ISO /R 1538 - 1972 (E)

begin array z, yI, y2, y3 [1 : n] ; real xI, x2, x3, H ; Boolean out ;
integer k, j; own real s, Hs ;
procedure RKIST (x, y, h, xe, ye) ; real x, h, xe ; array y, ye ;
comment RKIST integrates one single Runge-Kutta step with initial values
x, y [k] which yields the output parameters xe = x + h and ye [k], the latter
being the solution at xe.

Important : the parameters n, FKT, z enter RKIST as norn local entities ;

begin array w [/ : 1], a [I : 5]; integer k, j,
al[ll:=al2l:= a[5]:= h2;a[3]:=a[4]:= h; xe:= X,
for k.= [step / until » do ye [k]:= w [I(] =y [kl

for j := 1 step I until 4 do

begin FKT (xe, w, n, z) ;
xe:= x + aljl;
for k := 1 step [/ until n do

begin w [k] := y [k] + a [j] X z [k];
yve [k] := ye k] + alj + 11 x z [k)/3
end k
end j

end RK IST;

Begin of program:

if fi then begin H := xF — x; %= 0 end else H := Hs;
out := false ;

AA:if (x + 201 x H — xEx>"0) = (H > 0) then
begin Hs := H; out = true ; H := (xE — x)/2 end if ;
RKIST (x, y, 2. X\H, xI, yl);

BB: RKIST (x, y,-H;”x2, y2),; RKIST (x2, y2, H, x3, y3);
for k .= I-step I umtil n do
if_comp (yl [k], y3 [k}, eta) > eps then go to CC;

cdomment comp (a, b, ¢) is a function designator, the value of which is the absolute vdlue
of the difference of the mantissae of a and b, after the exponents of these quantities hfive
been made equal to the largest of the exponents of the originally given parameters a, b,|c ;

= x3; if out then go to DD;
or k—— 1 step 1 wtit ndoy thi—73 %

Y
if s = 5 then begin s := 0; H := 2 x H end if;
s:=s5 + 1;g0to AA;

CC: H:= 05 x H; out .= false; xI := x2;
for k := 1 step I wuntil n do y! [k] := y2 [k];
go to BB;

DD : for k := 1 step I until n do yE [k] : y3 [k]
end RK

— 4] —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS
AND SYNTACTIC UNITS

All references are given through section or clause numbers. The references are given in three
groups:

def Following the abbrevation “ def ”, reference to the syntactic definition (if any) is
given.

synt Following the abbreviation “ synt ”, references to the occurrences in metalinguistic
formulae are given. References already quoted in the def-group are not repeated.
text Following the word “ text ”, the references to definitions given in the text are given.

The :ElSiC symbols represented by signs other than bold-faced words have been collected at the
beginning. The examples have been ignored in compiling the index.

+ |see : plus

— |see : minus
X [see : multiply
| — |see : divide

see : exponentiation

dq = > > # see: relational operator)
oV A 71 see: (logical operator)

, see : comma

see : decimal point

10 see : ten

see : colon
; see : semicolon
:= [see : colon equal
| see : space

see : subscript bracket

) |see : parentheses
]
> |see : string quote

actyal parameter), def 3.2.1,-4:7.1

actyal parameter listy, def~3.2.1, 4.7.1

<act al parameter part>, def 3.2.1, 4.7.1

{adding operator), def-3.3.1

alphdbet, text 2.1

arithpnetic, text 3:;3.6

arithmetic efpression, def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1, 4.6.1, 5.2.1 text 3.3.3
<ari metig, operator », def 2.3 text 3.3.4

array|, synt'2.3, 5.2.1, 5.4.1

arra\l_text 3141

array declaration, def 5.2.1 synt 5 text 5.2.3

array identifiery, def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8
array listy, def 5.2.1

{array segment, def 5.2.1

(assignment statement, def 4.2.1 synt 4.1.1 text 1, 4.2.3

{basic statement >, def 4.1.1 synt 4.5.1
(basic symbol’y, def 2

begin, synt 2.3, 4.1.1

{block>, def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5

—_42

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

{block head, def 4.1.1

Boolean, synt 2.3, 5.1.1 text 5.1.3

<Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.3
{Boolean factory, def 3.4.1

{Boolean primary, def 3.4.1

<Boolean secondary), def 3.4.1

{Boolean term>, def 3.4.1

{bound pair), def 5.2.1

{bound pair listy, def 5.2.1

(bracket), def 2.3

{coded, synt 5.4.1 text 4.7.7, 5.4.6

colon : , synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1

colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1

comma , , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1, 5.1.1, 5.2.1, 5.3.1, 5.4.1
comment, synt 2.3

comment convention, text 2.3

{compound statement, def 4.1.1 synt 4.5.1 text 1

{compound tail, def 4.1.1

{conditional statement», def 4.5.1 synt 4.1.1 text 4.5.3

{decimal fraction, def 2.5.1

{decimal number, def 2.5.1 text 2.5.3

decimal point . , synt 2.3, 2.5.1

{declaration, def 5 synt 4.1.1 text 1, 5 (complete section)
{declarator), def 2.3

{delimiter), def 2.3 synt 2

<designational expression>, def 3.5.1 synt 3, 4.371, 5.3.1 text 3.5.3
{digity, def 2.2.1 synt 2, 2.4.1, 2.5.1

dimension, text 5.2.3.2

divide / =, synt 2.3, 3.3.1 text 3.3.4.2

do, synt 2.3, 4.6.1

{dummy statement), def 4.4.1(synt 4.1.1 text 4.4.3

else, synt 2.3, 3.3.1, 3.4.15:.35.1, 4.5.1 text 4.5.3.2

<empty>, def 1.1 synt.2.6.1, 3.2.1, 44.1, 4.7.1, 5.4.1

end, synt 2.3, 4.1.1

entier, text 3.2.5

exponentiation 4\, synt 2.3, 3.3.1 text 3.3.4.3
{exponent_party, def 2.5.1 text 2.5.3

{expression y, def 3 synt 3.2.1, 4.7.1 text 3 (complete section)

factor, def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1

Zfor ctause 5, def 4.6.1 Text 4.6.3

for listy, def 4.6.1 text 4.6.4

(for list element), def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3

<formal parameter>, def 5.4.1 text 5.4.3

(formal parameter listy, def 5.4.1

{formal parameter party, def 5.4.1

(for statement, def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete clause)
<function designator>, def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3, 544

go to, synt 2.3, 4.3.1
{go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

— 43

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

I1ISO /R 1538 - 1972 (E)

<identiﬁer>, def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 54.1 text 2.4.3
Cidentifier list, def 5.4.1

if, synt 2.3, 3.3.1, 4.5.1

<if clause>, def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
Gf statement), def 4.5.1 text 4.5.3.1

(implicationy, def 3.4.1

integer, synt 2.3, 5.1.1 text 5.1.3

(integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1
(labely, def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1, 4.1.3
left part), def 4.2.1

{leff part Tisty, def 4.2.1

(letter>, def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
letter string>, def 3.2.1, 4.7.1

locall, text 4.1.3

<logal or own type)>, def 5.1.1 synt 5.2.1

<log ical operator), def 2.3 synt 3.4.1 text 3.4.5
(logical valuey, def 2.2.2 synt 2, 3.4.1

{loyer bound), def 5.2.1 text 5.2.4

minps —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply %, synt 2.3, 3.3.1 text 3.3.4.1
{myltiplying operator, def 3.3.1

nonilocal, text 4.1.3
{number), def 2.5.1 text 2.5.3, 2.5.4

{opgn string), def 2.6.1
{opgratory, def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

{patameter delimiter), def 3.2.1, 4.7.1-synt 5.4.1 text 4.7.6
parentheses (), synt 2.3, 3.2.1, 3.3.1, 34.1, 3.5.1, 4.7.1, 5.4.1, text 3.3.5.2
plus| + , synt 2.3, 2.5.1, 3.3.1 text\3.3.4.1

{primary’, def 3.3.1

procgdure, synt 2.3, 5.4.1

{prgcedure body, def 5:4:1

{prgcedure declarationyy def 5.4.1 synt 5 text 5.4.3

{prqcedure heading), def 5.4.1 text 5.4.3

{prqcedure identifiery, def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
{prgcedure statement), def 4.7.1 synt 4.1.1 text 4.7.3
{prqgramy;def 4.1.1 text 1

{prqperSstring >, def 2.6.1

quantity, text 2.7

real, synt 2.3, 5.1.1 text 5.1.3
{relation, def 3.4.1 text 3.4.5
{relational operator, def 2.3, 3.4.1

scope, text 2.7

semicolon ; , synt 2.3, 4.1.1, 5.4.1
{separator, def 2.3

(sequential operator», def 2.3

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO/ R 1538 - 1972 (E)

<simp1e arithmetic expression), def 3.3.1 text 3.3.3
{simple Boolean, def 3.4.1

{simple designational expression y, def 3.5.1
(simple variable», def 3.1.1 synt 5.5.1 text 2.4.3
space | |, synt 2.3 text 2.3, 2.6.3

{specification part), def 5.4.1 text 5.4.5
<speciﬁcator>, def 2.3

(specifiery, def 5.4.1

standard function, text 3.2.4, 3.2.5

<statement>, def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete section)
statement bracket see: begin end

step, synt 2.3, 4.6.1 text 4.6.4.2

£ 4.1

string—synt—235-4-1

{string, def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes ¢’ , synt 2.3, 2.6.1 text 2.6.3
subscript, text 3.1.4.1

subscript bound, text 5.2.3.1

subscript brackets [], synt 2.3, 3.1.1, 3.5.1, 5.2.1
(subscripted variabley, def 3.1.1 text 3.1.4.1
{subscript expression», def 3.1.1 synt 3.5.1
Csubscript list, def 3.1.1

successor, text 4

switch, synt 2.3, 5.3.1, 54.1

{switch declaration, def 5.3.1 synt 5 text 5.3.3
(switch designator, def 3.5.1 text 3.5.3
{switch identifiery, def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
(switch listy, def 5.3.1

(term>, def 3.3.1

ten ;4 , synt 2.3, 2.5.1

then, synt 2.3, 3.3.1, 4.5.1

transfer function, text 3.2.5

true, synt 2.2.2

(type), def 5.1.1 synt 5.4.1 text 2.8

{type declaration, def 5.1:1 'synt 5 text 5.1.3
{type listy def 5.1.1

{unconditional statement), def 4.1.1, 4.5.1
Cunlabelled basic statement >, def 4.1.1
{unlabelled blotk >, def 4.1.1

unlabelléd ¢ompound, def 4.1.1
{unsigned integer, def 2.5.1, 3.5.1
{unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

Cupper boundy, def 5.2.1 text 5.2.4

value, synt 2.3, 54.1

value, text 2.8, 3.3.3

(value party, def 5.4.1 text 4.7.3.1

<variable>, def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
(variable identifier, def 3.1.1

while, synt 2.3, 4.6.1 text 4.6.4.3

— 45 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /R 1538 - 1972 (E)

PART I B

REPORT ON LEVEL 1 AND 2 SUBSETS
(ECMA SUBSET)

INTRODUCTION

The fpllowing report gives the exact working of the restrictions and changes necessary to change
the rgport on the full language into a report on level 1 and level 2 subsets. Attention must be
drawr] to some slight deviations between this report and the worked in version in the boxes in
Part I A. This is mainly caused by typographical difficulties. For example, where level 1 and 2
subsets require at least 26 letters in the alphabet, level 3 sitbset permits at most 26 letters.

The change listed under item 2 in the definitions does-not apply to level 1 subset. This is the only
differgnce between the subsets of levels 1 and 2.

— 46 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

1ISO |/ R 1538 - 1972 (E)

DEFINITIONS AND REMARKS

Remarks to compiler
designer

Definition of Ecma subset
Remarks in terms of ALGOL 60 Report

to programmer (The numbers refer to sections
and clauses of Part I A)

1. The declarator own
need not be imple-
mented.

The use of own variables | 5. Delete first two sentences of
should be avoided. fourth paragraph.

5.1.1 Delete “| own {type> 1.

5.1.3 Delete last sentence.

2. The recursive use of
procedures and recur-
sively defined proce-
dures need not be
allowed. No recursive
use of procedures
means that no call
of the procedure itself
may occur during the
execution of the state-
ments of the body of
any procedure, and
during the evaluation
of those of its actual
parameters, the cor=
responding formal pa-
rameters of which are
called by mame, and
during_the “evaluation
of expressions occur-
ring> in declarations
inside the procedure.

Do not write recursive | 5.4.4 , Delete last sentence. Add
procedures. Do not use to 4.7.5: “ No call of the
procedures recursively. procedure itself may occyr
during the execution of the
statements of the body qf
any procedure, and during
the evaluation of those qf
its actual parameters, the
corresponding formal p3
rameters of which age
called by name, and dy-
ring the evaluation 4qf
expressions occurring in
declarations inside the prq
cedure.”

THIS CHANGE DOES NOT APPLY
TO LEVEL 1 SUBSET

3. Integer labels need not
be provided for.

Do not use integer labels. | 3.5.1 Delete
“| unsigned integer) .

3.5.5 Delete.

4T

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

Remarks to compiler
designer

Remarks
to programmer

Definition of Ecma subset
in terms of ALGOL 60 Report
(The numbers refer to sections
and clauses of Part T A)

4. Up to full specification
for all parameters may
be required.

Up to equivalence of
the type of an actual

Provide each procedure
declaration with a com-
plete specification part
and maintain equivalence
of type between actual

5.4.5 Third sentence—replaced
by “ Specifications of all
formal parameters if any
must be supplied.”

paramcter and thespe-
cified type of the cor-
responding formal pa-
rameter, if called by
name, may be re-
quired.

anmd—formmat

called by name.

parameler

4.7.5.5 Replaced by: “Kind
and type of actual para-
meters must be the same
as those of the corres-
ponding formal parame-
ters, if called by name.”

5. [The alphabet may not
be restricted to less
than one case of 26
fetters.

Use only one case of
letters. (Either small or
capital-—the typing for a
particular implementation
will transfer if necessary
to the right case).

2.1 Delete “ M4 ... Z” and

“ restricted, or .

6. |A limit may be put on
the length of identi-
fiers, but this must
not be less than 6
pignificant basic sym-
bols.

Do not rely on_the diffe-
rentiation_sbetween two
identifiersswhich have the
first_six basic symbols in
common.

2.4.3 Replace “They may be
chosen freely ” by “ Iden-
tifiers may be chosen
freely; but the effects due
to the occurrence of two
different identifiers the first
six basic symbols of which
are common are unde-
fined ™.

7. If the~~type of an
Erithmetic expression
d

Be careful when making
essential use of the type

an

3.3.4 Replace the words “the

following rules” of the

loct cant B € o

depends-upen-the-eval
uation of an expres-
sion or upon the type
or value of an actual
parameter then it may

be taken to be real.

af arithonatic ovearac
o —ahn—arithimetie—expres

sion.

tast-sentence-by—a—set—ot
rules. However if the type
of an arithmetic expres-
sion according to the rules
cannot be determined
without evaluating an ex-
pression or ascertaining
the type or value of an
actual parameter, it is real.
These rules are .

— 48 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

Definition of Ecma subset

Remarks to compiler Remarks in terms of ALGOL 60 Report
designer to programmer (The numbers refer to sections

and clauses of Part I A)

. The requirement of [A go to statement in- | 4.3.5 Replace “equivalent to a
4.3.5 need not be im- | volving an undefined dummy statement” by
plemented. switch designator need “ undefined .

not have the effect of a
dummy statement. You

are—well—advised—to—pro

gram a check that the
value of the subscript
expression is within the
bounds defined by the
switch declaration.

— 49 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

iSO/ R 1538 - 1972 (E)

PARTI C

The
mad
beer

REPORT ON LEVEL 3 SUBSET

definition of level 3 subset appears in the form of informal explanations and changes to be
e to the report on the full language ALGOL 60 to convert this into the level 3 subset (as has

done in the boxes in Part I A).

(IFIP SUBSET)

INTRODUCTION

— 50 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO | R 1538 - 1972 (E)

DEFINITIONS AND EXPLANATIONS

Section
or clause Subset definitions Explanation
of Part 1 A

2.3 Delete from definition of declarator | The own concept is not included in
“own | ”. the subset.

5 Delete first two sentences of fourth
paragraph.

5.1.1 Replace the last two metalinguistic
formulae by: “ <type declaration> D=
{type) type listy .

5.1.3 Delete last sentence.

5.2.1 Replace the last formula by:

«“ <array declaration> : 1= array
{array listy | {type> array (array
1ist> ”,

5.2.5 Delete “even if an array is declared
own .

4.7.5 Add clause 4.7.5.6: “ No call>of the | Recursive procedures and recursive
procedure itself may occur -during the | use of procedures are not included.
execution of the statements of the body
of any procedure, nor during the
evaluation of those“of its actual para-
meters, the corresponding formal para-
meters of which are called by name, nor
during the_evaluation of expressions
occurring~in declarations inside the
procedure 7.

5.4.4 Delete last sentence.

3.5 Delete “ | {unsigned integer) ”. Integer labels are not provided for.

3.5.5 Delete.

5.4.5 Replace third sentence by: “ Specifica- | Complete specification parts are
tions of all formal parameters if any | required.
must be supplied”.

4.7.5.5 Replace by: “ Kind and type of actual

parameters must be the same as those
of the corresponding formal para-
meters, if called by name .

— 5] —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /R 1538 - 1972 (E)

Section
or clause
of Part 1 A

Subset definitions

Explanation

2.1

Delete: “| 4 | B| .. | Y| Z ™
Delete: “, or extended ... delimiter) ™.
Add: “If a particular implementation
requires capitals rather than small
letters, one must regard them as a
hardware representation for the small
letters”.

Only one case of letters is provided
for.

3.3.4.3

Replace: “ They may be chosen freely ”
by: “ Identifiers may be chosen freely;
but the effects due to the occurrence of
two different identifiers the first six
basic symbols of which are common
are undefined ”.

Replace the words: “the following
rules ” of the last sentence by: “ a set
of rules. However, if the type of an
arithmetic expression according to the
rules cannot be determined without
evaluating an expression or ascertaining
the type or value of an actual para-
meter, it is real. These rules are ™.

Delete.

Add to text: “ Afunction designator
must be such that all its possible uses
in the form(of a procedure statement
are equivalent to dummy statements”.

« » .,

Insert between “... rules ” and “:
“)with the exception that, if both the
basis @ and the exponent i are of
integer type, then the exponent has to
be an unsigned integer, otherwise the

In the subset identifiers are differen-
tiated only up to six leading basic
symbols.

In the subset the-type of an arith-
metic expression will be in certain
cases real\where it will be integer in
ALGOL60. Thus arithmetic will
be less precise in some cases.

The effect of a go to statement
involving an undefined switch de-
signator is undefined in the subset.

Exponentiation with integer basis
and exponent is restricted in the
subset.

2.3

3.3.1

3.3.51

result is undefined ”.

Delete: “ | = ™.

Delete: “ | = .

Delete: “ — ™.

The so-called integer division is not
included in the subset.

— 5 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

Section
or clause
of Part T A

Subset definitions

Explanation

3.34.2

4.6.1

Replace: “ The operations both
denote ” by: “ The operation {term/
{factory denotes ”. Delete last sen-
tence.

Replace: “ <for clause> ... do” by:

The controlled variable in a for

5.3.1

3.5.1

3.5.3

5.3.3

“{for clausey : := for (variable
identifier) := for listy do .

Replace: ” (switch listy : := (desig-
national expression> | switch list),
(designational ~ expressiony ” by:
“ switch listy : := {labely | {switch

listy, label> ™.

Replace the last two formulae by:
“ <designational expression> D=
(labely | {switch designator) ™.

Delete: “In the general case’ ... is
already found. ” Replace ‘““selects one
of the designational expressions ... a
recursive process ”. by: selects one of
the labels contaified’ in the switch list
of the switch declaration. The selection
is obtainedi:by counting these labels
from left to'right ”.

Replace: “ These values ... its asso-
ciated integer ” by: “ These values are
given as labels entered in the switch
list. With each of these labels is asso-
ciated a positive integer I, 2, ... ob-
tained by counting the items in the
list from left to right. The value of the

clause 1s restricted in the subset-td
be a variable identifier.

In the subset the {designationa
expressions in a. switch list ar
restricted to be labels only.

In) the subset only unconditionj
and unparenthesized designation

expressions are provided for. Se¢
5.3.1.

5.3.4

switch designator corresponding to a
given value of the subscript expression
(see clause 3.5, “ Designational expres-
sions ") is the label in the switch list
having this given value as its associated
integer ”.

Delete.

— 53 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /R 1538 - 1972 (E)

Section
or clause
of Part TA

Subset definitions

Explanation

5.3.5

Replace by: “ Influence of scopes. If a
switch designator occurs outside the
scope of a label in the switch list, and
an evaluation of this switch designator
selects this label, then a possible con-
flict between the identifier used to
denote this label and an identifier

4.7.3.2

whose declaration is valid at the place
of the switch designator will be avoided
by a suitable change of this latter
identifier .

Replace: “ after enclosing this ... syn-
tactically possible ” by: “this actual
parameter being an identifier, or string,
otherwise the name replacement is un-
defined ™.

Insert after: “... ALGOL statement ”
and before “.” : “in the sense of
this subset ™.

Insert after “ ... any one block head\”
and before “ Syntax ”: “ The identifier
associated with a quantity deelared in a
declaration may not oecur® denoting
that quantity more than once between
the begin of the block' in whose head
that declaration~occurs and the semi-
colon which~ends that declaration,
excepting dhe”case where this occur-
rence is(the occurrence of a procedure
identifier in the left part list of an
assignment statement in the sense of
clause 5.4.4 ™.

Add: “ No identifier may occur more

In name replacement (callby name)
the actual parameter (can only be
an identifier or a string!

than once in a rormal paraméter I1st

— 54 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /| R 1538 - 1972 (E)

PART II

SPECIFICATIONS
OF INPUT-OUTPUT PROCEDURES

— 55 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

. DEFINITIONS

PART II A

PRIMITIVE INPUT-OUTPUT PROCEDURES FOR ALGOL 60

INTRODUCTION

It is recognized that some procedures to be used in connexion with input and output are con-
sidered as being primitives, which cannot be expressed otherwise than by means of a code body.

Among-these—are—the—folowing—ones:

thsymbol

qutsymbol

length

ihreal ¢))
qutreal

inarray

qutarray

Apart from these primitives one needs in practice a fuller set of input-output procedures. However,
the lqnguage ALGOL 60 is so flexible that different schemes of input-output procedures can be
defingd in it largely by means of the primitives mentioned above. A¢few examples of this will be
given|in section 3 of this Part.

It is fecommended that, if not otherwise declared,-the identifiers (1) will be associated with pro-
ceduses which transfer values between the, variables of the program and values carried in any
kind pf foreign media not otherwise accessible from the program.

The ¢orresponding procedure declarations are:

proceflure insymbol (channel, string, destination); value channel; integer channel, destination;

string string; {proeedure body)

proceflure outsymbol (channel;string, source) ; value channel, source; integer channel, source; string

string ; {procgdure body >

integeLr procedure length)(string) ; string string; <procedure body>

proceflure inreal (channel, destination); value channel; integer channel; real destination; <proce-

durebbdy >

proceflure outreal (channel, source); value channel, source; integer channel; real source; <proce-
dure body>

1414, 4, nanne

cedure body>

procedure outarray (channel, source); value channel; integer channel; array source; <procedure
body>

The procedure statements and the function designator calling these procedures must have the
following forms:

insymbol ({arithmetic expressiony (parameter delimiter> stringy {parameter delimiter’>
variable»)

outsymbol (arithmetic expressiony (parameter delimitery (string) {parameter delimiter
{arithmetic expression)

— 56 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO [R 1538 - 1972 (E)

ACTIONS OE - THE _PROCEDLURE-BODIES.

length ({string)

inreal (Carithmetic expressiony (parameter delimitery (variable)

outreal ~ ({arithmetic expressiony {parameter delimiter) {arithmetic expression)
inarray (arithmetic expression» (parameter delimitery {array identifier))
outarray ~ ({arithmetic expressiony (parameter delimiter) (array identifier »)

In all these cases, except for the call of length, the value of the first actual parameter must be a
positive integer identifying an input or output channel available to the program.

The pair of procedures insymbol and outsymbol provides the means of communicating(betwden
foreign media and the variables of the program in terms of single basic symbols or any additiopal
symbols. In either procedure the correspondence between the basic symbols andithe values|of
variables in the program is established by mapping the sequence of the basic symbeols given in the
string supplied as the second parameter, taken in the order from left to right, onto the positjve
integers /1, 2, 3, ... Using this correspondence the procedure insymbol will dssign to the integer type
variable given as the third parameter the value corresponding to the next)basic symbol appearing
on the foreign medium. If this next basic symbol does not appear in-the string given as the second
parameter, the value 0 will be assigned. If the next symbol @ppearing in the input is not a
basic symbol of ALGOL 60 a negative integer, corresponding.to the symbol, will be assigned.

Similarly the procedure outsymbol will transfer the basic'symbol corresponding to the value of the
third parameter to the foreign medium. If the valn€ of the third parameter is negative a symbol
corresponding to this value will be transferred. It is understood that where the foreign medigm
may be used both for insymbol and outsymbél) the negative integer values associated with eqch
additional symbol will be the same for the two procedures. More generally, if additional symbpls
are used the corresponding values must be given as accompanying information with the program
(see the footnote to section 1 of Pdrt'I A).

The type procedure length isiintroduced to enable the calculation of the length of a given (actpal
or formal) string to be made (see example outstring). The value of length (s) is equal to the number
of basic symbols of the'open string enclosed between the outermost string quotes.

The two procedures inreal and outreal form a pair. The procedure inreal will assign the next value
appearing«n'the foreign medium to the real type variable given as the second parameter. Sinil-
arly, the\procedure outreal will transfer the value of the second actual parameter to the forejgn
meditim:

The representation of values on the foreign media will not be further described, except that it is

understood that in so far as a medium can be used for both input and output a value which has
been transferred to a given medium with the aid of a call of outreal will be represented in such a
way that the same value, in the sense of numerical analysis (see clause 3.3.6), may be transferred
back to a variable by means of procedure inreal, provided that an appropriate manipulation of
the foreign medium has also been performed.

Procedures inarray and outarray also form a pair; they transfer the ordered set of numbers
forming the value of the array given as the second parameter, the array bounds being defined by
the corresponding array declaration rather than by additional parameters (the mechanism for
doing that is already available in ALGOL 60 for the value call of arrays). The order in which the

— 57 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /| R 1538 - 1972 (E)

. EXAMPLES

elements of the array are transferred corresponds to the lexicographic order of the values of the
subscripts, i.e.:

a lk;, kyy ..y k,,] precedes a [j;, jo o5 Joul
provided k; = j =12 .,p— 1)]
k, < Jp (1<p<m)

It should be recognized that the possibly multidimensional structure of the array is not reflected
in the corresponding numbers on the foreign medium, where they appear only as a linear sequence
as defined by (2).

The representation of the numbers on the foreign medium conforms to the same rules as given
for infeal and outreal; 1n fact it 1s possible for example to input numbers by inreal which betore
have leen output by outarray.

procedure outboolean (channel, boolean) ; value boolean; integer channel; Boolean boolean ; comment
this procedure outputs a Boolean value as a basic symbol true or false;
if boolean then outsymbol (channel, “ true’, I)

else outsymbol (channel, false ’, I)

procedure outstring (channel, string); value channel; integer channel; string string; comment
outputs the string string to the foreign medium;
begin integer i;
for [:= I step I until /ength (string) do outsymbol (channel, string, i)
end

procedure ininteger (channel, integer); value chanriel; integer channel, integer; comment inputs
an integer which on the foreign medium appears as a Sequence of digits, possibly preceded
by a sign, and followed by a comma. Any other symbol in front of the sign is discarded ;

begin integer n, k; Boolean'b;

integer := 0; b = true;

for k .= I1,(ky+ 1 while n = 0 do insymbol
(chawrel, < 0123456789 — + °, n);

if n =-71 then b := false; if n > 10 then n := I,

forck»= 1, k + 1 while n =% 13 do

begin integer := 10 X integer + n — I;
insymbol (channel, < 012345678 — +, °, n)

end /;
if = | b then integer := — integer
end
begin
begin array a [/ : 10];
{statements »;
outarray (15, a)
end;
begin array 5 [0 :], 1 : 5];
inarray (15, b);
(statements >
end
end

58 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO |/ R 1538 - 1972 (E)

The following example exhibits the use of inarray and outarray for inversion of a matrix including
transfer of the matrix elements from and to the foreign medium. It requires that an appropriate
declaration for a matrix inversion procedure as well as the declaration of outstring as given above

are inserted at appropriate places in the program.
begin integer n;
inreal (5, n); comment the matrix elements must be preceded by the order,
begin array a [/ : n, I : nl;
inarray (5, a);
matrix inversion (n, a, singular);
outarray (15, a);

. CONCLUDING REMARKS

g0 (0 ex
end;
singular . outstring (15, ¢ singular’);
ex : end

No further means for input-output operations are proposed in this'Part but attention is dra
to reference [7], and to the extensive list of references at the end\of that report.

— 59 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

1SO / R 1538 - 1972 (E)

PART II B

GENERAL INPUT-OUTPUT PROCEDURES FOR ALGOL 60

1. FORMATS

In this section a certain type of string, which specifies the format of quantities to be input or
output, is defined, and its meaning is explained.

1.1 Number formats (see part I A, clause 2.5)

11T Syniax

BASIC COMPONENTS:

replicatory : := (unsigned integery | X

insertion : := B | (replicator) B | {string) | (replicatory string)
{insertion sequencey : := {empty> | {insertion sequence) insertion

{Z> : := Z | replicatory Z

{Z party : := {Z> | {Z party {Z) | <Z part) {insertion)

{D> : := D | (replicator) D

{D party : := {D> | <D party {D> | <D party {insertion’s

(T party : := {emptyy | T {insertion sequence)

(sign part) : := {empty> | (insertion sequencey + |{{insertion sequencey -
{integer party : := {Z party | <D party | {Z part»<{D part)

FORMAT STRUCTURES:

(unsigned integer format) : := insertion sequence» integer party

(decimal fraction formaty : := . (insertioni sequence) <D party (T part) |
V insertion sequence» <D party (T part)

(exponent part format) : := ;, {sign part> {unsigned integer format)

{decimal number format) : :="Cunsigned integer formaty (T part) | {insertion

sequence» (decimal fraction format) | {unsigned
integer format {decimal fraction format)
{number format) : :=({sign part) (decimal number format) | {decimal number
format) + <insertion sequence> | decimal number
formaty — (insertion sequence> | (sign party (decimal
number format> <exponent part format>

1.1[.2 ExamplessExamples of number formats appear in the table below.

Number format Result from -13.2%6 Result from 1007.999
+| ZZZDDD. DD — 013.30 + 1008.00
+ 373D.2D — 013.30 + 1008.00
— 3D2B3D.2DT — 000 013.29 001 007.99
525D — 13.29600 — 1007.99900
‘integer|_lpartl i’ — 4 ZV*, integer part — 13, fraction integer part 1007, fraction
\lfraction> B3D 296 999
— . 5Dy + 2D ¢.. 0 — 13296, + 02 ... 10080, + 04 ...
+ ZD,2Z - I3 + 10,2
+ D.DDBDDBDDB,, — 1.32 96 00 ,, + 01 + 1.0079 99, + 03
+ DD (undefined) (depends on call)
XB.XD,, — DDD

— 60 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

¢

1.1.3 Semantics. The above syntax defines those strings which can comprise a “ number

format . First the interpretation to be taken during output is described:

1.1.3.1 REPLICATORS. An unsigned integer » used as a replicator means that the quantity
following it is repeated » times; thus 3B is equivalent to BBB. The character X
as a replicator means a number of replications which will be specified when the
format is called (see clause 2.3.1).

1.1.3.2 INSERTIONS. Strings, delimited by string quotes, may be inserted anywhere within a
number format. The proper string (without the outermost string quotes) will appear
inserted in the same place with respect to the rest of the number. Similarly, the
Tetfer B may be insetied anywhere within a number format, and It stands-Igr a
blank space.

1.1.3.3 SIGN AND ZERO SUPPRESSION. The portion of a number format to-the ‘left of|the
decimal point consists of an optional sign, then either or both of)a sequencg of
Z’s and a sequence of D’s, with possible insertion characters:

The convention on signs, whether preceding or following the)number, is as follows:

(a) if no sign appears in the format, the number is assimed to be positive, pnd
the treatment of negative numbers is undefined;

(b) if a plus sign appears in the format, the sign of the number to be output will
appear as + or — on the external medium;

(¢) if a minus sign appears in the formiat, the sign will appear if the value of that
number is negative, and will be.suppressed, i.e. replaced by a blank space, if
the value of the number is positive.

The letter Z stands for zero suppression, and the letter D stands for digit prinfing
without zero suppression. Each Z and D stands for a single digit position; a Zero
digit specified by Z will be suppressed when all digits to its left are zero. A digit
specified by D will always be printed. Note that the number zero printed witH all
Z’s in the format'will give rise to all blank spaces, so at least one D should usuhlly
be given somewhere in the format.

Whenever ‘zero suppression takes place, the sign (if any) is printed in place of]|the
rightmost-character suppressed.

1.1.3.4 _DBCIMAL POINTS. The position of the decimal point is indicated either by the ¢ha-
racter “ . ” or by the letter “ V. In the former case, the decimal point appgars
on the external medium; in the latter case, the decimal point is “ implied ”,|i.e.
it takes up no space on the external medium. Only D’s (no Z’s) may appear to|the
right of the decimal point except in an exponent part.

— I 1375 TRUNCATION. On OUlpUt, noTFintegral mombers are usuaily Toumnmded 1o fit- the

format specified. If the letter T is used, however, truncation takes place instead.
Rounding and truncation of a number X to d decimal places are defined as follows:

Rounding: 10 4+ (— d) % entier (10 4+ d x X + .5)
Truncation: 10 4 (— d) X sign (X) X entier (10 + d X abs (X))

1.1.3.6 EXPONENT PART. The number following a “,, ” is treated exactly the same as the
portion of a number to the left of a decimal point (clause 1.1.3.3), except that if
the “ D part ” of the exponent is empty, i.e. no D’s appear, and if the exponent is
zero, then the “ o ” and the sign are suppressed.

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

1.1.3.7 TWwO TYPES OF NUMERIC FORMAT. Number formats are of two principal kinds:

(a) Decimal number with no exponent. In this case, the number is aligned accord-
ing to the decimal point with the picture in the format, and it is then truncated
or rounded to the appropriate number of decimal places. The sign may precede
or follow the number.

() Decimal number with exponent. In this case, the number is transformed into
the format of the decimal number with its most significant digit non-zero; the
exponent is adjusted accordingly. If the number is zero, both the decimal
part and the exponent part are output as zero.

If in case (a) the number is too large to be output in the specified form, or if in
case (b) the exponent 1S too large, an overliow error occurs. The action which takes
place on overflow is undefined.*

1.1.3.8 INPUT. A number input with a particular format specification should in general-be
the same as the number which would be output with the same format, exeept that
less error checking occurs. The rules are, more precisely:

(a) Leading zeros may appear even though Z’s are used in theAormat. Leading
spaces may appear even if D’s are used. In other words, nocdistinction between
Z and D is made on input.

(b) Insertions take the same amount of space in the same positions, but the cha-
racters appearing there are ignored on input.:In“other words, an insertion
specifies only the number of characters to ignore, when it appears in an input
format.

(c) If the format specifies a sign at the left, the sign may appear in any Z or D
position as long as it is to the left of’the number. A sign specified at the right
must appear in place.

13

(d) The following are checked:lthe positions of decimal points, “ ;,”, and the
presence of digits in placetof D or Z after the first significant digit. If an error
is detected in the data, the result is undefined.**

1.2 (ther formats

1.2{1 Syntax

8> 1 :=55| (replicator) S

(string formaty : := (insertion sequence> <S> | {string formaty {S> | {string
formaty (insertion)

alpha format) : := A4

{standard format> : := N

{nonformaty : := I | R| L

{Boolean party : := P | F

{Boolean format : := (insertion sequence> (Boolean party (insertion sequence

(title formaty : := (insertiony | (title format) (insertion

alignment mark) : := /| 4 | J| {replicator) / | (replicatory & | {replicator J

* It is recommended that the number of characters used in the output be the same as if no overflow had occurred, and that
as much significant information as possible be output (e.g. exponent increased by one digit and attempt to output the
number again).

** It is recommended that the input procedure attempt to reread the data as if it were in standard format (clause 1.2.3.7)

and also to give some error indication compatible with the system being used. Such an error indication might be suppressed
at the programmer’s option if the data became meaningful when it was reread in standard format.

— 62 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO/R 1

538 - 1972 (E)

(formatitem>: :

(format item : :

<{number formaty | string formaty | <Jalpha formaty |

{nonformaty | (Boolean format) | (title formaty | {stan-

dard format | (alignment mark> {format item 1

mark>

1.2.2 Examples

1.2.3.1

1.2.3.2

1.2.3.3

1.2.3 Semantics

\ 5Z.5D]]/
38 <=’ 654B
JATT

\ R

P

| ¢ Execution.’

{format item 1’ | (alignment mark’» | {format item’» alignment

STRING FORMAT. A string format is used for output of string quantities. Each of|the
S-positions in the format corresponds to a single basic symbol in the string which is
output. If the string is longer than the number of $’s,-the leftmost symbols |are
transferred; if the string is shorter, “ || ” symbols arejeffectively added at the right

of the string.

ALPHA FORMAT. The letter 4 means that one.symbol is to be transmitted; this is|the
same as S-format, except that the ALGQL equivalent of the basic symbol is of integer
type rather than a string. The translation between the external and internal cddes
will vary from one machine to angther, hence the results of arithmetic operatipns

and relations other than “ = “(and “ £ ” will be machine-dependent.

A programmer may work(with these alphabetic quantities in a machine-indepen-
dent manner by using the transfer function equiv (S) where S is a string consisfing

of one basic symbel; the value of equiv (S) is of integer type, and it is defineg

to

have exactly the.same value as if the string S had been input using alpha format.

For example;.one may write
if X_= Jequiv (‘ A’) then go to PROCESS ALPHA ;
where the-value of X has been input using the format “ 4 .

NONFORMAT. An I, R or L is used to indicate that the value of a single varig
of integer, real, or Boolean type, respectively, is to be input or output from or to

ble
an

external medium, using the internal machine representation. If a value of integer
type is output with R-format or if a value of real type is input with I-format, [the

appropriate transfer function is invoked, i.e. the I or R specifies the format
appears on the external medium. The precise behaviour of this format, and p

cularly its int

1.2.3.4

BooLEAN FORMAT. When Boolean quantities are input or output, the format P o
must be used. The correspondence is defined as follows:

Internal to ALGOL | P | F
true 1 true
false 0 false

On input, anything failing to be in the proper form is undefined.

it
rti-

r F

—63 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO | R 1538 - 1972 (E)

1.2.3.5 TiTLE FORMAT. All formats discussed so far have given a correspondence between a
single ALGOL real, integer, Boolean, or string quantity and a number of characters
in the input or output. A format item containing a title format consists entirely of
insertions and optional alignment marks, and so it does not require a corresponding
ALGOL quantity. On input, it causes skipping of the characters, and on output it
causes the emission of the insertion symbols it contains. (If titles are to be input,
alpha format should be used; see clause 1.2.3.2.)

1.2.3.6 ALIGNMENT MARKS. The characters “/”, “ { ”, and “ J” in a format item indicate
line, page and character control actions. The precise definition of these actions will

(@) “/” means: go to next line, in a manner similar to the carriage return operation
on a typewriter;

(b) “ 4 ” means: do a “/” operation and then skip to the top of the next-page;

(¢) “J” means: skip the character pointer to the next “ tabulation/*position,
similar to the “ tab ” operation on a typewriter.

Two or more alignment marks indicate the number of times the operations are to
be performed ; for example, “ // ” on output means that the current line is completed
and the next line is effectively set to all blanks. Alignment marks at the left of a
format item cause actions to take place before the regular format operation, and
alignment marks at the right of a format item caus¢)actions to take place after the
regular format operations.

1.2.3.7 “ STANDARD ” FORMAT. There is a format available without specification (see
clause 2.5.4) which has the following characteristics:

(a) On input, any number wriften according to the ALGOL syntax for <number>
is accepted with the conyventional meaning. These are of arbitrary length, and
they are delimited at the right by the following conventions:

1 ’»

(I) A letter-or/character other than a decimal point, sign, digit, or * 4
occurring to the right of a decimal point, sign, digit, or “ ;, ” is a deli-
miter:

(ID\AX sequence of k blank spaces serves as a delimiter as in (I); a sequence
of less than k blank spaces is ignored. This number k& = I has an imple-
mentation defined initial value and may be interrogated or modified by a
suitable call on the procedure sysparam (see clause 2.5.6).

(I11) If the number contains a decimal point, sign, digit, or “ ;4 ” on the line

wherethemumber-begins;,—theright-hand-marginrof-that dineservesas—=
delimiter of the number. However, the right-hand margin does not
serve as a delimiter in the case where the only characters remaining on
the line are spaces or characters which do not enter into the number.
In this case the only delimiters for this number are those specified in (I)
or (II) above. (See clause 2.5.4.2 for further discussion of standard input
format.)

(6) On output a number of real type is given in the form of a decimal number
with an exponent. A number of integer type is given in the form of an
integer.

64 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

1SO / R 1538 - 1972 (E)

1.3 Format strings

These numbers must be suitable for input under standard format (i.e. fol-
lowed by not less than k blanks).

Standard format may be invoked by the format item N, through the exhaustion
of the format string, or by specifying an empty format string.

The format items mentioned above are combined into format strings according to the rules
in this clause.

1.3.1 Syntax

Lo + : £ 4 | raplicat (£
Jormat—prmary >——. rormat—ien 1 repreator tHormat seccnda:y

({format secondary)
(format secondary : : = (format primary) | {format secondary’, {format primaty>
(format stringy : := * (format secondary)’ | <

1.3.2 Examples

‘4 (15ZD), | |~

[3 4 >

¢« 5Dy, + D, X (2(20B8D,, + D), 10S) "’

“ .. This | 1is L1 a | peculiar |1 < format string -

1.3.3 Semantics. A format string is a list of format items, which are to be interpreted frpm
left to right. The construction: <replicator> (<format secondary)) ” denotes “ repli-
cator ” repetitions of the parenthesized quantity-(see clause 1.1.3.1). The constructipn:
“ (<format secondary») ” denotes an infinjte repetition of the parenthesized quantjty.

Spaces within a format string, except those which are part of insertion substrings, pre
irrelevant.

1.4 Summary of format codes

A - basic symbols represented jas integers

B - blank space

- digit.

- representation ,of Boolean value in the form true or false
- integer untranslated

- tab function

- Booleabuntranslated

- standard format

representation of Boolean value in the form I or 0
Ssreal untranslated

- string character

- truncation

- implied decimal point

nar;nkln renlicator
yaftiad &P

- Zero suppression
- unconditional sign indicator
- positive sign suppression indicator
10 - exponent part indicator
() - delimiters of replicated format secondaries
, - format primary separator
| - line alignment
4 - page alignment
¢’ - string delimiters
- decimal point

+ NKR N wNN~NTY

— 65 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /R 1538 - 1972 (E)

2. STANDARD PROCEDURES FOR INPUT AND OUTPUT

Certain identifiers should be reserved for the standard functions of input and output. In a par-
ticular representation these procedures may be available without explicit declaration. In either
case if the identifier is declared in a block head as something different (for example, an array), the
function it represents will be unavailable throughout that block.

2.1 General characteristics

The term CHANNEL is utilized throughout to represent one or more foreign media, or a
portion of such a medium. It is assumed that the characters on such a channel form a linearly

the same order it was written. It is further assumed that there need not be a one-to-one
orrespondence between basic symbols which exist in the program, and characters which
epresent them on the medium. For many basic symbols it is expected that a multiplicity -of
haracters will be required on particular media. These one-to-many and many-to-one trans-
formations are assumed to go on “ behind the scenes ”, and these transformations, may be
lifferent from implementation to implementation, and medium to medium.(Indeed, for
ome media this transformation may not be defined for some basic symbols; in which case
he result of attempting to input or output such a symbol is undefined. The'logical behaviour
bf these procedures, however, should be machine independent.

2.2 Horizontal and vertical control

[his clause deals with the way in which the sequence of basie’symbols described by the rules
bf formats in section 1 is mapped onto input and output’devices. This is done in a manner
which is essentially independent of the device being used, in the sense that with these specifi-
rations the programmer can anticipate how the input or output data will appear on virtually
iny device. Some of the features of this description will, of course, be more appropriately
hsed on certain devices than on others.

Ihe discussion assumes that data is te\be output to a printer, then shows the manner in
vhich other devices fit into the same.general framework.

[he page format is controlled by:specifying the horizontal and the vertical lay-out. Horizontal
ay-out is controlled in essentially the same manner as vertical lay-out, and this symmetry
between the horizontal-and vertical dimensions should be kept in mind for easier under-
standing of the conceptsin this clause.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0~ OO E TR =
IK
i ~
R o)
]

,.
S ©
<

AA
oz
\

—_
g AW

P

—_
~N

—_
@

FIGURE

66 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO /R 1538 - 1972 (E)

Referring to the Figure, the horizontal format is described in terms of three parameters
(L, R, P), and the vertical format has corresponding parameters (L', R’, P’). The parameters
L, L' and R, R’ indicate left, top, right and bottom margins, respectively. The Figure shows a
case where L = L' = 4 and R = R’ = 12. Only positions L through R of a horizontal line
are used, and only lines L’ through R’ of the page are used; it is required that I << L << R
and I << L’ < R'. The parameter P is the number of characters per line, and P’ is the number
of lines per page. Although L, R, L’ and R’ are chosen by the programmer, the values of P
and P’ are characteristics of the device and they are usually out of the programmer’s control.
For those devices on which P and P’ can vary (for example, some printers have two settings,
one on which there are 66 lines per page, and another on which there are 88), the values are
specified to the system by a suitable call on the procedure sysparam (see clause 2.5.6). For

.
—certaimr devices; vatues of Por P might beessemtiatty imfimite:

Although the Figure shows a case where P > R and P’ > R/, it is of course quite possiple
that P << R or P’ < R’ (or both) might occur, since P and P’ are in general unknown to the
programmer. In such cases, the algorithm described in clause 2.5.4 is used-to break jup
logical lines which are too wide to fit on a physical line, and to break up-logical pages which
are too large to fit a physical page. On the other hand, the conditions, L <{ P and L' <|P’
are insured by setting L or L’ equal to / automatically if they happen to be greater thar] P
or P’, respectively.

Characters determined by the output values are put onto a horizontal line; there are thfee
conditions which cause a transfer to the next line:

(a) normal line alignment, specified by a “/” in“the format;

(b) R-overflow, which occurs when a group*of characters is to be transmitted, or a tabula-
tion is specified, which would pass pesition R, and

(¢) P-overflow, which occurs when a group of characters is to be transmitted, or a tabulatifon
is specified, which would not ¢ause R-overflow but would pass position P.

When any of these things(occurs, control is transferred to a procedure specified by the
programmer in case special action is desired (for example, a change of margins in case|of
overflow; see clause 2:3:3).

Similarly, there-are three conditions which cause a transfer to the next page:

(a’) normal page alignment, specified by a *“ 4 ” in the format;

(b') R~overflow, which occurs when a group of characters is to be transmitted which wogld
appear on line R" + I; and

(ely’ P’-overflow, which occurs when a group of characters is to be transmitted which woyld
appear on line P’ + I < R’ + I. The programmer may indicate special procedufes
to be executed at this time if he wishes, for example, to insert a page heading, etc.

Tabulation is controlled by a “ J” in the format. This causes the character pointer to be
advanced to the next “ TAB ” position, with intermediate positions being filled with blanks.
The tabulation spacing for the medium may be specified external to the ALGOL system, or
through a suitable call on tabulation (see clause 2.3.4).

If the tabulation spacing is N, then the first character positions of tabulation fields would be:
L,L+ N, L+2N,.,L+ KN where L + KN < min (P, R)

Further details concerning pages and lines will be given later. Now consideration will be
given to how devices other than printers can be thought of in terms of the ideas above.

— 67 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

I1ISO |/ R 1538 - 1972 (E)

A typewriter is very much like a printer, and it requires no further comment.

Punched cards with, for example, 80 columns have P = 80 and P’ = oo. Vertical control
would appear to have little meaning for punched cards, although an implementation might
choose to interpret “ 4 ” to mean the insertion of a coded or blank card.

With paper tape again, vertical control has little or no meaning; in this case, P could be the
number of characters read or written at a time.

On magnetic tape capable of writing arbitrarily long blocks, P = P’ = o= Each page might
be thought of as being a “ record , i.e., an amount of contiguous information on the tape
which is read or written at once. The lines are subdivisions of a record, and R’ lines form a

2.3

record; R characters are in each line. In this way, so-called ~ blocking of records ~ can be
specified. Other interpretations might be more appropriate for magnetic tapes at certain
installations, for example, a format which would correspond exactly to printer format for
future off-line listing, etc.

These examples are given to indicate how the concepts described above for printers’can be
applied to other devices. Each implementation will decide on appropriate‘aethods for
particular devices, and if there are choices to be made they can be given by(the programmer
by some means. The manner in which this is done is of no concern to this Recommendation.

Lay-out procedures

Whenever input or output is done, certain “standard ““operations are assumed to take
place, unless otherwise specified by the programmer. Therefore one of the parameters of the
input or output procedure is a “ lay-out ” progedure, which specifies all of the non
standard operations desired. This is achieved by using any or all of the seven “ descriptive
procedures ” format, h end, v end, h lim, v lim, tabulation, or no data described in this clause.

The precise action of these procedures cail be described in terms of the fictitious concept of
seven “ hidden variables ”, H1, H2{ H3, H4, H5, H6, and H7. The effect of each descriptive
procedure is to set one of these varjables to a certain value; and that may be regarded as the
total effect of a descriptive procedure. The programmer normally has no access to these
hidden variables other than'particular calls on sysparam. The hidden variables have a scope
which is local to inlist and.to outlist.

{3.1 Format procediires. The descriptive procedure call:

format (STRING)

has-the effect of setting the hidden variable H1 to indicate the string parameter. This
parameter may be either a string explicitly written or a formal parameter; but in any
event, the string it refers to must be a format string which satisfies the syntax of clause

1.3, and it must have no “ X ” replicators.

The procedure format is just one of a class of ten procedures which have the names
format n (n = 0, 1, ..., 9). The name format is equivalent to format 0. In general, the
procedure format n is used with format strings which have exactly n X-replicators.

The call is
format n (STRING, X;, X5, ..., X,)

where each X, is an integer parameter called by value. The effect is to replace each X
of the format string by one of the X, with the correspondence defined from left to right.
Each X; must be non-negative.

— 68 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

For example,
format 2 (‘XB.XD,, + DD’, 5, 10)

is equivalent to
format (‘5B.10D,, + DD’

2.3.2 Limits. The descriptive procedure call
h lim (L, R)
has the effect of setting the hidden variable H2 to indicate the two parameters L and R.
Similarly,
viim (L', R')

7 ’

rameter ve the significance ibed in

section 2.2. If A limand v limarenotused, L = L' = Iand R = R’ = oo, f I’ P,
the value I is substituted for L; similarly, if L’ > P’, the value I is substituted for|L'.

2.3.3 End control. The descriptive procedure calls:

h end (Py, Pg, Pp);
vend (Py, Pg, Pp);

have the effect of setting the hidden variables H4 and HS5, respectively, to indicate their
parameters. The parameters Py, Pg, Pp, Py, Pg, Pp, aresnames of procedures (ofdi-
narily dummy procedures if 4 end and v end are not specified) which are activated in
case of normal line alignment, R-overflow, P-overflow,mnormal page alignment, R’-oyer-
flow, and P’-overflow, respectively.

2.3.4 Tabulation. The descriptive procedure call:
tabulation (N)

has the effect of setting the hidden variable H6 to indicate the parameter N. Here ¥ is
the width of the tabulation field, measured in number of characters of the fordign
medium. (See clause 2.5.4.1, process C.) If tabulation is not called then the tabulation
field width is 1.

2.3.5 End of data. The descriptive procedure call:
no data (L)

has the effect of setting the hidden variable H7 to indicate the parameter L. Here L s a
label. End of data as defined here has meaning only on input, and it does not refet to
any specific hardware features; it occurs when data is requested for input but no mpre
data remains on the corresponding input medium. At this point, a transfer to |the
statement labelled L will occur. If the procedure no data is not used, transfer will occur
tola” label ” which has effectively been inserted just before the final end in the ALGOL
program, thus terminating the program*.

2.3.6 Examples

A lay-out procedure might look as follows:
————————preecedure LA YOLT
begin format (’);
if B then
begin format 1 (‘XB’, Y + 10); no data (L32) end;
h lim (if B then 1 else 10, 30)

end

Note that lay-out procedures never have parameters; this procedure, for example,
refers to three global quantities, B, ¥ and L32. Suppose Y has the value 3, then this
lay-out accomplishes the following:

* In this case, an implementation might provide an appropriate error comment.

— 69 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

1ISO /R 1538 - 1972 (E)

2.4

2.4

If B = If B =
Hidden variable Procedure true false
Hl Jformat <13B° A
H2 h lim (1, 30) (10, 30)
H3 v lim I,) I, =0
H4 h end G) «(,)
HS5 v end «, ,) (G,)
Hé tabulation 1 1
H7 no data L32 end of program

As a more useful example, a procedure LAYOUT can be written so that the horizontal

margins (11, 110) are used on the page, except that if P-overflow or R-overflow occurs
the margins (16, 105) are to be used for overflow lines.

procedure LAYOUT ;

begin format 1 (° 4, (X(BB-ZZZZ.DD),/ |)’, N} ;
hlim (11, 110) ; h end (K, L, L)

end ;

procedure K; A Iim (11, 110);

procedure L; A lim (16, 105);

This causes the limits (16, 105) to be set whenever overflow_occurs, and the */” in
the format will reinstate the original margins when it causes\procedure K to be called.
(If the programmer wishes a more elaborate treatment of the overflow case, depending
on the value of P, he may do this using the proceduré.of clause 2.5.6.)

List procedures

8.1 General characteristics. The purpose of a list procedure is to describe a sequence of

items which is to be transmittedfor input or output. A procedure is written in which
the name of each item V iS\written as the argument of a procedure, say ITEM, thus:
ITEM (V). When the (ist>procedure is called by an input-output system procedure,
another procedure (such as the internal system procedure outitem) will be “ substituted ”
for ITEM, V will(be called by name, and the value of V will be transmitted for
input or output,“The standard sequencing of ALGOL statements in the body of the
list procedure determines the sequence of items in the list.

A simpleform of list procedure might be written as follows:

procedure LIST (ITEM);
begin ITEM (A) ; ITEM (B) ; ITEM (C)
end;

which says that the values of 4, B and C are to be transmitted. A more typical list
procedure might be:

procedure PAIRS (ELT) ;
for I := step I until N do
begin ELT (A[I]) ; ELT (B[I]) end;

This procedure says that the values of the list of items A[I], B[I], 4[2], B[2], ..., A[N],
B[N] are to be transmitted, in that order. Note that if N < 0 no items are transmitted
at all.

— 70 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

1SO | R 1538 - 1972 (E)

2.5 Input-output calls

Here procedures are described which cause the actual transmission of information betweep a
foreign medium and the variables of the program.

2.5.1

The parameter of the “item ” procedure (i.e. the parameter of ITEM or ELT in the
above examples) is called by name. It may be an arithmetic expression, a Boolean
expression, or a string, in accordance with the format which will be associated with the
item. Any of the ordinary features of ALGOL may be used in a list procedure, so there
is great flexibility.

A list procedure is executed step by step with the input or output procedure, with control
transferring back and forth. This is accomplished by special system procedures such as
initem and outiten which are “ interlaced ” with the list procedure, as described in
clause 2.5.4. The list procedure is called with initem (or outitem) as actual parameter,
and whenever this procedure is called within the list procedure, the actual input or
output-is—taking—place—Through-the—interlacing —special-format—control—ncluding the
important device-independent overflow procedures, can take place during the,trans-
mission process. Note that a list procedure may change the hidden variables by(calling a
descriptive procedure; this can be a valuable characteristic, for example, when changing
the format, based on the value of the first item which is input.

Symbol transmission. The procedure calls:

insymbol (CHANNEL, STRING, DESTINATION)
outsymbol (CHANNEL, STRING, SOURCE)

where CHANNEL and SOURCE-must be arithmetic expressions called by valpe,
STRING is a string, and DESTINATION is an integer variable called by name, provide
the means of communicating between foreign media and the variables of the program
in terms of single basicsymbols or any additional symbols. In either procedure the
correspondence between-the basic symbols and the values of variables in the progrim
is established by mapping the sequence of the basic symbols given in the string suppljed
as the second parameter, taken in the order from left to right, into the positive integers
1, 2, 3, Using this correspondence the procedure insymbol will assign to an integer
type variable given as the third parameter the value corresponding to the next basic
symbol appearing on the foreign medium. If this next basic symbol does not appeat in
the/string given as the second parameter, the number 0 will be assigned. If the npxt
symbol appearing in the input is not a basic symbol of ALGOL 60, a negative integer,
corresponding to the symbol, will be assigned.

Similarly the procedure outsymbol will transfer the basic symbol corresponding to the
value of the third parameter to the foreign medium. If the value of the third paramgter

2.5.2

ts—negative-a—symbol-corresponding-to—this—valae—will-be—transferred—ltis—understood
that where the foreign medium may be used both for insymbol and outsymbol, the
negative integer values associated with each additional symbol will be the same for the
two procedures. More generally, if additional symbols are used the corresponding
values must be given as accompanying information with the program.

Transmission of real type. Transmission of information of real type between variables
of the program and a foreign medium may be accomplished by the procedure calls:

inreal (CHANNEL, DESTINATION)
outreal (CHANNEL, SOURCE)

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

where CHANNEL and SOURCE are arithmetic expressions and DESTINATION is a
variable of real type.

The two procedures inreal and outreal form a pair. The procedure inreal will assign the
next value appearing on the foreign medium to the real type variable given as the second
parameter. Similarly, procedure outreal will transfer the value of the second actual
parameter to the foreign medium.

The representation of values on the foreign media will not be further described, except
that it is understood that in so far as a medium can be used for both input and output

a value which has been transferred to a given medium with the aid of a call of outreal
will be represented in such a way that the same value, in the sense of numerical analysis
(see Part I A, clause 3.3.6), may be transterred back 10 a variable by means of proceaure
inreal, provided that an appropriate manipulation of the foreign medium has also been
performed.

2.5.3 Transmission of arrays. Arrays may be transferred from and to a foreign medium by
means of the procedure calls:

inarray (CHANNEL, DESTINATION)
outarray (CHANNEL, SOURCE)

where CHANNEL must be an arithmetic expression and DESTINATION and SOURCE
are arrays of real type.

Procedures inarray and outarray also form a pair; they transfer the ordered set of
numbers forming the value of the array given as the second parameter, the array bounds
being defined by the corresponding array declaration rather than by additional para-
meters (the mechanism for doing that is already available in ALGOL 60 for the value
call of arrays).

The order in which the elements of the@rray are transferred corresponds to the lexico-
graphic order of the values of the subscripts, i.e.

a [k,, k,, ..., k,,] precedes

a [j;, Jp s J] Provided 1)
k, = J; (ir= 1,2, .., p — 1)

and kp <jp (1 <p<m)

It should be recognized that the possibly multidimensional structure of the array is not
reflected in the corresponding numbers on the foreign medium where they appear only
as a linear §equence as defined by (1).

The representation of the numbers on the foreign medium conforms to the same rules
as_given for inreal and outreal; in fact it is possible, for example, to input numbers by
inreal which before have been output by outarray.

2.5.4 Formatted input-output calls. A set of procedures exists to accomplish formatted input
or output as specified by a format string (see section 1). The detailed behaviour of these
procedures is described below.

2.5.4.1 OUTPUT. An output process is initiated by the call:
outlist (CHANNEL, LAYOUT, LIST)

Here CHANNEL is an integer parameter called by value, which is the number
associated with a foreign medium. The parameter LAYOUT is the name of a
lay-out procedure (clause 2.3), and LIST is the name of a list procedure (clause 2.4).

— 72 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO/ R 1538 - 1972 (E)

There is also another class of procedures, named output n, forn = 0, 1, 2, ..., 9,
which is used for output as follows:

output n (CHANNEL, FORMAT STRING, E,, E,, ..., E,)
Each of these latter procedures can be defined in terms of outlist as follows:

procedure output n (CHANNEL, FORMAT STRING, E,, E,, ..., E,);
begin procedure A; format (FORMAT STRING);

procedure B (P);

begin P(E,) ; P(E,) ; ...; P(E,) end;

outlist (CHANNEL, A, B)
end;

In the following rules it is therefore assumed that outlist has been called.

Let the variables p and p’ indicate the current position in the output for the Channel
under consideration, i.e. lines I, 2, ..., p’ of the current page have begn)completed,
as well as character positions I, 2, ..., p of the current line (i.e. of Lin€p” + I). At the
beginning of the program, p = p’ = 0. The symbols P and P{ denote the line Jize
and page size (see clause 2.2). Output takes place according.to the following algo-
rithm:

Step 1 (Initialization)
The hidden variables are set to standard values:

H 1 is set to the “standard ” format f 2
H 2 is set sothat L = I, R = o,
H 3 is set so that L’ =], R" =%
H 4 is set so that Py, P, Pp are all effectively equal to the DUMMY procedure
defined as follows:

“ procedure DUMM ¥; ™.

HS is set so that Py Pg., Pp are all effectively equal to DUMMY.
H 6 is set so that TAB = 1.

Step 2 (Lay=out)

The lay-out procedure is called; this may change some of the variables H1, H2, H3,
H4, H5) H6. Set T to false. (T is a Boolean variable used to control the sequending
of\data with respect to title formats; when T is true a value which has been trgns-
mitted to the procedure has not yet been output.)

Step 3 (Communication with list procedure)

The next format item of the format string is examined. (After the format string is
exhausted, “ standard ” format, clause 1.2.3.7, is used from then on until the ¢nd

of the procedure)
P 7

If the next format item is a title format, i.e. requires no data item, proceed directly
to step 4. If T is true proceed to step 4. Otherwise, the list procedure is activated;
this is done the first time by calling the list procedure, using as actual parameter a
procedure named outitem; this is done on all subsequent times by returning from
the procedure outitem, which will cause the list procedure to be continued from the
latest outitem call. (The identifier outitem has scope local to outlist, so a programmer
may not call this procedure directly.)

After the list procedure has been activated in this way, it will either terminate or
call the procedure outitem. In the former case, the output process is completed;

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO | R 1538 - 1972 (E)

in the latter case, T is set to true and any assignments to hidden variables that the
list procedure may have invoked will cause adjustment to the variables H1, H2,
H3, H4, H5, H6. Continue at step 4.

Step 4 (Alignment marks)

If the next format item includes alignment marks at its left, remove it from the
format string and execute process A for each “ [/ ”, process B for each “ 4 ”, and
process C for each “J”. Note that overflow procedures may cause the format
strings to be changed. In such cases, the new format string is not examined before
step 6.

Step 5 (Get within margins)

Execute process G to ensure proper page and line alignment.

Step 6 (Formatting the output)

Take the next item from the format string. (In unusual cases, the list procedure or
an overflow procedure may have called the descriptive proceduré format, thereby
changing the format string. In such cases, the new format string is examined from
the beginning; it is conceivable that the format items exarhined in steps 3, 4 and 6
might all be different. At this point the current formatitem is effectively removed
from the format string and copied elsewhere. TheNormat string itself, possibly
changed by further calls of format, will not be intetrogated until the next occurrence
of step 3.)

Alignment marks at the left of the formatiitem are ignored. If the format item is
not composed only of alignment marks-and insertions, the value of T is examined.

If T is false, undefined action takes'place. (A nontitle format was substituted for a
title format in an overflow procedure, and this is not allowed.) Otherwise, the output
item is evaluated and T is/set to false. Now the rules of format are applied and
the characters X, X, ... X, which represent the formatted output on the external
medium are determined.*(Note that the number of characters, s, may depend on
the value being outputuusing “ 4 ” or “ S ” format, as well as on the output medium.)

Step 7 (Check for overflow)

Ifp -5 Randp + s < P, where s is the size of the item as determined in step 6,
the«itém will fit on this line, so continue at step 9. Otherwise, if the present item
uses' “ 4 7 format, output a special symbol, which is recognizably not a basic
symbol; this is done to ensure that input will be inverse to output. Go to step 8.

Step 8 (Processing of overfiow)

Perform process H (p + 5). Thenifp + s <X Randp + s < P, go to step 9; other-
wise let k = min (R, P) — p. Output X, X, ... X, set p = min (R, P), and then
let X; X, ... X,_; = X7 Xy p; - X,. Decrease s by k and repeat step 8.

Step 9 (Finish the item)

Output X, X, ... X,, and increase p by s. Any alignment marks at the right of the
format item now cause activation of process A for each “ / ”, process B for each
“ 4, and process C for each “ J”. Return to step 3.

— 74 —

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

ISO / R 1538 - 1972 (E)

2.5¢4.2

Process A (“/” operation)

Check page alignment with process F, then execute process D and call pro-
cedure Py.

Process B (“ 4 ” operation)

If p > 0, execute process D, call procedure P,. Then execute process E and
call procedure Py..

Process C (*“ J” operation)

Check page and line alignment with process G. Thenletk = ((p — L + 1) =

13 kil M > M he
“tab ” spacing for this channel. If & > min (R, P), perform process H (k) ;
otherwise effectively insert blanks until p = k.

Process D (New line)
Skip the output medium to the next “line 7, set p = 0, and setp’ = p’ +| I.

Process E (New page)
Skip the output medium to the next “ page ”, and’setp’ = 0.

Process F (Page alignment)

If p" + I << L’ execute process D untihe™ = L' — I. If p" + I > R’ execpite
process E, call Py, and repeat process' F. If p’ + I > P’ execute process|E,
call Pp, and repeat process F. This process must terminate because I <|L’
L Randl <L <P.

Process G (Page and line alignment)

Execute process F. Then, if p + I < L, effectively output blank spaces until
p+1=LIfpE* 1> Rorp + 1> P, perform process H (p + I). This
process must tesminate because] < L <{ Rand I < L < P.

Process H (k). (Line overflow)

Perforin process D. If k£ > R, call Pg; otherwise call Pp. Then perform pfo-
cess G to ensure page and line alignment.

Note.—Upon return from any of the overflow procedures, any assignments to hidfen
variables that have been made by calls on descriptive procedures will cause adjustment to[the
corresponding variables H1, H2, H3, H4, HS, H6.

InpuT. The input process is initiated by the call:
inlist (CHANNEL, LAYOUT, LIST)

The } 1 ionif I fid in t! £ pt

that CHANNEL is in this case the number of an input medium. There is a class
of procedure input n which stand for a call with a particularly simple type of lay-
out and list, just as discussed in clause 2.5.4.1 for the case of output. In the case of
input, the parameters of the “ item ” procedure within the list must be variables.

The various steps which take place during the execution of inlist are very much
the same as those in the case of outlist, with obvious changes. Instead of transferring
characters of title format, the characters are ignored on input. If the data is impro-
per, some standard error procedure is used (see clause 1.1.3.8).

The detailed algorithm for inlist is as follows:

—T5

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

