Standard on Clean Agent Fire Extinguishing Systems 1994 Edition

NOTICE

All questions or other communications relating to this document should be sent only to NFPA headquarters, addressed to the attention of the Committee responsible for the document.

For information on the procedures for requesting Technical Committees to issue Formal Interpretations, proposing Tentative Interim Amendments, proposing amendments for Committee consideration, and appeals on matters relating to the content of the document, write to the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

A statement, written or oral, that is not processed in accordance with Section 16 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Users of this document should consult applicable federal, state and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action that is not in compliance with applicable laws, and this document may not be construed as doing so.

Policy Adopted by NFPA Board of Directors on December 3, 1982

The Board of Directors reaffirms that the National Fire Protection Association recognizes that the toxicity of the products of combustion is an important factor in the loss of life from fire. NFPA has dealt with that subject in its technical committee documents for many years.

There is a concern that the growing use of synthetic materials may produce more or additional toxic products of combustion in a fire environment. The Board has, therefore, asked all NFPA technical committees to review the documents for which they are responsible to be sure that the documents respond to this current concern. To assist the committees in meeting this request, the Board has appointed an advisory committee to provide specific guidance to the technical committees on questions relating to assessing the hazards of the products of combustion.

Licensing Provision—This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference—Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders, or similar instruments. Any deletions, additions, and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription—A. Public authorities with lawmaking or rule-making powers only upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders, or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rule-making process. B. Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rule-making powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately, provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rule-making powers may apply for and may receive a special royalty where the public interest will be served thereby
- 3. Scope of License Grant—The terms and conditions set forth above do not extend to the index to this document.

(For further explanation, see the Policy Concerning the Adoption, Printing, and Publication of NFPA Documents, which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accept any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document, and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

NFPA 2001

Standard on

Clean Agent Fire Extinguishing Systems

1994 Edition

This edition of NFPA 2001, Standard on Clean Agent Fire Extinguishing Systems, was prepared by the Technical Committee on Alternative Protection Options to Halon and acted on by the National Fire Protection Association, Inc. at its Fall Meeting held November 15-18, 1993, in Phoenix, AZ. It was issued by the Standards Council on January 14, 1994, with an effective date of February 11, 1994.

The 1994 edition of this document has been approved by the American National Standards Institute.

Origin and Development of NFPA 2001

The Technical Committee on Alternative Protection Options to Halon was organized in 1991, and immediately started work to address the new total flooding clean agents that were being developed to replace Halon 1301. A need existed on how to design, install, maintain, and operate systems using these new clean agents, and NFPA 2001 was established to address these needs. This is the first edition of NFPA 2001.

Technical Committee on Alternative Protection Options to Halon

Phillip J. DiNenno, Chair Hughes Assoc., Inc., MD

Jeff L. Harrington, Secretary Harrington Group, Inc., GA

William M. Carey, Underwriters Laboratories Inc., IL
Salvatore A. Chines, Industrial Risk Insurers, CT
Edward A. Connell, U.S. Dept. of Energy, DC
John E. Echternacht, Firesafety Consultants, TX
William A. Eckholm, Fire Protection Systems, MO
Logan T. Fidler, Ansul Fire Protection, FL
Rep. Halon Alternative Research Corp.
John Foreacre, St. Paul Cos., IL
William J. Fries, Liberty Mutual Insurance Co., MA
Rep. The Alliance of American Insurers
Alankar Gupta, Boeing Commercial Airplane Group, WA
Jon B. Holcombe, Bureau of Fire Prevention District #2, NJ
David H. Kay, U.S. Dept. of the Navy, DC

David H. Kay, U.S. Dept. of the Navy, DC Michelle Maynard, Nat'l Aeronautics & Space Admin., FL Robert C. Merritt, Factory Mutual Research Corp., MA Daniel W. Moore, The DuPont Co., DE Ronald D. Ouimette, Kidde-Fenwal, Inc., MA

Rep. Nat'l Electrical Mfrs. Assn.

John A. Pignato, 3M Co., MN
W. Douglas Register, Great Lakes Chemical Corp., IN
William J. Satterfield, Hartford Steam Boiler Inspection &
Insurance Co., CT
Joseph A. Senecal, Fenwal Safety Systems, Inc., MA
Clifford R. Sinopoli, Baltimore Gas & Electric, MD
Rep. Electric Light Power Group/Edison Electric Inst.
Steve W. Stone, CIGNA Loss Control Services, Inc., TX
Rep. American Insurance Services Group, Inc.
Robert E. Tapscott, New Mexico Engineering Research
Inst., NM
Tim N. Testerman, Procter & Gamble, OH
Stephen B. Waters, Fireline Corp., MD
Rep. Nat'l Assn. of Fire Equipment Distributors, Inc.
Charles F. Willms, Willms Assoc., NC
Rep. Fire Suppression Systems Assn.

Joseph A. Wright, DOT/FAA Technical Center, NJ

Alternates

Kerry M. Bell, Underwriters Laboratories Inc., IL
(Alt. to W. M. Carey)

Robert L. Darwin, U.S. Dept. of the Navy, DC
(Alt. to D. H. Kay)

Alfred P. Dougherty, The DuPont Co., DE
(Alt. to D. W. Moore)

William A. Froh, U.S. Dept. of Energy, DC
(Alt. to E. A. Connell)

Manjeri K. Gopalan, MCI Telecommunications Corp., TX
(Alt. to MCI Rep.)

Christopher P. Hanauska, Hughes Assoc., Inc., MN
(Alt. to P. J. DiNenno)

James P. Hebert, Universal Fire Equipment, Co., TX
(Alt. to S. B. Waters)

George A. Krabbe, Automatic Suppression Systems, Inc., II.
(Alt. to C. F. Willims)

Jeffrey F. Moore, Fire Protection Systems, MO
(Alt. to W. A. Eckholm)

Paul E. Rivers, 3M Co., MN
(Alt. to J. A. Pignato)

Todd E. Schumann, Industrial Risk Insurers, II.
(Alt. to S. A. Chines)

Stephanie R. Skaggs, New Mexico Engineering Research Inst., NM
(Alt. to R. E. Tapscott)

David C. Smith, Factory Mutual Research Corp., MA
(Alt. to R. C. Merritt)

Nonvoting

Douglas J. Pickersgill, Bassett Consulting Engrs - Australia

Fernando Vigara, Vimpex, Spain

Casey C. Grant, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred

NOTE: Membership on a Committee shall not in and of itself constitute an endorsement of the Association or any document developed by the Committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on alternative protection options to Halon 1301 and 1211 fire extinguishing systems. It shall not deal with design, installation, operation, testing, and maintenance of systems employing carbon dioxide, dry chemical, wet chemical, foam, Halon 1301, Halon 1211. Halon 2402, or water as the primary extinguishing media.

This Committee shall also have the responsibility of developing documents for comparing the properties of suppression systems relative to the occupancies being protected

Contents

Chapter	1 General	2001-	4 3-7	Duration of Protection 2001 –20
1-1	Scope	2001-	4 3-8	Distribution System 2001–21
1-2	Purpose	2001-	4 3-9	Nozzle Choice and Location 2001–21
1-3	Definitions and Units	2001-	4	
1-4	General Information	2001-	5 Chapter	· 4 Inspection, Maintenance, Testing, and
1-5	Safety			Training
1-6	Environmental Factors		4 1	Inspection and Tests 2001 –21
1-7	Retrofitability		4.0	Container Test
1-8	Compatibility with Other Agents		4.0	Hose Test
			4-4	Enclosure Inspection 2001–22
Chapter	2 Components	2001-	6 4-5	Maintenance 2001–22
2-1	Agent Supply	2001-	6 4-6	Training
2-2	Distribution			Approval of Installations 2001–22
2-3	Detection, Actuation, and Control			••
	Systems	2001-	9 Chapter	Solution Referenced Publications 2001–24
Chapter	3 System Design	2001 -1	0 Append	lix A Explanatory Material 2001-25
3-1	Specifications, Plans, and Approvals	2001 -1		
3-2	System Flow Calculations	2001 -1	1 Append	ix B Enclosure Integrity Procedure 2001–39
3-3	Enclosure	2001-1		<i>3</i> /
3-4	Design Concentration Requirements	2001 –1	2 Append	lix C Referenced Publications 2001-47
3-5	Total Flooding Quantity		* *	
3-6	Pressure Adjustment			2001_48

NFPA 2001

Standard on

Clean Agent Fire Extinguishing Systems 1994 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates explanatory material on that paragraph in Appendix A.

Information on referenced publications can be found in Chapter 5 and Appendix C.

Chapter 1 General

1-1 Scope. This standard contains minimum requirements for total flooding, clean agent fire extinguishing systems. It does not cover fire extinguishing systems that use carbon dioxide, Halon 1301, Halon 1211, Halon 2402, or water, which are addressed by other NFPA documents.

1-2 Purpose.

- 1-2.1 The agents in this standard were introduced in response to international restrictions on the production of certain halon fire extinguishing agents under the Montreal Protocol signed September 16, 1987, as amended. This standard is prepared for the use and guidance of those charged with purchasing, designing, installing, testing, inspecting, approving, listing, operating, and maintaining engineered or pre-engineered clean agent extinguishing systems, so that such equipment will function as intended throughout its life. Nothing in this standard is intended to restrict new technologies or alternate arrangements provided the level of safety prescribed by this standard is not lowered.
- 1-2.2 No standard can be promulgated that will provide all the necessary criteria for the implementation of a total flooding, clean agent fire extinguishing system. Technology in this area is under constant development, and this will be reflected in revisions to this standard. The user of this standard must recognize the complexity of clean agent fire extinguishing systems. Therefore, the designer is cautioned that the standard is not a design handbook. The standard does not do away with the need for the engineer or for competent engineering judgment. It is intended that a designer capable of applying a more complete and rigorous analysis to special or unusual problems shall have latitude in the development of such designs. In such cases, the designer is responsible for demonstrating the validity of the approach.

1-3 Definitions and Units.

1-3.1 Definitions. For purpose of clarification, the following general terms used with special technical meanings in this standard are defined:

Approved. Acceptable to the authority having jurisdiction.

NOTE: The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the

absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization concerned with product evaluations that is in a position to determine compliance with appropriate standards for the current production of listed items.

Authority Having Jurisdiction. The organization, office, or individual responsible for approving equipment, an installation, or a procedure.

NOTE: The phrase "authority having jurisdiction" is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

Clean Agent. Electrically nonconducting, volatile, or gaseous fire extinguishant that does not leave a residue upon evaporation. The word "agent" as used in this document shall mean "clean agent" unless otherwise indicated.

Clearance. The air distance between clean agent equipment, including piping and nozzles, and unenclosed or uninsulated live electrical components at other than ground potential.

Engineered Systems. Those requiring individual calculation and design to determine the flow rates, nozzle pressures, pipe size, area or volume protected by each nozzle, quantity of clean agent, and the number and types of nozzles and their placement in a specific system.

Fill Density. The mass of clean agent per unit of container volume (e.g., lb/ft³, kg/m³).

Halocarbon Agent. A clean agent that contains as primary components one or more organic compounds containing one or more of the elements fluorine, chlorine, bromine, or iodine. Examples are hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), and perfluorocarbons (PFCs).

Inert Gas Agent. A clean agent that contains as primary components one or more of the gases helium, neon, argon, nitrogen, or carbon dioxide.

Listed. Equipment or materials included in a list published by an organization acceptable to the authority having jurisdiction and concerned with product evaluation that maintains periodic inspection of production of listed equipment or materials and whose listing states either that the equipment or material meets appropriate standards or has been tested and found suitable for use in a specified manner.

NOTE: The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product. **No Observed Adverse Effect Level.** The highest concentration at which no adverse toxicological or physiological effect has been observed.

NOAEL. See No Observed Adverse Effect Level.

Normally Occupied Area.* One that is intended for occupancy.

Pre-Engineered Systems. Those having predetermined flow rates, nozzle pressures, and quantities of clean agent. These systems have the specific pipe size, maximum and minimum pipe lengths, flexible hose specifications, number of fittings, and number and types of nozzles prescribed by a testing laboratory. The hazards protected by these systems are specifically limited as to type and size by a testing laboratory based upon actual fire tests. Limitations on hazards that can be protected by these systems are contained in the manufacturer's installation manual, which is referenced as part of the listing.

Shall. Indicates a mandatory requirement.

Should. Indicates a recommendation or that which is advised but not required.

Superpressurization. The addition of a gas to the fire suppression agent container necessary to achieve the pressure required for proper system operation.

Total Flooding. A system consisting of a supply of clean agent arranged to discharge into, and fill to the proper concentration, an enclosed space or enclosure about the hazard.

1-3.2 Units.

1-3.2.1 Metric units of measurement in this standard are in accordance with the modernized metric system known as the International System of Units (SI). Two units (liter and bar), outside of but recognized by SI, are commonly used in international fire protection. These units are listed in Table 1-3.2 with conversion factors.

1-3.2.2 If a value for measurement as given in this standard is followed by an equivalent value in other units, the first stated is to be regarded as the requirement. A given equivalent value may be approximate.

Table 1-3.2 Metric Conversion Factors

Name of Unit	Unit Symbol	Conversion Factor
millimeter	mm	1 in. = 25.4 mm
liter	L	1 gal = 3.785 L
cubic decimeter	dm'	$1 \text{ gal} = 3.785 \text{ dm}^3$
cubic meter	\mathbf{m}^3	$1 \text{ gal} = 3.785 \text{ dm}^3$ $1 \text{ ft}^3 = 0.028317 \text{ m}^3$
kilogram	kg	1 lb = 0.4536 kg
kilograms per	O.	· ·
cubic meter	kg/m³	$1 \text{ lb/ft}^3 = 16.0183 \text{ kg/m}^3$
pascal	Pa	1 psi = 6895 Pa
bar	bar	1 psi = 0.0689 bar
bar	bar	1 bar = 10 ⁵ Pa

NOTE 1: For additional conversions and information see ASTM E380, Standard for Metric Practice.

NOTE 2: In Canada refer to Canadian Metric Practice Guide, CSA Standard CAN3-A234,1-79.

1-4 General Information.

1-4.1* Applicability of Clean Agents.

1-4.1.1 The clean agents addressed in this standard are electrically nonconductive agents that extinguish fires and leave no residue upon evaporation.

1-4.1.2* Clean agents that meet the criteria of 1-4.1.1 and are discussed in this standard are shown in Table 1-4.1.2.

Table 1-4.1.2 Clean Agents Addressed in this Standard

FC-3-1-10	Perfluorobutane	C_4F_{10}
HBFC-22B1	Bromodifluoromethane	CHF ₉ Br
HCFC Blend A	Dichlorotriffuoroethane HCFC-123 (4.75%)	$\mathrm{CHC} \overline{\mathrm{L}_2} \mathrm{CF}_3$
	Chlorodifluoromethane	
	HCFC-22 (82%)	CHCIF ₉
	Chlorotetraffuoroethane	-
	HCFC-124 (9.5%)	$CHCIFCF_3$
	Isopropenyl-1- methylcyclohexene (3.75%)	
HCFC-124	Chlorotetrafluoroethane	$CHCIFCF_3$
HFC-125	Pentafluoroethane	$\mathrm{CHF_9CF_3}^{\circ}$
HFC-227ea	Heptafluoropropane	$\mathbf{CF_3CHFCF_3}$
HFC-23	Trifluoromethane	$\widetilde{\mathrm{CHF}_3}$
IG-541	Nitrogen (52%)	N_9
	Argon (40%)	$\Lambda \tilde{r}$
	Carbon dioxide (8%)	CO_2

NOTE 1: Other agents may become available at later dates. They may be added via the NFPA process in future editions or amendments of the standard. NOTE 2: Composition of IG-541 is given in percent by volume. Composition of HCFC Blend A is given in percent by weight.

1-4.1.3 The design, installation, service, and maintenance of clean agent systems shall be performed by those skilled in clean agent fire extinguishing system technology.

1-4.2 Use and Limitations.

1-4.2.1 Pre-engineered systems consist of system components designed to be installed according to pretested limitations as listed by a testing laboratory. Pre-engineered systems might incorporate special nozzles, flow rates, methods of application, nozzle placement, and pressurization levels that might differ from those detailed elsewhere in this standard. All other requirements of the standard apply. Pre-engineered systems shall be installed to protect hazards within the limitations that have been established by the testing laboratories where listed.

1-4.2.2 Clean agent fire extinguishing systems are useful within the limits of this standard in extinguishing fires in specific hazards or equipment and in occupancies where an electrically nonconductive medium is essential or desirable, or where cleanup of other media presents a problem.

1-4.2.3 Total flooding, clean agent fire extinguishing systems are used primarily to protect hazards that are in enclosures or equipment that, in itself, includes an enclosure to contain the agent. Some typical hazards that may be suitable include, but are not limited to, the following:

- (a) Electrical and electronic hazards;
- (b) Telecommunications facilities;

- (c) Flammable and combustible liquids and gases; and
- (d) Other high value assets.
- **1-4.2.4*** Clean agent systems might also be used for explosion prevention and suppression where flammable materials might collect in confined areas.
- **1-4.2.5** Clean agents shall not be used on fires involving the following materials, unless they have been tested to the satisfaction of the authority having jurisdiction:
- (a) Certain chemicals or mixtures of chemicals, such as cellulose nitrate and gunpowder, that are capable of rapid oxidation in the absence of air;
- (b) Reactive metals such as lithium, sodium, potassium, magnesium, titanium, zirconium, uranium, and plutonium;
 - (c) Metal hydrides; or
- (d) Chemicals capable of undergoing autothermal decomposition, such as certain organic peroxides and hydrazine.
- **1-4.2.6** Electrostatic charging of nongrounded conductors may occur during the discharge of liquefied gases. These conductors may discharge to other objects, causing an electric arc of sufficient energy to initiate an explosion. (See NFP.4 77, Recommended Practice on Static Electricity.)
- **1-4.2.7** Where clean agent systems are used, a fixed enclosure shall be provided about the hazard that is adequate to enable the specified concentration to be achieved and maintained for the specified period of time.
- 1-4.2.8* The effects of agent decomposition on fire protection effectiveness and equipment shall be considered where using clean agents in hazards with high ambient temperatures (e.g., furnaces and ovens).

1-5 Safety.

1-5.1 Hazards to Personnel.

1-5.1.1* Unnecessary exposure to all clean agents and their decomposition products shall be avoided. Agents for which the design concentration is equal to or less than the NOAEL shall be permitted for use in normally occupied areas. Agents for which the design concentration is greater than the NOAEL shall not be permitted for use in normally occupied areas.

To keep oxygen concentrations above 16 percent, the point at which onset of impaired personnel function occurs, no halocarbon fire extinguishing agents addressed in this standard shall be used in a normally occupied area of concentration greater than 24 percent.

1-5.1.2* Safety Requirements. For fire situations, suitable safeguards shall be provided to ensure prompt evacuation of and prevent entry into hazardous atmospheres and also to provide means for prompt rescue of any trapped personnel. Safety items such as personnel training, warning signs, discharge alarms, self-contained breathing apparatus, evacuation plans, and fire drills shall be considered.

1-5.2 Electrical Clearances.

1-5.2.1 All system components shall be located to maintain no less than minimum clearances from energized electrical parts. The following references shall be considered as

the minimum electrical clearance requirements for the installation of clean agent systems:

- (a) ANSI C-2, National Electrical Safety Code
- (b) NFPA 70, National Electrical Code®
- (c) 29 CFR 1910 Subpart S.
- **1-5.2.2** Where the design basic insulation level (BIL) is not available, and where nominal voltage is used for the design criteria, the highest minimum clearance listed for this group shall be used.
- **1-5.2.3** The selected clearance to ground shall satisfy the greater of the switching surge or BIL duty, rather than being based on nominal voltage.
- **1-5.2.4** The clearance between uninsulated energized parts of the electrical system equipment and any portion of the clean agent system shall not be less than the minimum clearance provided elsewhere for electrical system insulations on any individual component.
- **1-5.2.5** Where BIL is not available and where nominal voltage is used for the design criteria, the highest minimum clearance listed for this group shall be used.
- **1-6* Environmental Factors.** When selecting an agent to protect a hazard area, the effects of the agent on the environment shall be considered. Selection of the appropriate fire suppressant agent shall include consideration of the following items:
- (a) Potential environmental effect of a fire in the protected area; and
- (b) Potential environmental effect of the various agents that may be used.
- **1-7 Retrofitability.** Retrofitting of any clean agent into an existing fire extinguishing system shall result in a system that is listed or approved.

1-8 Compatibility with Other Agents.

- **1-8.1*** Mixing of clean agents in the same container shall be permitted only if the system is listed.
- **1-8.2** Systems employing the simultaneous discharge of different clean agents to protect the same enclosed space shall not be permitted.

Chapter 2 Components

2-1 Agent Supply.

2-1.1 Quantity.

- **2-1.1.1** The amount of clean agent in the system shall be at least sufficient for the largest single hazard protected or group of hazards that are to be protected simultaneously. This quantity of agent is defined as the primary agent supply.
- **2-1.1.2*** Where required, the reserve quantity shall be as many multiples of the primary supply as the authority having jurisdiction considers necessary.
- **2-1.1.3** Where uninterrupted protection is required, both the primary and the reserve supply shall be permanently connected to the distribution piping and arranged for easy changeover.

COMPONENTS **2001-7**

2-1.2* Quality. New clean agents shall comply with the standard of quality as shown in Tables 2-1.2(a), 2-1.2(b), and 2-1.2(c). Each manufacturer's batch shall be tested and certified to the tolerances or specifications as indicated in the tables.

Table 2-1.2(a) Halogenated Clean Agent Quality Requirements

	All Clean Agents Listed in Standard
Mole %, minimum	99.0
Acidity ppm (by weight HCl equivalent),	
maximum	3.0
Water content, % by weight, maximum Nonvolatile residues, grams/100 mL	0.001
maximum	0.05

Table 2-1.2(b) Inert Gas Clean Agent Quality Requirements

		IG-541
Composition, % by Volume	N_2	52% ± 4%
•	Ār	$40\% \pm 4\%$
	CO_9	$8\% \pm 1\%$
	-	- 0.0%
Water Content, % by Weight		Maximum 0.005

Table 2-1.2(c) Blend Agent Quality Requirements

HCFC Blend A	Agent Quality Requirements
HCFC 22	$82 \pm 0.8\%$
HCFC 124	$9.50 \pm 0.09\%$
HCFC 123	$4.75 \pm 0.05\%$
isopropenyl-1-methylcyclohexene	$3.75 \pm 0.5\%$

Note percent by weight.

2-1.3 Storage Container Arrangement.

2-1.3.1 Storage containers and accessories shall be so located and arranged that inspection, testing, recharging, and other maintenance are facilitated and interruption of protection is held to a minimum.

2-1.3.2* Storage containers shall be located as close as possible to or within the hazard or hazards they protect.

- **2-1.3.3** Storage containers shall not be located so as to be subject to severe weather conditions or to potential damage due to mechanical, chemical, or other causes. Where potentially damaging exposures might exist, suitable enclosures or guards shall be provided.
- **2-1.3.4** Storage containers shall be securely installed and secured according to the manufacturer's listed installation manual and in a manner that provides for convenient individual servicing or content weighing.
- **2-1.3.5** Where storage containers are manifolded, automatic means such as a check valve shall be provided to prevent agent loss if the system is operated when any containers are removed for maintenance.

2-1.4 Storage Containers.

- **2-1.4.1* Storage Containers.** The clean agent supply shall be stored in containers designed to hold that specific agent at ambient temperatures. Containers shall not be charged to a fill density or superpressurization level different from the manufacturer's listing. Superpressurization levels other than those shown in Table 2-1.4.1 shall be permitted.
- **2-1.4.2*** Each halocarbon agent container shall have a permanent nameplate or other permanent marking specifying the agent, tare and gross weight, and superpressurization level (where applicable) of the container. Each inert gas container shall have a permanent nameplate or other permanent marking specifying the agent, pressurization level of the container, and nominal agent volume.
- **2-1.4.3** The containers used in these systems shall be designed to meet the requirements of the U.S. Department of Transportation or the Canadian Transport Commission, if used as shipping containers. If not shipping containers, they shall be designed, fabricated, inspected, certified, and stamped in accordance with Section VIII of the ASME *Boiler and Pressure Vessel Code*; independent inspection and certification is recommended. The design pressure shall be suitable for the maximum pressure developed at 130°F (55°C) or at the maximum controlled temperature limit.
- **2-1.4.4** A reliable means of indication shall be provided to determine the pressure in refillable superpressurized containers.
- **2-1.4.5*** For halogenated clean agents in a multiple container system, all containers supplying the same manifold outlet for distribution of the same agent shall be interchangeable and of one select size and charge.

Table 2-1.4.1 Storage Container Characteristics

			HCFC					
	FC-3-1-10	HBFC-22B1	Blend A	HCFC-124	HFC-125	HFC-227ea	HFC-23	IG-541
Maximum fill density for conditions listed below (lb/ft³)	80,0	102.0	56.2	71.0	58.0	72.0	54.0	N/A
Minimum Container Design Level Working Pressure (psig) Total Pressure Level at 70°F (psig)	500 360	500 360	500 360	$240.0 \\ 195.0$	320.0 166.4*	500 360	1800 608.9*	2175 N/A

Note: The maximum fill density requirement is not applicable for IG-541. Cylinders for IG-541 shall be DOT 3A or 3AA, 2015 + stamped, or greater.

* Vapor pressure for HFC-23 and HFC-125.

For SI Units: $1 \text{ lb/ft}^3 = 6.018 \text{ kg/m}^3$; 1 psig = 6895 Pa, $1^{\circ}\text{F} = (\frac{9}{5}) (1^{\circ}\text{C}) + 32$.

2-1.4.6 Storage temperatures shall not exceed or be less than the manufacturer's listed limits. External heating or cooling shall be used to keep the temperature of the storage container within desired ranges.

2-2 Distribution.

2-2.1* Piping.

- **2-2.1.1*** Piping shall be of noncombustible material having physical and chemical characteristics such that its integrity under stress can be predicted with reliability. Special corrosion-resistant materials or coatings shall be required in severely corrosive atmospheres. The thickness of the piping wall shall be calculated in accordance with ANSI B31.1, *Power Piping Code*. The internal pressure used for this calculation shall be the maximum pressure in the container at a maximum storage temperature of not less than 130°F (55°C) (use manufacturer's maximum allowable fill density), but in no case shall the value used for the pressure be less than the following:
- (a) For clean agents specified in Table 2-1.4.1 having a charging pressure up to and including 360 psig at 70°F (21°C), use an internal pressure of 620 psig (130°F) (55°C).
- (b) For HFC-23, use an internal pressure of 2,250 psig (130°F) (55°C).

Exception: Steel piping used in HFC-23 systems shall meet the following requirements:

Pipe $\frac{1}{18}$ in, through $\frac{1}{14}$ in, NPS shall be a minimum of Schedule 40.

Pipe 1 in. through 4 in. NPS shall be a minimum of Schedule 80. Black or galvanized steel pipe shall be either ASTM A-106 Seamless, Grade A, B, or C; or ASTM A-53 Seamless or Electric Welded, Grade A or B.

ASTM A-120 and ASTM A-53 Class F Furnace Welded Pipe shall not be used.

- (c) For IG-541 normally charged to 2,175 psig at 70°F (21°C), use an internal pressure of 2,575 psig (130°F) (55°C) for piping upstream of the pressure reducer; and use an internal pressure of 1,000 psig (130°F) (55°C) for piping downstream of the pressure reducer. The pressure reducing device shall be readily identifiable.
- (d) If higher storage temperatures are approved for a given system, the internal pressure shall be adjusted to the maximum internal pressure at maximum temperature. In performing this calculation, all joint factors and threading, grooving, or welding allowances shall be taken into account.
- **2-2.1.2** Cast-iron pipe, steel pipe conforming to ASTM A120, or nonmetallic pipe shall not be used.
- **2-2.1.3** Stenciled pipe identification shall not be painted over, concealed, or removed prior to approval by the authority having jurisdiction.
- **2-2.1.4** Where used, flexible piping, tubing, or hoses (including connections) shall be of approved materials and pressure ratings.
- **2-2.1.5** Each pipe section shall be cleaned internally after preparation and before assembly by means of swabbing, utilizing a suitable nonflammable cleaner. The piping network shall be free of particulate matter and oil residue before installation of nozzles or discharge devices.

- **2-2.1.6** In sections where valve arrangement introduces sections of closed piping, such sections shall be equipped with pressure relief devices or the valves shall be designed to prevent entrapment of liquid. In systems using pressure-operated container valves, means shall be provided to vent any container leakage that could build up pressure in the pilot system and cause unwanted opening of the container valve. The means of pressure venting shall be arranged so as not to prevent reliable operation of the container valve.
- **2-2.1.7** All pressure relief devices shall be designed and located so that the discharge from the device will not injure personnel or pose a hazard.
- **2-2.2 Pipe Joints.** Pipe joints other than threaded, welded, brazed, flared, compression, or flanged type shall be listed or approved.

2-2.3 Fittings.

- 2-2.3.1* Fittings shall have a minimum rated working pressure equal to or greater than the maximum pressure in the container at 130°F (54°C) when filled to the maximum allowable fill density for the clean agent being used, or as otherwise listed or approved. For systems that employ the use of a pressure reducing device in the distribution piping, the fittings downstream of the device shall have a minimum rated working pressure equal to or greater than the maximum anticipated pressure in the downstream piping.
- **2-2.3.2** Cast-iron fittings shall not be used. Class 150 lb fittings shall not be used unless it can be demonstrated that they comply with the appropriate ANSI stress calculations.
- **2-2.3.3** All threads used in joints and fittings shall conform to ANSI B1.20.1. Joint compound, tape, or thread lubricant shall be applied only to the male threads of the joint.
- **2-2.3.4** Welding and brazing alloys shall have a melting point above 1000°F (538°C).
- **2-2.3.5** Welding shall be performed in accordance with Section IX, "Qualification Standard for Welding and Brazing Procedures, Welders, Brazers and Welding and Brazing Operators," of the ASME *Boiler and Pressure Vessel Code*.
- **2-2.3.6** Where copper, stainless steel, or other suitable tubing is jointed with compression-type fittings, the manufacturer's pressure temperature ratings of the fitting shall not be exceeded.

2-2.4 Valves.

- **2-2.4.1** All valves shall be listed or approved for the intended use.
- **2-2.4.2*** All gaskets, o-rings, sealants, and other valve components shall be constructed of materials that are compatible with the clean agent. Valves shall be protected against mechanical, chemical, or other damage.
- **2-2.4.3** Special corrosion-resistant materials or coatings shall be used in severely corrosive atmospheres.

2-2.5 Discharge Nozzles.

2-2.5.1 Discharge nozzles shall be listed for the intended use including the flow characteristics and area of coverage.

COMPONENTS **2001**-9

Discharge orifices, and discharge orifice plates and inserts, shall be of a material that is corrosion resistant to the agent used and the atmosphere in the intended application.

- **2-2.5.2** Special corrosion-resistant materials or coatings shall be required in severely corrosive atmospheres.
- **2-2.5.3** Discharge nozzles shall be permanently marked to identify the manufacturer as well as the type and size of the orifice.
- **2-2.5.4** Where clogging by external foreign materials is likely, discharge nozzles shall be provided with frangible discs, blowoff caps, or other suitable devices. These devices shall provide an unobstructed opening upon system operation and shall be located so they will not injure personnel.

2-3 Detection, Actuation, and Control Systems.

2-3.1 General.

- **2-3.1.1** Detection, actuation, alarm, and control systems shall be installed, tested, and maintained in accordance with appropriate NFPA protective signaling systems standards (see NFPA 70, National Electrical Code, and NFPA 72, National Fire Alarm Code. In Canada refer to CAN/ULC \$524-M86, Standard for the Installation of Fire Alarm Systems, and CAN/ULC \$529-M87, Smoke Detectors for Fire Alarm Systems).
- **2-3.1.2** Automatic detection and automatic actuation shall be used.

Exception: Manual-only actuation shall be permitted if acceptable to the authority having jurisdiction.

2-3.2 Automatic Detection.

2-3.2.1* Automatic detection shall be by any listed method or device capable of detecting and indicating heat, flame, smoke, combustible vapors, or an abnormal condition in the hazard, such as process trouble, that is likely to produce fire.

NOTE: Detectors installed at the maximum spacing as listed or approved for fire alarm use may result in excessive delay in agent release, especially where more than one detection device is required to be in alarm before automatic actuation results.

- **2.3.2.2** Adequate and reliable primary and 24-hour minimum standby sources of energy shall be used to provide for operation of the detection, signaling, control, and actuation requirements of the system.
- **2-3.2.3** When a new clean agent system is being installed in a space that has an existing detection system, an analysis shall be made of the detection devices to assure that the detection system is in good operating condition and will respond promptly to a fire situation. This shall be done to assist in limiting the decomposition products from a suppression event.

2-3.3 Operating Devices.

- **2-3.3.1** Operating devices shall include agent releasing devices or valves, discharge controls, and shutdown equipment necessary for successful performance of the system.
- **2-3.3.2** Operation shall be by listed mechanical, electrical, or pneumatic means. An adequate and reliable source of energy shall be used.

2-3.3.3 All devices shall be designed for the service they will encounter and shall not readily be rendered inoperative or susceptible to accidental operation. Devices normally shall be designed to function properly from -20°F to 130°F (-29°C to 54°C) or marked to indicate temperature limitations.

- **2-3.3.4** All devices shall be located, installed, or suitably protected so that they are not subject to mechanical, chemical, or other damage that would render them inoperative.
- **2-3.3.5** A means of manual release of the system shall be provided. This shall be accomplished by a mechanical manual release, or by an electrical manual release when the control equipment monitors the battery voltage level of the standby battery supply and will provide a low battery signal. The release shall cause simultaneous operation of automatically operated valves controlling agent release and distribution.
- **2-3.3.6** The normal manual control(s) for actuation shall be located for easy accessibility at all times, including at the time of a fire. The manual control(s) shall be of distinct appearance and clearly recognizable for the purpose intended. Operation of any control shall cause the complete system to operate in its normal fashion.
- **2-3.3.7** Manual controls shall not require a pull of more than 40 lb (178 N) nor a movement of more than 14 in. (356 mm) to secure operation. At least one manual control for activation shall be located not more than 4 ft (1.2 m) above the floor.
- **2-3.3.8** Where gas pressure from the system or pilot containers is used as a means for releasing the remaining containers, the supply and discharge rate shall be designed for releasing all of the remaining containers.
- **2-3.3.9** All devices for shutting down supplementary equipment shall be considered integral parts of the system and shall function with the system operation.
- **2-3.3.10** All manual operating devices shall be identified as to the hazard they protect.

2-3.4 Control Equipment.

- **2-3.4.1 Electric Control Equipment.** The control equipment shall supervise the actuating devices and associated wiring and, as required, cause actuation. The control equipment shall be specifically listed for the number and type of actuating devices utilized, and their compatibility shall have been listed.
- **2-3.4.2 Pneumatic Control Equipment.** Where pneumatic control equipment is used, the lines shall be protected against crimping and mechanical damage. Where installations could be exposed to conditions that could lead to loss of integrity of the pneumatic lines, special precautions shall be taken to ensure that no loss of integrity will occur. The control equipment shall be specifically listed for the number and type of actuating devices utilized, and their compatibility shall have been listed.

2-3.5 Operating Alarms and Indicators.

2-3.5.1 Alarms or indicators or both shall be used to indicate the operation of the system, hazards to personnel, or failure of any supervised device. The type (audible, visual,

or olfactory), number, and location of the devices shall be such that their purpose is satisfactorily accomplished. The extent and type of alarms or indicator equipment or both shall be approved.

- **2-3.5.2** Audible and visual pre-discharge alarms shall be provided within the protected area to give positive warning of impending discharge. The operation of the warning devices shall be continued after agent discharge until positive action has been taken to acknowledge the alarm and proceed with appropriate action.
- **2-3.5.3*** Abort switches generally are not recommended. However, where provided, the abort switches shall be located within the protected area and shall be located near the means of egress for the area. An abort switch shall not be operated unless the cause for the condition is known and corrective action can be taken. The abort switch shall be of a type that requires constant manual pressure to cause abort. The abort switch shall not be of a type that would allow the system to be left in an aborted mode without someone present. In all cases the normal and manual emergency control shall override the abort function. Operation of the abort function shall result in both audible and distinct visual indication of system impairment. The abort switch shall be clearly recognizable for the purpose intended.
- **2-3.5.4** Alarms indicating failure of supervised devices or equipment shall give prompt and positive indication of any failure and shall be distinctive from alarms indicating operation or hazardous conditions.
- **2-3.5.5** Warning and instruction signs at entrances to and inside protected areas shall be provided.

2-3.5.6 Time Delays.

- **2-3.5.6.1** For applications where a discharge delay does not significantly increase the threat to life or property, clean agent extinguishing systems shall incorporate a predischarge alarm with a time delay sufficient to allow personnel evacuation prior to discharge.
- **2-3.5.6.2** Time delays shall be used only for personnel evacuation or to prepare the hazard area for discharge.
- **2-3.5.6.3** Time delays shall not be used as a means of confirming operation of a detection device before automatic actuation occurs.
- **2-3.6* Unwanted System Operation.** Care shall be taken to thoroughly evaluate and correct any factors that may result in unwanted discharges.

Chapter 3 System Design

3-1 Specifications, Plans, and Approvals.

3-1.1 Specifications. Specifications for clean agent fire extinguishing systems shall be prepared under the supervision of a person fully experienced and qualified in the design of clean agent extinguishing systems and with the advice of the authority having jurisdiction. The specifications shall include all pertinent items necessary for the proper design of the system such as the designation of the authority having jurisdiction, variances from the standard

to be permitted by the authority having jurisdiction, design criteria, system sequence of operations, the type and extent of the approval testing to be performed after installation of the system, and owner training requirements.

3-1.2 Working Plans.

- **3-1.2.1** Working plans and calculations shall be submitted for approval to the authority having jurisdiction before installation or remodeling begins. These documents shall be prepared only by persons fully experienced and qualified in the design of clean agent extinguishing systems. Deviation from these documents shall require permission of the authority having jurisdiction.
- **3-1.2.2** Working plans shall be drawn to an indicated scale, and shall show the following items that pertain to the design of the system:
 - (a) Name of owner and occupant;
 - (b) Location, including street address;
 - (c) Point of compass and symbol legend;
- (d) Location and construction of protected enclosure walls and partitions;
 - (e) Location of fire walls;
- (f) Enclosure cross section, full height or schematic diagram, including location and construction of building floor/ceiling assemblies above and below, raised access floor and suspended ceiling;
 - (g) Type of clean agent being used;
 - (h) Design extinguishing or inerting concentration;
- (i) Description of occupancies and hazards being protected, designating whether or not the enclosure is normally occupied;
 - (j) Description of exposures surrounding the enclosure;
- (k) Description of the agent storage containers used including internal volume, storage pressure and nominal capacity expressed in units of agent mass, or volume at standard conditions of temperature and pressure;
- (l) Description of nozzle(s) used including size, orifice port configuration, and equivalent orifice area;
- (m) Description of pipe and fittings used including material specifications, grade, and pressure rating;
- (n) Description of wire or cable used including classification, gauge (AWG), shielding, number of strands in conductor, conductor material, and color coding schedule. Segregation requirements of various system conductors shall be clearly indicated. The required method of making wire terminations shall be detailed;
 - (o) Description of the method of detector mounting;
- (p) Equipment schedule or bill of materials for each piece of equipment or device showing device name, manufacturer, model or part number, quantity and description;
- (q) Plan view of protected area showing enclosure partitions (full and partial height); agent distribution system including agent storage containers, piping, and nozzles; type of pipe hangers and rigid pipe supports; detection, alarm, and control system including all devices and schematic of wiring interconnection between them; end-of-line device locations; location of controlled devices such as dampers and shutters; location of instructional signage;

SYSTEM DESIGN **2001**–11

- (r) Isometric view of agent distribution system showing the length and diameter of each pipe segment; node reference numbers relating to the flow calculations; fittings including reducers and strainers; orientation of tees, nozzles including size, orifice port configuration, flow rate, and equivalent orifice area;
- (s) Scale drawing showing the layout of the annunciator panel graphics if required by the authority having jurisdiction;
- (t) Details of each unique rigid pipe support configuration showing method of securement to the pipe and to the building structure;
- (u) Details of the method of container securement showing method of securement to the container and to the building structure;
- (v) Complete step-by-step description of the system sequence of operations including functioning of abort and maintenance switches, delay timers, and emergency power shutdown;
- (w) Point-to-point wiring schematic diagrams showing all circuit connections to the system control panel and graphic annunciator panel;
- (x) Point-to-point wiring schematic diagrams showing all circuit connections to external or add-on relays;
- (y) Complete calculations to determine enclosure volume, quantity of clean agent, and size of backup batteries. Method used to determine number and location of audible and visual indicating devices, and number and location of detectors; and
 - (z) Details of any special features.
- **3-1.2.3** The detail on the system shall include information and calculations on the amount of agent; container storage pressure; internal volume of the container; the location, type, and flow rate of each nozzle including equivalent orifice area; the location, size, and equivalent lengths of pipe, fittings, and hose; and the location and size of the storage facility. Pipe size reduction and orientation of tees shall be clearly indicated. Information shall be submitted pertaining to the location and function of the detection devices, operating devices, auxiliary equipment, and electrical circuitry, if used. Apparatus and devices used shall be identified. Any special features shall be adequately explained.

Exception: Pre-engineered systems do not require specifying internal volume of the container, nozzle flow rates, equivalent lengths of pipe and fitting and hose, or flow calculations, when used within its listed limitations. The information required by the listed system design manual, however, shall be made available to the authority having jurisdiction for verification that the system is within its listed limitations.

3-1.2.4 An as-built instruction and maintenance manual that includes a full sequence of operations and a full set of drawings and calculations shall be maintained on site.

3-1.2.5 Flow Calculations.

3-1.2.5.1 Flow calculations along with the working plans shall be submitted to the authority having jurisdiction for approval. The version of the flow calculation program shall be identified on the computer calculation printout.

- **3-1.2.5.2** Where field conditions necessitate any material change from approved plans, the change shall be submitted for approval.
- **3-1.2.5.3** When such material changes from approved plans are made, corrected "as installed" plans shall be provided.

3-1.3 Approval of Plans.

- **3-1.3.1** Plans and calculations shall be approved prior to installation.
- **3-1.3.2** Where field conditions necessitate any significant change from approved plans, the change shall be approved prior to implementation.
- **3-1.3.3** When such significant changes from approved plans are made, the working plans shall be updated to accurately represent the system as installed.

3-2 System Flow Calculations.

3-2.1* System flow calculations shall be performed using a calculation method listed or approved by the authority having jurisdiction for the agent. The system design shall be within the manufacturer's listed limitations.

Exception: Pre-engineered systems do not require a flow calculation where used within their listed limitations.

- **3-2.2** Valves and fittings shall be rated for equivalent length in terms of pipe or tubing sizes with which they will be used. The equivalent length of the container valves shall be listed and shall include siphon tube, valve, discharge head, and flexible connector.
- **3-2.3** The piping lengths, nozzle, and fitting orientation shall be in accordance with the manufacturer's listed limitations to ensure proper system performance.
- **3-2.4** If the final installation varies from the prepared drawings and calculations, new drawings and calculations representing the "as built" installation shall be prepared.

3-3 Enclosure.

- **3-3.1** In the design of total flooding systems, the characteristics of the enclosure shall be considered as part of Section 3-3.
- **3-3.2** The area of unclosable openings shall be kept to a minimum. The authority having jurisdiction may require pressurization/depressurization or other tests to assure proper performance as defined by this standard.
- **3-3.3** To prevent loss of agent through openings to adjacent hazards or work areas, openings shall be permanently sealed or equipped with automatic closures. Where reasonable confinement of agent is not practicable, protection shall be extended to include the adjacent connected hazards or work areas.
- **3-3.4*** Forced-air ventilating systems shall be shut down or closed automatically where their continued operation would adversely affect the performance of the fire extinguishment agent system or result in propagation of the fire. Completely self-contained recirculating ventilation systems are not required to shut down. The volume of the system and associated ductwork shall be considered as part of the total hazard volume when determining agent quantities.

Exception: Ventilation systems necessary to ensure safety are not required to be shut down upon system activation. An extended agent discharge shall be provided to maintain the design concentration for the required duration of protection.

3-4 Design Concentration Requirements.

- **3-4.1** For combinations of fuels, the flame extinguishment or inerting value for the fuel requiring the greatest concentration shall be used unless tests are made on the actual mixture.
- **3-4.2** For a particular fuel, either flame extinguishment or inerting concentrations shall be used.

3-4.2.1* Inerting.

- **3-4.2.1.1** The inerting concentrations shall be used where conditions for subsequent reflash or explosion could exist. These conditions are when both:
- (a) The quantity of fuel permitted in the enclosure is sufficient to develop a concentration equal to or greater than one-half of the lower flammable limit throughout the enclosure; and
- (b) The volatility of the fuel before the fire is sufficient to reach the lower flammable limit in air (maximum ambient temperature or fuel temperature exceeds the close cup flash point temperature) or the system response is not rapid enough to detect and extinguish the fire before the volatility of the fuel is increased to a dangerous level as a result of the fire.
 - **CAUTION:** Under certain conditions, it may be dangerous to extinguish a burning gas jet. As a first measure, the gas supply should be shut off.
- **3-4.2.1.2** The minimum design concentrations used to inert atmospheres involving flammable liquids and gases shall be determined by test plus a 10 percent safety factor.

3-4.2.2* Flame Extinguishment.

- **3-4.2.2.1** The minimum design concentration for Class B flammable liquids shall be a demonstrated extinguishing concentration plus a 20 percent safety factor. Extinguishing concentration shall be demonstrated by the cup burner test. If reliable clean agent cup burner test data is not obtainable, the extinguishing concentration shall be determined by full-scale testing performed by the listing organization as part of a complete listing investigation. As a minimum, the testing shall conform to UL 1058, Standard for Safety Halogenated Agent Extinguishing System Units, or equivalent.
- **3-4.2.2.2** The extinguishing concentration for Class A fires shall be determined by test as part of a listing program.
- **3-4.2.2.3*** The minimum design concentration for Class A fires shall be the extinguishing concentration plus a 20 percent safety factor.

3-5 Total Flooding Quantity.

3-5.1* The amount of halocarbon clean agent required to achieve the design concentration shall be calculated from the following formula:

$$W = V/S [C/(100-C)]$$
 (1)

$$S = k1 + k2 (T) \tag{2}$$

Where:

W = weight of clean agent.

T = minimum anticipated temperature of the protected volume.

k1 and k2 = constants specific to the clean agent being used. See Table 3-5.1 for values of k1 and k2.

C = clean agent design concentration, % by volume.

V = net volume of hazard, cu ft (m³) (enclosed volume minus fixed structures impervious to clean agent).

S = k1 + k2 (T) is a linear equation determined by least squares curve fit techniques from data supplied by the clean agent manufacturers. The zero intercept is k1 and the slope is k2.

NOTE: This calculation includes an allowance for the normal leakage from a "tight" enclosure due to agent expansion.

Table 3-5.1(a) Specific Volume Constants k1 and k2

	c	F	$^{\circ}\mathbf{C}$				
Agents	kl	k2	kl	k2			
FC-3-1-10	1.409	0.0031	0.0941	0.0003			
HBFC-22B1	2.484	0.0058	0.1668	0.0007			
HCFC Blend A	3.612	0.0079	0.2413	0.00088			
HCFC-124	2.352	0.0057	0.1578	0.0006			
HFC-125	2.724	0.0063	0.1701	0.0007			
HFC-227ea	1.885	0.0046	0.1269	0.0005			
HFC-23	4.731	0.0107	0.2954	0.0012			
IG-541	9.7261	0.0211	0.649	0.00237			

3-5.2* The amount of inert gas clean agent required to achieve the design concentration shall be calculated from the following formula:

$$X = 2.303 \text{ V/S} \left[\frac{100}{100 \text{-C}} \right] \text{ V}_{S}$$

Where:

 $S = k_1 + k_2 (T).$

X = volume of inert gas added per volume of space.

T = minimum anticipated temperature in the protected volume.

 k_1 and k_2 = constants specific to the inert gas being used. See Table 3-5.1(a) for values of k_1 and k_2 .

C = inert gas concentration, % by volume.

V = net volume of hazard, cu ft (m³) (enclosed volume minus fixed structures impervious to clean agent).

 $S = k_1 + k_2$ (T) is a linear equation determined by least squares curve fit techniques from data supplied by the inert gas agent manufacturers. The zero intercept is k_1 and the slope is k_2 .

 V_s = Specific volume at 70° F (ft³/lb) = 11.2093 ft³/lb.

NOTE: This calculation includes an allowance for the normal leakage from a "tight" enclosure due to agent expansion.

3-5.3 In addition to the concentration requirements, additional quantities of agent are required to compensate for any special conditions that would affect the extinguishing efficiency.

Table 3-5.1(b) FC-3-1-10 Total Flooding Quantity [1]

Temp. -t- (°F)	FC-3-1-10 Specific Vapor Volume -S-		FC-	3-1-10 Weig	ht Requirem	ents of Haza	ard Volume	W/V (lb/cu fi	i) [2]		
[3]	(cu ft/lb) [4]										
		4	5	6	7	8	9	10	11	12	
-70	1.1920	0.0350	0.0442	0.0535	0.0631	0.0730	0.0830	0.0932	0.1037	0.1144	
-60	1.2230	0.0341	0.0430	0.0522	0.0615	0.0711	0.0809	0.0909	0.1011	0.1115	
-50	1.2540	0.0332	0.0420	0.0509	0.0600	0.0693	0.0789	0.0886	0.0986	0.1087	
-40	1.2850	0.0324	0.0410	0.0497	0.0586	0.0677	0.0770	0.0865	0.0962	0.1061	
- 30	1.3160	0.0317	0.0400	0.0485	0.0572	0.0661	0.0752	0.0844	0.0939	0.1036	
-20	1.3470	0.0309	0.0391	0.0474	0.0559	0.0646	0.0734	0.0825	0.0918	0.1012	
-10	1.3780	0.0302	0.0382	0.0463	0.0546	0.0631	0.0718	0.0806	0.0897	0.0990	
0	1.4090	0.0296	0.0374	0.0453	0.0534	0.0617	0.0702	0.0789	0.0877	0.0968	
10	1.4400	0.0289	0.0365	0.0443	0.0523	0.0604	0.0687	0.0772	0.0858	0.0947	
20	1.4710	0.0283	0.0358	0.0434	0.0512	0.0591	0.0672	0.0755	0.0840	0.0927	
30	1.5020	0.0277	0.0350	0.0425	0.0501	0.0579	0.0658	0.0740	0.0823	0.0908	
40	1.5330	0.0272	0.0343	0.0416	0.0491	0.0567	0.0645	0.0725	0.0806	0.0890	
50	1.5640	0.0266	0.0337	0.0408	0.0481	0.0556	0.0632	0.0710	0.0790	0.0872	
60	1.5950	0.0261	0.0330	0.0400	0.0472	0.0545	0.0620	0.0697	0.0775	0.0855	
70	1.6260	0.0256	0.0324	0.0393	0.0463	0.0535	0.0608	0.0683	0.0760	0.0839	
80	1.6570	0.0251	0.0318	0.0385	0.0454	0.0525	0.0597	0.0671	0.0746	0.0823	
90	1.6880	0.0247	0.0312	0.0378	0.0446	0.0515	0.0586	0.0658	0.0732	0.0808	
100	1.7190	0.0242	0.0306	0.0371	0.0438	0.0506	0.0575	0.0646	0.0719	0.0793	
110	1.7500	0.0238	0.0301	0.0365	0.0430	0.0497	0.0565	0.0635	0.0706	0.0779	
120	1.7810	0.0234	0.0296	0.0358	0.0423	0.0488	0.0555	0.0624	0.0694	0.0766	
130	1.8120	0.0230	0.0290	0.0352	0.0415	0.0480	0.0546	0.0613	0.0682	0.0753	
140	1.8430	0.0226	0.0286	0.0346	0.0408	0.0472	0.0537	0.0603	0.0671	0.0740	
150	1.8740	0.0222	0.0281	0.0341	0.0402	0.0464	0.0528	0.0593	0.0660	0.0728	
160	1.9050	0.0219	0.0276	0.0335	0.0395	0.0456	0.0519	0.0583	0.0649	0.0716	
170	1.9360	0.0215	0.0272	0.0330	0.0389	0.0449	0.0511	0.0574	0.0638	0.0704	
180	1.9670	0.0212	0.0268	0.0325	0.0383	0.0442	0.0503	0.0565	0.0628	0.0693	
190	1.9980	0.0209	0.0263	0.0319	0.0377	0.0435	0.0495	0.0556	0.0619	0.0683	
200	2.0290	0.0205	0.0259	0.0315	0.0371	0.0429	0.0487	0.0548	0.0609	0.0672	

[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W/V [Agent Weight Requirements (lb/cu ft)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

[3] t [Temperature (F)] — The design temperature in the hazard area.
[4] S [Specific Volume (cu ft/lb)] — Specific volume of superheated FC-3-1-10 vapor may be approximated by the formula:

S = 1.409 + 0.0031t

where t = temperature (F)
[5] C [Concentration (%)] — Volumetric concentration of FC 3-1-10 in air at the temperature indicated.

Table 3-5.1(c) HBFC-22B1 Total Flooding Quantity [1]

Temp -t- (F)	Volume HBFC-22B1 Weight Requirements of Hazard								V (lb/cu ft)	[2]	
[3]	(cu ft/lb) [4]	Design Concentration (% by volume) [5]									
[9]	[-1	3	4	5	6	7	8	9	10	11	12
10	2.5400	0.0122	0.0164	0.0207	0.0251	0.0296	0.0342	0.0389	0.0437	0.0487	0.0537
20	2.5987	0.0119	0.0160	0.0203	0.0246	0.0290	0.0335	0.0381	0.0428	0.0476	0.0525
30	2.6574	0.0116	0.0157	0.0198	0.0240	0.0283	0.0327	0.0372	0.0418	0.0465	0.0513
40	2.7159	0.0114	0.0153	0.0194	0.0235	0.0277	0.0320	0.0364	0.0409	0.0455	0.0502
50	2.7747	0.0111	0.0150	0.0190	0.0230	0.0271	0.0313	0.0356	0.0400	0.0445	0.0491
60	2.8329	0.0109	0.0147	0.0186	0.0225	0.0266	0.0307	0.0349	0.0392	0.0436	0.0481
70	2.8910	0.0107	0.0144	0.0182	0.0221	0.0260	0.0301	0.0342	0.0384	0.0428	0.0472
80	2.9498	0.0105	0.0141	0.0178	0.0216	0.0255	0.0295	0.0335	0.0377	0.0419	0.0462
90	3.0075	0.0103	0.0139	0.0175	0.0212	0.0250	0.0289	0.0329	0.0369	0.0411	0.0453
100	3.0656	0.0101	0.0136	0.0172	0.0208	0.0246	0.0284	0.0323	0.0362	0.0403	0.0445
110	3.1230	0.0099	0.0133	0.0169	0.0204	0.0241	0.0278	0.0317	0.0356	0.0396	0.0437
120	3.1817	0.0097	0.0131	0.0165	0.0201	0.0237	0.0273	0.0311	0.0349	0.0388	0.0429
130	3.2394	0.0095	0.0129	0.0162	0.0197	0.0232	0.0268	0.0305	0.0343	0.0382	0.0421
140	3.2971	0.0094	0.0126	0.0160	0.0194	0.0228	0.0264	0.0300	0.0337	0.0375	0.0414
150	3.3546	0.0092	0.0124	0.0157	0.0190	0.0224	0.0259	0.0295	0.0331	0.0368	0.0407
160	3.4118	0.0091	0.0122	0.0154	0.0187	0.0221	0.0255	0.0290	0.0326	0.0362	0.0400
170	3.4698	0.0089	0.0120	0.0152	0.0184	0.0217	0.0251	0.0285	0.0320	0.0356	0.0393
180	3.5261	0.0088	0.0118	0.0149	0.0181	0.0213	0.0247	0.0280	0.0315	0.0351	0.0387
190	3.5842	0.0086	0.0116	0.0147	0.0178	0.0210	0.0243	0.0276	0.0310	0.0345	0.0380
200	3.6417	0.0085	0.0114	0.0145	0.0175	0.0207	0.0239	0.0272	0.0305	0.0339	0.0374

[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W/V [Agent Weight Requirements (lb/cu ft)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

[3] t [Temperature (F)] — The design temperature in the hazard area.
[4] S [Specific Volume (cu fi/lb)] — Specific volume of superheated HBFC-22B1 vapor may be approximated by the formula:

S = 2.4845 + 0.005796t

where t = temperature (F)

[5] C [Concentration (%)] — Volumetric concentration of HBFC-22B1 m air at the temperature indicated.

Table 3-5.1(d) HCFC Blend A Total Flooding Quantity [1]

Temp -t- F	HCFC Blend A Specific Vapor Volume -S-		нсгс вы	HCFC Blend A Weight Requirements of Hazard Volume W/V (lb/cu ft) [2]					
[3]	(cu ft/lb) [4]								
		7%	8%	8.6%	9%	10%	11%	12%	13%
-50	3.2192	0.0234	0.027	0.0292	0.0307	0.0345	0.0384	0.0424	0.0464
- 40	3.2978	0.0228	0.0264	0.0285	0.03	0.0337	0.0375	0.0414	0.0453
-30	3.3763	0.0223	0.0258	0.0279	0.0293	0.0329	0.0366	0.0404	0.0443
-20	3.4549	0.0218	0.0252	0.0272	0.0286	0.0322	0.0358	0.0395	0.0433
-10	3.5335	0.0213	0.0246	0.0266	0.028	0.0314	0.035	0.0386	0.0423
0	3.6121	0.0208	0.0241	0.026	0.0274	0.0308	0.0342	0.0378	0.0414
10	3.6906	0.0204	0.0236	0.0255	0.0268	0.0301	0.0335	0.0369	0.0405
20	3.7692	0.02	0.0231	0.025	0.0262	0.0295	0.0328	0.0362	0.0396
30	3.8478	0.0196	0.0226	0.0245	0.0257	0.0289	0.0321	0.0354	0.0388
40	3.9264	0.0192	0.0221	0.024	0.0252	0.0283	0.0315	0.0347	0.0381
50	4.0049	0.0188	0.0217	0.0235	0.0247	0.0277	0.0309	0.034	0.0373
60	4.0835	0.0184	0.0213	0.023	0.0242	0.0272	0.0303	0.0334	0.0366
70	4.1621	0.0181	0.0209	0.0226	0.0238	0.0267	0.0297	0.0328	0.0359
80	4.2407	0.0177	0.0205	0.0222	0.0233	0.0262	0.0291	0.0322	0.0352
90	4.3192	0.0174	0.0201	0.0218	0.0229	0.0257	0.0286	0.0316	0.0346
100	4.3978	0.0171	0.0198	0.0214	0.0225	0.0253	0.0281	0.031	0.034
110	4.4764	0.0168	0.0194	0.021	0.0221	0.0248	0.0276	0.0305	0.0334
120	4.555	0.0164	0.0191	0.0207	0.0217	0.0244	0.0271	0.0299	0.0328
130	4.6336	0.0162	0.0188	0.0203	0.0213	0.024	0.0267	0.0294	0.0322
140	4.7121	0.016	0.0185	0.02	0.021	0.0236	0.0262	0.0289	0.0317
150	4.7907	0.0157	0.0182	0.0196	0.0206	0.0232	0.0258	0.0285	0.0312
160	4.8693	0.0155	0.0179	0.0193	0.0203	0.0228	0.0254	0.028	0.0307
170	4.9479	0.0152	0.0176	0.019	0.02	0.0225	0.025	0.0276	0.0302
180	5.0264	0.015	0.0173	0.0187	0.0197	0.0221	0.0246	0.0271	0.0297
190	5.105	0.0147	0.017	0.0184	0.0194	0.0218	0.0242	0.0267	0.0293
200	5.1836	0.0145	0.0168	0.0182	0.0191	0.0214	0.0238	0.0263	0.0288

where t = temperature (F)

[5] C [Concentration (%)] — Volumetric concentration of HCFC Blend A in air at the temperature indicated

^[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W/V [Agent Weight Requirements (lb/cu ft)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

^[3] t [Temperature (F)] — The design temperature in the hazard area. [4] S [Specific Volume (cu ft/lb)] — Specific volume of superheated HCFC Blend A vapor may be approximated by the formula: $S=3.612\pm0.0079t$

Table 3-5.1(e) HCFC-124 Total Flooding Quantity [1]

Temp -t- (F)	HCFC-124 Specific Vapor Volume -S- (cu ft/lb)	Specific Vapor Volume +CFC-124 Weight Requirements of Hazard Volume W/V (lb/cu ft) [2] -S-									
[3]	[4]										
		5	6	7	8	9	10	11	12		
-70	1.954	0.0269	0.0326	0.0385	0.0445	0.0506	0.0569	0.0632	0.0698		
-60	2.011	0.0262	0.0317	0.0374	0.0432	0.0492	0.0552	0.0614	0.0678		
-50	2.068	0.0254	0.0309	0.0364	0.0420	0.0478	0.0537	0.0598	0.0659		
-40	2.125	0.0248	0.0300	0.0354	0.0409	0.0564	0.0523	0.0582	0.0642		
- 30	2.181	0.0241	0.0293	0.0345	0.0409	0.0465	0.0523	0.0582	0.0642		
-20	2.238	0.0235	0.0285	0.0336	0.0388	0.0442	0.0496	0.0552	0.0609		
-10	2.295	0.0229	0.0278	0.0328	0.0379	0.0431	0.0484	0.0538	0.0594		
()	2.352	0.0224	0.0271	0.0320	0.0370	0.0420	0.0472	0.0525	0.0580		
10	2.409	0.0218	0.0265	0.0312	0.0361	0.0410	0.0461	0.0513	0.0566		
20	2.466	0.0213	0.0259	0.0305	0.0353	0.0401	0.0450	0.0501	0.0553		
30	2.522	0.0209	0.0253	0.0298	0.0345	0.0392	0.0440	0.0490	0.0541		
.1()	2.579	0.0204	0.0247	0.0292	0.0337	0.0383	0.0431	0.0479	0.0529		
50	2.636	0.0200	0.0242	0.0285	0.0330	0.0375	0.0421	0.0469	0.0517		
60	2.693	0.0195	0.0237	0.0279	0.0323	0.0367	0.0412	0.0459	0.0506		
70	2.750	0.0191	0.0232	0.0274	0.0316	0.0360	0.0404	0.0449	0.0496		
80	2.807	0.0187	0.0227	0.0268	0.0310	0.0352	0.0396	0.0440	0.0486		
90	2.863	0.0184	0.0223	0.0263	0.0304	0.0345	0.0388	0.0432	0.0476		
100	2.920	0.0180	0.0218	0.0258	0.0298	0.0339	0.0380	0.0423	0.0467		
110	2.977	0.0177	0.0214	0.0253	0.0292	0.0332	0.0373	0.0415	0.0458		
120	3.034	0.0173	0.0210	0.0248	0.0287	0.0326	0.0366	0.0407	0.0449		
130	3.091	0.0170	0.0206	0.0243	0.0281	0.0320	0.0359	0.0400	0.0441		
140	3.147	0.0167	0.0203	0.0239	0.0276	0.0314	0.0353	0.0393	0.0433		
150	3.204	0.0164	0.0199	0.0235	0.0271	0.0309	0.0347	0.0386	0.0426		
160	3.261	0.0161	0.0196	0.0231	0.0267	0.0303	0.0341	0.0379	0.0418		
170	3.318	0.0159	0.0192	0.0227	0.0262	0.0298	0.0335	0.0372	0.0411		
180	3.375	0.0156	0.0189	0.0223	0.0258	0.0293	0.0329	0.0366	0.0404		
190	3.432	0.0153	0.0186	0.0219	0.0253	0.0288	0.0324	0.0360	0.0397		
200	3.488	0.0151	0.0183	0.0216	0.0249	0.0283	0.0318	0.0354	0.0391		

$$W = \frac{V}{S} \qquad \frac{C}{100 - C}$$

[3] t [Temperature (F)] — The design temperature in the hazard area.
[4] S [Specific Volume (cu ft/lbi)] — Specific volume of superheated HCFC-124 vapor may be approximated by the formula.

S = 2.352 + 0.0057t

where t = temperature (F)
[5] C [Concentration (%)] — Volumetric concentration of HCFC-124 in air at the temperature indicated.

^[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W'V [Agent Weight Requirements (lb/cu ft)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

V C

Table 3-5.1(f) HFC-125 Total Flooding Quantity [1]

Temp. -t- (F)	HFC-125 Specific Vapor Volume -S-			HFC-125 W	Veight Reqi	rements of	Hazard Vo	lume W/V	(lb/cu ft) [2]	
(r) [3]	-5- (cu ft/lb) [4]				Design C	oncentratio	on (% by Vo	olume) [5]			
[9]	[*]	7	8	9	10	11	12	13	14	15	16
-70	2.2830	0.0330	0.0381	0.0433	0.0487	0.0541	0.0597	0.0655	0.0713	0.0773	0.0834
-60	2.3460	0.0321	0.0371	0.0422	0.0474	0.0527	0.0581	0.0637	0.0694	0.0752	0.0812
- 50	2.4090	0.0312	0.0361	0.0411	0.0461	0.0513	0.0566	0.0620	0.0676	0.0733	0.0791
-40	2.4720	0.0304	0.0352	0.0400	0.0449	0.0500	0.0552	0.0604	0.0659	0.0714	0.0771
-30	2.5350	0.0297	0.0343	0.0390	0.0438	0.0488	0.0538	0.0589	0.0642	0.0696	0.0751
-20	2.5980	0.0290	0.0335	0.0381	0.0428	0.0476	0.0525	0.0575	0.0627	0.0679	0.0733
-10	2.6610	0.0283	0.0327	0.0372	0.0418	0.0464	0.0512	0.0562	0.0612	0.0663	0.0716
0	2.7240	0.0276	0.0319	0.0363	0.0408	0.0454	0.0501	0.0549	0.0598	0.0648	0.0699
10	2.7870	0.0270	0.0312	0.0355	0.0399	0.0443	0.0489	0.0536	0.0548	0.0633	0.0683
20	2.8500	0.0264	0.0305	0.0347	0.0390	0.0434	0.0478	0.0524	0.0571	0.0619	0.0668
30	2.9130	0.0258	0.0299	0.0340	0.0381	0.0424	0.0468	0.0513	0.0559	0.0606	0.0654
40	2.9760	0.0253	0.0292	0.0332	0.0373	0.0415	0.0458	0.0502	0.0547	0.0593	0.0640
50	3.0390	0.0248	0.0286	0.0325	0.0366	0.0407	0.0449	0.0492	0.0536	0.0581	0.0627
60	3.1020	0.0243	0.0280	0.0319	0.0358	0.0398	0.0440	0.0482	0.0525	0.0569	0.0614
70	3.1650	0.0238	0.0275	0.0312	0.0351	0.0391	0.0431	0.0472	0.0514	0.0558	0.0602
80	3.2280	0.0233	0.0269	0.0306	0.0344	0.0383	0.0422	0.0463	0.0504	0.0547	0.0590
90	3.2910	0.0229	0.0264	0.0301	0.0338	0.0376	0.0414	0.0454	0.0495	0.0536	0.0579
100	3.3540	0.0224	0.0259	0.0295	0.0331	0.0369	0.0407	0.0446	0.0485	0.0526	0.0568
110	3.4170	0.0220	0.0254	0.0289	0.0325	0.0362	0.0399	0.0437	0.0476	0.0516	0.0557
120	3.4800	0.0216	0.0250	0.0284	0.0319	0.0355	0.0392	0.0429	0.0468	0.0507	0.0547
130	3.5430	0.0212	0.0245	0.0279	0.0314	0.0349	0.0385	0.0422	0.0459	0.0498	0.0538
140	3.6060	0.0209	0.0241	0.0274	0.0308	0.0343	0.0378	0.0414	0.0451	0.0489	0.0528
150	3.6690	0.0205	0.0237	0.0270	0.0303	0.0337	0.0372	0.0407	0.0444	0.0481	0.0519
160	3.7320	0.0202	0.0233	0.0265	0.0298	0.0331	0.0365	0.0400	0.0436	0.0473	0.0510
170	3.7950	0.0198	0.0229	0.0261	0.0293	0.0326	0.0359	0.0394	0.0429	0.0465	0.0502
180	3.8580	0.0195	0.0225	0.0256	0.0288	0.0320	0.0353	0.0387	0.0422	0.0457	0.0494
190	3.9210	0.0192	0.0222	0.0252	0.0283	0.0315	0.0348	0.0381	0.0415	0.0450	0.0486
200	3.9840	0.0189	0.0218	0.0248	0.0279	0.0310	0.0342	0.0375	0.0409	0.0443	0.0478

[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W/V [Agent Weight Requirements (lb/cu ft)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

[3] t [Temperature (F)] — The design temperature in the hazard area.
 [4] S [Specific Volume (cu ft/lb)] — Specific volume of superheated HFC-125 vapor may be approximated by the formula: S = 2.724 + 0.0063t where t = temperature (F)
 [5] C [Concentration (%)] — Volumetric concentration of HFC-125 in air at the temperature indicated.

Table 3-5.1(g) HFC-227ea Total Flooding Quantity [1]

Temp -t- (F)	HFC-227ea Specific Vapor Volume -S-		Н	FC-227ea V	Veight Req	uirements (of Hazard V	olume W/\	/ (lb/cu ft) [2]	
	(cu ft/lb) [4]				Design C	oncentratio	on (% by vo	lume) [5]			
[3]		6	7	8	9	10	11	12	13	14	15
10	1.9264	0.0331	0.0391	0.0451	0.0513	0.057	0.0642	0.0708	0.0776	0.0845	0.0916
20	1.9736	0.0323	0.0381	0.0441	0.0501	0.0563	0.0626	0.0691	0.0757	0.0825	0.0894
30	2.0210	0.0316	0.0372	0.0430	0.0489	0.0550	0.0612	0.0675	0.0739	0.0805	0.0873
40	2.0678	0.0309	0.0364	0.0421	0.0478	0.0537	0.0598	0.0659	0.0723	0.0787	0.0853
50	2.1146	0.0302	0.0356	0.0411	0.0468	0.0525	0.0584	0.0645	0.0707	0.0770	0.0835
60	2.1612	0.0295	0.0348	0.0402	0.0458	0.0514	0.0572	0.0631	0.0691	0.0753	0.0817
70	2.2075	0.0289	0.0341	0.0394	0.0448	0.0503	0.0560	0.0618	0.0677	0.0737	0.0799
80	2.2538	0.0283	0.0334	0.0386	0.0439	0.0493	0.0548	0.0605	0.0663	0.0722	0.0783
90	2.2994	0.0278	0.0327	0.0378	0.0430	0.0483	0.0538	0.0593	0.0650	0.0708	0.0767
100	2.3452	0.0272	0.0321	0.0371	0.0422	0.0474	0.0527	0.0581	0.0637	0.0694	0.0752
110	2.3912	0.0267	0.0315	0.0364	0.0414	0.0465	0.0517	0.0570	0.0625	0.0681	0.0738
120	2.4366	0.0262	0.0309	0.0357	0.0406	0.0456	0.0507	0.0560	0.0613	0.0668	0.0724
130	2.4820	0.0257	0.0303	0.0350	0.0398	0.0448	0.0498	0.0549	0.0602	0.0656	0.0711
140	2.5272	0.0253	0.0298	0.0344	0.0391	0.0440	0.0489	0.0540	0.0591	0.0644	0.0698
150	2.5727	0.0248	0.0293	0.0338	0.0384	0.0432	0.0480	0.0530	0.0581	0.0633	0.0686
160	2.6171	0.0244	0.0288	0.0332	0.0378	0.0425	0.0472	0.0521	0.0571	0.0622	0.0674
170	2.6624	0.0240	0.0283	0.0327	0.0371	0.0417	0.0464	0.0512	0.0561	0.0611	0.0663
180	2.7071	0.0236	0.0278	0.0321	0.0365	0.0410	0.0457	0.0504	0.0552	0.0601	0.0652
190	2.7518	0.0232	0.0274	0.0316	0.0359	0.0404	0.0449	0.0496	0.0543	0.0592	0.0641
200	2.7954	0.0228	0.0269	0.0311	0.0354	0.0397	0.0442	0.0488	0.0535	0.0582	0.0631

^[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W/V [Agent Weight Requirements (lb/cu ft)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

^[3] t [Temperature (F)] — The design temperature in the hazard area.
[4] S [Specific Volume (cu ft/lb)] — Specific volume of superheated HFC-227ea vapor may be approximated by the formula:

S = 1.8854 + 0.004574t

where t = temperature (F)

[5] C [Concentration (%)] — Volumetric concentration of HFC-227ea in air at the temperature indicated.

SYSTEM DESIGN **2001**-19

Table 3-5.1(h) HFC-23 Total Flooding Quantity [1]

Temp -t- (°F)	HFC-23 Specific Vapor Volume -S-			HFC-23 W	eight Requi	rements of	Hazard Vo	lume W/V	(lb/cu ft) [2]		
[3]	-:3- (cu ft/lb) [4]		Design Concentration (% by Volume) [5]									
		10	12	14	15	16	17	18	20	22	24	
-70	3.9664	0.0280	0.0344	0.0410	0.0445	0.0480	0.0516	0.0553	0.0630	0.0711	0.0796	
- 60	4.0783	0.0272	0.0334	0.0399	0.0433	0.0467	0.0502	0.0538	0.0613	0.0692	0.0774	
- 50	4.1893	0.0265	0.0325	0.0389	0.0421	0.0455	0.0489	0.0524	0.0597	0.0673	0.0754	
-40	4.2997	0.0258	0.0317	0.0379	0.0410	0.0443	0.0476	0.0511	0.0581	0.0656	0.0734	
-30	4.4094	0.0252	0.0309	0.0369	0.0400	0.0432	0.0465	0.0498	0.0567	0.0640	0.0716	
-20	4.5187	0.0246	0.0302	0.0360	0.0391	0.0422	0.0453	0.0486	0.0553	0.0624	0.0699	
-10	4.6275	0.0240	0.0295	0.0352	0.0381	0.0412	0.0443	0.0474	0.0540	0.0610	0.0682	
()	4.7359	0.0235	0.0288	0.0344	0.0373	0.0402	0.0432	0.0464	0.0528	0.0596	0.0667	
10	4.8439	0.0229	0.0282	0.0336	0.0364	0.0393	0.0423	0.0453	0.0516	0.0582	0.0652	
20	4.9516	0.0224	0.0275	0.0329	0.0356	0.0385	0.0416	0.0443	0.0505	0.0570	0.0638	
30	5.0590	0.0220	0.0270	0.0322	0.0349	0.0377	0.0405	0.0434	0.0494	0.0558	0.0624	
40	5.1662	0.0215	0.0264	0.0315	0.0342	0.0369	0.0396	0.0425	0.0484	0.0546	0.0611	
50	5.2731	0.0211	0.0259	0.0309	0.0335	0.0361	0.0388	0.0416	0.0474	0.0535	0.0599	
60	5.3798	0.0207	0.0253	0.0303	0.0328	0.0354	0.0381	0.0408	0.0465	0.0524	0.0587	
70	5.4864	0.0203	0.0249	0.0297	0.0322	0.0347	0.0373	0.0400	0.0456	0.0514	0.0576	
80	5.5928	0.0199	0.0244	0.0291	0.0316	0.0341	0.0367	0.0392	0.0447	0.0504	0.0565	
90	5.6991	0.0195	0.0239	0.0286	0.0310	0.0334	0.0359	0.0385	0.0439	0.0495	0.0554	
100	5.8052	0.0191	0.0235	0.0280	0.0304	0.0328	0.0353	0.0378	0.0431	0.0486	0.0544	
110	5.9112	0.0188	0.0231	0.0275	0.0299	0.0322	0.0346	0.0371	0.0423	0.0477	0.0534	
120	6.0172	0.0185	0.0227	0.0271	0.0293	0.0317	0.0340	0.0365	0.0415	0.0469	0.0525	
130	6.1230	0.0181	0.0223	0.0266	0.0288	0.0311	0.0335	0.0359	0.0408	0.0461	0.0516	
140	6.2287	0.0178	0.0219	0.0261	0.0283	0.0306	0.0329	0.0352	0.0401	0.0453	0.0507	
150	6.3344	0.0175	0.0215	0.0257	0.0279	0.0301	0.0323	0.0347	0.0395	0.0445	0.0499	
160	6.4400	0.0173	0.0212	0.0253	0.0274	0.0296	0.0319	0.0341	0.0388	0.0438	0.0490	
170	6.5455	0.0170	0.0208	0.0249	0.0270	0.0291	0.0313	0.0335	0.0382	0.0431	0.0482	
180	6.6510	0.0167	0.0205	0.0245	0.0265	0.0286	0.0308	0.0330	0.0376	0.0424	0.0475	
190	6.7564	0.0164	0.0202	0.0241	0.0261	0.0282	0.0303	0.0325	0.0370	0.0417	0.0467	

where the temperature (F) [5] C [Concentration (G)] — Volumetric concentration of HFC-23 in air at the temperature indicated.

^[1] The manufacturer's listing shall specify the temperature range for operation.
[2] W/V [Agent Weight Requirements (lb/cu/lt)] = Pounds of agent required per cubic foot of protected volume to produce indicated concentration at temperature specified.

V C

 ^[3] t [Temperature (F)] — The design temperature in the hazard area.
 [4] S [Specific Volume (cu ft/lb)] — Specific volume of superheated HFC-23 vapor may be approximated by the formula:
 S = 4.731 + 0.0107t

Table 3-5.1(i) IG-541 Total Flooding Quantity [1]

Temp -t- (F)	IG-541 Specific Vapor Volume -S-		IG-541 Vo	lume Require	ments of Haza	ard Volume V	/V (cu ft IG-54	41/cu ft) [2]	
(F) [3]	(cu ft/lb)			Design	n Concentratio	on (% by volu	me) [5]		
[9]	[4]	34%	38%	42%	46%	50%	54%	58%	62%
-40	8.87867	0.525	0.604	0.688	0.778	0.875	0.981	1.096	1.222
-30	9.09055	0.513	0.590	0.672	0.760	0.855	0.958	1.070	1.194
-20	9.30243	0.501	0.576	0.657	0.743	0.836	0.936	1.046	1.166
-10	9.51431	0.490	0.563	0.642	0.726	0.817	0.915	1.022	1.140
()	9.72619	0.479	0.551	0.628	0.710	0.799	0.895	1.000	1.116
10	9.93807	0.469	0.539	0.615	0.695	0.782	0.876	0.979	1.092
20	10.14990	0.459	0.528	0.602	0.681	0.766	0.858	0.958	1.069
30	10.36180	0.450	0.517	0.590	0.667	0.750	0.840	0.939	1.047
40	10.57370	0.441	0.507	0.578	0.653	0.735	0.824	0.920	1.026
50	10.78560	0.432	0.497	0.566	0.641	0.721	0.807	0.902	1.006
60	10.99750	0.424	0.487	0.555	0.628	0.707	0.792	0.885	0.987
70	11.20930	0.416	0.478	0.545	0.616	0.693	0.777	0.868	0.968
80	11.42120	0.408	0.469	0.535	0.605	0.681	0.762	0.852	0.950
90	11.63310	0.401	0.461	0.525	0.594	0.668	0.749	0.836	0.933
100	11.84500	0.393	0.453	0.516	0.583	0.656	0.735	0.821	0.916
110	12.05690	0.386	0.445	0.507	0.573	0.645	0.722	0.807	0.900
120	12.26870	0.380	0.437	0.498	0.563	0.634	0.710	0.793	0.884
130	12.48060	0.373	0.430	0.489	0.554	0.623	0.698	0.779	0.869
140	12.69250	0.367	0.422	0.481	0.544	0.612	0.686	0.766	0.855
150	12.90440	0.361	0.415	0.473	0.535	0.602	0.675	0.754	0.841
160	13.11630	0.355	0.409	0.466	0.527	0.593	0.664	0.742	0.827
170	13.32810	0.350	0.402	0.458	0.518	0.583	0.653	0.730	0.814
180	13.54000	0.344	0.396	0.451	0.510	0.574	0.643	0.718	0.801
190	13.75190	0.339	0.390	0.444	0.502	0.565	0.633	0.707	0.789
200	13.96380	0.334	0.384	0.437	0.495	0.557	0.624	0.697	0.777

^[1] The manufacturer's listing shall specify the temperature range for operation.

3-6* Pressure Adjustment. The design quantity of the clean agent shall be adjusted to compensate for ambient pressures that vary more than 11 percent [equivalent to approximately 3000 ft (915 m) of elevation change] from standard sea level pressures [29.92 in. Hg at 70°F (760 mm Hg at 0°C)]. The ambient pressure is affected by changes in altitude, pressurization or depressurization of the protected enclosure, and weather-related barometric pressure changes. The agent quantity is determined by multiplying the quantity determined in 3-5.1 or 3-5.2 by the ratio of average ambient enclosure pressure to standard sea level pressure.

3-7 Duration of Protection. It is important that an effective agent concentration not only shall be achieved, but also shall be maintained for a sufficient period of time to allow effective emergency action by trained personnel. This is equally important in all classes of fires since a persistent ignition source (e.g., an arc, heat source, oxyacetylene torch, or "deep-seated" fire) can lead to resurgence of the initial event once the clean agent has dissipated.

Table 3-6 Atmospheric Correction Factors

Equivalent Altitude	Enclosure Pressure	Atmospheric Correction Factor
-3,000 ft (0.92 km)	16.25 psia (84.0 cm Hg)	1.11
-2,000 ft (0.61 km)	15.71 psia (81.2 cm Hg)	1.07
-1,000 ft (0.30 km)	15.23 psia (78.7 cm Hg)	1.04
0 ft (0.00 km)	14.71 psia (76.0 cm Hg)	1.00
1,000 ft (0.30 km)	14.18 psia (73.3 cm Hg)	0.96
2,000 ft (0.61 km)	13.64 psia (70.5 cm Hg)	0.93
3,000 ft (0.92 km)	13.12 psia (67.8 cm Hg)	0.89
4,000 ft (1.21 km)	12.58 psia (65.0 cm Hg)	0.86
5,000 ft (0.92 km)	12.04 psia (62.2 cm Hg)	0.82
6,000 ft (1.52 km)	11.53 psia (59.6 cm Hg)	0.78
7,000 ft (1.83 km)	11.03 psia (57.0 cm Hg)	0.75
8,000 ft (2.13 km)	10.64 psia (55.0 cm Hg)	0.72
9,000 ft (2.44 km)	10.22 psia (52.8 cm Hg)	0.69
10,000 ft (3.05 km)	9.77 psia (50.5 cm Hg)	0.66

^[2] For V/V [Agent Volume Requirements (cu ft/cu ft)], refer to 3-5.2.

^[3] t [Temperature (F)] — The design temperature in the hazard area.

^[4] S [Specific Volume (cu ft/lb)] — Specific volume of superheated IG-541 vapor may be approximated by the formula:

S = 9.7261 + 0.0211t

where t = temperature (F)

^[5] C [Concentration (%)] — Volumetric concentration of IG-541 in air at the temperature indicated.

3-8 Distribution System.

3-8.1 Rate of Application.

3-8.1.1 The minimum design rate of application shall be based on the quantity of agent required for the desired concentration and the time allotted to achieve the desired concentration.

3-8.1.2* Discharge Time.

3-8.1.2.1 The agent discharge shall be completed as quickly as possible to suppress the fire and limit the formation of decomposition and combustion products. In no case shall the discharge time exceed 10 seconds, or as otherwise required by the authority having jurisdiction.

Exception: For inert gases that do not form decomposition products, the discharge time may be extended to achieve the design concentration within 1 minute.

3-8.1.2.2 The discharge time period is defined as the time required to discharge from the nozzles 95 percent of the agent mass [at 70°F (21°C)] necessary to achieve the minimum design concentration.

Flow calculations performed per Section 3-2, or in accordance with the listed pre-engineered system's instruction manuals, shall be used to demonstrate compliance with this paragraph.

3-8.2* Extended Discharge. When an extended discharge is necessary, the rate shall be sufficient to maintain the desired concentration for the required hold time.

3-9 Nozzle Choice and Location.

- **3-9.1** Nozzles shall be of the type listed for the intended purpose and shall be placed within the protected enclosure in compliance with listed limitations with regard to spacing, floor coverage, and alignment.
- **3-9.2** The type of nozzles selected, their number, and their placement shall be such that the design concentration will be established in all parts of the hazard enclosure and such that the discharge will not unduly splash flammable liquids or create dust clouds that might extend the fire, create an explosion, or otherwise adversely affect the contents or integrity of the enclosure.

Chapter 4 Inspection, Maintenance, Testing, and Training

4-1 Inspection and Tests.

- **4-1.1** At least annually, all systems shall be thoroughly inspected and tested for proper operation by competent personnel. Discharge tests are not required.
- **4-1.2** The inspection report with recommendations shall be filed with the owner.
- **4-1.3** At least semiannually, the agent quantity and pressure of refillable containers shall be checked.
- **4-1.3.1** For halocarbon clean agents, if a container shows a loss in agent quantity of more than 5 percent or a loss in pressure (adjusted for temperature) of more than 10 percent, it shall be refilled or replaced.

- **4-1.3.2** For inert gas clean agents that are not liquefied, pressure is an indication of agent quantity. If an inert gas clean agent container shows a loss in pressure (adjusted for temperature) of more than 5 percent, it shall be refilled or replaced. Where container pressure gauges are used for this purpose, they shall be compared to a separate calibrated device at least annually.
- **4-1.3.3** Where the amount of agent in the container is determined by special measuring devices, these devices shall be listed.
- **4-1.4** All halocarbon clean agent removed from refillable containers during service or maintenance procedures shall be collected and recycled or disposed of in an environmentally sound manner and in accordance with existing laws and regulations. All inert gas clean agents based on those gases normally found in the earth's atmosphere need not be recycled.
- **4-1.5** Factory-charged, nonrefillable containers that do not have a means of pressure indication shall have the agent quantity checked at least semiannually. If a container shows a loss in agent quantity of more than 5 percent, it shall be replaced. All factory-charged, nonrefillable containers removed from useful service shall be returned for recycling of the agent or disposed of in an environmentally sound manner and in accordance with existing laws and regulations.
- **4-1.6** For halocarbon clean agents, the date of inspection, gross weight of cylinder plus agent or net weight of agent, type of agent, person performing the inspection, and, where applicable, the pressure at a recorded temperature shall be recorded on a tag attached to the container. For inert gas clean agents, the date of inspection, type of agent, person performing the inspection, and the pressure at a recorded temperature shall be recorded on a tag attached to the container.

4-2 Container Test.

4-2.1 Department of Transportation (D.O.T.), Canadian Transport Commission (C.T.C.), or similar design clean agent containers shall not be recharged without retest if more than 5 years have elapsed since the date of the last test and inspection. For halocarbon agent storage containers, the retest may consist of a complete visual inspection as described in the *Code of Federal Regulations*. Title 49, Section 173.34 (e) (10).

NOTE: Transporting charged containers that have not been tested within 5 years may be illegal. Federal and local regulations should be consulted.

- **4-2.2* Visual Inspection.** Cylinders continuously in service without discharging shall be given a complete external visual inspection every 5 years or more frequently if required. The visual inspection shall be in accordance with Compressed Gas Association pamphlet C-6, Section 3, except that the cylinders need not be emptied or stamped while under pressure. Inspections shall be made only by competent personnel and the results recorded on:
- (a) A record tag permanently attached to each cylinder; and
- (b) A suitable inspection report. A completed copy of the inspection report shall be furnished to the owner of the

system or his authorized representative. These records shall be retained by the owner for the life of the system.

4-2.3 Where external visual inspection indicates that the container has been damaged, additional strength tests shall be required.

4-3 Hose Test.

- **4-3.1 General.** All system hose shall be examined annually for damage. If visual examination shows any deficiency, the hose shall be immediately replaced or tested as specified in 4-3.3.
- **4-3.2 Testing.** All hose shall be tested every 5 years.
- **4-3.3** All hose shall be tested at $1\frac{1}{2}$ times the maximum container pressure at 130° F (54.4°C) as follows:
 - (a) Remove the hose from any attachment;
- (b) The hose assembly is then to be placed in a protective enclosure designed to permit visual observation of the test;
- (c) The hose must be completely filled with water before testing;
- (d) Pressure then is applied at a rate-of-pressure rise to reach the test pressure within a minimum of 1 minute. The test pressure is to be maintained for 1 full minute. Observations are then made to note any distortion or leakage;
- (e) If the test pressure has not dropped or if the couplings have not moved, the pressure is released. The hose assembly is then considered to have passed the hydrostatic test if no permanent distortion has taken place;
- (f) Hose assembly passing the test must be completely dried internally. If heat is used for drying, the temperature must not exceed the manufacturer's specifications;
- (g) Hose assemblies failing a hydrostatic test must be marked and destroyed. They shall be replaced with new assemblies; and
- (h) Each hose assembly passing the hydrostatic test shall be marked to show the date of test.
- **4-4 Enclosure Inspection.** At least every 12 months, the enclosure protected by the clean agent shall be thoroughly inspected to determine if penetrations or other changes have occurred that could adversely affect agent leakage or change volume of hazard or both. Where the inspection indicates conditions that could result in inability to maintain the clean agent concentration, they shall be corrected. If uncertainty still exists, the enclosures shall be retested for integrity in accordance with 4-7.2.3.

Exception: An enclosure inspection is not required every 12 months if a documented administrative control program exists that addresses barrier integrity.

4-5 Maintenance.

- **4-5.1** These systems shall be maintained in full operating condition at all times. Actuation, impairment, and restoration of this protection shall be reported promptly to the authority having jurisdiction.
- **4-5.2** Any troubles or impairments shall be corrected in a timely manner consistent with the hazard protected.

4-5.3* Any penetrations made through the enclosure protected by the clean agent shall be sealed immediately. The method of sealing shall restore the original fire resistance rating of the enclosure.

4-6 Training.

- **4-6.1** All persons who might be expected to inspect, test, maintain, or operate fire extinguishing systems shall be thoroughly trained and kept thoroughly trained in the functions they are expected to perform.
- **4-6.2*** Personnel working in an enclosure protected by a clean agent shall receive training regarding agent safety issues.

4-7 Approval of Installations.

4-7.1 The completed system shall be reviewed and tested by qualified personnel to meet the approval of the authority having jurisdiction. Only listed equipment and devices shall be used in the systems. To determine that the system has been properly installed and will function as specified, the following tests shall be performed.

4-7.2 Installation Acceptance.

4-7.2.1 It shall be determined that the protected enclosure is in general conformance with the construction documents.

4-7.2.2 Review Mechanical Components.

- **4-7.2.2.1** The piping distribution system shall be inspected to determine that it is in compliance with the design and installation documents.
- **4-7.2.2.2** Nozzles and pipe size shall be in accordance with system drawings. Means of pipe size reduction and attitudes of tees shall be checked for conformance to the design.
- **4-7.2.2.3** Piping joints, discharge nozzles, and piping supports shall be securely fastened to prevent unacceptable vertical or lateral movement during discharge. Discharge nozzles shall be installed in such a manner that piping cannot become detached during discharge.
- **4-7.2.2.4** During assembly, the piping distribution system shall be inspected internally to detect the possibility of any oil or particulate matter soiling the hazard area or affecting the agent distribution due to a reduction in the effective nozzle orifice area.
- **4-7.2.2.5** The discharge nozzle shall be oriented in such a manner that optimum agent dispersal can be effected.
- **4-7.2.2.6** If nozzle deflectors are installed, they shall be positioned to obtain maximum benefit.
- **4-7.2.2.7** The discharge nozzles, piping, and mounting brackets shall be installed in such a manner that they will not potentially cause injury to personnel. Agent shall not directly impinge on areas where personnel might be found in the normal work area. Agent shall not directly impinge on any loose objects or shelves, cabinet tops, or similar surfaces where loose objects could be present and become missiles.
- **4-7.2.2.8** All agent storage containers shall be properly located in accordance with an approved set of system drawings.
- **4-7.2.2.9** All containers and mounting brackets shall be fastened securely in accordance with the manufacturer's requirements.

- **4-7.2.2.10** A discharge test is generally not recommended; however, if a discharge test is to be conducted, containers for the agent to be used shall be weighed before and after discharge. Fill weight of container shall be verified by weighing or other approved methods. For inert gas clean agents, container pressure shall be recorded before and after discharge.
- **4-7.2.2.11** Adequate quantity of agent to produce the desired specified concentration shall be provided. The actual room volumes shall be checked against those indicated on the system drawings to ensure the proper quantity of agent. Fan coastdown and damper closure time shall be taken into consideration.
- **4-7.2.2.12** The piping shall be pneumatically tested in a closed circuit for a period of 10 minutes at 150 psig. At the end of 10 minutes, the pressure drop shall not exceed 20 percent of the test pressure. When the piping is being pressurized, pressure shall be increased in 50-psi (3.5-bar) increments.
 - **CAUTION:** Pneumatic pressure testing creates a potential risk of mjury to personnel in the area as a result of airborne projectiles if rupture of the piping system occurs. Prior to the pneumatic pressure test being conducted, the protected area shall be evacuated and appropriate safeguards shall be provided for test personnel.

Exception: The pressure test shall be permitted to be omitted if the total piping contains no more than one change in direction fitting between the storage container and the discharge nozzle, and where all piping is physically checked for tightness.

- **4-7.2.2.13*** A flow test using nitrogen shall be performed on the piping network to verify that flow is continuous, and that the piping and nozzles are unobstructed.
- **4-7.2.3* Review Enclosure Integrity.** All total flooding systems shall have the enclosure examined and tested to locate and then effectively seal any significant air leaks that could result in a failure of the enclosure to hold the specified agent concentration level for the specified holding period. The currently preferred method is using a blower door fan unit and smoke pencil. If quantitative results are recorded, these could be useful for comparison at future tests. (For guidance, refer to Appendix B of this standard.)

4-7.2.4 Review Electrical Components.

- **4-7.2.4.1** All wiring systems shall be properly installed in conduit and in compliance with local codes and the system drawings. AC and DC wiring shall not be combined in a common conduit or raceway unless properly shielded and grounded.
- **4-7.2.4.2** All field circuits shall be free of ground faults and short circuits. Where measuring field circuitry, all electronic components (such as smoke and flame detectors or special electronic equipment for other detectors or their mounting bases) shall be removed and jumpers properly installed to prevent the possibility of damage within these devices. Components shall be replaced after measuring.
- **4-7.2.4.3** Power shall be supplied to the control unit from a separate dedicated source that will not be shut down on system operation.

- **4-7.2.4.4** Adequate and reliable primary and 24-hour minimum standby sources of energy shall be used to provide for operation of the detection, signaling, control, and actuation requirements of the system.
- **4-7.2.4.5** All auxiliary functions such as alarm-sounding or displaying devices, remote annunciators, air-handling shutdown, power shutdown, and so on shall be checked for proper operation in accordance with system requirements and design specifications. If possible, all air-handling and power-cutoff controls shall be of the type that, once interrupted, require manual restart to restore power.
- **4-7.2.4.6** Silencing of alarms (if desirable) shall not affect other auxiliary functions such as air handling or power cutoff if required in the design specification.
- **4-7.2.4.7** The detection devices shall be checked for proper type and location as specified on the system drawings.
- **4-7.2.4.8** Detectors shall not be located near obstructions or air ventilation and cooling equipment that would appreciably affect their response characteristics. Where applicable, air changes for the protected area shall be taken into consideration. Refer to NFPA 72, *National Fire Alarm Code*, and the manufacturer's recommended guidelines.
- **4-7.2.4.9** The detectors shall be installed in a professional manner and in accordance with technical data regarding their installation.
- **4-7.2.4.10** Manual pull stations shall be properly installed, readily accessible, accurately identified, and properly protected to prevent damage.
- **4-7.2.4.11** All manual stations used to release agents shall require two separate and distinct actions for operation. They shall be properly identified. Particular care shall be taken where manual release devices for more than one system are in close proximity and could be confused or the wrong system actuated. Manual stations in this instance shall be clearly identified as to which zone or suppression area they affect.
- **4-7.2.4.12** For systems with a main/reserve capability, the main/reserve switch shall be properly installed, readily accessible, and clearly identified.
- **4-7.2.4.13** For systems using abort switches, the switches shall be of the deadman type requiring constant manual pressure, properly installed, readily accessible within the hazard area, and clearly identified. Switches that remain in the abort position when released shall not be used for this purpose. Manual pull stations shall always override abort switches.
- **4-7.2.4.14** The control unit shall be properly installed and readily accessible.

4-7.2.5 Functional Testing.

- **4-7.2.5.1 Preliminary Functional Tests.** The following preliminary functional tests shall be provided:
- (a) If the system is connected to an alarm receiving office, the alarm receiving office shall be notified that the fire system test is to be conducted and that an emergency response by the fire department or alarm station personnel is not desired. All concerned personnel at the end-user's facility shall be notified that a test is to be conducted and shall be instructed as to the sequence of operation.

- (b) Disable each agent storage container release mechanism so that activation of the release circuit will not release agent. Reconnect the release circuit with a functional device in lieu of each agent storage container release mechanism. For electrically actuated release mechanisms, these devices can include 24-volt lamps, flash bulbs, or circuit breakers. Pneumatically actuated release mechanisms can include pressure gauges. Refer to the manufacturer's recommendations in all cases.
 - (c) Check each detector for proper response.
- (d) Check that polarity has been observed on all polarized alarm devices and auxiliary relays.
- (e) Check that all end-of-line resistors have been installed across the detection and alarm bell circuits where required.
- (f) Check all supervised circuits for proper trouble response.
- **4-7.2.5.2 System Functional Operational Test.** The following system functional operational tests shall be performed:
- (a) Operate detection initiating circuit(s). All alarm functions shall occur according to the design specification.
- (b) Operate the necessary circuit to initiate a second alarm circuit if present. Verify that all second alarm functions occur according to design specifications.
- (c) Operate manual release. Verify that manual release functions occur according to design specifications.
- (d) If supplied, operate abort switch circuit. Verify that abort functions occur according to design specifications. Confirm that visual and audible supervisory signals are received at the control panel.
- (e) Test all automatic valves unless testing the valve will release agent or damage the valve (destructive testing).
- (f) Where required, check pneumatic equipment for integrity to ensure proper operation.
- **4-7.2.5.3 Remote Monitoring Operations.** The following testing of remote monitoring operations, if applicable, shall be performed:
- (a) Operate one of each type of input device while on standby power. Verify that an alarm signal is received at remote panel after device is operated. Reconnect primary power supply.
- (b) Operate each type of alarm condition on each signal circuit and verify receipt of trouble condition at the remote station.
- **4-7.2.5.4 Control Panel Primary Power Source.** The following testing of the control panel primary power source shall be performed:
- (a) Verify that the control panel is connected to a dedicated circuit and labeled properly. This panel shall be readily accessible, yet restricted to unauthorized personnel.
- (b) Test a primary power failure in accordance with the manufacturer's specification with the system fully operated on standby power.
- **4-7.2.5.5** When all predischarge work is completed, reconnect each agent storage container so that activation of the release circuit will release the agent. System shall be returned to its fully operational design condition. The

alarm receiving office and all concerned personnel at the end-user's facility shall be notified that the fire system test is complete and that the system has been returned to full service condition.

Chapter 5 Referenced Publications

- **5-1** The following documents or portions thereof are referenced within this standard and shall be considered part of the requirements of this document. The edition indicated for each reference is the current edition as of the date of the NFPA issuance of this document.
- **5-1.1 NFPA Publications.** National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.
 - NFPA 70, National Electrical Code, 1993 edition.
 - NFPA 72, National Fire Alarm Code, 1993 edition.
- 5-1.2 Other Publications.
- **5-1.2.1 ANSI Publications.** American National Standards Institute, Inc., 1430 Broadway, New York, NY 10018.
- ANSI B1.20.1-1983, Standard for Pipe Threads, General Purpose.
 - ANSI C2-1993, National Electrical Safety Code.
- **5-1.2.2 ASME Publication.** American Society of Mechanical Engineers, 345 East 47th Street, New York, NY 10017.
 - ASME Boiler and Pressure Vessel Code, 1986.
 - ASME B31.1-1992, Power Piping Code.
- **5-1.2.3 ASTM Publications.** American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- ASTM A120-84, Specifications for Welded and Seamless Steel Pipe.
- **5-1.2.4 CGA Publications.** Compressed Gas Association, 1235 Jefferson Davis Highway, Arlington, VA 22202.
- CGA C-6-1984, Standard for Visual Inspection of Compressed Gas Cylinders (Steel).
- **5-1.2.5 UL Publication.** Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062.
- UL 1058, Standard for Safety Halogenated Agent Extinguishing System Units, 1989 edition.
- **5-1.2.6 ULC Publications.** Underwriters Laboratories of Canada, 7 Crouse Road, Scarborough, Ontario, Canada M1R 3A9.
- ULC S524-M86, Standard for the Installation of Fire Alarm Systems.
 - ULC \$529-M87, Smoke Detectors for Fire Alarm Systems.
- **5-1.2.7 U.S. Government Publication.** Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20401.
- Code of Federal Regulations, Title 49 Transportation, Parts 170-190.

APPENDIX A 2001–25

Appendix A Explanatory Material

This Appendix is not a part of the requirements of this NFPA document, but is included for informational purposes only.

A-1-3.1 Normally Occupied Areas. Spaces occasionally visited by personnel, such as transformer bays, switchhouses, pump rooms, vaults, engine test stands, cable trays, tunnels, microwave relay stations, flammable liquid storage areas, enclosed energy systems, etc., are examples of areas considered not normally occupied.

A-1-4.1 Physical Properties. The clean halocarbon agents currently listed possess the physical properties as detailed in Tables A-1-4.1(a) and A-1-4.1(b). This data will be revised from time to time as new information becomes available. Additional background information and data on these agents can be found in several references: Fernandez, R. (1991); Hanauska, C. (1991); Robin, M.L. (1991); Sheinson, R.S. (1991).

A-1-4.1.2 The designations for perfluorocarbons (FCs), hydrobromofluorocarbons (HBFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) follow designations in a standard prepared by the American National Standards Institute (ANSI) and the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): ANSI/ASHRAE Standard 34-1989, Number Designation and Safety Classification of Refrigerants. HCFC Blend A is a designation for a blend of HCFCs and

a hydrocarbon. The designation IG-541 is used in this standard for a blend of three inert gases: nitrogen, argon, and carbon dioxide (52 percent, 40 percent, and 8 percent, respectively).

A-1-4.2.4 The provision of an enclosure may create an unnecessary explosion hazard where otherwise only a fire hazard exists. A hazard analysis should be conducted to determine the relative merits of differing design concepts (i.e., with and without enclosures) and the most relevant means of fire protection.

A-1-4.2.8 This provides consideration for using a clean agent in an environment that may result in an inordinate amount of products of decomposition (i.e., within an oven).

A-1-5.1.1 Hazards to Personnel. The discharge of clean agent systems to extinguish a fire may create a hazard to personnel from the natural form of the clean agent or from the products of decomposition that result from exposure of the agent to the fire or hot surfaces. Unnecessary exposure of personnel to either the natural agent or to the decomposition products should be avoided.

Table A-1-5.1.1 provides information on toxicological and physiological effects covered by this standard. The No Observed Adverse Effect Level (NOAEL) is the highest concentration at which no adverse physiological or toxicological effect has been observed. The Lowest Observed Adverse Effect Level (LOAEL) is the lowest concentration at which an adverse physiological or toxicological effect has

Table A-1-4.1(a) Physical Properties of Clean Halocarbon Agents (English Units)

				HCFC					
	Units	FC-3-1-10	HBFC-22B1	Blend A	HCFC-124	HFC-125	HFC-227ea	HFC-23	IG-541
Molecular Weight	N/A	238.03	130.92	92.90	136.5	120.02	170.03	70.01	34.0
Boiling Point (a 760 mm Hg	°F	28.4	4.1	-37.0	12.2	- 55.3	2.6	-115.7	- 320
Freezing Point	°F	-198.8	229	< -161.0	-326.0	-153	-204	-247.4	-109
Critical Temperature	٥F	235.8	281.8	256.0	252.0	150.8	215.0	78.6	N/A
Critical Pressure	psia	337	7-1-1	964	524.5	521	422	701	N/A
Critical Volume	ft³/lbm	0.0250	0.0207	0.0280	0.0283	0.0281	0.0258	0.0305	N/A
Critical Density	lbm/ft ³	39.30	48.31	36.00	35.28	35.68	38.76	32.78	N/A
Specific heat, liquid (a: 77°F	B l`U/lb-°F	0.25	0.1944	0.30	0.270	0.301	0.2831	0.370	N/A
Specific heat, vapor (a) constant pressure (1 atm.) & 77°F	BTU/lb-°F	0.192	0.1088	0.16	0.177	0.191	0.1932	0.176	0.195
Heat of Vaporization at Boiling Point Thermal Conductivity	BTU/lb	41.4	73.9	97	83.2	70.8	57.0	103.0	94.7
of Liquid @ 77°F	BTU/h ft°F	0.0310	0.048	0.052	0.0417	0.0376	0.040	0.0450	N/Λ
Viscosity, liquid @ 77°F	lb/ft hr	0.783	0.677	0.508	0.723	0.351	0.547	0.201	N/A
Relative dielectric strength (a 1 atm. (a 734 mm Hg 77°F ($N_2 = 1.0$)	N/A	5.25	1.35	1.32	1.55	0.955 @ 70°F	2.00	1.04	1.03
Solubility of water in agent (a 70°F	N/A	0.001% by weight	0.05% by weight	0.12% by weight	0.07% by weight @ 77F	0.07% by weight (a=77F	0.06% by weight	500 ppm @ 50°F (10°C)	0.015%
Vapor Pressure @ 77°F	psi	42.0	62.6	1.37	56	199	66.4	686.0	2207

Table A-1-4.1(b) Physical Properties of Clean Halocarbon Agents (SI Units)

	Units	FC-3-1-10	HBFC-22B1	HCFC Blend A	HCFC-124	HFC-125	HFC-227ea	HFC-23	IG-541
Molecular Weight	N/A	238.03	130.92	92,90	136.5	120.02	170.03	70.01	34.0
Boiling Point (a=760 mm Hg	·C	-2.0	-15,5	- 38.3	-11.0	= 48.5	-16.4	-82.1	- 196
Freezing Point	2 C 1	-128.2	-145	< -107.2	198.9	-102.8	-131	-155.2	-78.5
Critical Temperature	°C	113.2	138.8	124.4	122.2	66.0	101.7	25.9	$N\Delta$
Critical Pressure	kPa	2323	5132	6647	3614	3595	2912	4836	N/A
Critical Volume	cc/mole	371	169	162	241.6	210	274	133	N/A
Critical Density	kg/m ³	629	775	577	565	571	621	525	N/Λ
Specific heat, liquid (a=25°C	kJ/kg°C	1.047	0.813	1.256	1.13	1.260	1.184	1.549	N/A
Specific heat, vapor (a constant pressure (1 atm.) & 25°C	kJ/kg°C	0.804	0.455	0 67	0.741	0.800	0,808	0.737	0.574
Heat of Vaporization at Boiling Point @ 25°C	kJ/kg	96.3	172.0	225.6	194	164.7	132.6	239.6	220
Thermal Conductivity of Liquid @ 25°C	W m°C	0.0537	0,083	0,0900	0.0722	0.0651	0,069	0.0779	N/A
Viscosity, liquid @ 25°C	centipoise	0.324	0.280	0.21	0.299	0.145	0.226	0.083	N/A
Relative dielectric strength (a 1 atm. (a 734 mm Hg, 25° C (N ₂ = 1.0)	NΑ	5.25	1 35	1.32	1.55	0.955 @ 21°CF	2.00	1.04	1.03
Solubility of water in agent (a 21°C)	N A	0.001% by weight	0.05G by weight	0.12% by weight	0 07% by weight @ 25°C	0.07G by weight @ 25°C	0.06% by weight	500 ppm (a 50°F (10°C)	0.015%
Vapor Pressure @ 25°C	kPa	289.6	431.3	948	386	1371	457.7	твр	15200

been observed. For inert gas agents, adverse physiological effects due to low oxygen concentration are the first to be observed. Restrictions on the use of certain agents covered in this standard for use in normally occupied areas are based on a comparison of the actual agent concentration to the NOAEL. Where the actual concentration will be higher than the NOAEL or where the needed data are unavailable, the agents are restricted to use only in areas that are not normally occupied. To keep oxygen concentrations above 16 percent, the point at which onset of impaired personnel function occurs, no halogenated fire extinguishing agents addressed in this standard should be used in a normally occupied area of concentration greater than 24 percent.

The health concern for inert gas clean agents is asphyxiation due to the lowered oxygen levels.

Other potential hazards to be considered for individual systems are the following:

- (a) *Noise.* Discharge of a system can cause noise loud enough to be startling but ordinarily insufficient to cause traumatic injury.
- (b) Turbulence. High velocity discharge from nozzles may be sufficient to dislodge substantial objects directly in the path. System discharge may cause enough general turbulence in the enclosures to move unsecured paper and light objects.

Table A-1-5.1.1 Toxicity Information

Agent	LC ₅₀ or ALC	No Observable Adverse Effect Level (NOAEL)	Lowest Observable Adverse Effect Level (LOAEL)
FC-3-1-10	> 80%	40%	>40%
HBFC-22B1	10.8%	$2c_{\ell}$	3.9%
HCFC Blend A	64%	10.0%	>10.0%
HCFC-124	23G - 29G	1.0G	2.5%
HFC-125	>70%	7.5%	10.0%
HFC-227ea	>80%	9.0%	10.5%
HFC-23	>65%	50%	> 50%
IG-541	N/A	43%*	529*
Halon 1301	>80%	5%	7.5%

^{*} Based on physiological effects in humans in hypoxic atmospheres. These values are the functional equivalents of NOAEL and LOAEL values, and correspond to 12 percent minimum oxygen at the NOAEL and 10 percent minimum oxygen at the LOAEL.

NOTE 1: LC₅₀ is the concentration lethal to 50% of a rat population during a 4-hour exposure. The ALC is the approximate lethal concentration.

NOTE 2. The cardiac sensitization levels are based on the observance or non-observance of serious heart arrythmias in a dog. The usual protocol is a 5-minute exposure followed by a challenge with epinephrine.

NOTE 3: High concentration values are determined with the addition of oxygen to prevent asphyxiation

NOTE 4: Values for Halon 1301 are included in this table for sake of comparison.

(c) Cold Temperature. Direct contact with the vaporizing liquid being discharged from a system will have a strong chilling effect on objects and can cause frostbite burns to the skin. The liquid phase vaporizes rapidly when mixed with air and thus limits the hazard to the immediate vicinity of the discharge point. In humid atmospheres, minor reduction in visibility may occur for a brief period due to the condensation of water vapor.

Decomposition Products of Clean Agents. Although most of the clean agents have a low level of toxicity, the decomposition products generated by the clean agent breaking down in the presence of very high amounts of heat may be hazardous. Most of the agents contain quantities of fluorine. In the presence of available hydrogen (from water vapor, or the combustion process itself) the main decomposition product is hydrogen fluoride (HF).

These decomposition products have a sharp, acrid odor, even in minute concentrations of only a few parts per million. This characteristic provides a built-in warning system for the agent, but at the same time creates a noxious, irritating atmosphere for those who must enter the hazard following a fire.

The amount of agent that can be expected to decompose in extinguishing a fire depends to a large extent on the size of the fire, the particular clean agent, the concentration of the agent, and the length of time the agent is in contact with the flame or heated surface. If there is a very rapid buildup of concentration to the critical value, then the fire will be extinguished quickly and the decomposing will be limited to the minimum possible with that agent. Should that agent's specific composition be such that it could generate large quantities of decomposition products, and the time to achieve the critical value is lengthy, then the quantity of decomposition products may be quite great. The actual concentration of the decomposition products must then depend on the volume of the room in which the fire was burning and on the degree of mixing and ventilation.

Clearly, longer exposure of the agent to high temperatures would produce greater concentrations of these gases. The type and sensitivity of detection, coupled with the rate of discharge, should be selected to minimize the exposure time of the agent to the elevated temperature if the concentration of the breakdown products must be minimized. In most cases the area would be untenable for human occupancy due to the heat and breakdown products of the fire itself.

IG-541 uses carbon dioxide to promote breathing characteristics intended to sustain life in the oxygen deficient environment for protection of personnel. Care should be used not to design inert gas-type systems for normally occupied areas using design concentrations higher than that specified in the system manufacturer's listed design manual for the hazard being protected.

Inert gas clean agents do not decompose measurably in extinguishing a fire. As such, toxic or corrosive decomposition products are not found. However, heat and breakdown products of the fire itself can still be substantial and could make the area untenable for human occupancy.

A-1-5.1.2 Safety Requirements. The steps and safeguards necessary to prevent injury or death to personnel in areas whose atmospheres will be made hazardous by the discharge or thermal decomposition of clean agents may include the following:

(a) Provision of adequate aisleways and routes of exit and keeping them clear at all times.

APPENDIX A

- (b) Provision of emergency lighting and directional signs as necessary to ensure quick, safe evacuation.
- (c) Provision of alarms within such areas that will operate immediately upon detection of the fire.
- (d) Provision of only outward-swinging, self-closing doors at exits from hazardous areas and, where such doors are latched, provision of panic hardware.
- (e) Provision of continuous alarms at entrances to such areas until the atmosphere has been restored to normal.
- (f) Provision of warning and instruction signs at entrances to and inside such areas. These signs should inform persons in or entering the protected area that a clean agent system is installed, and may contain additional instructions pertinent to the conditions of the hazard.
- (g) Provision for the prompt discovery and rescue of persons rendered unconscious in such areas. This may be accomplished by having such areas searched immediately by trained personnel equipped with proper breathing equipment. Self-contained breathing equipment and personnel trained in its use and in rescue practices, including artificial respiration, should be readily available.
- (h) Provision of instruction and drills for all personnel within or in the vicinity of such areas, including maintenance or construction people who may be brought into the area, to ensure their correct action when a clean agent system operates.
- (i) Provision of means for prompt ventilation of such areas. Forced ventilation will often be necessary. Care should be taken to readily dissipate hazardous atmospheres and not merely move them to another location.
- (j) Prohibition against smoking by persons until the atmosphere has been determined to be free of the clean agent.
- (k) Provision of such other steps and safeguards that a careful study of each particular situation indicates is necessary to prevent injury or death.
- **A-1-6** Many factors impact the environmental acceptability of a fire suppression agent. Uncontrolled fires may pose significant impact by themselves. All extinguishing agents should be used in ways that eliminate or minimize the potential environmental impact. General guidelines that may be followed to minimize this impact include the following:
 - (a) Do not perform unnecessary discharge testing;
- (b) Consider the ozone depletion and global warming impact of the agent under consideration and weigh these impacts against the fire safety concerns;
 - (c) Recycle all agents where possible; and
- (d) Consult the most recent environmental regulations on each agent.

The unnecessary emission of clean extinguishing agents with either the potential of ozone depletion, the potential of global warming, or the potential of both, should be avoided. All phases of design, installation, testing, and maintenance of systems using these agents should be performed with the goal of no emission to the environment.

A-1-8.1 It is generally believed that, because of the highly stable nature of the compounds that are derived from the families including halogenated hydrocarbons and inert

gases, incompatibility will not be a problem. These materials tend to behave in a similar fashion and, as far as is known, the reactions that might occur as the result of mixing of these materials within the container is not thought to be a real consideration with regard to their application to a fire protection hazard.

It is clearly not the intent of this section to deal with compatibility of the agents with components of the extinguishing hardware. This particular consideration is addressed elsewhere in this document. It is also clearly not the intent of this section to deal with the subject of storability or storage life of individual agents or mixtures of those agents. This also is addressed in another section of this standard.

- **A-2-1.1.2** An extra full complement of charged cylinders (connected reserve) manifolded and piped to feed into the automatic system should be considered on all installations. The reserve supply is normally actuated by manual operation of the main/reserve switch on either electrically operated or pneumatically operated systems. A connected reserve is desirable for the following reasons:
 - (a) Provides protection should a reflash occur.
 - (b) Provides reliability should the main bank malfunction.
- (c) Provides protection during impaired protection when main tanks are being replaced.
- (d) Provides protection of other hazards if selector valves are involved and multiple hazards are protected by the same set of cylinders.

If a full complement of charged cylinders cannot be obtained, or the empty cylinder recharged, delivered, and reinstalled within 24 hours, a third complement of fully charged nonconnected spare cylinders should be considered and made available on the premises for emergency use. The need for spare cylinders may depend on whether or not the hazard is under the protection of automatic sprinklers.

- **A-2-1.2** The normal and accepted procedures for making these quality measurements will be provided by the chemical manufacturers in a future submittal. As each clean agent varies in its quality characteristics, a more comprehensive table than the one currently in the standard will be developed. It will be submitted through the public proposal process. Recovered or recycled agents are currently not available, and thus quality standards do not exist at this time. As data becomes available, this criteria will be developed.
- **A-2-1.3.2** Storage containers should not be exposed to a fire in a manner likely to impair system performance.
- **A-2-1.4.1** Containers used for agent storage should be fit for the purpose. Materials of construction of the container, closures, gaskets, and other components should be compatible with the agent and designed for the anticipated pressures. Each container is equipped with a pressure relief device to protect against excessive pressure conditions.

The variations in vapor pressure with temperature, for the various clean agents, are shown in Figures A-2-1.4.1(a) through A-2-1.4.1(g).

With the exception of IG-541, all of the other clean agents are classified as liquefied compressed gases at 70°F (21°C). For these agents, the pressure in the container is significantly affected by fill density and temperature. At elevated temperatures the rate of increase in pressure is very sensitive to fill density. If the maximum fill density is exceeded, the pressure will increase rapidly with temperature increase so as to present a hazard to personnel and property. Therefore, it is very important that the maximum fill density limit specified for each liquefied clean agent not be exceeded. Adherence to the limits for fill density and pressurization levels specified in Table 2-1.4.1 should prevent excessively high pressures from occurring if the agent container is exposed to elevated temperatures, and will minimize the possibility of an inadvertent discharge of agent through the pressure relief device.

- **A-2-1.4.2** Although it is not a requirement of this particular paragraph, all new and existing agent storage containers should be affixed with a label advising the user that the product in question may be returned for recovery and recycling to a qualified recycler when the agent is no longer needed. The qualified recycler may be an agent manufacturer, a fire equipment manufacturer, a fire equipment distributor or installer, or an independent commercial venture. It is not the intent to set down specific requirements but to indicate the factors that need to be taken into consideration with regard to recycling and reclamation of the agent products, once facilities are available. As more information becomes available, more definitive requirements can be set forth in this section regarding quality, efficiency, recovery, and qualifications and certifications of recycling agents. At this point, no such facilities exist that would apply to the agents covered by this document.
- **A-2-1.4.5** Inert gas blends may utilize multiple storage container sizes connected to a common manifold. Inert gas blends are single-phase gases in storage and at all times during discharge.
- **A-2-2.1 Piping.** Piping should be installed in accordance with good commercial practice. Care should be taken to avoid possible restrictions due to foreign matter, faulty fabrication, or improper installation.

The piping system should be securely supported with due allowance for agent thrust forces and thermal expansion and contraction and should not be subjected to mechanical, chemical, vibration, or other damage. ANSI B31.1 should be consulted for guidance on this matter. Where explosions are likely, the piping should be attached to supports that are least likely to be displaced.

Although clean agent systems are not subjected to continuous pressurization, some provisions should be made to ensure that the type of piping installed can withstand the maximum stress at maximum storage temperatures. Maximum allowable stress levels for this condition should be established at values of 67 percent of the minimum yield strength or 25 percent of the minimum tensile strength, whichever is less. All joint factors should be applied after this value is determined.

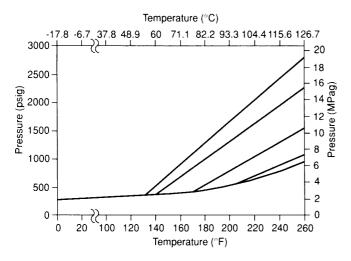


Figure A-2-1.4.1(a) $\,$ Isometric diagram FC-3-1-10 [for 360 psig (2.5 mPa) containers].

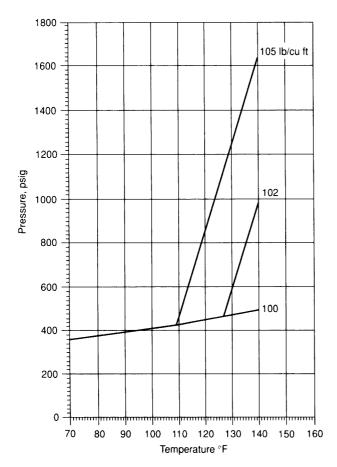


Figure A-2-1.4.1(b) Isometric diagram of HBFC-22B1 [pressurized with nitrogen to 360 psig (2.5 mPa) at $70^\circ F$ (21°C)].

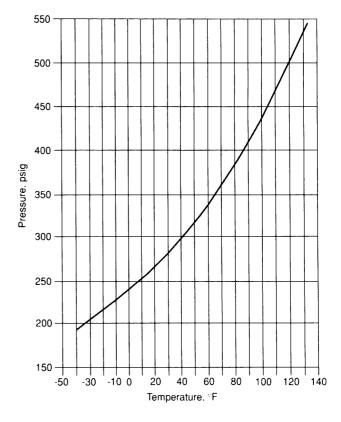


Figure A-2-1.4.1(c) Isometric diagram of HCFC Blend A, imperial.

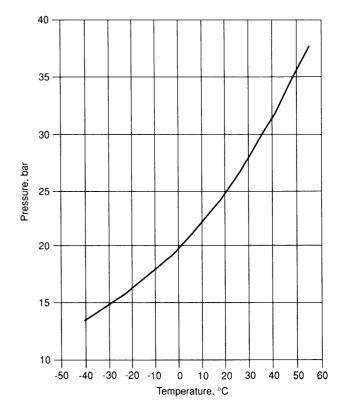


Figure A-2-1.4.1(d) Isometric diagram of HCFC Blend A, metric.

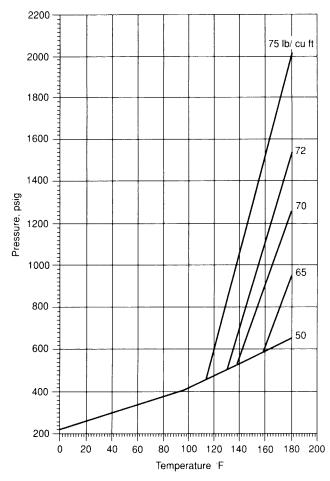


Figure A-2-1.4.1(e) Isometric diagram of HFC-227ea [pressurized with nitrogen to 360 psig (2.5 mPa) at 70° F (21° C)].

Minimum Piping Requirements

The following table provides data on the maximum allowable pressure for which the most common types of steel pipe can be used. The pressures have been calculated using the formula and SE values shown in A-2-2.1.1(4) and A-2-2.1.1(7).

The table provides pressure ratings for pipe sizes $\frac{1}{2}$ in. through 8 in. NPS, in both Schedule 40 and Schedule 80 wall thickness.

<u>Halocarbon agent systems</u>: For halocarbon agent systems, choose the proper piping where the pressure rating is equal to or greater than the pressure in the container at 130°F (55°C).

<u>Inert gas agent system</u>: For piping upstream of the pressure reducer, choose the proper piping where the pressure rating is equal to or greater than the pressure in the container at 130°F (55°C).

For piping downstream of the pressure reducer, choose the proper piping where the pressure rating is equal to or greater than the anticipated pressure in the piping at 130°F (55°C).

A-2-2.1.1 The following presents calculations to provide minimum pipe schedules (wall thickness) for use with clean agent fire extinguishing systems in accordance with this standard. Paragraph 2-2.1.1 requires that "the piping wall shall be calculated in accordance with ANSI B31.1, *Power Piping Code.*"

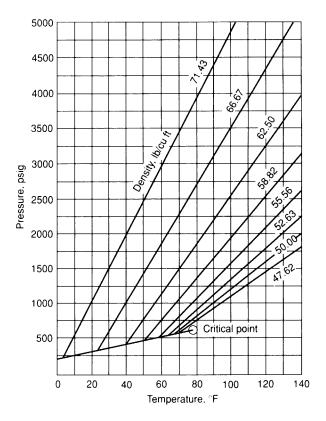


Figure A-2-1.4.1(f) Isometric diagram of HFC-23.

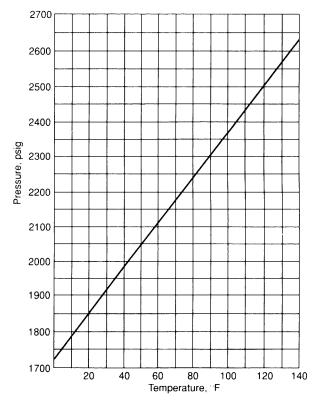


Figure A-2-1.4.1(g) Isometric diagram of IG-541 [pressurized to 2175 psig (15 mPa) at 70°F (21°C)].

APPENDIX A **2001**–31

Piping with Threaded Connections Maximum Allowable Pressure (psig)

Schedule 40 Steel Pipe

NPS	Grade: Type: SE:	A-106C Seamless 21000	A-53B A-106B Seamless 18000	A-53B ERW 15360	A-53A A-106A Seamless 14400	A-53A ERW 12240	A-53F Furnace 8160
1/2		2593	2222	1896	1778	1511	1008
$3\overline{y}_1$		2234	1915	1634	1532	1302	868
1		2026	1736	1482	1390	1181	787
$1^{1/4}$		1782	1528	1304	1222	1038	692
$14/_{2}$		1667	1429	1220	1144	972	648
2		1494	1280	1093	1025	871	581
$21/_{2}$		1505	1290	1100	1032	877	584
3		1392	1193	1018	954	811	541
-4		1278	1096	935	876	745	497
5		1193	1022	872	818	693	463
6		1141	978	834	782	664	443
8		1081	926	790	740	630	420

Schedule 80 Steel Pipe

NPS	Grade: Type:	A-106C Seamless	A-53B A-106B Seamless	A-53B ERW	A-53A A-106A Seamless	A-53A ERW	A-53F Furnace
1/2		4493	3851	3286	3080	2618	1746
7/4		3874	3320	2833	2657	2258	1505
1		3495	2996	2556	2397	2037	1358
11/1		3073	2634	2248	2107	1792	1194
$1\frac{1}{2}$		2883	2472	2110	1978	1681	1121
2		2625	2250	1920	1800	1530	1020
$21/_{2}$		2571	2204	1882	1764	1499	1000
3		2400	2057	1756	1645	1399	932
-1		2212	1896	1618	1517	1289	859
5		2076	1780	1518	1423	1210	806
6		2105	1804	1540	1442	1226	817
8		1948	1669	1424	1336	1135	757

Minimum Piping Requirements for Clean Agent Systems

- 1. Limitations on piping to be used for clean agent systems (or any pressurized fluid) are set by:
 - (a) Maximum pressure expected within the pipe:
- (b) Material of construction of the pipe, tensile strength of the material, yield strength of the material, and temperature limitations of the material;
- (c) Joining methods, e.g., threaded, welded, grooved, etc.;
- (d) Pipe construction method, e.g., seamless, ERW (electric resistance welded), furnace welded, etc.;
 - (e) Pipe diameter; and
 - (f) Wall thickness of the pipe.
 - 2. The calculations are based on the following:
- (a) The minimum calculated pressure is 620 psi (4275 kPa) for systems using an initial charging pressure up to and including 360 psi (2482 kPa); 2,250 psi (15 514 kPa) for HFC-23 systems; and for IG-541 systems, 2,575 psi (17 755 kPa) for piping upstream of the pressure reducer and 1000 psi (6895 kPa) for piping downstream of the pressure reducer;

- (b) The calculations contained herein apply only to steel pipe conforming to ASTM A-53 or ASTM A-106, and copper tubing conforming to ASTM B-88;
- (c) The calculations cover threaded, welded, and grooved joints for steel pipe; and compression fittings for copper tubing; and
- (d) Other materials, such as stainless steel pipe or tubings, may be used provided that the appropriate SE values, wall thicknesses, and end connection factors are substituted.
- 3. The basic equation to determine the minimum wall thickness for piping under internal pressure is:

$$t = [PD/2SE] + A$$

where:

t = required wall thickness (inches)

D = outside pipe diameter (inches)

P = maximum allowable pressure (psi)

SE = maximum allowable stress [including joint effi-

ciency] (psi)

A = allowance for threading, grooving, etc. (inches).

Piping with Rolled Groove or Welded Connections Maximum Allowable Pressure

Schedule 40 Steel Pipe

NIDC	Grade:	A-106C	A-53B A-106B	A-53B ERW	A-53A A-106A Seamless	A-53A ERW	A-53F Furnace
NPS	Type:	Seamless	Seamless	EKW	Seamless	EKW	rurnace
1/2		5450	4672	3986	3737	3176	2118
3/4		4520	3875	3306	3100	2634	1757
1		4248	3641	3107	2912	2475	1650
11/1		3542	3036	2591	2429	2064	1376
$1\frac{1}{2}$		3205	2747	2344	2197	1868	1246
2		2723	2334	1992	1867	1588	1058
$21/_{2}$		2965	2542	2168	2033	1728	1152
3		2592	2221	1896	1777	1511	1007
4		2212	1896	1618	1516	1289	859
5		1948	1669	1424	1336	1135	757
6		1775	1522	1298	1217	1034	690
8		1568	1344	1147	1075	914	609

Schedule 80 Steel Pipe

NPS	Grade: Type:	A-106C Seamless	A-53B A-106B Seamless	A-53B ERW	A-53A A-106A Seamless	A-53A ERW	A-53F Furnace
$1/_{2}$		7350	6300	5376	5040	4284	2856
$3\sqrt{4}$		6160	5280	4506	4224	3590	2394
1		5717	4900	4182	3920	3332	2221
$1\frac{1}{4}$		4833	4142	3535	3314	2816	1878
$1\frac{1}{2}$		4421	3789	3234	3032	2576	1718
2		3855	3304	2820	2644	2248	1498
$24/_{2}$		4032	3456	2949	2765	2350	1567
3		3600	3086	2633	2469	2098	1339
4		3145	2696	2301	2157	1834	1223
5		2831	2427	2071	1941	1650	1100
6		2739	2347	2003	1878	1596	1064
8		2435	2087	1781	1670	1420	946

NOTE: For these calculations:

A = depth of thread for threaded connections

A = depth of groove for cut groove connections

A = zero for welded or rolled groove connections

A = zero for joints in copper tubing using compression fittings.

The term SE is defined as V_4 of the tensile strength of the piping material or $\frac{2}{3}$ of the yield strength (whichever is lower) multiplied by a joint efficiency factor.

Joint efficiency factors are:

1.0 for seamless

0.85 for ERW (electric resistance welded)

0.60 for furnace butt weld (continuous weld) (Class F).

4. The basic equation can be rewritten to solve for P so as to determine the maximum allowable pressure for which a pipe having a nominal wall thickness, t, can be used:

$$P = 2SE (t - A)/D$$

as required by 2-2.1.1 of this standard.

For systems having a charging pressure up to and including 360 psi (2482 kPa), the calculated pressure, P, must be equal to or greater than 620 psi (4275 kPa).

For HFC-23 systems, the calculated pressure, P, must be equal to or greater than 2250 psi (15.514 kPa).

For IG-541 systems, the calculated pressure, P, must be equal to or greater than:

 $2575~\mathrm{psi}~(17.755~\mathrm{kPa})$ for piping upstream of the pressure reducer.

1000 psi (6895 kPa) for piping downstream of the pressure reducer.

These pressure values are based on a maximum agent storage temperature of 130°F (55°C).

5. If higher storage temperatures are approved for a given system, the internal pressure should be adjusted to the maximum internal pressure at maximum temperature. In performing this calculation, all joint factors and threading, grooving, or welding allowances should be taken into account.

APPENDIX A **2001**–33

6. The following list gives values for SE as taken from Appendix A of ASME B31, Code for Pressure Piping. Identical values are given in ASME B31.1, Power Piping Code, and ASME/ANSI 31.9, Building Services Piping Code.

		SE Value
Grade C Seamless Pipe	ASTM A-106	17500 psi
Grade B Seamless Pipe	ASTM A-53	15000 psi
Grade B Seamless Pipe	ASTM A-106	15000 psi
Grade A Seamless Pipe	ASTM A-53	12000 psi
Grade A Seamless Pipe	ASTM A-106	12000 psi
Grade B ERW Pipe	ASTM A-53	12800 psi
Grade A ERW Pipe	ASTM A-53	10200 psi
Grade F Furnace Welded Pipe	ASTM A-53	6800 psi
Seamless Copper Tubing (Annealed)	ASTM B-88	5100 psi
Seamless Copper Tubing (Drawn)	ASTM B-88	9000 psi
For SI Units: $1 \text{ psi} = 6.895 \text{ kPa}$.		

7. Paragraph 102.2.4(B) of ASME B31.1, *Power Piping Code*, allows the maximum allowable stress (SE) to be exceeded by 20 percent if the duration of the pressure (or temperature) increase is limited to less than 1 percent of any 24-hour period. Since the clean agent piping is normally unpressurized, the system discharge period satisfies this criteria. Therefore, the piping calculations set out in this paragraph are based on values of SE that are 20 percent greater than those outlined above in Paragraph 6 (per Appendix A of ASME B31.1, *Power Piping Code*). The specific values for maximum allowable stress used in these calculations are as follows:

		on value
Grade C Seamless Pipe	ASTM A-106	21000 psi
Grade B Seamless Pipe	ASTM A-53	18000 psi
Grade B Seamless Pipe	ASTM A-106	18000 psi
Grade A Seamless Pipe	ASTM A-53	14400 psi
Grade A Seamless Pipe	ASTM A-106	14400 psi
Grade B Seamless Pipe	ASTM A-53	15360 psi
Grade A ERW Pipe	ASTM A-53	12240 psi
Grade F Furnace Welded Pipe	ASTM A-53	8160 psi
Seamless Copper Tubing (Annealed)	ASTM B-88	6120 psi
Seamless Copper Tubing (Drawn)	ASTM B-88	10800 psi
For SI Units: $1 \text{ psi} = 6.895 \text{ kPa}$.		•

SE Value

NOTE 1: When using rolled groove connections or welded connections with internal projections (backup rings, etc.), the hydraulic calculations should consider these factors.

NOTE 2: Pipe supplied as dual stenciled A-120/A-53 Class F meets the requirements of Class F furnace welded pipe ASTM A-53 as listed above. Ordinary cast-iron pipe, steel pipe conforming to ASTM A-120, or nonmetallic pipe should not be used.

NOTE 3: All grooved couplings/fittings should be listed/approved for use with clean agent extinguishing systems.

NOTE 4: The above calculations do not apply to extended discharge exceeding 14.4 min.

NOTE 5: For compression or flare-type tubing fittings, the maximum allowable working pressure specified by the fitting manufacturer should be used.

Minimum Piping Requirements

Clean Agent Systems — with Charging Pressures up to and Including 360 psi (2482 kPa)				
Steel Pipe—Threaded Connections				
ASTM Å-106 Seamless, Grade C	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-106/A-53 Seamless, Grade B	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS			
ASTM A-106/A-53 Seamless, Grade A	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS			
ASTM A-53 ERW Grade B	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-53 ERW Grade A	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-53 Furnace Weld Class F	Schedule $40-\frac{1}{8}$ in, thru $1\frac{1}{2}$ in, NPS			
	Schedule 80-2 in. thru 8 in. NPS			
Steel Pipe—Welded or Rolled Groove Connections				
ASTM Å-106 Seamless, Grade C	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS			
ASTM A-106/A-53 Seamless, Grade B	Schedule 40—1/8 in. thru 8 in. NPS			
ASTM A-106/A-53 Seamless, Grade A	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS			
ASTM A-53 ERW Grade B	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS			
ASTM A-53 ERW Grade A	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-53 Furnace Weld Class F	Schedule $40-\frac{1}{8}$ in. thru 6 in. NPS			
	Schedule 80—8 in. NPS			
Steel Pipe—Cut Groove Connections				
ASTM Å-106 Seamless, Grade C	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-106/A-53 Seamless, Grade B	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-106/A-53 Seamless, Grade A	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-53 ERW Grade B	Schedule $40-\frac{1}{8}$ in, thru 8 in, NPS			
ASTM A-53 ERW Grade A	Schedule $40-\frac{1}{8}$ in, thru 5 in, NPS			
	Schedule 80—6 in. thru 8 in. NPS			
ASTM A-53 Furnace Weld Class F	Schedule $40-\frac{1}{8}$ in, thru 3 in, NPS			
•	Schedule 80—4 in. thru 8 in. NPS			
Copper Tubing—Compression Fittings				
ASTM B-88 Seamless, Drawn	Type K 1_{4} in, thru 8 in.			
ASTM B-88 Seamless, Drawn	Type I. V_4 in, thru 3 in.			
ASTM B-88 Seamless, Drawn	Type M $\frac{1}{2}$ in. thru $\frac{1}{2}$ in.			
ASTM B-88 Seamless, Annealed	Type K V_4 in, thru 1 in.			
ASTM B-88 Seamless, Annealed	Type L V_1 in, thru \mathcal{X}_4 in.			
ASTM B-88 Seamless, Annealed	Type M 1/4 in. ONLY			

Minimum Piping Requirements

IG-541 Systems - Upstream of Pressure Reducer

Steel Pipe—Threaded Connections ASTM Å-106 Seamless, Grade C Schedule 40-1/8 in. thru 1/2 in. NPS Schedule 80-3/4 in. thru 21/2 in. NPS ASTM A-106/A53 Seamless Grade B Schedule 40-DO NOT USE Schedule 80-1/8 thru 11/4 NPS Schedule 40-DO NOT USE ASTM A-106/A53 Seamless Grade A Schedule 80-1/8 thru 3/4 in. NPS Schedule 40—DO NOT USE ASTM A-53 ERW Grade B Schedule 80-1/8 thru 1 in. NPS ASTM A-53 ERW Grade A Schedule 40-DO NOT USE Schedule $80\frac{1}{8}$ in. thru $\frac{1}{2}$ in. NPS ASTM A-53 Furnace Weld Class F DO NOT USE Steel Pipe—Welded ASTM A-106 Seamless, Grade C Schedule $40-\frac{1}{8}$ in. thru 3 in. NPS Schedule 80-4 in. thru 6 in. NPS ASTM A-106/A-53 Seamless, Grade B Schedule 40-1/8 thru 11/2 in. NPS Schedule 80-2 in. thru 4 in. NPS ASTM A-106/A-53 Seamless, Grade A Schedule 40-1/8 thru 1 in. NPS Schedule 80 11/4 thru 21/2 NPS ASTM A-53 ERW Grade B Schedule $40 = \frac{1}{8}$ in. thru $1\frac{1}{4}$ in. NPS Schedule $80-1\frac{1}{2}$ in. thru 3 in. NPS Schedule $40-\frac{1}{8}$ in. thru $\frac{3}{4}$ NPS ASTM A-53 ERW Grade A Schedule 80-1 in. thru 11/2 NPS ASTM A-53 Furnace Weld Class F Schedule 40-DO NOT USE Schedule $80-\frac{1}{8}$ in. thru $\frac{1}{2}$ in. Copper Tubing—Compression Fittings Type K, L, M—DO NOT USE ASTM B-88 Seamless, Drawn ASTM B-88 Seamless, Annealed Type K, L, M-DO NOT USE

Minimum Piping Requirement

IG-541 Systems - Downstream of Pressure Reducer

Steel Pipe—Threaded Connections	
ASTM A-106 Seamless, Grade C	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS
ASTM A-106/A-53 Seamless, Grade B	Schedule $40-\frac{1}{8}$ in. thru 5 in. NPS
	Schedule 80—6 in. thru 8 in. NPS
ASTM A-106/A-53 Seamless, Grade A	Schedule $40-\frac{1}{8}$ in. thru $2\frac{1}{2}$ in. NPS
	Schedule 80—3 in. thru 8 in. NPS
ASTM A-53 ERW Grade B	Schedule $40-\frac{1}{2}$ in. thru 3 in. NPS
	Schedule 80—4 in. thru 8 in. NPS
ASTM A-53 ERW Grade A	Schedule $40-\frac{1}{8}$ in. thru $1\frac{1}{4}$ in. NPS
	Schedule $80-1\frac{1}{2}$ in. thru 8 in. NPS
ASTM A-53 Furnace Weld Class F	Schedule $40-\frac{1}{8}$ in. thru $\frac{1}{2}$ in. NPS
	Schedule $80-3/4$ in. thru $21/2$ in. NPS
	Schedule 120—3 in. thru 8 in. NPS
Steel Pipe—Welded	
ASTM Å-106 Seamless, Grade C	Schedule 40—1/8 in. thru 8 in. NPS
ASTM A-106/A-53 Seamless, Grade B	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS
ASTM A-106/A-53 Seamless, Grade A	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS
ASTM A-53 ERW Grade B	Schedule $40-\frac{1}{8}$ in. thru 8 in. NPS
STM A-53 ERW Grade A	Schedule $40-\frac{1}{8}$ in. thru 6 in. NPS
	Schedule 80—8 in. NPS
ASTM A-53 Furnace Weld Class F	Schedule 40—1/8 in. thru 3 in. NPS
	Schedule 80-4 in. thru 6 in. NPS
	Schedule 120-8 in. NPS
Copper Tubing—Compression Fittings	
ASTM B-88 Seamless, Drawn	Type K V_{\pm} in. thru $1V_{\pm}$ in.
ASTM B-88 Seamless, Drawn	Type L $\frac{1}{1}$ in. thru $\frac{3}{4}$ in.
ASTM B-88 Seamless, Drawn	Type M $\frac{1}{4}$ in. thru $\frac{3}{8}$ in.
ASTM B-88 Scamless, Annealed	Type K $\frac{1}{4}$ in. thru $\frac{3}{8}$ in.
STM B-88 Seamless, Annealed	Type L DO NOT USE
·	
ASTM B-88 Seamless, Annealed	Type M DO NOT USE

APPENDIX A **2001**–35

- **A-2-2.3.1** Fittings that are acceptable for use in clean agent systems include the following:
- (a) Fittings for clean agent systems having a charging pressure up to and including 360 psig (2482 kPa) at 70°F (21°C) should be, as a minimum:

Class 300 malleable or ductile iron fittings through 3 in. NPS, and 1000-lb rated ductile iron or forged steel fittings in all larger sizes. Flanged joints should be Class 300.

(b) Fittings for HFC-23 systems should be, as a minimum:

Class 300 malleable or ductile iron fittings through 2 in. NPS, and forged steel fittings in all larger sizes. Flanged joints upstream of any stop valves should be Class 600, and those downstream of any stop valves or in systems with no stop valves should be Class 300.

(c) Fittings for IG-541 systems having a charging pressure of 2,175 psig (14 997 kPa) at 70° F (21°C) should be, as a minimum:

Upstream of the pressure reducer: 2000-lb Class forged steel, in all sizes.

Downstream of the pressure reducer: Class 300 malleable or ductile iron fittings through 3 in. NPS, and 1000-lb rated ductile iron or forged steel fittings in all larger sizes. Flanged joints should be Class 600.

The materials itemized above do not preclude the use of other materials and type and style of fittings that satisfy the requirements of 2-2.3.1.

- (d) Pressure-temperature ratings have been established for certain types of fittings. A list of ANSI standards covering the different types of fittings is given in Table 126.1 of ASME B31.1, *Power Piping Code*. Where fittings not covered by one of these standards are used, the design recommendations of the manufacturer of the fittings should not be exceeded.
- A-2-2.4.2 Some of the new clean agents may not be compatible with the elastomers used in Halon 1301 system valves. Before charging a system container with some of the clean agents, it may be necessary to disassemble the discharge valve and completely replace the o-rings and other sealing surfaces with components that will not react to that agent. Make certain that this evaluation has been completed. Also make certain that the change results in the valve, container, and system complying with the appropriate listings or approvals.
- **A-2-3.2.1** The detection system selection process should evaluate the ambient environmental condition in determining the appropriate device and sensitivity in order to prevent unwanted discharges while still providing the necessary earliest actuation. In high air flow environments, air sampling detection devices should be considered.
- **A-2-3.5.3** A telephone should be located near the abort switch.
- **A-2-3.6** Accidental discharge may be a significant factor in unwanted clean agent emissions. Equipment lockout or service disconnects can be instrumental in preventing false discharges when the clean agent system is being tested or serviced. In addition, servicing of air conditioning systems with the release of refrigerant aerosols, soldering, or turning electric plenum heaters on for the first time after a long period of idleness may trip the clean agent system. Where used, an equipment service disconnect switch should be of

the keyed-access type if external of the control panel or may be of the toggle type if within the locked control panel. Either type should annunciate at the panel when in the out-of-service mode. Written procedures should be established for taking the clean agent system out of service.

A-3-2.1 It is the intent of the committee to provide within this standard a generic, open, and consensus-based method for performing system flow calculations. As of publication date, no method was available.

Phenomenologically, the discharge and pipe flows of these agents are similar to that of Halon 1301. Some of these agents will exhibit two phase-two component flows. It is possible that these clean agent compounds will yield more simply to model flow behavior due primarily to higher boiling points. These flow phenomena are, in general, extremely complex and difficult to predict; however, several computer schemes have been developed for the discharge of Halon 1301 and could be modified for use with these replacements. Notable among these computer schemes are the let Propulsion Laboratories' HFLOW (simplified Halon 1301 algorithm) and their modifications of Los Alamos National Laboratories' SOLA-LOOP program (finite difference, drift flux algorithm) (DiNenno, P.J., Forssell, E. et al., 1989, 1990; Elliot, D.G. et al., 1984; Hirt et al., 1976). Previous work by DiNenno and Budnick (1988) identified 15 general purpose two-phase flow calculation schemes and identified SOLA-LOOP as the most promising for the type of compounds and flow conditions encountered in fire suppression systems. Experimental agreement on relatively simple piping networks was excellent.

A-3-3.4 Examples of ventilation systems necessary to ensure safety include cooling of vital equipment required for process safety and ventilation systems required for containment of hazardous materials.

A-3-4.2.1 Inerting Concentrations. This appendix section provides a summary of a method of evaluating inerting concentration of a fire extinguishing vapor.

One characteristic of halons and replacement agents is frequently referred to as the inerting, or inhibiting, concentration. Related to this, flammability diagram data (Dalzell, W., 1975 and Coll., J.P., 1976) on ternary systems was published in NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems. The procedures used previously have been used more recently to evaluate inerting concentrations of halons and replacement chemicals against various fuel-air systems. Differences between the earlier studies and the recent work are that the test vessel volume used was 7.9 L vs 5.6 L previously; the igniter type was the same, i.e. carbon rod corona discharge spark, but the capacitor stored energy levels were higher, approximately 68 J vs 6 or 11 J on the earlier work. The basic procedure, employing a gap spark, has been adopted to develop additional data.

Ternary fuel-air agent mixtures were prepared at a test pressure of 1 atmosphere and at room temperature in a 7.9-L spherical test vessel by the partial pressure method. The vessel was fitted with inlet and vent ports, a thermocouple, and a pressure transducer. The test vessel was first evacuated. Agent was then admitted, and if a liquid, sufficient time was allowed for evaporation to occur. Fuel vapor and finally air were admitted, raising the vessel pressure to 1 atmosphere. An internal flapper allowed the mixtures to

be agitated by rocking the vessel back and forth. The pressure transducer was connected to a suitable recording device to measure pressure rise that may occur on actuation of the igniter.

The igniter employed consisted of a bundle of four graphite rods ("H" pencil leads) held together by two wire or metal brand wraps on either end of the bundle leaving a gap between the wraps of about 3 mm. The igniter was wired in series with two 525 mF 450-volt capacitors. The capacitors were charged to a potential of 720 to 730 VDC. The stored energy was, therefore, 68 to 70 J. The nominal resistance of the rod assemble was about 1 ohm. On switch closure the capacitor discharge current resulted in ionization at the graphite rod surface. A corona spark jumped across the connector gap. The spark energy content was taken as the stored capacitor energy though, in principle, it must be somewhat less than this amount due to line resistance losses.

The pressure rise, if any, resulting from ignition of the test mixture was recorded. The interior of the test vessel was wiped clean with a cloth damp with either water or a solvent between tests to avoid buildup of decomposition residues that might influence the results.

The definition of the flammable boundary was taken as that composition that just produces a pressure rise of 0.07 times the initial pressure, or 1 psi when the initial pressure is 1 atmosphere. Tests were conducted at fixed fuel-air ratios and varying amounts of agent vapor until conditions were found to give rise to pressure increases that bracket 0.07 times the initial pressure. Tests were conducted at several fuel-air ratios to establish that condition requiring the highest agent vapor concentration to inert.

Data obtained on several chemicals that may serve as fire protection agents are given below.

Table A-3-4.2.1 Inerting Concentrations for Various Agents

Fuel	Agent	Vol % Inerting Concentration	Reference	
i-Butane	H-1301	6.7	Senecal	
	HFC-227ea	11.3	Senecal	
	HBFC-22B1	11.3	Senecal	
Methane	HFC-23	20.2	Senecal	
	HFC-125	14.7	Senecal	
	IG-541	43.0	Tamanini	
Propane	H-1301	7.7	Senecal	
•	H-1301	6.0	Senecal	
	HFC-23	20.2	Senecal	
	HFC-125	15.7	Senecal	
	HBFC-22B1	11.7	Senecal	
	IG-541	49.0	Tamanini	
	FC-3-1-10	10.3	Senecal	
	FC-5114	7.3	Senecal	

A-3-4.2.2 Flame Extinguishing Concentrations. This appendix section provides a summary of the cup burner method for determining extinguishing concentrations.

One apparatus, shown schematically in Figure A-3-4.2.2, consists of an 8.5-cm 1.D. by 53-cm tall outer chimney through which air is passed at 40 L/min from a glass bead distributor at its base, and an inner fuel cup burner with a 3.1-cm O.D. and a 2.15-cm 1.D. positioned 30.5-cm below

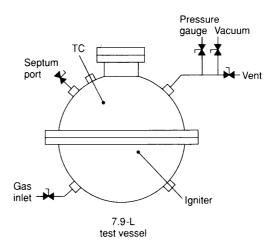


Figure A-3-4.2.1 Spherical test vessel.

the top edge of the outer chimney. Extinguishing agent is added to the air stream prior to entering the glass bead distributor. The air flow rate is maintained at 40 L/min for all trials. Air and agent flow rates are measured using calibrated rotameters.

Each trial is conducted by adjusting the extended fuel reservoir (*see Figure A-3-4.2.2*) to bring the liquid level in the cup burner to just even with the base of a ground glass lip on the burner cup. With the air flow maintained at 40 L/min, the fuel in the cup burner is ignited. Agent is gradually added to the air stream until the flame is extinguished. The agent rotameter reading is then recorded.

Several extinguishing trials are conducted with each agent-fuel combination to ensure that repeatability is obtained.

The extinguishment concentration is computed as follows:

Ext. Conc. =
$$\frac{F_1}{F_1 + F_2} \times 100\%$$

where F_1 = Agent flow rate, L/min F_2 = Air flow rate, L/min.

The average of the several values of agent flow rate at extinguishment is used in the above calculation.

A number of investigators using different test methods and procedures have published flame extinguishing data. Reported cup burner flame extinguishing concentrations often vary between investigators, and variations in equipment and techniques exist. Despite this, however, agreement between different laboratories is relatively good. Table A-3-4.2.2 presents cup burner flame extinguishing concentrations for halocarbon agents in this standard from various investigators.

A-3-4.2.2.3 Deep-seated fires involving Class A fuels may require substantially higher design concentrations and extended holding times than the design concentrations and holding times required for surface-type fires involving Class A fuels.

A-3-5.1 Total Flooding Quantity. The amount of clean agent required to develop a given concentration will be greater than the final amount of agent in the same enclosure.

In most cases, the clean agent must be applied in a manner that promotes progressive mixing of the atmosphere. As the clean agent is injected, the displaced atmosphere is

APPENDIX A **2001**–37

Table A-3-4.2.2 Cup-Burner Heptane Flame Extinguishing Data

Investigator	Agent							
Ü	FC-3-1-10	HFC-124	HFC 227ea	HBFC 22B1	HFC 23	HFC 125	IG-541	Halon 1301
NRL	5.2		6.6	4.1	12	9	_	3.1
3M	5.9			_	_	_		3.9
NMERI	5.0	-	6.3	4.4	12.6	9.4		2.9
Fenwal	5.5	6.4	5.8	3.9	12	8.1	_	3
GLCC	_		5.9	3.9	12.7	_	_	3.5
Ansul				_			29.1	_

NOTES:

(a) Add the following Designations: NRL - Naval Research Laboratory, NMERI - New Mexico Engineering Research Institute, GLCC - Great Lakes Chemical Company.

(b) Vapor pressure at 77°F (25°C).

(c) Extinguishing concentration by cup burner test.

(d) The extinguishing concentration of 7.2% for HCFC Blend A has been obtained by UL Canada.

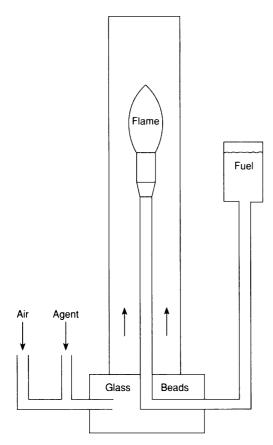


Figure A-3-4.2.2 Cup burner apparatus.

exhausted freely from the enclosure through small openings or through special vents. Some clean agent is therefore lost with the vented atmosphere, and the higher the concentration, the greater the loss of clean agent.

For the purposes of this standard, it is assumed that the clean agent/air mixture lost in this manner contains the final design concentration of the clean agent. This represents the worst case from a theoretical standpoint and provides a built-in safety factor to compensate for non-ideal discharge arrangements.

A-3-5.2 The volume of inert gas clean agent required to develop a given concentration will be greater than the final volume remaining in the same enclosure.

In most cases the inert gas clean agent must be applied in a manner that promotes progressive mixing of the atmosphere. As the clean agent is injected, the displaced atmosphere is exhausted freely from the enclosure through small openings or through special vents. Some inert gas clean agent is therefore lost with the vented atmosphere. This loss becomes greater at high concentrations. This method of application is called "free efflux" flooding.

Under the above conditions the volume of inert gas clean agent required to develop a given concentration in the atmosphere is expressed by the following equations:

$$e_{x} = \frac{100}{100 - \% \text{ IG}}$$

or

$$X = 2.303 \text{ Log}_{10} \frac{100}{100 - \% \text{ IG}}$$

Where: % IG = Volume % of inert gas

X = Volume of inert gas added per volume of space.

A-3-6 Some areas affected by pressures other than sea level would include hyperbaric enclosures, facilities where ventilation fans are used to create artificially higher or lower pressures such as test chambers, and facilities at altitudes above or below sea level. Although mines are usually below normal ground levels, they occasionally have to be ventilated so that personnel can work in that environment. Ambient pressures in that situation can be considerably different from those expected by a pure altitude correction.

Although adjustments are required for barometric pressures equivalent to 3000 ft (915 m) or more above or below sea level, adjustments can be made for any ambient pressure condition.

The atmospheric correction factor is not linear. However, in the moderate range discussed it can be closely approximated with two lines:

For -3000 ft to 5500 ft of equivalent altitude:

Y = (-0.000036 * X) + 1

For 5501 ft to 10000 ft of equivalent altitude:

Y = (-0.00003 * X) + 0.96

Where:

Y = Correction Factor

X = Altitude (ft).

For SI Units: 1 ft = 0.305 m.

A-3-8.1.2 Discharge Time. The optimum discharge time is a function of many variables. Four variables are very important:

- (a) Limitation of decomposition products;
- (b) Limitation of fire damage and its effects;
- (c) Enhanced agent mixing;
- (d) Limitation of compartment overpressure; and
- (e) Secondary nozzle flow effects.

The halogenated hydrocarbon fire extinguishing agents described in this standard will break down into their decomposition products as they are exposed to a fire. It is essential that the end user understand this process as the selection of the discharge time, and other design factors, will be impacted by the amount of decomposition products the protected hazard can tolerate.

The quantity of decomposition products generated for a particular agent is proportional to the size of the fire, the actual agent concentration, and the speed at which the extinguishing concentration is applied to the fire. The larger the flame size, the greater the quantity of decomposition products that would be expected. Likewise, the decomposition products will be greater if the agent discharges slowly. This is due to the fact that it takes longer for the minimum extinguishing concentration to be achieved. Until it is achieved, the flame will continue to decompose agent rather than be suppressed. Additionally, studies by Ferreira et al (1992) demonstrated a 50 percent reduction in decomposition products when cup burner plus 20 percent concentrations of FC-3-1-10 were used in a comparison to cup burner concentrations only.

This decomposition issue is not unique to these agents. Halon 1301 decomposed into limited quantities of HBr and HF. In a properly designed Halon 1301 system, the quantity of these products would be very small and of little consequence to the end user. After decades of experience, the quantity of decomposition products generated as Halon 1301 suppressed a fire was not known to have caused any damage.

The agents described in this standard also will decompose into various chemicals. The most common decomposition product is HF. HF can be a very hazardous substance. Therefore, the system designer should make every effort to limit the generation of HF to the least possible amount. This is especially critical in areas where people or sensitive equipment might be present.

People would be aware of excessive HF in an area as it generates a very objectionable odor. Excessive HF can be damaging to sensitive equipment as it can mix with the water vapor in the air to form diluted hydrofluoric acids that can cause corrosion and accelerated aging of contact points.

Limited data on decomposition product formation indicate that the quantity of decomposition products formed is driven by the size of the fire at the time of discharge and, to a lesser extent, the discharge time. There is insufficient data to quantify the relationship between discharge time or fire size and the quantity of decomposition products produced. All nonbrominated clean agents produce more decomposition products than Halon 1301.

Ferreira, et. al. (1992) report that doubling the discharge time from 5 to 10 seconds resulted in a 30 to 50 percent increase in the quantity of decomposition products formed for FC-3-1-10; increasing the fire size by a factor of 13 (from 0.087 to 1.17 sq ft of fuel surface area per 1000

cu ft of enclosure volume) resulted in an 11-fold increase in decomposition products. Robin (1992) reported similar results for decomposition products as a function of fire size; increasing the fire size by a factor of 10 (from 0.06 to 0.60 sq ft of fuel surface area per 1000 cu ft of enclosure volume) resulted in a 20-fold increase in decomposition products for HFC-227ea, a 16-fold increase for Halon 1301, and a 5-fold increase for HBFC-22B1. More recently, Ferreira, et. al. (1992b) report comparable levels of decomposition products for FC-3-1-10 and HFC-227ea under various test conditions.

HF formation can be limited by using the shortest discharge time feasible and employing detection means that allow sensing the fire event in its earliest stages. Where damage from potential HF formation may be an issue, the installation of more sensitive detection systems may be considered. Utilizing detection devices at spacing closer than their maximum rating may be necessary.

Once the determination has been made that there is a fire and it is time to discharge, a faster discharge will produce less decomposition products. A balance must be struck between discharge time and the pressure rise in the protected area. The overpressure may be reduced by utilizing more nozzles or through the use of devices that protect the area from the force of the discharge. Increasing the number of nozzles may reduce the degree of turbulence and local overpressure effects. The designer should balance the requirements for quick discharge, limiting the disruption of protected area, with the manufacturer's recommendations on flow rates.

Some agents, such as inert gases, will not form decomposition products and hence do not require discharge time limitations on this basis. However, the increased combustion products and oxygen level reduction associated with longer discharge times should be considered.

Agent mass flow rates must be sufficiently high to cause adequate agent mixing and distribution in the compartment. In general, this parameter is determined by the listing of system hardware.

Overpressurization of the protected compartment should also be considered in determining minimum discharge time.

Other secondary flow effects on personnel and equipment include formation of missiles caused by very high discharge velocities, higher noise levels, lifting ceiling panels, etc. These increase if the maximum discharge time is set too low.

The maximum 10-sec discharge time given in this standard reflects a reasonable value based on experience with Halon 1301 systems. The maximum and minimum discharge time should reflect consideration of the factors described above.

For inert gases, the measured discharge time is considered to be the time when the measuring device starts to record reduction of oxygen until the design oxygen reduction level is achieved.

A-3-8.2 Special consideration should be given to safety and health issues when considering extended discharge systems.

A-4-2.2 Visual Inspection.

CAUTION: These guidelines apply only to the external inspection of containers continuously in service in the fire extinguishing system, and should not be confused with the DOT retest requirements for visual inspection described in CFR49, Section 173.34 (e) (10).

APPENDIX B **2001**-39

Containers continuously in service without discharging should be given a complete external inspection every five years, or more frequently if required. The external visual inspection should be performed in accordance with guidelines described in Section 3 of the Compressed Gas Association, Inc. (CGA) pamphlet C-6 titled Standard for Visual Inspection of Compressed Gas Cylinders (Steel).

For this external inspection the containers should not be emptied or stamped while under pressure. Some of the inspection requirements specified in Section 3 of CGA pamphlet C-6 may not apply where it requires internal inspection, emptying the cylinder, or measuring tare weight.

Proper record keeping is an important part of every inspection. The inspector should be guided by the following outline to ensure that the minimum information is recorded:

- (a) Record Tag. A record tag should be attached to every container being inspected for future reference. The record tag should be marked with date of inspection (month/year), name of individual(s) and company performing the inspection, container serial number, condition of the container (e.g., paint, corrosion, dents, gouges, etc.), and disposition.
- (b) Inspection Report. A suitable inspection form should be provided on which at least the following information should be recorded: date of inspection (month/year), name of individual(s) and company performing the inspection, DOT specification number, container serial number, date of manufacture, date of previous inspection and/or test, type of protective coating, surface condition (corrosion, dents, gouges, fire damage, etc.), disposition (satisfactory, repaint, repair, scrap, etc.).

A sample of a suitable Inspection Report Form is shown in Appendix A of CGA pamphlet C-6.

A copy of the completed inspection report should be given to the owner or the owner's authorized representative with instructions to retain as a permanent record.

A-4-5.3 The method of sealing should not introduce any new hazards.

A-4-6.2 Training should cover the following:

- (a) Health and safety hazards associated with exposure to extinguishing agent caused by inadvertent system discharge.
- (b) Difficulty in escaping spaces with inward swinging doors that are overpressurized due to an inadvertent system discharge.
- (c) Possible obscuration of vision during system discharge.
- (d) Need to block open doors at all times during maintenance activities.
- (e) Need to verify a clear escape path exists to compartment access.
- (f) A review of how the system could be accidentally discharged during maintenance, including actions required by rescue personnel should accidental discharge occur.
- **A-4-7.2.2.13 Piping Network Flow Test.** The purpose is to conduct a flow test of short duration (also known as a "puff test") through the piping network to determine that (1) the flow is continuous, (2) check valves are properly oriented, and (3) the piping and nozzles are unobstructed.

The flow test should be performed using gaseous nitrogen at a pressure not to exceed the normal operating pressure of the clean agent system.

The nitrogen pressure should be introduced into the piping network at the clean agent cylinder connection. The quantity of nitrogen used for this test should be sufficient to verify that each and every nozzle is unobstructed.

Visual indicators should be used to verify that nitrogen has discharged out of each and every nozzle in the system.

A-4-7.2.3 Enclosure Integrity Testing. If the authority having jurisdiction wants to quantify the enclosure's leakage and predicted retention time, Appendix B of NFPA 12A, *Standard on Halon 1301 Fire Extinguishing Systems*, may be used. Adjustment to the existing formulas must be made to account for differences in gas density between Halon 1301 and the proposed alternate extinguishing agent. Specifically, Equation 8 in paragraph B-2.7.1.4 of NFPA 12A must be modified by substituting the alternate agent's gas density (in kg/m³) for the existing value of 6,283, which is the value for Halon 1301. See Appendix B of this standard.

Appendix B Enclosure Integrity Procedure

This Appendix is not a part of the requirements of this NFPA document, but is included for informational purposes only.

B-1 Procedure Fundamentals.

B-1.1 Scope.

- **B-1.1.1** This procedure outlines a method to equate enclosure leakage as determined by a door fan test procedure to worst case halon leakage. The calculation method provided makes it possible to predict the time it will take for a descending interface to fall to a given height or, for the continually mixed cases, the time for the concentration to fall to a given percentage concentration.
- **B-1.1.2** Enclosure integrity testing is not intended to verify other aspects of clean agent system reliability, i.e., hardware operability, agent mixing, hydraulic calculations, and piping integrity.
- **B-1.1.3** This procedure is limited to door fan technology. This is not intended to preclude alternative technology such as acoustic sensors.
- **B-1.1.4** This procedure should not be considered to be an exact model of a discharge test. The complexity of this procedure should not obscure the fact that most failures to hold concentration are due to the leaks in the lower surfaces of the enclosure, but the door fan does not differentiate between upper and lower leaks. The door fan provides a worst case leakage estimate that is very useful for enclosures with complex hidden leaks, but it will generally require more scaling than is necessary to pass a discharge test.

B-1.2 Limitations and Assumptions.

- **B-1.2.1 Clean Agent System Enclosure.** The following should be considered regarding the clean agent system and the enclosure:
- **B-1.2.1.1 Clean Agent System Design.** This test procedure concerns only halon total flooding fire suppression systems using clean agent and designed, installed, and maintained in accordance with this standard.

- **B-1.2.1.2 Enclosure Construction.** Clean agent protected enclosures, absent of any containing barriers above the false ceiling, are not within the scope of this document.
- **B-1.2.1.3 Clean Agent Concentration.** Special consideration should be given to clean agent systems with concentrations greater than 10 percent where the concern exists that high concentrations may result in significant overpressures from the discharge event in an enclosure with minimal leakage.
- **B-1.2.1.4 Enclosure Height.** Special consideration should be given to high enclosures where the static pressure due to the clean agent column is higher than the pressure possible to attain by means of the door fan.
- **B-1.2.1.5 Static Pressures.** Where at all possible, static pressure differentials (HVAC system, elevator connections, etc.) across the enclosure envelope should be minimized during the door fan test. The test can only be relied on for enclosures having a range of static pressures outlined in B-2-5.2.3.
- **B-1.2.2 Door Fan Measurements.** The following should be considered regarding the door fan and its associated measurements:
- **B-1.2.2.1 Door Fan Standards.** Guidance regarding fan pressurization apparatus design, maintenance, and operation is provided by ASTM E779, Standard Test Method for Determining Air Leakage Rate by Fan Pressurization, and CAN/CGSB-149.10-M86, Determination of the Airtightness of Building Envelopes by the Fan Depressurization Method.
- **B-1.2.2.2** Attached Volumes. There can be no significant attached volumes within or adjoining the enclosure envelope that will allow detrimental halon leakage that would not be measured by the door fan. Such an attached volume would be significant if it is absent of any leakage except into the design envelope and is large enough to adversely affect the design concentration.
- **B-1.2.2.3 Return Path.** All significant leaks must have an unrestricted return path to the door fan.
- **B-1.2.2.4 Leak Location.** The difficulty in determining the specific leak location on the enclosure envelope boundaries using the door fan is accounted for by assuming halon leakage occurs through leaks at the worst location. This is when one-half of the total equivalent leakage area is assumed to be at the maximum enclosure height and the other half is at the lowest point in the enclosure. In cases where the below false ceiling leakage area (BCLA) is measured using B-2-6.2, the value attained for BCLA is assumed to exist entirely at the lowest point in the enclosure.
- **B-1.2.2.5 Technical Judgment.** Enclosures with large overhead leaks but no significant leaks in the floor slab and walls will yield unrealistically short retention time predictions. Experience has shown that enclosures of this type may be capable of retaining clean agent for prolonged periods. However, in such cases the authority having jurisdiction may waive the quantitative results in favor of a detailed witnessed leak inspection of all floors and walls with a door fan and smoke pencil.
- **B-1.2.3 Retention Calculations.** The following should be considered regarding the retention calculations and its associated theory:

- **B-1.2.3.1 Dynamic Discharge Pressures.** Losses due to the dynamic discharge pressures resulting from halon system actuation are not specifically addressed.
- **B-1.2.3.2 Static Pressure.** Variable external static pressure differences (wind, etc.) are additive and should be considered.
- **B-1.2.3.3 Temperature Differences.** When temperature differences exceeding 18°F (10°C) exist between the enclosure under test and the other side of the door fan, special considerations outlined in this document should be considered.
- **B-1.2.3.4 Floor Area.** The floor area is assumed to be the volume divided by the maximum height of the protected enclosure.
- **B-1.2.3.5 Descending Interface.** The enclosure integrity procedure assumes a sharp interface. When a clean agent is discharged, a uniform mixture occurs. As leakage takes place, air enters the room. This procedure assumes that the incoming air rides on top of the remaining mixture. In reality, the interface usually spreads because of diffusion and convection. These effects are not modeled because of their complexity. Where a wide interface is present, the descending interface is assumed to be the mid-point of a wide interface zone. Because of the conservatism built into the procedure, the effects of interface spreading can be ignored. If continual mechanical mixing occurs, a descending interface may not be formed (*see B-2-7.1.6*).
- **B-1.2.3.6 Leak Flow Characteristics.** All leak flow is one-dimensional and does not take into account stream functions.
- **B-1.2.3.7 Leak Flow Direction.** A particular leak area does not have bidirectional flow at any point in time. Flow through a leak area is either into or out of the enclosure.
- **B-1.2.3.8 Leak Discharge.** The outflow from the leak discharges into an infinitely large space.
- **B-1.2.3.9 Leak Locations.** Calculations are based on worst case clean agent leak locations.
- **B-1.2.3.10 Clean Agent Delivery.** The calculations assume that the design concentration of clean agent will be achieved. If a suspended ceiling exists, it is assumed that the clean agent discharge will not result in displacement of the ceiling tiles. Increased confidence may be obtained if ceiling tiles are clipped within 4 ft of the nozzles and all perimeter tiles.
- **B-1.3 Definitions.** For the purpose of Appendix B, the following definitions are to apply.
- **Attached Volumes.** A space within or adjoining the enclosure envelope that is not protected by halon and cannot be provided with a clearly defined return path.
 - **Blower.** The component of the door fan used to move air.
- **Ceiling Slab.** The boundary of the enclosure envelope at the highest elevation.
- **Column Pressure.** The theoretical maximum positive pressure created at the floor slab by the column of the halon/air mixture.
- **Descending Interface.** The enclosure integrity procedure assumes a sharp interface. When clean agent is discharged, a uniform mixture occurs. As leakage takes place,

APPENDIX B 2001-41

air enters the room. This procedure assumes that the incoming air rides on top of the remaining mixture. In reality, the interface usually spreads because of diffusion and convection. These effects are not modeled because of their complexity. Where a wide interface is present, the descending interface is assumed to be the mid-point of a wide interface zone. Because of the conservatism built into the procedure, the effects of interface spreading can be ignored. If continual mechanical mixing occurs, a descending interface may not be formed. See B-2-7.1.6.

Door Fan. The device used to pressurize or depressurize an enclosure envelope to determine its leakage characteristics. Also called the fan pressurization apparatus.

Effective Floor Area. The volume divided by the maximum halon protected height.

Effective Flow Area. The area that results in the same flow area as the existing system of flow areas when it is subjected to the same pressure difference over the total system of flow paths.

Enclosure. The volume being tested by the door fan. This includes the halon protected enclosure and any attached volumes.

Enclosure Envelope. The floor, walls, ceiling, or roof that together constitute the enclosure.

Equivalent Leakage Area (ELA). The total combined area of all leaks, cracks, joints, and porous surfaces that act as leakage paths through the enclosure envelope. This is represented as the theoretical area of a sharp edged orifice that would exist if the flow into or out of the entire enclosure at a given pressure were to pass solely through it. For the purposes of this document, the ELA is calculated at the column pressure.

Fan Pressurization Apparatus. The device used to pressurize or depressurize an enclosure envelope to determine its leakage characteristics. Also called the door fan.

Floor Slab. The boundary of the enclosure envelope at the lowest elevation.

Flow Pressure Gauge. The component of the door fan used to measure the pressure difference across the blower to give a value used in calculating the flow into or out of the enclosure envelope.

Protected Enclosure. The volume protected by the clean agent extinguishing system.

Maximum Protected Height. The design height of the clean agent column from the floor slab. This does not include the height of unprotected ceiling spaces.

Minimum Protected Height. The minimum acceptable height from the floor slab to which the descending interface is allowed to fall during the retention time as specified by the authority having jurisdiction.

Return Path. The path outside the enclosure envelope that allows air to travel to/from the leak to/from the door fan.

Return Path Area. The effective flow area that the air being moved by the door fan must travel through to complete a return path back to the leak.

Room Pressure Gauge. The component of the door fan used to measure the pressure differential across the enclosure envelope.

Static Pressure Difference. The pressure differential across the enclosure envelope not caused by the discharge process or by the weight of the clean agent. A positive static pressure difference indicates that the pressure inside the enclosure is greater than on the outside, i.e., smoke would leave the enclosure at the enclosure boundary.

B-2 Test Procedure.

- **B-2.1 Preliminary Preparations.** Contact the individual(s) responsible for the protected enclosure and establish, obtain, and provide the following preliminary information:
 - (a) Provide a description of the test,
 - (b) Advise the time required,
- (c) Determine the staff needed (to control traffic flow, set HVAC, etc.),
 - (d) Determine the equipment required (e.g., ladders),
 - (e) Obtain a description of the HVAC system,
- (f) Establish the existence of a false ceiling space and the size of ceiling tiles,
- (g) Visually determine the readiness of the room with respect to the completion of obvious sealing,
- (h) Determine if conflict with other building trades will occur,
 - (i) Determine the size of doorways,
- (j) Determine the existence of adequate return path area outside the enclosure envelope used to accept or supply the door fan air,
- (k) Evaluate other conflicting activities in and around space (e.g., interruption to the facility being tested),
- (l) Obtain appropriate architectural HVAC and halon system design documents.
- **B-2.2 Equipment Required.** The following equipment is required to test an enclosure using fan pressurization technology.

B-2.2.1 Door Fan System.

- **B-2.2.1.1** The door fan(s) should have a total airflow capacity capable of producing a pressure difference at least equal to the predicted column pressure or 10 Pa, whichever is greater.
- **B-2.2.1.2** The fan should have a variable speed control or a control damper in series with the fan.
- **B-2.2.1.3** The fan should be calibrated in airflow units or be connected to an airflow metering system.
- **B-2.2.1.4** The accuracy of airflow measurement should be +5 percent of the measured flow rate.
- **B-2.2.1.5** The room pressure gauge should be capable of measuring pressure differences from 0 Pa to at least 50 Pa. It should have an accuracy of ±1 Pa and divisions of 2 Pa or less. Inclined oil-filled manometers are considered to be traceable to a primary standard and need not be calibrated. All other pressure-measurement apparatus (e.g., electronic transducer or magnehelic) should be calibrated at least yearly.

B-2.2.1.6 Door fan systems should be checked for calibration every 5 years under controlled conditions, and a certificate should be available for inspection at all integrity tests. The calibration should be performed according to manufacturer's specifications.

The certificate should include the following:

- (a) Description of calibration facility and responsible technician.
 - (b) Date of calibration and serial number of door fan.
- (c) Room pressure gauge error estimates at 8, 10, 12, 15, 20, and 40 Pa measured by both ascending and descending pressures (minimum).
- (d) Fan calibration at a minimum of 3 leakage areas (approximate): 0.5, 0.25, and 0.05 sq m measured at a pressure of 10 Pa.
- **B-2.2.1.7** A second blower or multiple blowers with flex duct and panel to flow to above-ceiling spaces is optional.
- **B-2.2.2 Accessories.** The following equipment is also useful:
 - (a) Smoke pencil, fully charged (see Caution),
 - **CAUTION:** Use of chemically generated smoke as a means of leak detection may result in activation of building or halon system smoke detectors. Appropriate precautions should be taken. Due to corrosive nature of the smoke, it should be used sparingly.
 - (b) Bright light source,
 - (c) Floor tile lifter,
 - (d) Measuring tape,
 - (e) Masking or duct tape,
 - (f) Test forms,
 - (g) Multi-tip screwdrivers,
 - (h) Shop knife or utility knife,
 - (i) Several sheets of thin plastic and cardboard,
 - (j) Door stops,
- (k) Signs to post on doors that say "DO NOT SHUT DOOR—FAN TEST IN PROGRESS" or "DO NOT OPEN DOOR—FAN TEST IN PROGRESS,"
 - (l) Thermometer.

B-2.2.3 Field Calibration Check.

- **B-2.2.3.1** This procedure enables the authority having jurisdiction to obtain an indication of the door fan and system calibration accuracy upon request.
- **B-2.2.3.2** The field calibration check should be done in a separate enclosure. Seal off any HVAC registers and grilles if present. Install the door fan per manufacturer's instructions and B-2.4. Determine if a static pressure exists using B-2.5.2. Check openings across the enclosure envelope for airflow with chemical smoke. If any appreciable flow or pressure exists, choose another room or eliminate the source.
- **B-2.2.3.3** Install a piece of rigid material less than ½s in thickness (free of any penetrations) in an unused blower port or other convenient enclosure opening large enough to accept an approximately 0.01-sq m sharp edge round or square opening.

- **B-2.2.3.4** Ensure that the door fan flow measurement system is turned to properly measure pressurization or depressurization and operate the blower to achieve a convenient pressure differential, preferably 10 Pa.
- **B-2.2.3.5** At the pressure achieved, measure the flow and calibrate an initial ELA value using B-2.6.3. Repeat the ELA measurement under positive pressure and average the two results.
- **B-2.2.3.6** Create a sharp-edged, round, or square opening in the rigid material. The area of this opening should be at least 33 percent of the initial ELA measured. Typical opening sizes are approximately 0.05, 0.1, and 0.2 m², depending on the initial leakage of the enclosure. Adjust the blower to the previously used positive or negative pressure differential. Measure the flows and calculate an average ELA value using B-2.6.3.
- **B-2.2.3.7** Field calibration is acceptable if the difference between the first and second ELA value is within +15 percent of the hole area cut in the rigid material. If the difference in ELA values is greater than +15 percent, the door fan apparatus should be re-calibrated according to the manufacturer's recommendations and either ASTM E779-81 or CAN/CGSB-149.10-M86.

B-2.3 Initial Enclosure Evaluation.

B-2.3.1 Inspection.

- **B-2.3.1.1** Note the areas outside the enclosure envelope that will be used to supply or accept the door fan air.
- **B-2.3.1.2** Inspect all openable doors, hatches, and movable partitions for their ability to remain shut during the test.
- **B-2.3.1.3** Obtain or generate a sketch of the floor plan showing walls, doorways, and the rooms connected to the test space. Number or name each doorway.
- **B-2.3.1.4** Look for large attached volumes open to the test space via the floor or walls of the test space. Note volumes and apparent open connecting areas.
- **B-2.3.1.5** Check floor drains and sink drains for traps with liquid.

B-2.3.2 Measurement of Enclosure.

- **B-2.3.2.1** Measure the clean agent protected enclosure volume. Record all dimensions. Deduct the volume of large solid objects to obtain the net volume.
- **B-2.3.2.2** Measure the highest point in the clean agent protected enclosure.
- **B-2.3.2.3** Calculate the effective floor area by dividing the net halon protected volume by the maximum clean agent protected enclosure height.

B-2.3.3 Preparation.

- **B-2.3.3.1** Advise supervisory personnel in the area about the details of the test.
- **B-2.3.3.2** Remove papers and objects likely to be affected by the air currents from the discharge of the door fan.
- **B-2.3.3.3** Secure all doorways and openings as for a halon discharge. Post personnel to ensure they stay shut/

APPENDIX B **2001**–43

open. Open doorways inside the protected enclosure even though they may be closed upon discharge.

B-2.3.3.4 Get the user's personnel and/or the halon contractor to set up the room in the same state as when a discharge would occur, i.e., HVAC shut down, dampers closed, etc. Confirm that all dampers and closeable openings are in the discharge mode position.

B-2.4 Door Fan Installation.

- **B-2.4.1** The door fan apparatus generally consists of a single door fan. A double or multiple door fan for larger spaces or for neutralizing leakage through a suspended ceiling may be used for certain applications.
- **B-2.4.2** Set up one blower unit in the most convenient doorway leading into the space. Choose the doorway that opens into the largest return path area. Consideration should be given to individuals requiring access into or out of the facility.
- **B-2.4.3** Follow the manufacturer's instructions regarding setup.
- **B-2.4.4** Examine the sealing around the door (before door fan installation) that the door fan will be mounted in to determine if significant leakage exists. If significant leaks are found they should be corrected. If the manufacturer's stated door fan sealing system leakage is less than the apparent remaining leakage of the doorway, the difference must be added to the leakage calculated in B-2.6 (see B-2.6.3.5).
- **B-2.4.5** Ensure all pressure gauges are leveled and zeroed prior to connecting them to the fan apparatus. This should be done by first gently blowing into or drawing from the tubes leading to the pressure gauges so the needle fluid or readout moves through its entire span and stays at the maximum gauge reading for 10 seconds. This confirms proper gauge operation. If using a magnehelic gauge, gently tap the gauge face for 10 seconds. With both ports of each gauge on the same side of the doorway (using tubes if necessary), zero the gauges with their particular adjusting method.
- **B-2.4.6** Connect the tubing for the room pressure gauge. Ensure the tube is at the floor slab elevation and extends at least 10 ft away from the outlet side of the door fan blower, away from its air stream path and away from all significant air streams (i.e., HVAC airflows or openings where airflow could impinge on the tube).
- **B-2.4.7** The door fan should be arranged to alternately blow out of (depressurize) and blow into the space (pressurize). Both measurements should be taken as described in B-2.6.

B-2.5 Door Fan Enclosure Evaluation.

B-2.5.1 Pressure Runup Inspection.

- **B-2.5.1.1** Activate the blower and adjust the enclosure pressure to negative 15 Pa or maximum negative achievable (up to 15 Pa).
- **B-2.5.1.2** Inspect all dampers with smoke to ensure they are closing properly. Record problems and notify individuals responsible for the enclosure of the problems.

B-2.5.1.3 Inspect doors and hatches to ensure correct closure. Record problems and notify individuals responsible for the enclosure of the problems.

B-2.5.1.4 Inspect the wall perimeter (above and below the false floor) and the floor slab for major leaks. Note location and size of major leaks. Track down major airflow currents.

B-2.5.2 Static Pressure Measurement.

- **B-2.5.2.1** Seal the blower opening with the door fan properly installed but without the blower operating. Observe the room pressure gauge for at least 30 sec. Look for minor fluctuations in pressure.
- **B-2.5.2.2** Under discharge conditions, measure the worst case (greatest) pressure differential ($P_{\rm SH}$) across a section of envelope containing the largest quantity of leaks expected to leak halon. If the subfloor is pressurized at discharge, measure the differential between the subfloor and outside the envelope. Call this value $P_{\rm SH}$ (for static at discharge). Determine the flow direction with smoke or other indicating method.
- **B-2.5.2.3** If the static pressure (P_{SH}) has an absolute value greater than 25 percent of the column pressure calculated in B-2.6.1.3 it must be permanently reduced. Large static pressures decrease the level of certainty inherent in this procedure. The most common causes of excessive static pressure are leaky dampers, ducts, and failure to shut down air-handling equipment serving the enclosure.
- **B-2.5.2.4** Record the position of all doorways, whether open or shut, when the static pressure (P_{SH}) was measured.

B-2.6 Door Fan Measurement.

B-2.6.1 Total Enclosure Leakage Method.

B-2.6.1.1 This method determines the equivalent leakage area of the entire enclosure envelope. It is determined by measuring the enclosure leakage under both positive and negative pressures and averaging the readings. This approach is used in order to minimize the influence of static pressures on the ELA calculation.

B-2.6.1.2

- (a) Block open all doorways around the enclosure and post personnel to ensure they stay open.
- (b) Ensure adequate return path area is provided to allow an unrestricted return airflow path back to the door fan from enclosure leaks.
- (c) Remove 1 percent of the floor tiles (for false floors) if an equivalent area is not already open.
- (d) If agent is designed to discharge above the false ceiling, remove 1 percent of the ceiling tiles.
- (e) Remeasure the static pressure (P_{ST}) at the time of the door fan test, between the room (not below the false floor) and the return path space.
- (f) Make every effort to reduce the static pressure (P_{ST}) by shutting down air-handling equipment even though it may operate during discharge.
- (g) Record P_{S1} and determine its direction using smoke or other means.
 - (h) Record the position of each doorway, open/shut.

- (i) If the static pressure fluctuates due to wind, use a wind damping system incorporating 4 averaging tubes on each side of the building to eliminate its effects. The CAN/CGSB-149.10-M86 standard may be used.
- (j) If a subfloor pressurization airhandler cannot be shut down for the test and leaks exist in the subfloor, these leaks may not be accurately measured. Every attempt should be made to reduce subfloor leaks to insignificance. During the test as many floor tiles as possible should be lifted to reduce the amount of subfloor pressurization. Note that under such conditions the Suspended Ceiling Leakage Neutralization Method will be difficult to conduct due to massive air turbulence in the room.

CAUTION: The removal of raised floor tiles creates a serious safety hazard. Appropriate precautions should be taken

B-2.6.1.3 Calculate the column pressure in the clean agent protected enclosure using the following equation:

$$P_{c} = g H_{o} (r_{m} - r_{d})$$
 (1)

Where:

 P_c = Pressure due to the halon column (P_a)

g' = Acceleration due to gravity (9.81 M/sec²)

 H_0 = Height of protected enclosure (m)

r_m = Clean agent/air mixture density (kg/m³, see

equation 9)

 $r_a = Air density (1.202 kg/m^3).$

If the calculated column pressure is less than 10 Pa, use 10 Pa as the column pressure.

- **B-2.6.1.4** Depressurize the enclosure with a door fan blower(s) till the measured pressure differential reading on the gauge (P_m) goes through a total pressure reduction (dP_m) equal to the column pressure (P_c). As an example, if the static pressure (P_{ST}) measured in B-2.6.1.2 was ± 1 Pa, and the calculated column pressure is 10 Pa, blow air out of the room until a P_m of ± 11 Pa is obtained. If the static pressure (P_{ST}) was ± 1 Pa, and the calculated column pressure is 10 Pa, blow air out of the room until a P_m of ± 9 Pa is obtained. If using magnehelic gauges, tap both the room pressure and flow pressure gauges for 10 sec each. Wait a further 30 sec before taking the readings.
- **B-2.6.1.5** Measure the airflow (Q_u) required to obtain the pressure reduction (dP_m) required. It is important to ensure that manufacturer instructions are followed to ensure that airflow is accurately measured with respect to direction of flow.
- **B-2.6.1.6** The pressure reduction generated dP_m may be up to 30 percent greater, but not lower in absolute value than the calculated column pressure.
- **B-2.6.1.7** Repeat B-2.6.1.4 through B-2.6.1.6 while pressurizing the enclosure. As an example, if the static pressure (P_{ST}) measured in B-2.6.1.2 is ± 1 Pa, and the calculated column pressure is 10 Pa, blow air into the room until ± 9 Pa is obtained. If the static pressure is ± 1 Pa, and the calculated column pressure is ± 1 Pa, and the calculated column pressure is ± 1 Pa, blow air into the room until ± 11 Pa is obtained.
- **B-2.6.1.8** Ensure that the door fan flow measurement system is actually turned around between tests to properly measure pressurization or depressurization and that the motor rotation is not simply reversed. Ensure that the airflow entering the room is not deflected upward, which may cause lifting of any existing ceiling tiles.

B-2.6.1.9 Measure the air temperature within the enclosure (T_I) and outside the enclosure (T_O) .

B-2.6.2 Suspended Ceiling Leakage Neutralization Method (Optional).

- **B-2.6.2.1** Where an unobstructed suspended ceiling exists, the leakage area below the ceiling may optionally be measured by neutralizing ceiling leaks. This method may provide a more accurate estimate of leakage rates. This method should not be used if the walls between rooms within the zone are sealed at the ceiling slab. This method cannot be used when the system is designed to protect above this suspended ceiling. This test method does not imply that leakage above the suspended ceiling is acceptable. This technique may be difficult or impossible to perform under the following conditions:
- (a) Air movement within the room may make it difficult to observe neutralization, particularly in small rooms.
- (b) Obstructions above the suspended ceiling, i.e., beams, ducts, and partitions, may make it difficult to obtain uniform neutralization.
- (c) Limited clearance above the suspended ceiling, e.g., less than 1 ft, may make it difficult to obtain neutralization.
- **B-2.6.2.2** If not already done, obtain the Equivalent Leakage Area of the protected enclosure using the total enclosure leakage method in B-2.6.1.
- **B-2.6.2.3** Ceiling level supply registers and return grilles may be temporarily sealed off to increase the accuracy of this method. If sealed, P_{ST} should be remeasured.

NOTE: Temporary sealing of such openings is not permitted when conducting a Total Enclosure Leakage Test.

- **B-2.6.2.4** Install two separate door fans or a multiple blower door fan with one blower ducted to the above suspended ceiling space and the other into the room space below the suspended ceiling. It is not necessary to measure airflow through the upper fan.
- **B-2.6.2.5** Depressurize above and below the suspended ceiling by adjusting two separate blowers until the required pressure reduction and suspended ceiling leak neutralization (i.e., no airflow through the suspended ceiling) is achieved.

Leaks are neutralized when, at opened locations in the suspended ceiling, smoke does not move up or down when emitted within $\frac{1}{4}$ in. of the openings. If neutralization is not possible at all locations, ensure that either smoke does not move or moves down (but not up). Choose undisturbed locations away from flex duct flows, airstreams, and lighting fixtures because local air velocities make neutralization difficult to detect.

- **B-2.6.2.6** Measure the airflow (Q_u) through the fan that is depressurizing the volume below the false ceiling to obtain the pressure reduction (dP_m) required.
- **B-2.6.2.7** The pressure reduction generated in the volume below the false ceiling may be up to 30 percent greater, but not lower in absolute value, than the calculated column pressure.
- **B-2.6.2.8** Repeat B-2.6.2.5 through B-2.6.2.7 while pressurizing the enclosure, except smoke either does not move or moves up but not down.