not less than 1/4 in. (6.35 mm) thick shall be used.
- 12-2.2 The individual glass exposed area shall not exceed 1296 sq in. (.836 m²) with no dimension exceeding 54 in. (1.37 m).

12-3 Types of Window Sash.

12-3.1 Hollow Metal Window Sashes (Frames).

12-3.1.1 Hollow metal window sashes (frames) consist of formed steel sheet, reinforced as required, and are of the double hung, counterbalanced, casement, pivoted, stationary, tilting, hinged, and projected types.

12-3.1.2 Maximum Size Openings.

- (a) Single sash, other than casement: 5 ft 0 in. by 5 ft 0 in. (1.52 m) by 1.52 m.
- (b) Multiple sash, other than casement: 7 ft 0 in. by 10 ft 0 in. (2.13 m by 3.05 m).
- (c) Single casement sash: 3 ft 6 in. by 10 ft 0 in. (1.07 m by 3.05 m).
- (d) Multiple casement sash: 7 ft 0 in. by 10 ft 0 in. (2.13 m by 3.05 m).

12-3.2 Hot Rolled or Extruded Steel Section Window Sash.

12-3.2.1 Maximum Size Openings.

- (a) The heavy intermediate sash types shall be used for openings not exceeding 84 sq ft (7.8 m²) in area with neither dimension exceeding 12 ft (3.66 m). When multiple units are installed, the distance between unprotected vertical steel mullions shall not exceed 7 ft (2.13 m).
- (b) The standard intermediate types shall be used for openings not exceeding 60 sq ft (5.57 m²) in area with neither dimension exceeding 10 ft (3.05 m). When multiple units are installed, the distance between unprotected vertical steel mullions shall not exceed 6½ ft (1.98 m).
- (c) Residential-type windows shall be used for openings not exceeding 6½ ft (1.98 m) in either dimension. When multiple units are installed, the distance between unprotected vertical steel mullions shall not exceed 3½ ft (1.07 m).

12-3.3 Hollow Metal Plate Steel (Combination) Window Sash.

12-3.3.1 These consist of formed sheet steel frame sections at the head, jambs and sill, and plate steel window sash. They are of the double-hung, counterbalanced, or stationary types.

12-3.3.2 Maximum Size Openings.

- (a) Single sash: 5 ft 0 in. by 5 ft 0 in. (1.52 m by 1.52 m).
- (b) Multiple sash: 7 ft 0 in. by 10 ft 0 in. (2.13 m by 3.05 m).

12-4 Installation.

12-4.1 Frames shall be securely fastened to the wall and shall be capable of resisting all wind stresses and any other stresses for which the window was designed.

12-4.2 Fire Lock Angles.

- 12-4.2.1 Fire lock angles shall be designed to hold the ventilator in the frame as the assembly expands under exposure to fire.
- 12-4.2.2 When sash is provided with fire lock angles, the fire lock angles shall be so adjusted that they pass one another with a minimum of clearance.

12-4.3 Installation of the Glass.

- 12-4.3.1 The clearance between the edges of the glass and the metal framing shall not exceed $\frac{1}{8}$ in. (3.18 mm).
- 12-4.3.2 Wire clips shall be used only for glazing windows specifically designed for their use.
- 12-4.3.3 The glass shall be well imbedded in putty and all exposed joints between the metal and the glass shall be struck and pointed.
- 12-5 Closing Devices. All fire windows shall be of a fixed type or shall be automatic closing. The automatic closing device may be an integral part of the assembly or a separate system, such as weights suspended by ropes, wire cables, or chains over pulleys, so arranged that operation of the automatic fire detector will permit the ventilator to close.

Chapter 13 Use and Installation of Glass Blocks

13-1 Classification.

- 13-1.1 Only labeled glass blocks shall be used.
- 13-1.2 Glass blocks shall be permitted for the protection of exterior openings not exceeding 120 sq ft (11.15 m²) in area with neither the width nor height exceeding 12 ft (3.66 m).
- 13-1.3 Glass blocks shall be of two sizes: $5\frac{3}{4}$ in. (146.05 mm) square or $7\frac{3}{4}$ in. (197 mm) square by $3\frac{7}{8}$ in. (98.43 mm) thick.

13-2 Installation.

- 13-2.1 The mortar for installing glass blocks shall consist of one part portland cement, one part hydrated lime and four parts No. 1 screened torpedo sand by volume.
- 13-2.2 Steel lintels shall be made of 3 in. by 3 in. (76.2 mm by 76.2 mm) steel angles, cut to provide 1½-in. (31.8-mm) clearance at each jamb secured to the structural steel of the building with ¾-in. (.38-mm) bolts, provided with heavy galvanized washers in 2-in. (50.8-mm) slotted holes spaced 12 in. (305 mm) on center. The blocks shall extend 1½ in. (41.3 mm) into the groove, with glass or mineral wool for expansion in the remaining spaces formed by the angles and each horizontal row of blocks reinforced with Nos. 9 and 14 AWG galvanized wire mesh for the full length.
- 13-2.3 Concrete masonry lintels for 7¾ in. by 7¾ in. (197 mm by 197 mm) blocks shall be provided with 2½-in. (63.5-mm) deep grooves. The blocks shall extend 1½ in. (38.1 mm) into the groove, with glass or mineral wool in the remaining space, and with each horizontal row of blocks reinforced for the full length with Nos. 9 and 14 AWG galvanized wire mesh, except between the top two rows.
- 13-2.4 Concrete masonry lintels for the $5\frac{3}{4}$ -in. by $5\frac{3}{4}$ -in. (146.1 mm by 146.1 mm) blocks shall be provided with $2\frac{9}{4}$ -in. (60.3-mm) deep grooves. The blocks shall extend $1\frac{1}{4}$ in. (31.8 mm) into the groove, with glass or mineral wool in the remaining space and with the first and each fourth horizontal row reinforced for the full length with Nos. 9 and 14 AWG galvanized wire mesh, except between the top two rows.

- 13-2.5 The jambs of brick or concrete for the $7\frac{3}{4}$ -in. by $7\frac{3}{4}$ -in. (197-mm by 197-mm) blocks shall be provided with $2\frac{1}{2}$ -in. (63.5-mm) deep grooves. The blocks shall extend $2\frac{1}{2}$ in. (38.1 mm) into the grove, with glass or mineral wool in the remaining spaces in the grooves to provide for expansion of the glass panel.
- 13-2.6 The jambs of brick or concrete for the 5%-in. by 5%-in. (146.1-mm by 146.1-mm) blocks shall be provided with 2-in. (50.8-mm) deep grooves. The blocks shall extend 1% in. (31.75 mm) into the grooves, with glass or mineral wool in the remaining spaces in the grooves to provide for expansion of the glass panel.
- 13-2.7 Sills shall be made of concrete and coated with an asphalt emulsion to provide for expansion and movement of the panel.
- 13-2.8 Exterior jamb and lintel edges shall be caulked with water-proofing mastic.

Chapter 14 Care and Maintenance

14-1 General.1

- 14-1.1 When a door or window opening is no longer to be used, the opening shall be filled with construction equivalent to that of the wall.
- 14-1.2 Doors, shutters, and windows shall be operable at all times. They shall be kept closed and latched or arranged for automatic closing.
- 14-1.3 When it is necessary to replace fire doors, shutters, windows or their frames, hardware, and closing mechanisms, replacements shall meet the requirements for fire protection and be installed as required for new installations elsewhere in this standard.
- 14-1.4 Repairs shall be made and defects that may interfere with operation shall be corrected immediately.

14-2 Specific Requirements.

14-2.1 Inspections.²

- 14-2.1.1 Hardware shall be examined frequently and any parts found to be inoperative shall be replaced immediately.³
- 14-2.1.2 Tinclad and Kalamein doors shall be inspected regularly for dry rot.
- 14-2.1.3 Chains or cables employed on suspended doors shall be inspected frequently for excessive wear and stretching.

¹ Walls with openings have less fire resistance than unpierced walls. Fire doors, shutters, and fire windows are designed to protect the opening under normal conditions of use, with clear spaces on both sides of the opening. When the opening is not used and combustible material may be piled against or near the door, window, or shutter, the designed protection cannot be expected.

² Fire doors, shutters, and windows are valueless unless properly maintained and closed or able to close at the time of fire. A periodic inspection and maintenance program should be implemented and should be the responsibility of the property management.

³ Hinges, catches, closers, latches, and stay rolls are especially subject to wear.

14-2.2 Lubrication and Adjustments.

- 14-2.2.1 Guides and bearings shall be kept well lubricated to facilitate operation.
- 14-2.2.2 Chains or cables on biparting counterbalanced doors shall be checked frequently and adjustments made to ensure proper latching and to keep the doors in proper relation to the opening.

14-2.3 Prevention of Door Blockage.

- 14-2.3.1 Door openings and the surrounding areas shall be kept clear of everything that would be likely to obstruct or interfere with the free operation of the door.
- 14-2.3.2 When necessary, a barrier shall be built to prevent the piling of material against sliding doors.
- 14-2.3.3 Blocking or wedging of doors in the open position shall be prohibited.

14-2.4 Maintenance of Closing Mechanisms.

- 14-2.4.1 Self-closing devices shall be kept in proper working condition at all times.
- 14-2.4.2 Doors normally held in the open position and equipped with automatic closing devices shall be operated at frequent intervals to ensure proper operation.
- 14-2.4.3 Fusible links or other heat actuated devices shall not be painted.
- 14-2.4.4 Care shall be taken to prevent paint accumulation on stay rolls.

14-2.5 Repair of Fire Doors and Windows.

- 14-2.5.1 Broken or damaged lights of glass shall be replaced with labeled wired glass, at least ½ in. (6:35 mm) thick and well imbedded in putty, and all exposed joints between the metal and the glass shall be struck and pointed.
- 14-2.5.2 Any breaks in face covering of doors shall be repaired immediately.
- 14-2.6 Fire Prevention. Combustible material shall be kept well away from openings.

Appendix A

Drawings of Fire Door Assemblies and Components

This Appendix is not a part of the requirements of this NFPA document but is included for information purposes only

The figures included in this section illustrate typical good practice. Other methods acceptable to the authority having jurisdiction may be used.

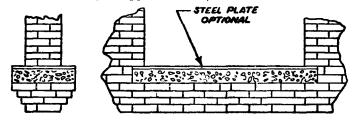


Figure. A-1. Concrete sill supported by a corbel of brick used with combustible floors.

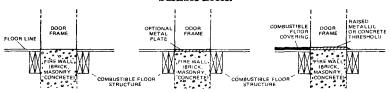


Figure A-2. Noncombustible sill used with combustible floors for doors swinging into steel frame.

Combustible floor covering shall not be permitted to extend through the door openings.

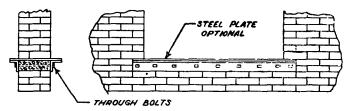


Figure A-3. Angle iron and concrete sill used with combustible floors.

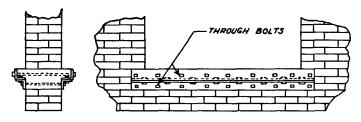


Figure A-4. Z-bar and concrete sill used with combustible floors.

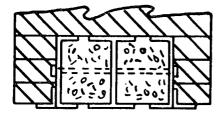


Figure A-5. Steel lintel.

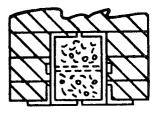


Figure A-6. Steel lintel.

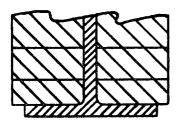


Figure A-7. Steel lintel.

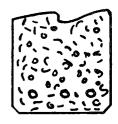


Figure A-8. Reinforced concrete lintel.

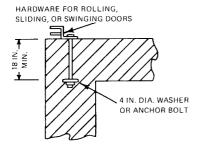


Figure A-9. Corner walls.

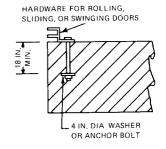


Figure A-10. Unusually thick walls.

For SI Units: 1 in. = 25.4 mm.

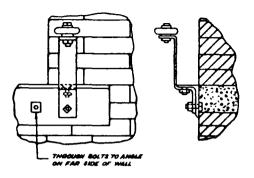


Figure A-11. Stay roll.

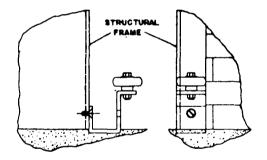


Figure A-12. Stay roll.

Figure A-13. Stay roll.

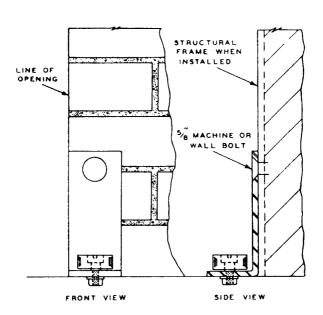


Figure A-15. Concealed type stay roll.

For SI Units: 1 in. = 25.4 mm.

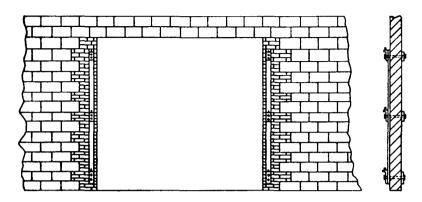


Figure A-16. Hollow concrete masonry wall prepared for doors swinging in pairs — lap mounted, standard method.

This illustrates typical reinforcement of a hollow concrete masonry wall opening to provide adequate anchorage of the door-mounting hardware. Brick reinforcement may be omitted provided all hollow cells within 16 in. (.41 m) of the opening are filled with concrete. It is recommended when openings are subjected to heavy traffic that jambs be protected with steel frames extending full thickness of the wall.

Figure A-17. Hollow concrete masonry wall prepared for doors swinging in pairs — lap mounted.

This illustrates typical reinforcement for anchorage of door-mounting hardware by use of steel plates to bridge cavities in the hollow concrete masonry units and to prevent their crushing. It is recommended when openings are subjected to heavy traffic that jambs be protected with steel frames extending full thickness of the wall.

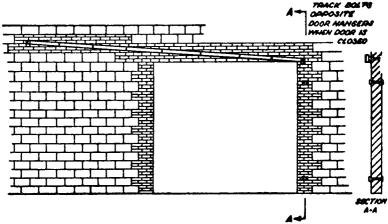


Figure A-18. Hollow concrete masonry wall prepared for a single tinclad or sheet metal sliding door, standard method.

This illustrates typical brick reinforcement of a hollow concrete masonry wall opening to provide adequate anchorage of the door-mounting hardware. Brick reinforcement may be omitted provided all hollow cells within 16 in. (.41 m) of opening on each side and all cells where track is mounted are filled with concrete. It is recommended when openings are subjected to heavy traffic that jambs be protected with steel frames extending full thickness of the wall.

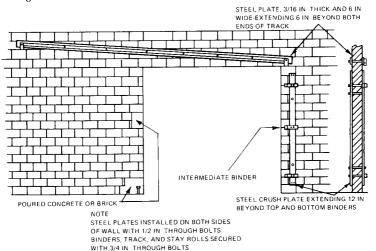
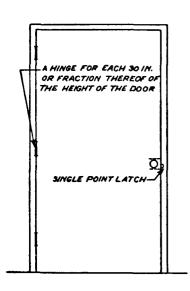



Figure A-19. Hollow concrete masonry wall prepared for a single sliding door. This illustrates typical reinforcement for anchorage of door-mounting hardware by use of steel plates to bridge the cavities in the hollow concrete masonry units and to

For SI Units: 1 in. = 25.4 mm.

prevent their crushing.

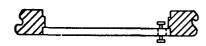
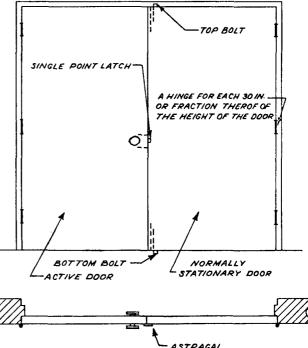



Figure A-20. Builders hardware (single swinging door with single point latch — flush mounted.) For SI Units: 1 in. = 25.4 mm.

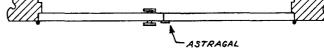
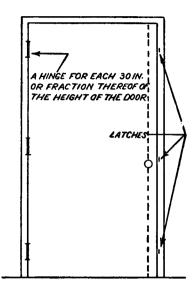



Figure A-21. Builders hardware (doors swinging in pairs with single point latch — flush mounted.)

NOTE: The astragal may be placed on either leaf.

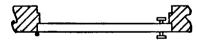
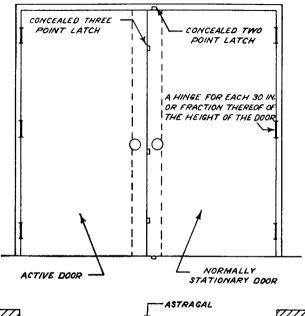



Figure A-22. Builders hardware (single swinging door with concealed three point latch — flush mounted.)

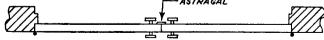


Figure A-23. Builders hardware (doors swinging in pairs with concealed two and three point latches — flush mounted.)

For SI Units: 1 in. = 25.4 mm.

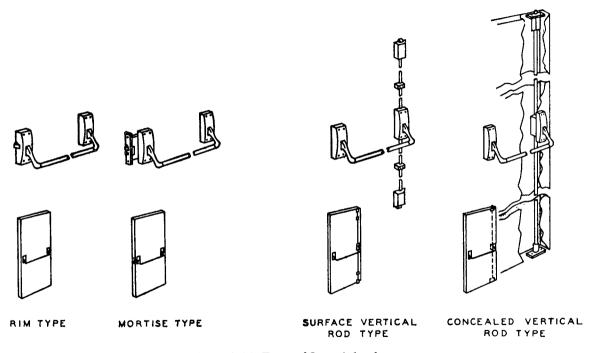


Figure A-24. Types of fire exit hardware.

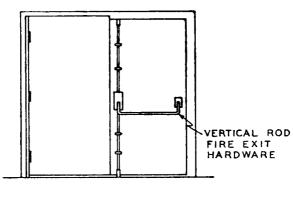
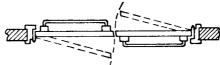
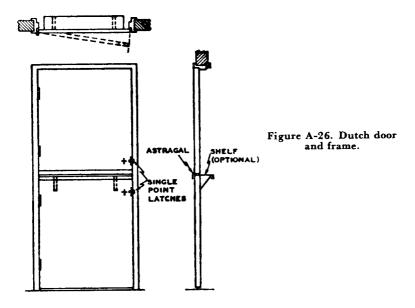
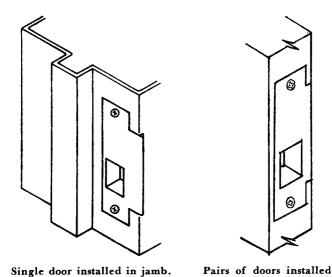





Figure A-25. Double egress door and frame.

in edge of inactive leaf.

Figure A-27. Typical latch strike for single or pairs of doors.

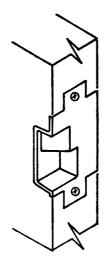


Figure A-28. Typical "open-back" latch strike for pairs of doors, installed in edge of inactive leaf when permitted by individual published listings.

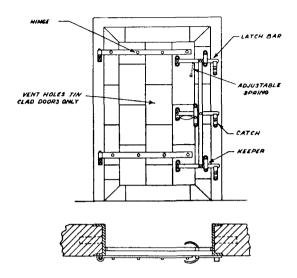


Figure A-29. Fire door hardware (single swinging door — flush mounted.)

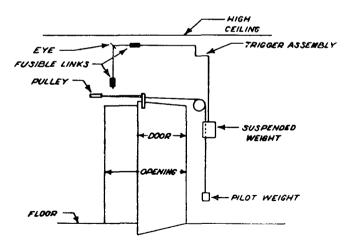


Figure A-30. Closing devices for single swinging door.

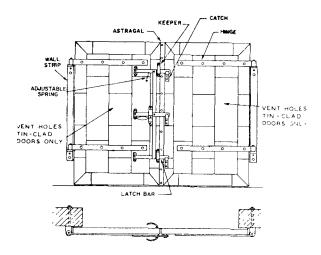


Figure A-31. Fire door hardware (doors swinging in pairs - lap mounted.)

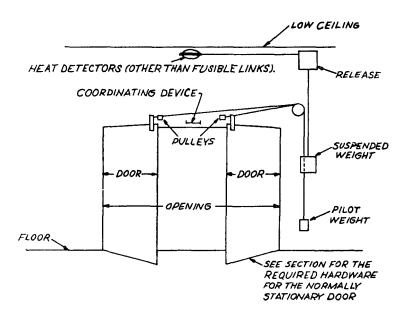
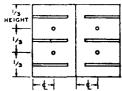
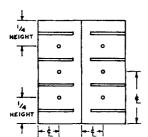




Figure A-32. Closing devices for doors swinging in pairs.

TWO-3-INCH DIAMETER VENT HOLES REQUIRED FOR EACH DOOR LEAF UP TO AND INCLUDING 8 PEET 8 INCHES IN HEIGHT.

THREE-3-INCH DIAMETER VENT HOLES REQUIRED FOR EACH DOOR LEAF 8 FEET 6 INCHES AND UP TO AND INCLUDING 12 FEET IN HEIGHT.

Figure A-33. Location of vent holes for swinging doors.

For SI Units: 1 in. = 25.4 mm; 1 ft = 0.3048 m.

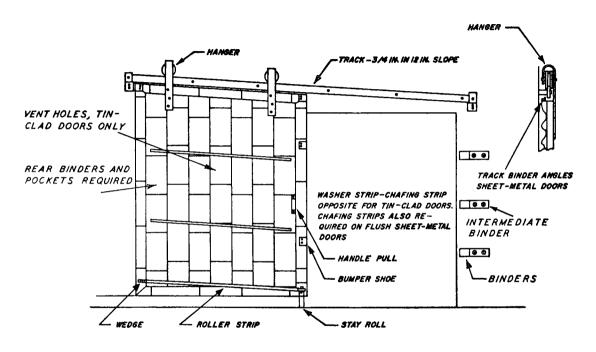


Figure A-34. Single sliding door (inclined track.)

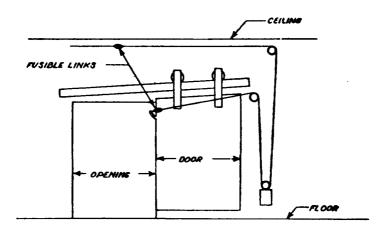


Figure A-35. Closing devices for single sliding door (inclined track.)

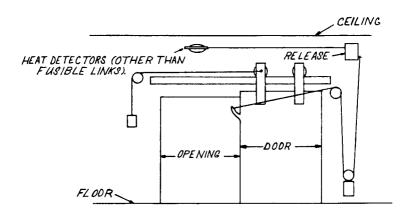


Figure A-36. Closing devices for single sliding door (level track.)

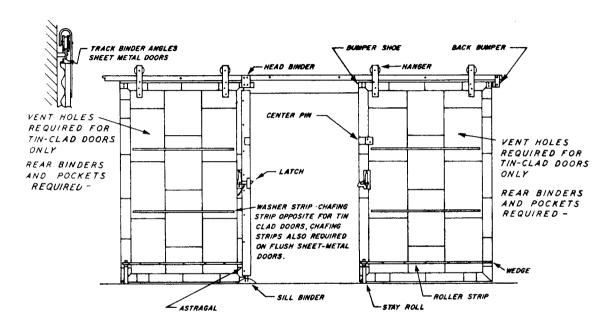


Figure A-37. Center parting horizontally sliding doors (level track.)

NOTE: Binder and pocket required. Vent holes required for tinclad only.

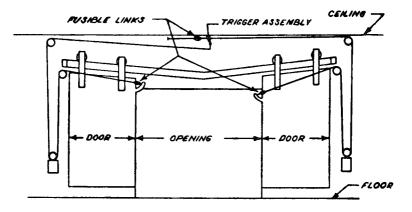


Figure A-38. Closing devices for center parting horizontally sliding doors (inclined track.)

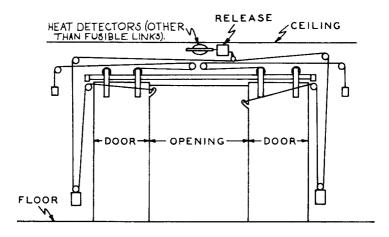


Figure A-39. Closing devices for center parting horizontally sliding doors (level track.)

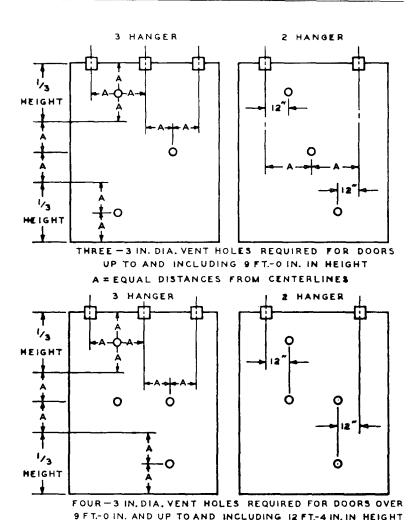


Figure A-40. Location of vent holes for horizontally sliding door.

NOTE: For vertically sliding doors the vent holes are to be positioned similarly, but so as not to interfere with the attached hardware.

For SI Units: 1 in. = 25.4 mm; 1 ft = 0.3048 m.

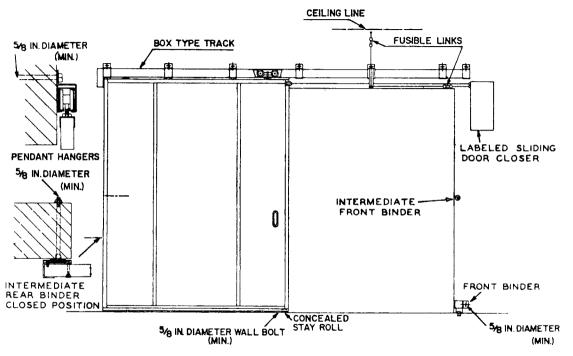


Figure A-41. Horizontally sliding composite door.

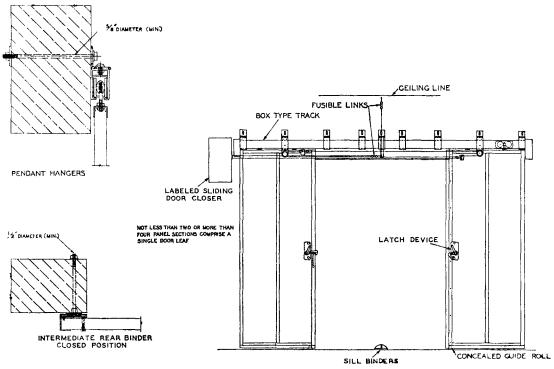


Figure A-42. Center parting horizontally sliding composite doors.

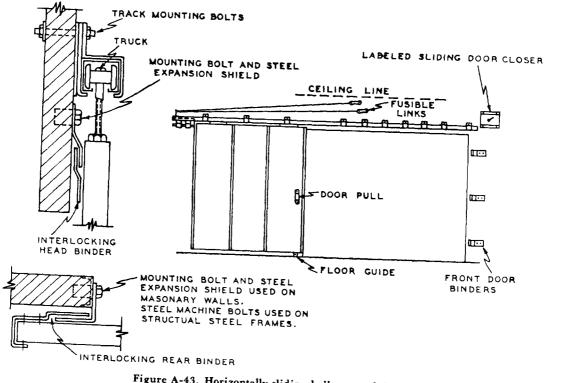


Figure A-43. Horizontally sliding hollow metal door.

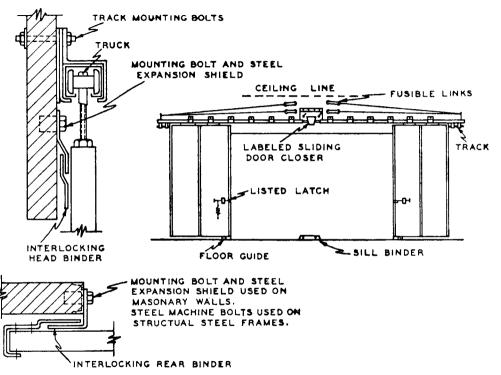


Figure A-44. Center parting horizontally sliding hollow metal doors.

NOTE: Fusible links are needed on both sides of the wall.

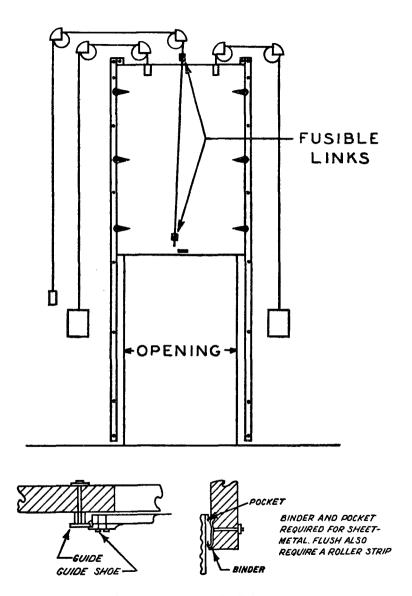


Figure A-45. Vertically sliding door.

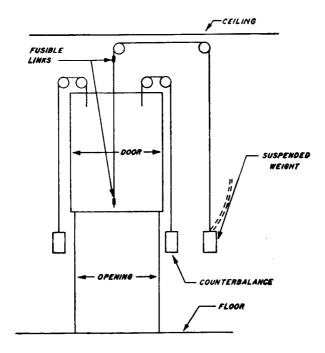


Figure A-46. Closing devices for vertically sliding door.