
IS0  / R 1538 - 1972 (E) 

L 

.. 

begin array z, y l ,  y2, y 3  [ I  : n] ; real X I ,  x2, x3, H ; Boolean out ; 

integer k ,  j ; own real s, Hs ; 

procedure R K l S T  ( x ,  y ,  h, xe,  y e )  ; real x, h, xe  ; array y ,  ye  ; 
comment R K l S T  integrates one single Runge-Kutta step with initial values 
x,  y [k]  which yields the output parameters xe  = x + h and ye [k] ,  the latter 
being the solution at Xe. 

Important : the parameters n,  FKT, z enter R K l S T  as non lccal entities ; 

begin array w [I : n],  a [ I  : 51; integer k ,  j ;  
a [ I ]  := a [2] := a [5] := h / 2 ;  a [3] := a [4] := h ;  xe := x ;  
for k := I step I until n do ye [k]  : = w [k] := y [k] ; 
for j := I step I until 4 do 

begin FKT (Xe, w, n, z )  ; 
xe := x + U [ j ] ;  
for k := I step I until n do 

begin w [k] := y [k] + a [ j ]  x z [ k ] ;  

end k 
ye [k]  := ye [k]  + a [ j  + I ]  x z [k]/3 

end j 

end R K  IST; 

Begin of program: 

i f f i  then begin H := X E  - x ;  s := O end else H := H s ;  
out := false ; 

A A :  if ( x  + 2.01 x H - X E  > O )  3 (H > O) then 
begin Hs : = H ; out := true ; H : = ( X E  - x ) / 2  end i f ;  
R K l S T  ( x ,  y ,  2 x H, X I ,  y l )  ; 

B B :  R K l S T  (x ,  y ,  H ,  x2, y 2 )  ; R K I S T  (x2, y2, H ,  x3, y3)  ; 
for k := I step I until n do 

if comp (y1 [IC],  y 3  [k] ,  eta) > eps then go to CC; 

comment comp (a,  b, c )  is a function designator, the value of which is the absolute value 
of the difference of the mantissae of a and 6,  after the exponents of these quantities have 
been made equal to the largest of the exponents of the originally given parameters U ,  b, c ; 

x := x3 ; if out then go to D D ;  
for k := I step I until n do y [k] := y3 [ k ] ;  
if s = 5 then begin s := O ; H := 2 x H end if; 
s := s + I ;  go to AA;  

CC: H := 0.5 x H ;  out := false; X I  := x 2 ;  
for k := I step I until n do y1 [k]  := y2 [ k ] ;  
go to BB;  

DD : for k := I step I until n do y E  [k]  : y3 [k]  
end R K  

- 41 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0  / R 1538 - 1972 (E) 

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS 
AND SYNTACTIC UNITS 

All references are given through section or clause numbers. The references are given in three 
groups : 

def Following the abbrevation " def ", reference to the syntactic definition (if any) is 
given. 

Following the abbreviation " synt ", references to the occurrences in metalinguistic 
formulae are given. References already quoted in the def-group are not repeated. 
Following the word " text ", the references to definitions given in the text are given. 

synt 

text 

The basic symbols represented by signs other than bold-faced words have been collected at the 
beginning. The examples have been ignored in compiling the index. 

+ see : plus 
- see : minus 
x see : multiply 
I i see : divide 
4 see : exponentiation 
< < = >, > # see: (relational operator> 
E 3 v A 1 see: <logical operator> 
, see : comma 
. see : decimal point 

see : ten 
: see : colon 
; see : semicolon 

see : colon equal 
see : space 

( ) see : parentheses 
[ ] see : subscript bracket 

see : string quote 

.= . 

6 3  

<actual parameter>, def 3.2.1, 4.7.1 
<actual parameter list>, def 3.2.1, 4.7.1 
<actual parameter part), def 3.2.1, 4.7.1 
<adding operator>, def 3.3.1 
alphabet, text 2.1 
arithmetic, text 3.3.6 
<arithmetic expression>, def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1, 4.6.1, 5.2.1 text 3.3.3 
<arithmetic operator>, def 2.3 text 3.3.4 
array, synt 2.3, 5.2.1, 5.4.1 
array, text 3.1.4.1 
<array declaration>, def 5.2.1 synt 5 text 5.2.3 
<array identifier>, def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8 
<array list>, def 5.2.1 
<array segment), def 5.2.1 
<assignment statement), def 4.2.1 synt 4. I .  1 text 1, 4.2.3 

<basic statement>, def 4.1.1 synt 4.5.1 
<basic symbol>, def 2 
begin, synt 2.3, 4.1.1 
(block), def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5 

- 42 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

i 

<block head>, def 4.1.1 
Boolean, synt 2.3, 5.1.1 text 5.1.3 
<Boolean expression>, def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.3 
<Boolean factor>, def 3.4.1 
<Boolean primary>, def 3.4.1 
<Boolean secondary>, def 3.4.1 
{Boolean term>, def 3.4.1 
<bound pair>, def 5.2.1 
<bound pair list>, def 5.2.1 
<bracket>, def 2.3 

<code>, synt 5.4.1 text 4.7.7, 5.4.6 
colon : , synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1 
colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1 
comma,  , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1, 5.1.1, 5.2.1, 5.3.1, 5.4.1 
comment, synt 2.3 
comment convention, text 2.3 
<compound statement>, def 4.1.1 synt 4.5.1 text 1 
<compound tail>, def 4.1.1 
<conditional statement}, def 4.5.1 synt 4.1.1 text 4.5.3 

(decimal fraction>, def 2.5.1 
<decimal number>, def 2.5.1 text 2.5.3 
decimal point . , synt 2.3, 2.5.1 
<declaration>, def 5 synt 4.1.1 text 1, 5 (complete section) 
{declarator>, def 2.3 
<delimiter>, def 2.3 synt 2 
<deSignational expression>, def 3.5.1 synt 3, 4.3.1, 5.3.1 text 3.5.3 
<digit>, def 2.2.1 synt 2, 2.4.1, 2.5.1 
dimension, text 5.2.3.2 
divide 
do, synt 2.3, 4.6.1 
<dummy statement>, def 4.4.1 synt 4.1.1 text 4.4.3 

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.5.3.2 
<empty>, def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1 
end, synt 2.3, 4.1.1 
entier, text 3.2.5 
exponentiation 4 , synt 2.3, 3.3.1 text 3.3.4.3 
<exponent part>, def 2.5.1 text 2.5.3 
<expression>, def 3 synt 3.2.1, 4.7.1 text 3 (complete section) 

<factor>, def 3.3.1 
false, synt 2.2.2 
for, synt 2.3, 4.6.1 
<for clause>, def 4.6.1 text 4.6.3 
<for list>, def 4.6.1 text 4.6.4 
<for list element>, def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3 
<formal parameter>, def 5.4.1 text 5.4.3 
<formal parameter list>, def 5.4.1 
<formal parameter part>, def 5.4.1 
<for statement>, def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete clause) 
<function designator>, def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4 

go to, synt 2.3, 4.3.1 
<go to statement>, def 4.3.1 synt 4.1.1 text 4.3.3 

e, synt 2.3, 3.3.1 text 3.3.4.2 

- 43 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

<identifier>, def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3 
<identifier list>, def 5.4.1 
if, synt 2.3, 3.3.1, 4.5.1 
<if clause>, def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2 
(if statement>, def 4.5.1 text 4.5.3.1 
<implication>, def 3.4.1 
integer, synt 2.3, 5.1.1 text 5.1.3 
<integer>, def 2.5.1 text 2.5.4 

label, synt 2.3, 5.4.1 
<label>, def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1, 4.1.3 
<left part>, def 4.2.1 
<left part list>, def 4.2.1 
<letter>, def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1 
<letter string>, def 3.2.1, 4.7.1 
local, text 4.1.3 
<local or own type>, def 5.1.1 synt 5.2.1 
<logical operator>, def 2.3 synt 3.4.1 text 3.4.5 
<logical value>, def 2.2.2 synt 2, 3.4.1 
<lower bound>, def 5.2.1 text 5.2.4 

minus -, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1 
multiply x , synt 2.3, 3.3.1 text 3.3.4.1 
<multiplying operator>, def 3.3.1 

non-local, text 4.1.3 
<number>, def 2.5.1 text 2.5.3, 2.5.4 

<open string>, def 2.6.1 
<operator>, def 2.3 
own, synt 2.3, 5.1.1 text 5, 5.2.5 

<parameter delimiter>, def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.6 
parentheses 0, synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1, text 3.3.5.2 
plus + , synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1 
<primary>, def 3.3.1 
procedure, synt 2.3, 5.4.1 
<procedure body>, def 5.4.1 
<procedure declaration>, def 5.4.1 synt 5 text 5.4.3 
<procedure heading>, def 5.4.1 text 5.4.3 
(procedure identifier>, def 3.2.1 synt 3.2.1, 4.7. I ,  5.4.1 text 4.7.5.4 
<procedure statement>, def 4.7.1 synt 4.1.1 text 4.7.3 
<program>, def 4.1.1 text 1 
(proper string>, def 2.6.1 

quantity, text 2.7 

real, synt 2.3, 5.1.1 text 5.1.3 
<relation>, def 3.4.1 text 3.4.5 
<relational operator>, def 2.3, 3.4.1 

scope, text 2.7 
semicolon ; , synt 2.3, 4.1.1, 5.4.1 
<separator>, def 2.3 
<sequential operator>, def 2.3 

-44- 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

L. 

<simple arithmetic expression>, def 3.3.1 text 3.3.3 
<simple Boolean>, def 3.4.1 
<simple designational expression>, def 3.5. I 
<simple variable>, def 3.1.1 synt 5.5.1 text 2.4.3 
space U, synt 2.3 text 2.3, 2.6.3 
<specification part>, def 5.4.1 text 5.4.5 
<specificator>, def 2.3 
<specifier>, def 5.4.1 
standard function, text 3.2.4, 3.2.5 
<statement>, def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete section) 
statement bracket see : begin end 
step, synt 2.3, 4.6.1 text 4.6.4.2 
string, synt 2.3, 5.4.1 
<string>, def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3 
string quotes ' 
subscript, text 3.1.4.1 
subscript bound, text 5.2.3.1 
subscript brackets [ 1, synt 2.3, 3.1.1, 3.5.1, 5.2.1 
<subscripted variable>, def 3.1.1 text 3.1.4.1 
<subscript expression>, def 3.1.1 synt 3.5.1 
<subscript list>, def 3.1.1 
successor, text 4 
switch, synt 2.3, 5.3.1, 5.4.1 
<switch declaration>, def 5.3.1 synt 5 text 5.3.3 
<switch designator>, def 3.5.1 text 3.5.3 
<switch identifier>, def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1 
<switch list>, def 5.3.1 

(term>, def 3.3.1 
ten , synt 2.3, 2.5.1 
then, synt 2.3, 3.3.1, 4.5.1 
transfer function, text 3.2.5 
true, synt 2.2.2 
<type>, def 5.1.1 synt 5.4.1 text 2.8 
<type declaration>, def 5.1.1 synt 5 text 5.1.3 
<type list> def 5.1.1 

<unconditional statement>, def 4.1.1, 4.5.1 
<unlabelled basic statement>, def 4.1.1 
<unlabelled block>, def 4.1.1 
{unlabelled compound), def 4.1.1 
<unsigned integer), def 2.5.1, 3.5.1 
<unsigned number>, def 2.5.1 synt 3.3.1 
until, synt 2.3, 4.6.1 text 4.6.4.2 
{upper bound>, def 5.2.1 text 5.2.4 

value, synt 2.3, 5.4.1 
value, text 2.8, 3.3.3 
<value part>, def 5.4.1 text 4.7.3.1 
<variable>, def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3 
{variable identifier>, def 3.1.1 

while, synt 2.3, 4.6.1 text 4.6.4.3 

, synt 2.3, 2.6.1 text 2.6.3 

- 45 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

PART I B 

REPORT ON LEVEL 1 AND 2 SUBSETS 
(ECMA SUBSET) 

INTRODUCTION 

The following report gives the exact working of the restrictions and changes necessary to change 
the report on the full language into a report on level 1 and level 2 subsets. Attention must be 
drawn to some slight deviations between this report and the worked in version in the boxes in 
Part I A. This is mainly caused by typographical difficulties. For example, where level 1 and 2 
subsets require at  least 26 letters in the alphabet, level 3 subset permits at  most 26 letters. 

The change listed under item 2 in the definitions does not apply to level 1 subset. This is the only 
difference between the subsets of levels 1 and 2. 

- 46 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

Remarks to compiler 
designer 

1. The declarator own 
need not be imple- 
mented. 

2. The recursive use of 
procedures and recur- 
sively defined proce- 
dures need not be 
allowed. No recursive 
use of procedures 
means that no call 
of the procedure itself 
may occur during the 
execution of the state- 
ments of the body of 
any procedure, and 
during the evaluation 
of those of its actual 
parameters, the cor- 
responding formal pa- 
rameters of which are 
called by name, and 
during the evaluation 
of expressions occur- 
ring in declarations 
inside the procedure. 

3. Integer labels need not 
be provided for. 

DEFINITIONS AND REMARKS 

Remarks 
to programmer 

The use of own variables 
should be avoided. 

Do not write recursive 
procedures. Do not use 
procedures recursively. 

Definition of Ekma subset 
in terms of ALGOL 60 Report 
(The numbers refer to sections 

and clauses of Part I A) 

5 .  Delete first two sentences of 
fourth paragraph. 

5.1.1 Delete " I own <type> ". 

5.1.3 Delete last sentence. 

5.4.4 Delete last sentence. Add 
to 4.7.5: " No call of the 
procedure itself may occur 
during the execution of the 
statements of the body of 
any procedure, and during 
the evaluation of those of 
its actual parameters, the 
corresponding formal pa- 
rameters of which are 
called by name, and du- 
ring the evaluation of 
expressions occurring in 
declarations inside the pro- 
cedure." 

THIS CHANGE DOES NOT APPLY 
TO LEVEL 1 SUBSET 

Do not use integer labels. 3.5.1 Delete 
" I <unsigned integer> ". 

3.5.5 Delete. 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 I R 1538 - 1912 (E) 

Remarks to compiler 
designer 

4. Up to full specification 
for all parameters may 
be required. 
Up to equivalence of 
the type of an actual 
parameter and the spe- 
cified type of the cor- 
responding formal pa- 
rameter, if called by 
name, may be re- 
quired. 

5. The alphabet may not 
be restricted to less 
than one case of 26 
letters. 

6 .  A limit may be put on 
the length of identi- 
fiers, but this must 
not be less than 6 
significant basic sym- 
bols. 

7. If the type of an 
arithmetic expression 
depends upon the eval- 
uation of an expres- 
sion or upon the type 
or value of an actual 
parameter then it may 
be taken to be red. 

Remarks 
to programmer 

Provide each procedure 
declaration with a com- 
plete specification part 
and maintain equivalence 
of type between actual 
and formal parameter 
called by name. 

Use only one case of 
letters. (Either small or 
capital-the typing for a 
particular implementation 
will transfer if necessary 
to the right case). 

Do not rely on the diffe- 
rentiation between two 
identifiers which have the 
first six basic symbols in 
common. 

Be careful when making 
essential use of the type 
of an arithmetic expres- 
sion. 

Definition of Ecma subset 
in terms of ALGOL 60 Report 
(The numbers refer to sections 

and clauses of Part I A) 

5.4.5 Third sentence - replaced 
by “ Specifications of all 
formal parameters if any 
must be supplied.” 

4.7.5.5 Replaced by: “ Kind 
and type of actual para- 
meters must be the same 
as those of the corres- 
ponding formal parame- 
ters, if called by name.” 

2.1 Delete “ I A ... Z ”  and 
“ restricted, or ”. 

2.4.3 Replace “They may be 
chosen freely ” by “ Iden- 
tifiers may be chosen 
freely; but the effects due 
to the occurrence of two 
different identifiers the first 
six basic symbols of which 
are common are unde- 
fined ”. 

3.3.4 Replace the words “the 
following rules ” of the 
last sentence by “ a set of 
rules. However if the type 
of an arithmetic expres- 
sion according to the rules 
cannot be determined 
without evaluating an ex- 
pression or ascertaining 
the type or value of an 
actual parameter, it is real. 
These rules are ”. 

- 48 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

Remarks to compiler 
designer 

8. The requirement of 
4.3.5 need not be im- 
plemented. 

Remarks 
to programmer 

A go to statement in- 
volving an undefined 
switch designator need 
not have the effect of a 
dummy statement. You 
are well advised to pro- 
gram a check that the 
value of the subscript 
expression is within the 
bounds defined by the 
switch declaration. 

Definition of Ecma subset 
in terms of ALGOL 60 Report 
(The numbers refer to sections 

and clauses of Part I A) 

4.3.5 Replace " equivalent to a 
dummy statement " by 
" undefined ". 

- 49 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

PART I C 

REPORT ON LEVEL 3 SUBSET 
(IFIP SUBSET) 

INTRODUCTION 

The definition of level 3 subset appears in the form of informal explanations and changes to be 
made to the report on the full language ALGOL 60 to convert this into the level 3 subset (as has 
been done in the boxes in Part I A). 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 
I 

Section 
or clause 

of Pari I A 

2.3 

5 

5.1.1 

5.1.3 

5.2.1 

5.2.5 

4.7.5 

5.4.4 

3.5.1 

3.5.5 

5.4.5 

4.7.5.5 

DEFINITIONS AND EXPLANATIONS 

Subset definitions 

Delete from definition of declarator 
“ own I ”. 

Delete first two sentences of fourth 
paragraph. 

Replace the last two metalinguistic 
formulae by : “ <type declaration> : : = 

<type> <type list> ”. 

Delete last sentence. 

Replace the last formula by: 
“ <array declaration> : := array 
<array list> I <type> array <array 
list> ”. 

Delete “even if an array is declared 
own ”. 

Add clause 4.7.5.6: “ N o  call of the 
procedure itself may occur during the 
execution of the statements of the body 
of any procedure, nor during the 
evaluation of those of its actual para- 
meters, the corresponding formal para- 
meters of which are called by name, nor 
during the evaluation of expressions 
occurring in declarations inside the 
procedure ”. 

Delete last sentence. 

Delete “ I <unsigned integer> ”. 

Delete. 

Replace third sentence by: “ Specifica- 
tions of all formal parameters if any 
must be supplied”. 

Replace by: “ Kind and type of actual 
parameters must be the same as those 
of the corresponding formal para- 
meters, if called by name ”. 

Explanation 

The own concept is not included in 
the subset. 

Recursive procedures and recursive 
use of procedures are not included. 

Integer labels are not provided for. 

Complete specification parts are 
required. 

- 51 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

Section 
or clause 

of Part I A 

2.1 

2.4.3 

3.3.4 

4.3.5 

5.4.4 

3.3.4.3 

2.3 

3.3.1 

3.3.5.1 

Subset definitions 

Delete: " I A I B I ... I Y I Z ". 
Delete: " , or extended ... delimiter) ". 
Add: " If a particular implementation 
requires capitals rather than small 
letters, one must regard them as a 
hardware representation for the small 
letters". 

Replace : " They may be chosen freely " 
by: " Identifiers may be chosen freely; 
but the effects due to the occurrence of 
two different identifiers the first six 
basic symbols of which are common 
are undefined ". 

Replace the words: " the following 
rules " of the last sentence by: " a set 
of rules. However, if the type of an 
arithmetic expression according to the 
rules cannot be determined without 
evaluating an expression or ascertaining 
the type or value of an actual para- 
meter, it is real. These rules are ". 

Delete. 

Add to text: " A function designator 
must be such that all its possible uses 
in the form of a procedure statement 
are equivalent to dummy statements". 

Insert between " ... rules " and " : " : 
" with the exception that, if both the 
basis a and the exponent i are of 
integer type, then the exponent has to 
be an unsigned integer, otherwise the 
result is undefined ". 

Delete: " I + ". 

Delete: " I f ". 

Delete: " f ". 

Explanation 

Only one case of letters is provided 
for. 

In the subset identifiers are differen- 
tiated only up to six leading basic 
symbols. 

In the subset the type of an arith- 
metic expression will be in certain 
cases real where it will be integer in 
ALGOL 60. Thus arithmetic will 
be less precise in some cases. 

The effect of a go to statement 
involving an undefined switch de- 
signator is undefined in the subset. 

Exponentiation with integer basis 
and exponent is restricted in the 
subset. 

The so-called integer division is not 
included in the subset. 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

c 

Section 
or clause 

of Part I A 

3.3.4.2 

4.6.1 

5.3.1 

3.5.1 

3.5.3 

5.3.3 

5.3.4 

Subset definitions 

Replace: “ The operations ... both 
denote ” by: “ The operation <term>/ 
<factor} denotes ”. Delete last sen- 
tence. 

Replace: ‘‘ <for clause} ... do ” by: 
“ <for clause} : : = for <variable 
identifier} : = <for list} do ”. 

Replace: ” {switch list> : := <desig- 
national expression> I <switch list>, 
<deSignational expression> ” by: 
“ <switch list> : : = <label> I <switch 
list>, <label> ”. 

Replace the last two formulae by : 
“ {designational expression> : : = 
(label> I <switch designator> ”. 

Delete: “ I n  the general case ... is 
already found. ” Replace “ selects one 
of the designational expressions ... a 
recursive process ” by: “ selects one of 
the labels contained in the switch list 
of the switch declaration. The selection 
is obtained by counting these labels 
from left to right ”. 

Replace: “These values ... its asso- 
ciated integer ” by: “ These values are 
given as labels entered in the switch 
list. With each of these labels is asso- 
ciated a positive integer I ,  2, ... ob- 
tained by counting the items in the 
list from left to right. The value of the 
switch designator corresponding to a 
given value of the subscript expression 
(see clause 3.5, “ Designational expres- 
sions ”) is the label in the switch list 
having this given value as its associated 
integer ”. 

Delete. 

Explanation 

The controlled variable in a for 
clause is restricted in the subset to 
be a variable identifier. 

In the subset the designational 
expressions in a switch list are 
restricted to be labels only. 

In the subset only unconditional 
and unparenthesized designational 
expressions are provided for. See 
5.3.1. 

- 53 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

Section 
or clause 

of Part I A 

5.3.5 

4.7.3.2 

4.7.5 

5 

5.4.3 

Subset definitions 

Replace by: “ Influence of scopes. If a 
switch designator occurs outside the 
scope of a label in the switch list, and 
an evaluation of this switch designator 
selects this label, then a possible con- 
flict between the identifier used to 
denote this label and an identifier 
whose declaration is valid at the place 
of the switch designator will be avoided 
by a suitable change of this latter 
identifier ”. 

Replace: “ after enclosing this ... syn- 
tactically possible ” by: “ this actual 
parameter being an identifier, or string, 
otherwise the name replacement is un- 
defined ”. 

Insert after: “ ... ALGOL statement ” 
and before “ . ” : “ i n  the sense of 
this subset ”. 

Insert after “ ... any one block head.” 
and before “ Syntax ”: “ The identifier 
associated with a quantity declared in a 
declaration may not occur denoting 
that quantity more than once between 
the begin of the block in whose head 
that declaration occurs and the semi- 
colon which ends that declaration, 
excepting the case where this occur- 
rence is the occurrence of a procedure 
identifier in the left part list of an 
assignment statement in the sense of 
clause 5.4.4 ”. 

Add: “ No identifier may occur more 
than once in a formal parameter list ”. 

Explanation 

In name replacement (call by name) 
the actual parameter can only be 
an identifier or a string. 

- 54 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

PART II 

SPECIFICATIONS 
OF INPUT-OUTPUT PROCEDURES 

- 55 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

PART Ii A 

PRIMITIVE INPUT-OUTPUT PROCEDURES FOR ALGOL 60 

INTRODUCTION 

It is recognized that some procedures to be used in connexion with input and output are con- 
sidered as being primitives, which cannot be expressed otherwise than by means of a code body. 
Among these are the following ones: 

insymbol 
outsymbol 
length 
inreal 
outreal 
inarray 
outarray 

Apart from these primitives one needs in practice a fuller set of input-output procedures. However, 
the language ALGOL 60 is so flexible that different schemes of input-output procedures can be 
defined in it largely by means of the primitives mentioned above. A few examples of this will be 
given in section 3 of this Part. 

1. DEFINITIONS 

It is recommended that, if not otherwise declared, the identifiers (I)  will be associated with pro- 
cedures which transfer values between the variables of the program and values carried in any 
kind of foreign media not otherwise accessible from the program. 

The corresponding procedure declarations are : 

procedure insymbol (channel, string, destination) ; value channel; integer channel, destination ; 

procedure outsymbol (channel, string, source) ; value channel, source ; integer channel, source ; string 

integer procedure length (string) ; string string; <procedure body> 
procedure inreal (channel, destination) ; value channel; integer channel; real destination ; <proce- 

procedure outreal (channel, source) ; value channel, source; integer channel; real source; <proce- 

procedure inarray (channel, destination) ; value channel; integer channel; array destination; <pro- 

procedure outarray (channel, source) ; value channel; integer channel; array source ; <procedure 

The procedure statements and the function designator calling these procedures must have the 
following forms : 

insymbol (<arithmetic expression> <parameter delimiter> <string> <parameter delimiter> 
(variable>) 

outsymbol (<arithmetic expression> <parameter delimiter> <string> <parameter delimiter> 
<arithmetic expression>) 

string string; <procedure body> 

string; <procedure body> 

dure body> 

dure body> 

cedure body> 

body> 

- 56 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0  / R 1538 - 1972 (E) 

length (<string>) 
inreal 
outreal 
inarray 
outarray 

(<arithmetic expression> <parameter delimiter> (variable>) 
(<arithmetic expression> <parameter delimiter> <arithmetic expression>) 
(<arithmetic expression> <parameter delimiter> <array identifier>) 
(<arithmetic expression> <parameter delimiter) (array identifier)) 

In all these cases, except for the call of length, the value of the first actual parameter must be a 
positive integer identifying an input or output channel available to the program. 

2. ACTIONS OF THE PROCEDURE BODIES 

The pair of procedures insymbol and outsymbol provides the means of communicating between 
foreign media and the variables of the program in terms of single basic symbols or any additional 
symbols. In either procedure the correspondence between the basic symbols and the values of 
variables in the program is established by mapping the sequence of the basic symbols given in the 
string supplied as the second parameter, taken in the order from left to right, onto the positive 
integers 1,2,3, ... Using this correspondence the procedure insymbol will assign to the integer type 
variable given as the third parameter the value corresponding to the next basic symbol appearing 
on the foreign medium. If this next basic symbol does not appear in the string given as the second 
parameter, the value O will be assigned. If the next symbol appearing in the input is not a 
basic symbol of ALGOL 60 a negative integer, corresponding to the symbol, will be assigned. 

Similarly the procedure outsymbol will transfer the basic symbol corresponding to the value of the 
third parameter to the foreign medium. If the value of the third parameter is negative a symbol 
corresponding to this value will be transferred. It is understood that where the foreign medium 
may be used both for insymbol and outsymbol, the negative integer values associated with each 
additional symbol will be the same for the two procedures. More generally, if additional symbols 
are used the corresponding values must be given as accompanying information with the program 
(see the footnote to section 1 of Part IA).  

The type procedure length is introduced to enable the calculation of the length of a given (actual 
or formal) string to be made (see example outstring). The value of length ( s )  is equal to the number 
of basic symbols of the open string enclosed between the outermost string quotes. 

The two procedures inreal and outreal form a pair. The procedure inreal will assign the next value 
appearing on the foreign medium to the real type variable given as the second parameter. Siniil- 
arly, the procedure outreal will transfer the value of the second actual parameter to the foreign 
medium. 

The representation of values on the foreign media will not be further described, except that it is 
understood that in so far as a medium can be used for both input and output a value which has 
been transferred to a given medium with the aid of a call of outreal will be represented in such a 
way that the same value, in the sense of numerical analysis (see clause 3.3.6), may be transferred 
back to a variable by means of procedure inreal, provided that an appropriate manipulation of 
the foreign medium has also been performed. 

Procedures inarray and outarray also form a pair; they transfer the ordered set of numbers 
forming the value of the array given as the second parameter, the array bounds being defined by 
the corresponding array declaration rather than by additional parameters (the mechanism for 
doing that is already available in ALGOL 60 for the value call of arrays). The order in which the 

- 57 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

elements of the array are transferred corresponds to the lexicographic order of the values of the 
subscripts, i.e. : 

a [k,, k,, ...) kml precedes a [.il, j,, ..., jml 
(2) 1 (1 < p < m )  

provided k, = ji (i = I ,  2, ..., p - I )  
kp < j p  

It should be recognized that the possibly multidimensional structure of the array is not reflected 
in the corresponding numbers on the foreign medium, where they appear only as a linear sequence 
as defined by (2). 

The representation of the numbers on the foreign medium conforms to the same rules as given 
for inreal and outreal; in fact it is possible for example to input numbers by inreal which before 
have been output by outarray. 

3. EXAMPLES 

procedure outboolean (channel, boolean) ; value boolean; integer channel; Boolean boolean 
this procedure outputs a Boolean value as a basic symbol true or false; 
if boolean then outsymbol (channel, ' true ', I )  

else outsymbol (channel, ' false ', I )  

procedure outstring (channel, string) ; value channel; integer channel; string string; 
outputs the string string to the foreign medium; 
begin integer i ;  

end 
for i := I step I until length (string) do outsymbol (channel, string, i )  

comment 

comment 

procedure ininteger (channel, integer) ; value channel; integer channel, integer; comment inputs 
an integer which on the foreign medium appears as a sequence of digits, possibly preceded 
by a sign, and followed by a comma. Any other symbol in front of the sign is discarded ; 

begin integer n, k ;  Boolean b ;  
integer := 0 ;  b := true; 
for k := I ,  k + 1 while n = O do insymbol 

(channel, ' 0123456789 - + ', n )  ; 
if n = I l  then b := false; if n > IO then n : 
for k := 1, k + 1 while n # 13 do 
begin integer := 10 X integer + n - 1 ;  

end I ;  
if 7 b then integer := - integer 

insymbol (channel, ' O12345678 - +, ', n) 

end 
begin 

begin array a [ I  : l o ] ;  
<statements> ; 
outarray (15, a )  

end ; 
begin array b [O : 1, 1 : 51; 

inarray (15, b ) ;  
<statements> 

end 
end 

- 58 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0  / R 1538 - 1972 (E) 

The following example exhibits the use of inarray and outarray for inversion of a matrix including 
transfer of the matrix elements from and to the foreign medium. It requires that an appropriate 
declaration for a matrix inversion procedure as well as the declaration of outstring as given above 
are inserted at appropriate places in the program. 

begin integer n; 
inreal (5,  n ) ;  comment the matrix elements must be preceded by the order; 

begin array a [ I  : n, 1 : n ] ;  
inarray (5,  a ) ;  
matrix inversion (n, a ,  singular) ; 
outarray (15, a ) ;  
go to ex 

end; 
singular : outstring (15, ' singular ') ; 
ex : end 

4. CONCLUDING REMARKS 

No further means for input-output operations are proposed in this Part but attention is drawn 
to reference [7], and to the extensive list of references at  the end of that report. 

- 59 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

PART II B 

GENERAL INPUT-OUTPUT PROCEDURES FOR ALGOL 60 

1. FORMATS 

In  this section a certain type of string, which specifies the format of quantities to be input or 
output, is defined, and its meaning is explained. 

1.1 Number formats (see part I A, clause 2.5) 

1.1.1 Syntax 

BASIC COMPONENTS : 

<replicator> : := <unsigned integer> I X 
<insertion) : := B I <replicator> B I (string> I <replicator> (string> 
<insertion sequence> : : = <empty> I (insertion sequence> <insertion> 
<z> : := z I <replicator> z 
<Z part> : := <z> I (Z part> <z> I <Z part> <insertion> 
<D> : := D 1 <replicator> D 
<D part> : := <D> I <D part> <D> I (D part> <insertion> 
<T part> : := <empty> I T <insertion sequence> 
<sign part> : := <empty> I <insertion sequence> + I <insertion sequence> - 
<integer part> : := <Z part> I <D part> I <Z part> <D part> 

FORMAT STRUCTURES : 

<unsigned integer format> : : = <insertion sequence> <integer part> 
<decimal fraction format> : := . <insertion sequence> <D part> <T part> I 

V (insertion sequence> <D part> <T part> 
<exponent part format> : := <sign part> <unsigned integer format> 
<decimal number format> : := <unsigned integer format> <T part> I (insertion 

sequence> <decimal fraction format> I <unsigned 
integer format> <decimal fraction format> 

<number format> : := <sign part> <decimal number format> I (decimal number 
format) + (insertion sequence> I <decimal number 
format> - <insertion sequence> I <sign part> <decimal 
number format> (exponent part format) 

1.1.2 Examples. Examples of number formats appear in the table below. 

Number format 

+ ZZZDDD.DD 
+ 3230.20  
- 3D2B3D.2DT 
5 Z S D  - 
‘integerUpartD’ - 4 ZV‘, 

IJ. fraction ’ B3D 
- . 5D1, + 2 0  ‘ . . . ’  
+ ZD1,2Z 
+ D.DDBDDBDDB,, 

X B X D , ,  - DDD 
+ DD 

Result from -13.296 

- 013.30 
- 013.30 

- 000 013.29 
13.29600 - 

integer part - 13, fracfion 
296 

- .13296,, + 02 . . .  
- 13 
- 1.32 96 00 + 01 

(undefined) 

Result from 1007.999 

+ 1008.00 
+ 1008.00 

001 007.99 
IQ0 7.99900 

integer part 1007, fraction 
999 

.10080,, + 04 . . . 

+ 1.00 79 99,, + 03 
+ lo,, 2 

(depends on call) 

- 60 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

L. 

1.1.3 Semantics. The above syntax defines those strings which can comprise a “number 
format ”. First the interpretation to be taken during output is described: 

1.1.3.1 

1.1.3.2 

1.1.3.3 

4 

1.1.3.5 

1.1.3.6 

1.1. 

REPLICATORS. An unsigned integer n used as a replicator means that the quantity 
following it is repeated n times; thus 3B is equivalent to BBB. The character X 
as a replicator means a number of replications which will be specified when the 
format is called (see clause 2.3.1). 

INSERTIONS. Strings, delimited by string quotes, may be inserted anywhere within a 
number format. The proper string (without the outermost string quotes) will appear 
inserted in the same place with respect to the rest of the number. Similarly, the 
letter B may be inserted anywhere within a number format, and it stands for a 
blank space. 

SIGN AND ZERO SUPPRESSION. The portion of a number format to the left of the 
decimal point consists of an optional sign, then either or both of a sequence of 
Z’s and a sequence of D’s, with possible insertion characters. 

The convention on signs, whether preceding or following the number, is as follows: 

(a) if no sign appears in the format, the number is assumed to be positive, and 
the treatment of negative numbers is undefined; 

(b) if a plus sign appears in the format, the sign of the number to be output will 
appear as + or - on the external medium; 

(c) if a minus sign appears in the format, the sign will appear if the value of that 
number is negative, and will be suppressed, i.e. replaced by a blank space, if 
the value of the number is positive. 

The letter 2 stands for zero suppression, and the letter D stands for digit printing 
without zero suppression. Each 2 and D stands for a single digit position; a zero 
digit specified by Z will be suppressed when ail digits to its left are zero. A digit 
specified by D will always be printed. Note that the number zero printed with all 
Z’s in the format will give rise to all blank spaces, so at  least one D should usually 
be given somewhere in the format. 

Whenever zero suppression takes place, the sign (if any) is printed in place of the 
rightmost character suppressed. 

DECIMAL POINTS. The position of the decimal point is indicated either by the cha- 
racter “ . ” or by the letter “ V ” .  In the former case, the decimal point appears 
on the external medium; in the latter case, the decimal point is “ implied ”, i.e. 
it takes up no space on the external medium. Only D’s (no 2’s) may appear to the 
right of the decimal point except in an exponent part. 

TRUNCATION. On output, non-integral numbers are usually rounded to fit the 
format specified. If the letter T is used, however, truncation takes place instead. 
Rounding and truncation of a number X to d decimal places are defined as follows : 

Rounding: 10 4 ( - d )  x entier (10 -t. d x X + .5) 
Truncation: 10 4 ( - d) x sign ( X )  x entier (10 4 d X abs (X)) 

EXPONENT PART. The number following a “ ” is treated exactly the same as the 
portion of a number to the left of a decimal point (clause 1.1.3.3), except that if 
the “ D part ” of the exponent is empty, i.e. no D’s appear, and if the exponent is 
zero, then the “ ” and the sign are suppressed. 

- 61 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

1.1.3.7 Two TYPES OF NUMERIC FORMAT. Number formats are of two principal kinds: 

(a) Decimal number with no exponent. In this case, the number is aligned accord- 
ing to the decimal point with the picture in the format, and it is then truncated 
or rounded to the appropriate number of decimal places. The sign may precede 
or follow the number. 

(b) Decimal number with exponent. In this case, the number is transformed into 
the format of the decimal number with its most significant digit non-zero; the 
exponent is adjusted accordingly. If the number is zero, both the decimal 
part and the exponent part are output as zero. 

If in case (a) the number is too large to be output in the specified form, or if in 
case (b) the exponent is too large, an overflow error occurs. The action which takes 
place on overflow is undefined.* 

1.1.3.8 INPUT. A number input with a particular format specification should in general be 
the same as the number which would be output with the same format, except that 
less error checking occurs. The rules are, more precisely: 

(a) Leading zeros may appear even though Z’s are used in the format. Leading 
spaces may appear even if D’s are used. In other words, no distinction between 
Z and D is made on input. 

(b) Insertions take the same amount of space in the same positions, but the cha- 
racters appearing there are ignored on input. In other words, an insertion 
specifies only the number of characters to ignore, when it appears in an input 
format. 

(c) If the format specifies a sign at the left, the sign may appear in any 2 or D 
position as long as it i,s to the left of the number. A sign specified at the right 
must appear in place. 

(d)  The following are checked: the positions of decimal points, “ ”, and the 
presence of digits in place of D or 2 after the first significant digit. If an error 
is detected in the data, the result is undefined.** 

1.2 Other formats 

1.2.1 syntax 

<S> : := S I <replicator> s 
{string format> : := <insertion sequence> <s> I {string format> <s> I <string 

<alpha format> : := A 
<standard format> : := N 
<nonformat> : := Z I R I L 
(Boolean part> : := P I F 
<Boolean format> : : = <insertion sequence> <Boolean part> <insertion sequence> 
{titie format> : := <insertion> I {title format> <insertion> 
<alignment mark> : := / I 4 I J I <replicator> / I <replicator> 4 I <replicator> J 

format> <insertion> 

* It is recommended that the number of characters used in the output be the same as if no overflow had occurred, and that 
as much significant information as possible be output (e.g. exponept increased by one digit and attempt to output the 
number again). 
** It is recommended that the input procedure attempt to reread the data as if it were in standard format (clause 1.2.3.7) 
and also to give some error indication compatible with the system being used. Such an error indication might be suppressed 
at the programmer’s option if the data became meaningful when it was reread in standard format. 

- 62 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

P 

1 
O 

(formatitem I > :  := <number format> I <string format> I <alpha format> I 
(nonformat> I <Boolean format> I <title format> I <stan- 
dard format> I (alignment mark> <format item 1> 

<format item> : : = (format item l> I <alignment mark> I (format item> <alignment 
mark> 

F 

true 
false 

1.2.2 Examples 

4 5Z.5D/// 
3s = ’ 6S4B 
l A J J  
C R  
P 
I ‘ Execution. ’ 1 

1.2.3 Semantics 

1.2.3.1 STRING FORMAT. A string format is used for output of string quantities. Each of the 
S-positions in the format corresponds to a single basic symbol in the string which is 
output. If the string is longer than the number of S’s, the leftmost symbols are 
transferred; if the string is shorter, “ !A ” symbols are effectively added at the right 
of the string. 

1.2.3.2 ALPHA FORMAT. The letter A means that one symbol is to be transmitted; this is the 
same as S-format, except that the ALGOL equivalent of the basic symbol is ofinteger 
type rather than a string. The translation between the external and internal codes 
will vary from one machine to another, hence the results of arithmetic operations 
and relations other than “ = ” and “ # ” will be machine-dependent. 

A programmer may work with these alphabetic quantities in a machine-indepen- 
dent manner by using the transfer function equiv (S) where S is a string consisting 
of one basic symbol; the value of equiv (S) is of integer type, and it is defined to 
have exactly the same value as if the string S had been input using alpha format. 
For example, one may write 

if X = equiv (‘ A ’) then go to PROCESS ALPHA ; 
where the value of X has been input using the format “ A ”. 

1.2.3.3 NONFORMAT. An I,  R or L is used to indicate that the value of a single variable 
of integer, real, or Boolean type, respectively, is to be input or output from or to an 
external medium, using the internal machine representation. If a value of integer 
type is output with R-format or if a value of real type is input with I-format, the 
appropriate transfer function is invoked, i.e. the I or R specifies the format as it 
appears on the external medium. The precise behaviour of this format, and parti- 
cularly its interaction with other formats, is undefined in general. 

1.2.3.4 BOOLEAN FORMAT. When Boolean quantities are input or output, the format P or E; 
must be used. The correspondence is defined as follows: 

Internal to ALGOL 

true 
false 

On input, anything failing to be in the proper form is undefined. 

- 63 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


I S 0  / R 1538 - 1972 (E) 

1.2.3.5 TITLE FORMAT. All formats discussed so far have given a correspondence between a 
single ALGOL real, integer, Boolean, or string quantity and a number of characters 
in the input or output. A format item containing a title format consists entirely of 
insertions and optional alignment marks, and so it does not require a corresponding 
ALGOL quantity. On input, it causes skipping of the characters, and on output it 
causes the emission of the insertion symbols it contains. (If titles are to be input, 
alpha format should be used; see clause 1.2.3.2.) 

1.2.3.6 ALIGNMENT MARKS. The characters “ / ”, “ 4 ”, and “ J ” in a format item indicate 
line, page and character control actions. The precise definition of these actions will 
be given later (see clause 2.5.4.1); they have the following intuitive interpretation : 

(a) “ / ” means: go to next line, in a manner similar to the carriage return operation 
on a typewriter; 

(b) ‘‘ 4 ” means: do a “ / ” operation and then skip to the top of the next page; 

(c) “ J ”  means: skip the character pointer to the next “ tabulation ” position, 
similar to the “ tab ” operation on a typewriter. 

Two or more alignment marks indicate the number of times the operations are to 
be performed; for example, “ // ” on output means that the current line is completed 
and the next line is effectively set to all blanks. Alignment marks at the left of a 
format item cause actions to take place before the regular format operation, and 
alignment marks at the right of a format item cause actions to take place after the 
regular format operations. 

1.2.3.7 “ STANDARD ” FORMAT. There is a format available without specification (see 
clause 2.5.4) which has the following characteristics : 

(a) On input, any number written according to the ALGOL syntax for <number> 
is accepted with the conventional meaning. These are of arbitrary length, and 
they are delimited at the right by the following conventions: 

(I) A letter or character other than a decimal point, sign, digit, or “ ” 

” is a deli- occurring to the right of a decimal point, sign, digit, or “ 
miter. 

(II) A sequence of k blank spaces serves as a delimiter as in (I); a sequence 
of less than k blank spaces is ignored. This number k 2 1 has an imple- 
mentation defined initial value and may be interrogated or modified by a 
suitable call on the procedure sysparam (see clause 2.5.6). 

(III) If the number contains a decimal point, sign, digit, or “ ” on the line 
where the number begins, the right-hand margin of that line serves as a 
delimiter of the number. However, the right-hand margin does not 
serve as a delimiter in the case where the only characters remaining on 
the line are spaces or characters which do not enter into the number. 
In this case the only delimiters for this number are those specified in (I) 
or (II) above. (See clause 2.5.4.2 for further discussion of standard input 
format .) 

(b) On output a number of real type is given in the form of a decimal number 
with an exponent. A number of integer type is given in the form of an 
integer. 

- 64 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

These numbers must be suitable for input under standard format (i.e. fol- 
lowed by not less than k blanks). 

Standard format may be invoked by the format item N,  through the exhaustion 
of the format string, or by specifying an empty format string. 

1.3 Format strings 

The format items mentioned above are combined into format strings according to the rules 
in this clause. 

1.3.1 Syntax 
{format primary> : := <format item} I <replicator) (<format secondary)) I 

<format secondary} : : = <format primary) 1 <format secondary>, <format primary) 
{format string) : : = ‘ <format secondary> ’ I ‘ ’ 

({format secondary>) 

1.3.2 Examp les 
‘ 4  (15ZD),  1 1  ’ 
‘ 4 ’  
‘ SD,,  + D, X (2(20B.8Dl, + D ) ,  10s) ’ 
‘‘ . . . This LI is LI a LJ peculiar U ‘ format string 

1.3.3 Semantics. A format string is a list of format items, which are to be interpreted from 
left to right. The construction: “ <replicator) (<format secondary>) ” denotes “ repli- 
cator ” repetitions of the parenthesized quantity (see clause 1.1.3. I). The construction: 
“ (<format secondary)) ” denotes an infinite repetition of the parenthesized quantity. 
Spaces within a format string, except those which are part of insertion substrings, are 
irrelevant. 

’’ 

1.4 Summary of format codes 

A - basic symbols represented as integers 
B - blank space 
D - digit. 
F - representation of Boolean value in the form true or false 
I - integer untranslated 
J - tab function 
L - Boolean untranslated 
N - standard format 
P - representation of Boolean value in the form I or O 
R - real untranslated 
S - string character 
T - truncation 
V - implied decimal point 
X - variable replicator 
Z - zero suppression 
+ - unconditional sign indicator 
- - positive sign suppression indicator 

- exponent part indicator 
( ) - delimiters of replicated format secondaries 
, - format primary separator 
/ - line alignment 
4 - page alignment 
‘ ’ - string delimiters 
. - decimal point 

- 65 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

2. STANDARD PROCEDURES FOR INPUT AND OUTPUT 

Certain identifiers should be reserved for the standard functions of input and output. In a par- 
ticular representation these procedures may be available without explicit declaration. In either 
case if the identifier is declared in a block head as something different (for example, an array), the 
function it represents will be unavailable throughout that block. 

2.1 General characteristics 

The term CHANNEL is utilized throughout to represent one or more foreign media, or a 
portion of such a medium. It is assumed that the characters on such a channel form a linearly 
ordered set, and that after suitable repositioning, information can be read from the medium 
in the same order it was written. It is further assumed that there need not be a one-to-one 
correspondence between basic symbols which exist in the program, and characters which 
represent them on the medium. For many basic symbols it is expected that a multiplicity of 
characters will be required on particular media. These one-to-many and many-to-one trans- 
formations are assumed to go on " behind the scenes ", and these transformations may be 
different from implementation to implementation, and medium to medium. Indeed, for 
some media this transformation may not be defined for some basic symbols, in which case 
the result of attempting to input or output such a symbol is undefined. The logical behaviour 
of these procedures, however, should be machine independent. 

2.2 Horizontal and vertical control 

This clause deals with the way in which the sequence of basic symbols described by the rules 
of formats in section 1 is mapped onto input and output devices. This is done in a manner 
which is essentially independent of the device being used, in the sense that with these specifi- 
cations the programmer can anticipate how the input or output data will appear on virtually 
any device. Some of the features of this description will, of course, be more appropriately 
used on certain devices than on others. 

The discussion assumes that data is to be output to a printer, then shows the manner in 
which other devices fit into the same general framework. 

The page format is controlled by specifying the horizontal and the vertical lay-out. Horizontal 
lay-out is controlled in essentially the same manner as vertical lay-out, and this symmetry 
between the horizontal and vertical dimensions should be kept in mind for easier under- 
standing of the concepts in this clause. 

- 
8 
9 
- 

:: 
12 
13 
14 
15 

- 

18 

L\ IR IP 
/ 

1 1 1 '  
\ , , , , , , , , / , , , , , , , 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

FIGURE 

d 

- 66 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

Referring to the Figure, the horizontal format is described in terms of three parameters 
(L, R, P), and the vertical format has corresponding parameters (L', R', P'). The parameters 
L, L' and R, R' indicate left, top, right and bottom margins, respectively. The Figure shows a 
case where L = L' = 4 and R = R' = 12. Only positions L through R of a horizontal line 
are used, and only lines L' through R' of the page are used; it is required that I < L < R 
and I < L' < R'. The parameter P is the number of characters per line, and P' is the number 
of lines per page. Although L, R, L' and R' are chosen by the programmer, the values of P 
and P' are characteristics of the device and they are usually out of the programmer's control. 
For those devices on which P and P' can vary (for example, some printers have two settings, 
one on which there are 66 lines per page, and another on which there are 88),  the values are 
specified to the system by a suitable call on the procedure sysparam (see clause 2.5.6). For 
certain devices, values of P or P' might be essentially infinite. 

Although the Figure shows a case where P 3 R and P' 2 R', it is of course quite possible 
that P < R or P' < R' (or both) might occur, since P and P' are in general unknown to the 
programmer. In such cases, the algorithm described in clause 2.5.4 is used to break up 
logical lines which are too wide to fit on a physical line, and to break up logical pages which 
are too large to fit a physical page. On the other hand, the conditions L < P and L' < P' 
are insured by setting L or L' equal to I automatically if they happen to be greater than P 
or P', respectively. 

Characters determined by the output values are put onto a horizontal line; there are three 
conditions which cause a transfer to the next line: 

(a) normal line alignment, specified by a " / " in the format; 

(b) R-overflow, which occurs when a group of characters is to be transmitted, or a tabula- 
tion is specified, which would pass position R, and 

(c) P-overflow, which occurs when a group of characters is to be transmitted, or a tabulation 
is specified, which would not cause R-overflow but would pass position P. 

When any of these things occurs, control is transferred to a procedure specified by the 
programmer in case special action is desired (for example, a change of margins in case of 
overflow; see clause 2.3.3). 

Similarly, there are three conditions which cause a transfer to the next page : 

(a') normal page alignment, specified by a " 4 " in the format; 

(6') RI-overflow, which occurs when a group of characters is to be transmitted which would 

(c') I"-overflow, which occurs when a group of characters is to be transmitted which would 
appear on line P' + I < R' + 1. The programmer may indicate special procedures 
to be executed at  this time if he wishes, for example, to insert a page heading, etc. 

appear on line R + I ;  and 

Tabulation is controlled by a " J" in the format. This causes the character pointer to be 
advanced to the next " TAB " position, with intermediate positions being filled with blanks. 
The tabulation spacing for the medium may be specified external to the ALGOL system, or 
through a suitable call on tabulation (see clause 2.3.4). 

If the tabulation spacing is N,  then the first character positions of tabulation fields would be: 
L, L + N,  L + 2N, ..., L + KN where L + KN < min (P, R) 

Further details concerning pages and lines will be given later. Now consideration will be 
given to how devices other than printers can be thought of in terms of the ideas above. 

- 67 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

A typewriter is very much like a printer, and it requires no further comment. 

Punched cards with, for example, 80 columns have P = 80 and P' = DO. Vertical control 
would appear to have little meaning for punched cards, although an implementation might 
choose to interpret " 4 " to mean the insertion of a coded or blank card. 

With paper tape again, vertical control has little or no meaning; in this case, P could be the 
number of characters read or written at a time. 

On magnetic tape capable of writing arbitrarily long blocks, P = P' = m.  Each page might 
be thought of as being a " record ", i.e., an amount of contiguous information on the tape 
which is read or written at once. The lines are subdivisions of a record, and R' lines form a 
record; R characters are in each line. In this way, so-called " blocking of records " can be 
specified. Other interpretations might be more appropriate for magnetic tapes at certain 
installations, for example, a format which would correspond exactly to printer format for 
future off-line listing, etc. 

These examples are given to indicate how the concepts described above for printers can be 
applied to other devices. Each implementation will decide on appropriate methods for 
particular devices, and if there are choices to be made they can be given by the programmer 
by some means. The manner in which this is done is of no concern to this Recommendation. 

2.3 Lay-out procedures 

Whenever input or output is done, certain '' standard " operations are assumed to take 
place, unless otherwise specified by the programmer. Therefore one of the parameters of the 
input or output procedure is a " lay-out " procedure, which specifies all of the non 
standard operations desired. This is achieved by using any or all of the seven " descriptive 
procedures "format, h end, v end, h lim, v lim, tabulation, or no data described in this clause. 

The precise action of these procedures can be described in terms of the fictitious concept of 
seven " hidden variables ", H1, H2, H3, H4, H5, H6, and H7. The effect of each descriptive 
procedure is to set one of these variables to a certain value; and that may be regarded as the 
total effect of a descriptive procedure. The programmer normally has no access to these 
hidden variables other than particular calls on sysparam. The hidden variables have a scope 
which is local to inlist and to outlist. 

2.3.1 Format procedures. The descriptive procedure call: 

format (STRING) 

has the effect of setting the hidden variable H1 to indicate the string parameter. This 
parameter may be either a string explicitly written or a formal parameter; but in any 
event, the string it refers to must be a format string which satisfies the syntax of clause 
1.3, and it must have no " X "  replicators. 

The procedure format is just one of a class of ten procedures which have the names 
format n ( n  = O ,  1, ..., 9 ) .  The name format is equivalent to format O. In general, the 
procedure format n is used with format strings which have exactly n X-replicators. 
The call is 

format n (STRING, X I ,  X,, . . . , X,,) 

where each Xi is an integer parameter called by value. The effect is to replace each X 
of the format string by one of the Xi ,  with the correspondence defined from left to right. 
Each Xi must be non-negative. 

4 

- 68 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

For example, 

is equivalent to 
format 2 ('XB.XD,, + DD', 5, I O )  

format ('5B.IODI0 + DO') 

2.3.2 Limits. The descriptive procedure call 
h lim (L, R )  

has the effect of setting the hidden variable H2 to indicate the two parameters L and R. 
Similarly, 

v lim (L', R') 

sets H3 to indicate L' and R'. These parameters have the significance described in 
section 2.2. If h lirn and v lim are not used, L = L' = 1 and R = R' = 00. If L > P, 
the value I is substituted for L;  similarly, if L' > P', the value I is substituted for L'. 

2.3.3 End control. The descriptive procedure calls: 

h end (PN, P R ,  PPI;  

have the effect of setting the hidden variables H4 and H5, respectively, to indicate their 
parameters. The parameters PN, P,, Pp, PNf, PRt, Pp., are names of procedures (ordi- 
narily dummy procedures if h end and v end are not specified) which are activated in 
case of normal line alignment, R-overflow, P-overflow, normal page alignment, R'-over- 
flow, and P'-overflow, respectively. 

2.3.4 Tabulation. The descriptive procedure call : 

v end (P", PRr,  Pp.); 

tabulation ( N )  

has the effect of setting the hidden variable H6 to indicate the parameter N .  Here N is 
the width of the tabulation field, measured in number of characters of the foreign 
medium. (See clause 2.5.4.1, process C.)  If tabulation is not called then the tabulation 
field width is 1. 

2.3.5 End of data. The descriptive procedure call: 
no data ( L )  

has the effect of setting the hidden variable H7 to indicate the parameter L. Here L is a 
label. End of data as defined here has meaning only on input, and it does not refer to 
any specific hardware features; it occurs when data is requested for input but no more 
data remains on the corresponding input medium. At this point, a transfer to the 
statement labelled L will occur. If the procedure no data is not used, transfer will occur 
to a " label " which has effectively been inserted just before the final end in the ALGOL 
program, thus terminating the program*. 

2.3.6 Examples 
A lay-out procedure might look as follows: 
procedure LA YO UT ; 
begin format ( '/'); 

i f  B then 

h lim (if B then I else 10, 30) 
begin format 1 (' XB ', Y + 10) ; no data (L32)  end; 

end 

Note that lay-out procedures never have parameters ; this procedure, for example, 
refers to three global quantities, B, Y and L32. Suppose Y has the value 3, then this 
lay-out accomplishes the following: 

* In this case, an implementation might provide an appropriate error comment. 

- 69 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538- 1972 (E) 

Hidden variable 
H1 
H2 
H3 
H4 
H5 
H6 
H7 

Procedure 
format 
h lirn 
v lirn 
h end 
v end 
tabulation 
no data 

I f B  = 
false 
‘I’ 
(10, 30) 
(1, 9 
( Y  Y )  

( 9  9 )  

I 
end of program 

As a more useful example, a procedure LAYOUT can be written so that the horizontal 
margins ( I I ,  110) are used on the page, except that if P-overflow or R-overflow occurs 
the margins (16, 105) are to be used for overflow lines. 

procedure LAYOUT; 
begin format 1 (< 4, (X(BB-ZZZZ.DD),/ I) ’, N )  ; 

end : 
procedure K ;  h lirn (II, 110); 
procedure L ;  h lirn (16, 105); 

h lirn ( I I ,  110) ; h end (K, L, L )  

This causes the limits (16, 105) to be set whenever overflow occurs, and the “ I ” in 
the format will reinstate the original margins when it causes procedure K to be called. 
(If the programmer wishes a more elaborate treatment of the overflow case, depending 
on the value of P, he may do this using the procedure of clause 2.5.6.) 

2.4 List procedures 

2.4.1 General characteristics. The purpose of a list procedure is to describe a sequence of 
items which is to be transmitted for input or output. A procedure is written in which 
the name of each item V is written as the argument of a procedure, say ITEM, thus: 
ITEM (V). When the list procedure is called by an input-output system procedure, 
another procedure (such as the internal system procedure outitem) will be “ substituted ” 
for ITEM, V will be called by name, and the value of V will be transmitted for 
input or output. The standard sequencing of ALGOL statements in the body of the 
list procedure determines the sequence of items in the list. 

A simple form of list procedure might be written as follows: 

procedure LIST (ITEM) ; 
begin ITEM ( A )  ; ITEM (B) ; ITEM (C) 
end; 

which says that the values of A, B and C are to be transmitted. A more typical list 
procedure might be: 

procedure PAIRS (ELT)  ; 
for I := step 1 until N do 

begin ELT ( A [ I ] )  ; ELT (B[I]) end; 

This procedure says that the values of the list of items A [ I ] ,  B[I], 421, B[2], ..., AIN], 
B[N]  are to be transmitted, in that order. Note that if N < O no items are transmitted 
at all. 

- 70 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972:(E) 

The parameter of the “ item ” procedure (i.e. the parameter of ITEM or ELT in the 
above examples) is called by name. It may be an arithmetic expression, a Boolean 
expression, or a string, in accordance with the format which will be associated with the 
item. Any of the ordinary features of ALGOL may be used in a list procedure, so there 
is great flexibility. 

A list procedure is executed step by step with the input or output procedure, with control 
transferring back and forth. This is accomplished by special system procedures such as 
initem and outitem which are “ interlaced ” with the list procedure, as described in 
clause 2.5.4. The list procedure is called with initem (or outitem) as actual parameter, 
and whenever this procedure is called within the list procedure, the actual input or 
output is taking place. Through the interlacing, special format control, including the 
important device-independent overflow procedures, can take place during the trans- 
mission process. Note that a list procedure may change the hidden variables by calling a 
descriptive procedure ; this can be a valuable characteristic, for example, when changing 
the format, based on the value of the first item which is input. 

2.5 Input-output calls 

Here procedures are described which cause the actual transmission of information between a 
foreign medium and the variables of the program. 

2.5.1 Symbol transmission. The procedure calls : 

insymbol (CHANNEL, STRING, DESTINATION) 
outsymbol (CHANNEL, STRING, SO URCE) 

where CHANNEL and SOURCE must be arithmetic expressions called by value, 
STRING is a string, and DESTINATION is an integer variable called by name, provide 
the means of communicating between foreign media and the variables of the program 
in terms of single basic symbols or any additional symbols. In either procedure the 
correspondence between the basic symbols and the values of variables in the program 
is established by mapping the sequence of the basic symbols given in the string supplied 
as the second parameter, taken in the order from left to right, into the positive integers 
I ,  2, 3, .... Using this correspondence the procedure insymbol will assign to an integer 
type variable given as the third parameter the value corresponding to the next basic 
symbol appearing on the foreign medium. If this next basic symbol does not appear in 
the string given as the second parameter, the number O will be assigned. If the next 
symbol appearing in the input is not a basic symbol of ALGOL 60, a negative integer, 
corresponding to the symbol, will be assigned. 

Similarly the procedure outsymbol will transfer the basic symbol corresponding to the 
value of the third parameter to the foreign medium. If the value of the third parameter 
is negative a symbol corresponding to this value will be transferred. It is understood 
that where the foreign medium may be used both for insymbol and outsymbol, the 
negative integer values associated with each additional symbol will be the same for the 
two procedures. More generally, if additional symbols are used the corresponding 
values must be given as accompanying information with the program. 

2.5.2 Transmission of real type. Transmission of information of real type between variables 
of the program and a foreign medium may be accomplished by the procedure calls: 

inreal (CHANNEL, DESTINATION) 
outreal (CHANNEL, SO URCE) 

- 71 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

where CHANNEL and SOURCE are arithmetic expressions and DESTINATION is a 
variable of real type. 

The two procedures inreal and outreal form a pair. The procedure inreal will assign the 
next value appearing on the foreign medium to the real type variable given as the second 
parameter. Similarly, procedure outreal will transfer the value of the second actual 
parameter to the foreign medium. 

The representation of values on the foreign media will not be further described, except 
that it is understood that in so far as a medium can be used for both input and output 
a value which has been transferred to a given medium with the aid of a call of outreal 
will be represented in such a way that the same value, in the sense of numerical analysis 
(see Part I A, clause 3.3.6), may be transferred back to a variable by means of procedure 
inreal, provided that an appropriate manipulation of the foreign medium has also been 
performed. 

2.5.3 Transrriission of arrays. Arrays may be transferred from and to a foreign medium by 
means of the procedure calls: 

inarray (CHANNEL, DESTINATION) 
outarray (CHANNEL, SOURCE) 

where CHANNEL must be an arithmetic expression and DESTINATION and SOURCE 
are arrays of real type. 

Procedures inarray and outarray also form a pair; they transfer the ordered set of 
numbers forming the value of the array given as the second parameter, the array bounds 
being defined by the corresponding array declaration rather than by additional para- 
meters (the mechanism for doing that is already available in ALGOL 60 for the value 
call of arrays). 

The order in which the elements of the array are transferred corresponds to the lexico- 
graphic order of the values of the subscripts, i.e. 

a [kl, k2, ..., k,] precedes 

ki = ji 
and k, < j, ( I  < p < m) 
a [ j l ,  j,, ..., j,] provided (1) 

( i  = I ,  2, ..., p - I) 

It should be recognized that the possibly multidimensional structure of the array is not 
reflected in the corresponding numbers on the foreign medium where they appear only 
as a linear sequence as defined by (1). 

The representation of the numbers on the foreign medium conforms to the same rules 
as given for inreal and outreal; in fact it is possible, for example, to input numbers by 
inreal which before have been output by outarray. 

2.5.4 Formatted input-output calls. A set of procedures exists to accomplish formatted input 
or output as specified by a format string (see section 1). The detailed behaviour of these 
procedures is described below. 

2.5.4.1 OUTPUT. An output process is initiated by the call: 

outlist (CHANNEL, LA YO UT, LIST) 

Here CHANNEL is an integer parameter called by value, which is the number 
associated with a foreign medium. The parameter LAYOUT is the name of a 
lay-out procedure (clause 2.3), and LIST is the name of a list procedure (clause 2.4). 

- 12 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


There is also another class of procedures, named output n, for n = O, I ,  2, ..., 9, 
which is used for output as follows: 

output n (CHANNEL, FORMAT STRING, E,, E,, ..., E,,) 

Each of these latter procedures can be defined in terms of outlist as follows : 

procedure output n (CHANNEL, FORMAT STRING, E,, E,, ..., E,,);  
begin procedure A ;  format (FORMAT STRING) ; 

procedure B ( P ) ;  
begin P(E, )  ; P(E,)  ; ... ; P(E,,) end; 
outlist (CHANNEL, A ,  B )  

end; 

In the following rules it is therefore assumed that outlist has been called. 

Let the variables p and p' indicate the current position in the output for the channel 
under consideration, i.e. lines I ,  2, ..., p' of the current page have been completed, 
as well as character positions I ,  2, ..., p of the current line (i.e. of line p' + I ) .  At the 
beginning of the program, p = p' = O. The symbols P and P' denote the line size 
and page size (see clause 2.2). Output takes place according to the following algo- 
rithm: 

Step 1 (Initialization) 

The hidden variables are set to standard values: 

H I is set to the " standard" format ' '. 
H 2 is set so that L = I ,  R = 2. 

H 3 is set so that L' = I ,  R' = x .  

H 4 is set so that PN,  P,, P p  are all effectively equal to the DUMMY procedure 
defined as follows: 

" procedure D U M M Y ;  ; ". 
H5 is set so that PNr ,  PR., P p  are all effectively equal to DUMMY.  
H 6 is set so that TAB = I .  

Step 2 (Lay-out) 

The lay-out procedure is called; this may change some of the variables HI, H2, H3, 
H4, H5, H6. Set T to false. (Tis a Boolean variable used to control the sequencing 
of data with respect to title formats; when T i s  true a value which has been trans- 
mitted to the procedure has not yet been output.) 

Step 3 (Communication with list procedure) 

The next format item of the format string is examined. (After the format string is 
exhausted, " standard " format, clause 1.2.3.7, is used from then on until the end 
of the procedure.) 

If the next format item is a title format, i.e. requires no data item, proceed directly 
to step 4. If Tis true proceed to step 4. Otherwise, the list procedure is activated; 
this is done the first time by calling the list procedure, using as actual parameter a 
procedure named outitem; this is done on all subsequent times by returning from 
the procedure outitem, which will cause the list procedure to be continued from the 
latest ouritem call. (The identifier outitem has scope local to outlist, so a programmer 
may not call this procedure directly.) 

After the list procedure has been activated in this way, it will either terminate or 
call the procedure outitem. In the former case, the output process is completed; 

- 73 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

in the latter case, T i s  set to true and any assignments to hidden variables that the 
list procedure may have invoked will cause adjustment to the variables H1, H2, 
H3, H4, H5, H6. Continue at step 4. 

Step 4 (Alignment marks) 

If the next format item includes alignment marks at its left, remove it from the 
format string and execute process A for each “ I ”, process B for each “ 4 ”, and 
process C for each “ J ” .  Note that overflow procedures may cause the format 
strings to be changed. In such cases, the new format string is not examined before 
step 6. 

Step 5 (Get within margins) 

Execute process G to ensure proper page and line alignment. 

Step 6 (Formatting the output) 

Take the next item from the format string. (In unusual cases, the list procedure or 
an overflow procedure may have called the descriptive procedure format, thereby 
changing the format string. In such cases, the new format string is examined from 
the beginning; it is conceivable that the format items examined in steps 3, 4 and 6 
might all be different. At this point the current format item is effectively removed 
from the format string and copied elsewhere. The format string itself, possibly 
changed by further calls of format, will not be interrogated until the next occurrence 
of step 3.) 

Alignment marks at  the left of the format item are ignored. If the format item is 
not composed only of alignment marks and insertions, the value of T i s  examined. 

If T i s  false, undefined action takes place. (A nontitle format was substituted for a 
title format in an overflow procedure, and this is not allowed.) Otherwise, the output 
item is evaluated and T is set to false. Now the rules of format are applied and 
the characters X I ,  X ,  ... X, which represent the formatted output on the external 
medium are determined. (Note that the number of characters, s, may depend on 
the value being output using “ A ” or “ S ” format, as well as on the output medium.) 

Step 7 (Check for overflow) 

If p + s < R and p + s < P, where s is the size of the item as determined in step 6, 
the item will fit on this line, so continue at  step 9. Otherwise, if the present item 
uses “ A ” format, output a special symbol, which is recognizably not a basic 
symbol; this is done to ensure that input will be inverse to output. Go to step 8. 

Step 8 (Processing of overflow) 

Perform process H ( p  + s). Then if p + J < R and p + s < P, go to step 9; other- 
wise let k = min (R, P) - p. Output X ,  X ,  ... X,, set p = min (R, P), and then 
let X ,  X, ... XS-k = X,,, Xk+,  ... X,. Decrease s by k and repeat step 8. 

Step 9 (Finish the item) 

Output X ,  X ,  ... X,, and increase p by s. Any alignment marks at the right of the 
format item now cause activation of process A for each “ / ”, process B for each 
“ 4 ”, and process C for each “ J ”. Return to step 3. 

- 74 - 

Y’ 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5


IS0 / R 1538 - 1972 (E) 

Process A (" 1 " operation) 

Check page alignment with process F, then execute process D and call pro- 
cedure PN. 

Process B (" 4 " operation) 
If p > O, execute process D, call procedure PN. Then execute process E and 
call procedure PN. 

Process C (" J " operation) 

Check page and line alignment with process G. Then let k = ( ( p - L + I )  + 
TAB + I )  x TAB + L - I (the next " tab " setting for p ) ,  where TAB is the 
" tab " spacing for this channel. If k 2 min (R,  P ) ,  perform process H ( k )  ; 
otherwise effectively insert blanks until p = k. 

Process D (New line) 
Skip the output medium to the next " line "' set p = O, and set p' = p' + 1. 

Process E (New page) 

Skip the output medium to the next " page ", and set p' = O. 

Process F (Page alignment) 
If p' + I < L' execute process D until p' = L' - I .  If p' + I > R' execute 
process E, call PRr7 and repeat process F. If p' + I > P' execute process E, 
call Pp., and repeat process F. This process must terminate because I < L' 
< R' and I < L' < P'. 

Process G (Page and line alignment) 
Execute process F. Then, if p + I < L,  effectively output blank spaces until 
p + I = L. If p + 1 > R or p + 1 > P, perform process H ( p  + I ) .  This 
process must terminate because I < L < R and 1 < L < P. 

Process H ( k )  (Line overflow) 

Perform process D. If k > R, call P,; otherwise call Pp.  Then perform pro- 
cess G to ensure page and line alignment. 
NoTE.-Upon return from any of the overflow procedures, any assignments to  hidden 
variables that have been made by calls on descriptive procedures will cause adjustment to the 
corresponding variables HI, H2, H3, H4, H5, H6. 

2.5.4.2 INPUT. The input process is initiated by the call: 
inlist (CHANNEL, LA YOUT, LIST) 

The parameters have the same significance as they did in the case of output, except 
that CHANNEL is in this case the number of an input medium. There is a class 
of procedure input n which stand for a call with a particularly simple type of lay- 
out and list, just as discussed in clause 2.5.4.1 for the case of output. In the case of 
input, the parameters of the " item " procedure within the list must be variables. 

The various steps which take place during the execution of inlist are very much 
the same as those in the case of outlist, with obvious changes. Instead of transferring 
characters of title format, the characters are ignored on input. If the data is impro- 
per, some standard error procedure is used (see clause 1.1.3.8). 

The detailed algorithm for inlist is as follows: 

- 75 - 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/R

 15
38

:19
72

https://standardsiso.com/api/?name=5e3eab93d0c15ef1458a81284bcf1cc5

