TECHNICAL ISO/IECTR
REPORT 24772-2

First edition
2020-04

Programming languages —— Guidance
to avoiding vulnerabilities in
programming languages —

Part 2:
Ada

Langages de programmation — Conduite pour éviter les
vulnérabilités dans.les langages de programmation —

Partie 2: Ada

Reference number
ISO/IEC TR 24772-2:2020(E)

© ISO/IEC 2020

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

- 5 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or [SO’s member body in the country of the requester.

ISO copyright office

CP 401 ¢ Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

Contents Page
FOT@WOTT ... vii
IIETOUICEIONN ... viii
1 Scope
2 Normative references
3 Terms and definitions
4 Language concepts
4.1
4.2
4.3
4.4 Implementation defined
4.5 Type conversions
4.6 Operational and Representation AttriDULES ... S| 7
4.7 USET defiNed EFPES oo e e et
4.8 Pragma compiler directives..
4.8.1 pPragmaAtomic
4.8.2 PragmaAtomic Components
4.8.3 Pragma Convention ...,
4.8.4 Pragma Detect Blocking ...
4.8.5 Pragma DisScCard NAMES . g s sessssssnssssssssssenes
4.8.6 Pragma EXPOT T o Yo
4.8.7 Pragma Import.. e S
488 PragmaNormalize Scalars
4.8.9 Pragma Pack.......
4.8.10 PragmaRestrictions
4.8.11 Pragma SUPPIESS . m i
4.8.12 Pragma UnCheCKedo UL OM w i eisiiieiisestisssessseiss oo
4.8.13 Pragma VOLatiLé Y uimssmsssssessessssssssssssssssssssssesssssssssssssssssssoosesseeee 8
4.8.14 Pragmavolatile Components
49 Separate COMPILALION.
410 SEOTAZE POOL ..o St
411 UnNSAfe PrOZTAININIIIG ..o oo
5 General GUIAANCE FOT A ...
5.1 Ada langwage design
5.2 ToP-aveidance MECRANISIIIS ... 10
6 Specifi¢-guidance for Ada
6.1 General.....coonn
6.2 Type system [THN] ..o
6.2.1 Applicability to language
6.2.2 Guidance to lanGUAZE USEI'S. ... e 11
6.3 Bit representation [STR]
6.3.1 Applicability to language
6.3.2 Guidance to language users
6.4 Floating-point arithmetic [PLET ...
6.4.1 Applicability to language............cccoccce...
6.4.2 Guidance to language users
6.5 Enumerator iSSUES [CCB ...
6.5.1 Applicability t0 lanGUAZE ...
6.5.2 Guidance to language users
6.6 CONVETSION EITOTS [FLCT i
6.6.1 Applicability t0 lanGUAZE ...
6.6.2 Guidance to language users
6.7 String termination [CM] ..ot

© ISO/IEC 2020 - All rights reserved iii

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.8 Buffer boundary violation (buffer overflow) [HCB] ..
6.9 Unchecked array indexing [XYZ] ...
6.9.1 Applicability to language.......
6.9.2 GUIdance tO JaNGUAZE USEI'S. ...
6.10 Unchecked array COPYING [XY W] ..ottt
6.11 Pointer type conversions [HFC]
6.11.1 Applicability to language
6.11.2 GUIdanCe t0 [aNGUAZE USEIS ...
612 Pginter arithmetic [PV(‘.]
6.13 Null pointer dereference [XYH] . ..o
6.13.1 Applicability to the [angUAGE. ...
6.13.2 Guidance to langUAae USEI'S. ...ttt
6.14 Dangling reference to heap [XYK]
6.14.1 Applicability to language ... e Moo
6.14.2 Guidance to [angUaZE USETS. ... e
6.15 Arithmetic wrap-around error [FIF] ...
6.16 Using shift operations for multiplication and division [PIK]
6.17 Choice of clear namMes [INAI]. ...
6.17.1 Applicability to language...........
6.17.2 Guidance to language users
6.18 Dead StOre [WXQ] . eeeerereeiseesieeseesiessinesesssesseessosesiessieeesoeesoe f et v
6.18.1 Applicability t0 langUAGE ... N T
6.18.2 Guidance to language users
6.19 Unused variable [YZS] ..
6.19.1 Applicability to language.......
6.19.2 Guidance to language users
6.20 Identifier name reuse [YOW]. ...
6.20.1 Applicability to languUae ...l
6.20.2 Guidance to langUAZE USEIS. ... et
6.21 Namespace issues [B]L]
6.22 Initialization Of Variables [LAV] . ..o e
6.22.1 Applicability t0 langGUAZE).........ccciiroiriiiicetsss s
6.22.2 Guidance to language users.............c.....
6.23 Operator precedence/order-of evaluation [JCW]....
6.23.1 Applicability to\lahguage ...,
6.23.2 Guidance todanguage users..............
6.24 Side-effects and order of evaluation [SAM]..
6.24.1 Applicadbility t0 langGUAZE ...
6.24.2 Guidance to language users
6.25 Likely incgrrect expression [KOA].............
6.25.1 _‘Applicability to language..........
6.25Z\,/Guidance to language users
6.26 Deadand deactivated code [XYQ].............
6.26.1 Applicability to language.........
6.26.2 Guidance to language users
627" Switch statements and static analysis [CLL] ..o,
6.27.1 Applicability to language
6.27.2 Guidance to language users
6.28 Demarcation of control flOW [EOJ] ..o
6.29 Loop control variables [TEX]
6.30 Off-by-one error [XZH] ..o
6.30.1 Applicability t0 langGUAGE ...
6.30.2 GuIidance tO JaNGUAZE USEI'S. ...t
6.31 Unstructured programming [EWD]
6.31.1 Applicability t0 lanGUAZE ...
6.31.2 GUIdANCe £0 [aNGUAZE USEI'S. ..o
6.32 Passing parameters and return values [CS]]
6.32.1 Applicability t0 langGUAGE ...

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

6.33

6.34

6.35

ISO/IEC TR 24772-2:2020(E)

6.32.2 Guidance to language users..................
Dangling references to stack frames [DCM]
6.33.1 Applicability to language...........cccccocccee.

6.33.2 GUIdance tO laNGUAZE USEI'S. ... oo
Subprogram signature mismatch [OTR] ...
6.34.1 Applicability to language
6.34.2 Guidance to language users
RECUISTON [GDLL] e

6351 Aupnlicabilitvyto language
rr J O o

6.36

6.37

6.38

6.39

6.40
6.41

6.42

6.43

6.44

6.45
6.46

6.47

6.48
6.49

6.50

6.35.2 Guidance to langUAZE USEI'S.........iisiessssssss sy
Ignored error status and unhandled exceptions [OYB] ... N Mo o 25
6.36.1 Applicability to langUaGe ... e
6.36.2 Guidance to language users

Type-breaking reinterpretation of data [AMV]......ccccsnss b e 25
6.37.1 Applicability t0 [anGUAGE ... B N
6.37.2 Guidance to language users................

Deep vs. shallow copying [YAN] ...

6.38.1 Applicability to language.........cc.........

6.38.2 Guidance to language users...................

Memory leak and heap fragmentation [XYL]

6.39.1 Applicability t0 [anGUAZE ... et
6.39.2 Guidance to language users

Templates and generics [SYM] ...

Inheritance [RIP] ...

6.41.1 Applicability to language............

6.41.2 Guidance to language users

Violations of the Liskov substitution principle or the contract model [BLP]cccccc...f...c.
6.42.1 Applicability to 1language| 28
6.42.2 Guidance to [anGUAZE USEIS. ...ttt s 28
Redispatching [PPH]

6.43.1 Applicability t0 lan@UAZE ...
6.43.2 Guidance to lanGUAZE USEIS. ...t
Polymorphic variables [BKK] ...

6.44.1 Applicabilityto language............cc......

6.44.2 Guidance.fo language users.................

Extra intrinsies [LRM].......ccocoe

Argument/passing to library functions [TR]

6.46.1 (APPlicability t0 [aNGUAZE ...
6.46.27 GUuIidance t0 [aNGUAZE USEIS......cco et
Intérslanguage calling [D]S] ...

647.1 Applicability to language...........ccc.....

6.47.2 Guidance to language USers.............n

Dynamically-linked code and self-modifying code [NYY].

Library signature [NSQ] ...

6.49.1 Applicability t0 [anGUAZE ...
6.49.2 Guidance to lanGUAZE USEIS. ...
Unanticipated exceptions from library routines [HJW]..

6.51
6.52

6.53

6.54

6.50.1 Applicability to language

6.50.2 GUIdaNnCe t0 [aNGUAZE USEI'S ...t
Pre-processor directives [NMP] ...

Suppression of language-defined run-time checking [MXB]

6.52.1 Applicability t0 LaNGUAZE. ..o
6.52.2 Guidance t0 [aNGUAZE USEI'S.ottt
Provision of inherently unsafe operations [SKL] .

6.53.1 Applicability t0 LANGUAZE. ...
6.53.2 GUIdANCE t0 JaNGUAZE USEI'Sccccvvriirriieieeiee et
Obscure language features [BRS] ..o

6.54.1 Applicability to language

© ISO/IEC 2020 - All rights reserved v

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.54.2 Guidance to language users

6.55 Unspecified behaviour [BQF] ..o
6.55.1 Applicability to language.........
6.55.2 Guidance to language users
6.56 Undefined behaviour [EWF]. ...
6.56.1 Applicability to language...........
6.56.2 Guidance to language users
6.57 Implementation-defined behaviour [FAB] ... 34
6571 App]ir‘ahi]ify to Iangnqu
6.57.2 GuIidance tO JaNGUAZE USEI'S. ...t st
6.58 Deprecated language features [MEM]
6.58.1 Applicability t0 langGUAZE ...
6.58.2 Guidance to language users
6.59 Concurrency — Activation [CGA].......ccc....
6.59.1 Applicability to language.........
6.59.2 Guidance to language users
6.60 Concurrency — Directed termination [CGT] ... ST,
6.60.1 Applicability to language ...
6.60.2 Guidance to language users
6.61 Concurrent data access [CGX] ..o
6.61.1 Applicability to language........
6.61.2 Guidance to language users
6.62 Concurrency — Premature termination [CGS]
6.62.1 Applicability to language.........
6.62.2 Guidance to language users.......
6.63 Protocol lock errors [CGM].......cociinn
6.63.1 Applicability to language............
6.63.2 Guidance to language users..
6.64 Reliance on external format strings [SHL] ...
7 Language-specific vulnerabilities for Ad@;.. ... 37
8 Implications for standardization
BIDLIAGTAPIY ..o e
TIUA@X] ... e
vi © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out

through ISO technical committees. Each member body interested in a subject for which a tec

hnical

committee has been established has the right to be represented on that committee. International

organizations, governmental and non-governmental, in liaison with ISO, also take part in the

work.

ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of

electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenan
described in the ISO/IEC Directives, Part 1. In particular, the different approval criterianeéded f

ce are
or the

different types of ISO documents should be noted. This document was drafted in accordance with the

editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document/may be the sub
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Det
any patent rights identified during the development of the document willhe in the Introduction ¢
on the ISO list of patent declarations received (see www.iso.org/patents),

Any trade name used in this document is information given for the.¢onvenience of users and do
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific term
expressions related to conformity assessment, as wellyas information about ISO's adherence
World Trade Organization (WTQ) principles in the Teghnical Barriers to Trade (TBT), see www.is
iso/foreword.html.

This document was prepared by Joint Techni¢al Committee ISO/IEC JTC 1, Information techr
Subcommittee SC 22, Programming languagesytheir environments and system software interfaces.

This first edition cancels and replaces ISQ/IEC TR 24772:2013, which has been split into several

This document is intended to be used with ISO/IEC TR 24772-1, which discusses programming lan
vulnerabilities in a language independent fashion.

Alist of all parts in the ISO/IEC 24772 series can be found on the ISO website.

Any feedback or questiehs/on this document should be directed to the user’s national standards b
complete listing of these’'bodies can be found at www.iso.org/members.html.

ject of
Qils of
nd/or

es not

s and
to the

D.Org/

ology,

arts.

guage

ody. A

© ISO/IEC 2020 - All rights reserved

vii

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/1

EC TR 24772-2:2020(E)

Introduction

This document provides guidance for the programming language Ada so that application developers
considering Ada or using Ada can better avoid the programming constructs that lead to vulnerabilities
in software written in the Ada language and their attendant consequences. This guidance can also
be used by developers to select source code evaluation tools that can discover and eliminate some
constructs that can lead to vulnerabilities in their software. This document can also be used in
comparison with companion documents and with the language-independent ISO/IEC TR 24772-1,

to seld
problg

bct a programming language that provides the appropriate level of confidence that anticipated
ms can be avoided.

It shotild be noted that this document is inherently incomplete. It is not possible to provide a complete

list of
Any s

programming language vulnerabilities because new weaknesses are discovered gontinually.
ich report can only describe those that have been found, characterized and determined to have

sufficlent probability and consequence.

viii

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

TECHNICAL REPORT ISO/IEC TR 24772-2:2020(E)

Programming languages — Guidance to avoiding
vulnerabilities in programming languages —

Part 2:

Ada

1 Scope

This document specifies software programming language vulnerabilities te_‘be avoided i
development of systems where assured behaviour is required for security, saféty, mission-critic
business-critical software. In general, this document is applicable to the software developed, rev
or maintained for any application.

Vulnerabilities described in this document present the way that\tHe vulnerability descril
ISO/IEC TR 24772-1 are manifested in Ada.
2 Normative references

The following documents are referred to in the text i’ such a way that some or all of their ¢
constitutes requirements of this document. For dated references, only the edition cited applig

n the
al and
iewed

ed in

bntent
s. For

undated references, the latest edition of the referericed document (including any amendments) applies.

ISO/IEC 2382, Information technology — Vocabulary
ISO/IEC 8652, Information technology — Rrégramming languages — Ada

ISO/IEC TR 24772-1, Programming languages — Guidance to avoiding vulnerabilities in prograf
languages — Part 1: Language-indepéndent guidance

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO/IEC
ISO/IEC TR 24772-1 and the following apply.

ISO and [EC maintain terminological databases for use in standardization at the following addres

— SO Online browsing platform: available at https://www.iso.org/obp

— [EGElectropedia: available at http://www.electropedia.org/

31

nming

8652,

Ses:

abnormal representation

representation of an object that is incomplete or that does not represent any valid value
object’s subtype

3.2
access-to-object
pointer to an object

3.3
access-to-subprogram
pointer to a subprogram (function or procedure)

© ISO/IEC 2020 - All rights reserved

of the

https://www.iso.org/obp/ui
http://www.electropedia.org/
https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/1

3.4

ECTR 24772-2:2020(E)

access type
type for objects that designate (point to) objects or subprograms

Note 1

3.5

to entry: This is often called a pointer (3.38) type in other languages.

access value
value of an access type (3.4) that is either null or designates another object or subprogram

3.6
allocd
consti

3.7
asped
mecha3
opera

3.8

atomic

chara
entity

39

tor
uct that allocates storage from the heap or from a storage pool (3.45)

t specification
nism used to specify assertions about the behaviour of subprograms, types and objects as well as
fional and representational attributes (3.9) of various kinds of entities

"teristic of an object that guarantees that every access to an object.is an indivisible access to the
in memory instead of possibly partial, repeated manipulation of alocal or register copy

attribute

chara
there

3.10

bit or
implen
the sp|

3.11

‘teristic of a declaration that can be queried by special.synitax to return a value corresponding to
Huested attribute

lering
hentation defined (3.32) value that is eithergiigh Order First Or Low Order First that permits
ecification or query of the way that bits are represented in memory within a single memory unit

bounded error

error

rhat does not need to be detected.either prior to or during run time, but if not detected falls within

a bounded range of possible effects

3.12

case S
staten
but w

Note 1
expres.
case ej

3.13

tatement
nent that provides multiple paths of execution dependent on the value of the selecting expression,
nich have only one,of the alternative sequences selected

to entry: A sélecting expression is understood to be an expression that is part of a case statement or case
bion (3.13)~and that determines which choice is taken in executing the case statement or evaluating the
pressiony it is of discrete type (3.19).

case

xXpression

expression that provides multiple paths of execution dependent on the value of the selecting expression,
but which have only one of the alternative dependent expressions evaluated

Note 1

to entry: A selecting expression is understood to be an expression that is part of a case statement (3.12) or

case expression and that determines which choice is taken in executing the case statement or evaluating the case

expres

sion; it is of discrete type (3.19).

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

3.14
case choice

alternative defined in the case statement (3.12) or case expression (3.13) which are required to be of
the same type as the type of the selecting expression in the case statement or case expression, and by

which all possible values of the selecting expression are required to be covered

Note 1 to entry: A selecting expression is understood to be an expression that is part of a case statement or case
expression and that determines which choice is taken in executing the case statement or evaluating the case

expression; it is of discrete type (3.19).

3.15
configuration pragma

directive to the compiler that is used to select partition (3.37)-wide or system-wide optiohs and that

applies to all compilation units appearing in the compilation or all future compilatien-nits cor
into the same environment

Note 1 to entry: A compilation unitis understood to be the smallest Ada syntactic construet that can be sub
to the compiler, and that is usually held in a single compilation file.

3.16

controlled type

type descended from the language-defined type controlled or limited_controlled which is a speci
type in Ada where the declarer can tightly control the initialization, assignment, and finalizaf
objects of the type

3.17
dead store
assignment to a variable that is not used in subsequentinstructions

3.18

default expression

expression of the formal object type that.issiised to initialize the formal object if an actual object
provided

3.19
discrete type
integer type or enumeration type)(3.23)

3.20
discriminant
parameter for a compaosite type thatis used at elaboration of each object of the type to configure the

3.21
endianness
byte ordering

3.22
enumeration representation clause
clause used to specify the internal codes for enumeration literals

npiled

mitted

alized
ion of

is not

object

3.23
enumeration type

discrete type (3.19) defined by an enumeration of its values, which are named by identifiers (3.31) or

character literals, including the types character and boolean

3.24
erroneous execution

unpredictable result of an execution arising from an error that is not bounded by the language, but that

does not need to be detected by the implementation either prior to or during run time

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

3.25

exception

mechanism to detect an exceptional situation and to initiate processing dedicated to recover from the
exceptional situation

Note 1 to entry: Exceptions are raised explicitly by user code or implicitly by language-defined checks.

3.26
expanded name

name [that 1S disambiguated from other 1dentical names by prepending the name with the name of the
encloding scope

Note 1|to entry: For example, the name of an entity E within a package (or any other named enclosing entity) P is
expandled or disambiguated by using the alternate name P.E instead of the simple name E.

3.27
fixed{point type

real-vhlued type with a specified error bound (called the "delta" of the type) that{provide arithmetic
operations carried out with fixed precision rather than the relative precision of floating-point types

3.28
generjic formal subprogram
paranjeter to a generic package used to specify a subprogram or operator

3.29
hiding

proce$s where a declaration can be hidden, either from direét visibility, or from all visibility, within
certaip parts of its scope

3.30
homograph

propefty of two declarations such that they haye“the same name, and do not overload each other
according to the rules of the language

3.31
identifier
simplg¢st form of a name

3.32
implementation defined

defingd by a set of possible-effects of a construct where the implementation may choose to implement
any effect in the set of possible effects

3.33
modullar type

integdr type with values in the range 0.. modulus - 1 with wrap-around semantics for arithmetic
operations, bit=wise "and" and "or" operations, and when defined in package Interfaces, arithmetic and
logica] shiftioperations

3.34

obsolescent feature
language feature that has been declared to be obsolescent or deprecated and documented in
ISO/IEC 8652:2012, Annex |

3.35

operational and representation attribute

value of certain implementation-dependent characteristics obtained by querying the applicable
attributes (3.9) and possibly specified by the user

4 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

3.36

overriding indicator

indicator that specifies the intent that an operation does or does not override ancestor operations by
the same name, and used by the compiler to verify that the operation does (or does not) override an
ancestor operation

3.37
partition
part of a program that consists of a set of library units such that each partition executes in a separate

address space, possibly on a separate computer, and can execute concurrently with and communicate
with other partitions

3.38
pointer
access object or access value (3.5)

3.39
pragma
directive to the compiler

3.40

range check
run-time check that ensures the result of an operation is contained'within the range of allowable yalues
for a given type or subtype, such as the check done on the opefand of a type conversion

3.41
record representation clause
mechanism to specify the layout of components within records, that is, their order, position, and $ize

3.42
scalar type
any one of numeric, Boolean, enumeration,character and access types (3.4)

3.43
static expression
expression with statically knowireperands that are computed with exact precision by the compiler

3.44

storage place attribute
integer attribute (3.9) that specify, for a component of a record, the component position and size yithin
the record

Note 1 to entry: The storage place attributes are: Position, First Bit and Last Bit.

3.45
storage-pool
named-location in an Ada program where all objects of a single access type (3.4) are allocated

346

storace subnool
1<) r

separately reclaimable subdivision of a storage pool that is identified by a subpool handle

3.47

subtype declaration

construct that allows programmers to declare a named entity that defines a possibly restricted subset
of values of an existing type or subtype, typically by imposing a constraint, such as specifying a smaller
range of values

© ISO/IEC 2020 - All rights reserved 5

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

3.48

task

separate thread of control that proceeds independently and concurrently between the points where it
interacts with other tasks from the same program

3.49
unused variable
variable that is declared but neither read nor written to in the program

3.50 lIl
volatille

charagteristic of an object that guarantees that updates to the object are always seen in the samergrder
by all pasks (3.48)

Note 1|to entry: All atomic (3.8) objects are volatile.

4

4.1

Language concepts

Enumeration type

The defining identifiers and defining character literals of an enumeration type are required to be
distinft. The predefined order relations between values of the enumeration type follow the order of
corregponding position numbers.

4.2

Exception

Therelis a set of predefined exceptions in Ada in package standard: constraint Error, Program Error,
Storafie Error and Tasking Error. One of them is raiséd when certain language-defined checks fail.
User gode can define and raise exceptions explicitly.

4.3

Hiding

Where¢ hidden from all visibility, a declaration is not visible at all (neither using a direct name nor a
selector name). Where hidden from direct visibility, only direct visibility is lost. Visibility using an
expanided name is still possible.

4.4

Implementation defined

Implementations are necessary to document their behaviour in implementation-defined situations.

4.5

Type conversions

Ada uses a streng type system based on name equivalence rules. It distinguishes types, which embody
statically checkable equivalence rules, and subtypes, which associate dynamic properties with types,
for expmples index ranges for array subtypes or value ranges for numeric subtypes. Subtypes are not
types jahd their values are implicitly convertible to all other subtypes of the same type. All subtype and
type-conversions ensure by static or dynamic checks that the converted value is within the value range
of the target type or subtype. If a static check fails, then the program is rejected by the compiler. If a
dynamic check fails, then an exception constraint Error is raised.

To effect a transition of a value from one type to another, three kinds of conversions can be applied in Ada.

a)

Implicit conversions: there are few situations in Ada that allow for implicit conversions. An example
is the assignment of a value of a type to a polymorphic variable of an encompassing class. In all cases
where implicit conversions are permitted, neither static nor dynamic type safety or application
type semantics (see below) are endangered by the conversion.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

b) Explicit conversions: various explicit conversions between related types are allowed in Ada. All

such conversions ensure by static or dynamic rules that the converted value is a valid value

of the

target type. Violations of subtype properties cause an exception to be raised by the conversion.

c) Unchecked conversions: Conversions that are obtained by instantiating the generic subprogram
Unchecked Conversion are unsafe and enable all vulnerabilities mentioned in 6.3 as the result of
a breach in a strong type system. Unchecked Conversion is occasionally needed to interface with

type-less data structures, for example, hardware registers.

A guiding principle 1n Ada 1s that, with the exception of using instances of Unchecked Conversil
undefined semantics can arise from conversions and the converted value is a valid value of the targe

4.6 Operational and Representation Attributes
Some attributes can be specified by the user. For example:

— x'alignment: allows the alignment of objects on a storage unit boundary at an integral multi
specified value;

— X'size: denotes the size in bits of the representation of the object;

— X'Component_size: denotes the size in bits of components of the array type X.

4.7 User defined types

Ada allows the usual user-defined types such as records; classes (called tagged records), or access
In addition, Ada allows for user-defined scalar typesswhich permit specification of value ranges
constraints, and for floating point and fixed-point ‘types, precision. More advanced typing capal
allow the user to specify types for communicating concurrently executing entities (tasks) a
synchronized data structures (protected objects).

The typing rules of the language prevent intérmixing of objects and values of distinct types.

4.8 Pragma compiler directives

NOTE Each of these pragmas. specifies that the similarly named aspect of the type, object, or com
denoted by its argument is either-True (for parameterless pragmas) or is the value of the pragma paramet

4.8.1 PragmaAtomic

Specifies that all.reads and updates of an object are indivisible.

4.8.2 Pragma’Atomic_ Components

Specifiés that all reads and updates of an element of an array are indivisible.

4.8.3 Pragma Convention

on, NO
ttype.

le of a

types.
value

ilities
nd for

pbonent
ET.

Specifies that an Ada entity should use the conventions of another language.

4.8.4 PragmaDetect Blocking

A configuration pragma that specifies that all potentially blocking operations within a protected

operation need to be detected, resulting in the program Error exception being raised.

4.8.5 PragmaDi scard Names

Specifies that storage used at run-time for the names of certain entities, particularly exceptions and

enumeration literals, can be reduced by removing name information from the executable image.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

4.8.6 Pragma Export

Specifies an Ada entity to be accessed by a foreign language, thus allowing an Ada subprogram to be
called from a foreign language, or an Ada object to be accessed from a foreign language.

4.8.7 Pragma Import

Specifies an entity defined in a foreign language that then can be accessed from an Ada program, thus
allowing a foreign-language subprogram to be called from Ada, or a foreign-language variable to be

accesded from Ada.

4.8.8 | PragmaNormalize Scalars

A confliguration pragma that specifies that an otherwise uninitialized scalar object is set to apriedictable
value,|but out of range if possible.

4.8.9 Pragma Pack

Speciffies that storage minimization should be the main criterion when selecting-the representation of a
compgsite type.

4.8.1() Pragma Restrictions

Specifiies that certain language features are not to be used in,a\given application. For example, the
pragmg Restrictions (No Obsolescent Features) prohibits thewuse of any deprecated features. This
pragnja is a configuration pragma which means that all progttam units compiled into the library need to
obey the restriction.

4.8.11 Pragma Suppress

Specifiies that a run-time check does not need. te be performed because the programmer asserts it
alwayp succeeds.

4.8.13 pPragma Unchecked Union

Specifiies an interface correspondence between a given discriminated type and some C union. The
pragnma specifies that the associated type is given a representation that leaves no space for its
discriminant(s).

4.8.13 Pragmavolatilé

Applidable to a type,"an object, or a component, and specifies that the associated objects are volatile,
meaning that all Updates to the objects are seen in the same order by all tasks.

4.8.14 pragma volatile Components

Applidable to an array type or an array object, and specifies that the associated components are volatile

meaning that all updates to the components are seen in the same order by all tasks.

4.9 Separate compilation

Ada requires that calls on libraries are checked for invalid situations as if the called routine were part
of the current compilation.

4.10 Storage pool

A storage pool can be sized exactly to the requirements of the application by allocating only what is
needed for all objects of a single type without using the centrally managed heap. Exceptions raised

8 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

due to memory failures in a storage pool do not adversely affect storage allocation from other storage
pools or from the heap. Storage pools for types whose values are of equal length do not suffer from
fragmentation. Storage pools can be divided into subpools, to allow efficient reclamation of a portion of

a storage pool.
The following Ada restrictions prevent the application from using allocators in various contexts:

pragma Restrictions (No Allocators):prevents the use of all allocators.

[pragma Rescriccions (NC_Standard AllTocators Arter Elapboracion). PICVEIILS the—gse of

allocators after the main program has commenced.

pragma Restrictions (No Local Allocators): prevents the use of allocators, except yithin

expressions that are evaluated as part of library-unit elaboration.

pragma Restrictions (No Implicit Heap Allocations): prevents the implicit use of] heap

allocation by the Ada implementation, but allows explicit allocators.

pragma Restrictions (No Anonymous Allocators): prevents the uSe“of allocators havi
anonymous type.

pragma Restrictions (No Access Parameter Allocators): prevents the use of allocators
actual parameter for an access parameter.

pragma Restrictions (No Coextensions): prevents the use of allocators as the initial value
access discriminant.

pragma Default Storage Pool (null): specifiesithat no allocators are permitted for access
that do not specify their own storage Pool or gtorage Size.

pragma Restrictions (No Unchecked DedlYocations): prevents allocated storage from

ng an

as the

for an

types

being

deallocated and hence effectively enforces storage pool memory approaches or a completely|static

approach to access types. Storage pools are not affected by this restriction as explicit routi
free memory for a storage pool can.be created

4.11 Unsafe programming

In recognition of the occasignal need to step outside the type system or to perform “risky” opers3
Ada provides clearly identified language features to do so. Examples include the generic unche
Conversion for unsafe type-conversions or unchecked Deallocation for the deallocation of heap g
regardless of the existerce of surviving references to the object. If unsafe programming is emplo
a unit, then the unitneeds to specify the respective generic unit in its context clause, thus ident
potentially unsafe units. Similarly, there are ways to create a potentially unsafe global pointe
local object, tising the unchecked Access attribute. A restriction pragma can be used to disalloy
of unchecked Access. The pragma Suppress allows an implementation to omit certain run-time ch

5 . ‘General guidance for Ada

nes to

tions,
cked
bjects
yed in
ifying
rtoa
Vv uses
ecks.

5.1 Adalanguage design

Ada has been designed with emphasis on software engineering principles that support the development
of high-integrity applications. For example, Ada is strongly typed thereby preventing vulnerabilities

associated with type mismatch. Similarly, Ada includes boundary checking on arrays as part

of the

standard language which prevents buffer overflow vulnerabilities. Most of the language can be used to

develop applications without known vulnerabilities.

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

5.2 Top avoidance mechanisms

The recommendations of this subclause are restatements of recommendations from Clause 6 that have
been identified as the most frequent or noteworthy recommendations from Clause 6. Table 1 identifies

the most relevant avoidance mechanisms to be used to prevent vulnerabilities in Ada.

In addition to the generic programming rules from ISO/IEC TR 24772-1:2019, 5.4, additional rules from
this subclause apply specifically to the Ada programming language. Clause 6 provides guidance to

mitigate against known vulnerabilities in Ada.

Table 1 — Most relevant avoidance mechanisms to be used to prevent vulnerabilities

Index Avoidance mechanism Subclause in this document

1 Specify pre- and postconditions on subprograms. 6.32 [CS]], 6.34 [OTR],

6.46 [TR]]
2 Avoid the use of the abort statement. 6.56 [EWF], 6.60 [CGT],
6.62 [CGS]

3 Do not use features explicitly identified as unsafe, such as L [ITHN], 63 [STR],
Unchecked Deallocation,Unchecked Conversion, Or 11 [HFE), 614 [XYK],
Unchecked Access, unless absolutely necessary and then 6.33 [DEMT, 6.53 [SKL],
with extreme caution. 6.56-[EWF]

4 Use user-defined types in preference to predefined types, 6.2THN], 6.4 [PLF],
including range and precision as needed. 616 [FLC], 6.57 [FAB]

5 Protect all data shared between tasks within a protected ab*" 6.3 [STR] 6.56 [EWF],
ject or mark the data Atomic. 6.61 [CGX]

6 Exploit the type and subtype system of Ada to express\fand 6.46 [TR]]
post-conditions) on the values of parameters.

7 Whenever possible, the 'First, 'Last, and 'Ratige attributes |6.29 [TEX], 6.30 [XZH]
should be used for loop termination. If the 'Length attribute
has to be used, then extra care should be taken to ensure that
the length expression considers the starting index value for
the array.

8 Use objects of controlled types to ersure that resources are 6.60 [CGT], 6.62 [CGS]
properly released if a task termrihates unexpectedly.

9 Specify type invariants. 6.44 [BKK], 6.46 [TR]]

10 Do not suppress the checks'provided by the language unless |6.6 [FLC], 6.9 [XYZ],
the absence of the errors’checked against has been verified by [6.33 [DCM], 6.52 [MXB],
static analysis tools, 6.56 [EWF]
11 Use static analysis tools to detect erroneous or undefined be- [6.6 [FLC] 6.18 [WXQ],
haviours and-to preclude the raising of implicit exceptions. 6 9 [YZS], 6.20 [YOW],
.24 [SAM], 6.25 [KOA],
6 2 [MXB], 6.56 [EWF]
12 UseAda's support for whole-array operations, such as for 6.9 [XYZ], 6.10 [XYW],
assighment and comparison, plus aggregates for whole-array |[6.30 [XZH]
initialization, to reduce the use of indexing.
13 Include exception handlers for every task, so that their unex- |6.36 [OYB], 6.60 [CGT],
pected termination can be handled and possibly communicat- |6.62 [CGS]
ed to the execution environment.

14 For case statements and aggregates, do not use the others 6.5 [CCB], 6.27 [CLL]

choice.

These vulnerability guidelines can be categorized into several functional groups. Items 3, 10 and 11
are applicable to exceptional and erroneous behaviours. Mitigation methods associated with types,
subtypes, and contracts include items 1, 4, 6, and 9. Those techniques appropriate for statements and
operations consist of items 7, 12, and 14. Finally, items 2, 5, 8, and 12 are pertinent to concurrency in

applications.

10

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6 Specific guidance for Ada

6.1 General

This clause contains specific advice for Ada about the possible presence of vulnerabilities as described
in ISO/IEC TR 24772-1 and provides specific guidance on how to avoid them in Ada code. This subclause
mirrors ISO/IEC TR 24772-1:2019, Clause 6 in that the vulnerability “Type System [IHN]” is found in
ISO/IEC TR 24772-1:2019, 6.2, and Ada specific guidance is found in 6.2.

6.2 Type system [IHN]

6.2.1 Applicability to language

Implicit conversions cause no application vulnerability, as long as the resulting exceptions are prpperly
handled.

Assignment between types cannot be performed except by using an explicit.conversion.

Failure to apply correct unit conversion factors when explicitly convérting among types for diffferent
units results in application failures due to incorrect values.

Failure to handle the exceptions raised by failed checks of dynamic subtype properties causes the
execution of the whole system, a thread, or an inner nested scope to halt abruptly.

Unchecked conversions circumvent the type system and therefore can cause unspecified behaviour
(see 6.37).

6.2.2 Guidance to language users
— Follow the mitigation mechanisms of ISOAIEC TR 24772-1:2019, 6.2.5.

— Apply the predefined ‘va1id attribute for a given subtype to any value as needed to ascerftain if
the value is a valid value of the subtype. This is especially useful when interfacing with type-less
systems or after Unchecked Cahversion.

— Consider restricting explicit’conversions to the bodies of user-provided conversion functior]s that
are then used as the onlyrmeans to effect the transition between unit systems. Review these bodies
critically for proper(conversion factors.

— Handle exceptiéns-raised by type and subtype-conversions.

— Consider uSing the restriction No_Unchecked Conversion to prevent circumventing the type system.
6.3 Bitrepresentation [STR]

6.3.7~ Applicability to language

In rrnnnr:ll’ the fypn cycfnm of Ada prnfnl‘fc against the vulnerabilities gutlined in

ISO/?EC TR 24772-1:2019, 6.3. The vulnerabilities caused b?z the inherent conceptual complexity of bit
level programming are as described in ISO/IEC TR 24772-1:2019, 6.3.

6.3.2 Guidance to language users

In order to mitigate the vulnerabilities associated with the complexity of bit level programming:
— follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.3.5;
— userecordandarraytypeswiththeappropriaterepresentationspecifications (record representation

clause, bitordering, storage place attribute or pragma pack) added so that the objects are accessed by

© ISO/IEC 2020 - All rights reserved 11

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

theirlogical structure rather than their physical representation. These representation specifications
address endianness, order, position, and size of data components and fields;

— query the default object layout chosen by the compiler to determine the expected behaviour of the
final representation;

— use the restriction No_Unchecked Conversion to prevent circumventing the type system.

For the traditional approach to bit level programming, Ada provides modular types and literal
repre :

the sign bit. The use of pragma Pack on arrays of Booleans provides a type-safe way of manipulatingbit
strings and eliminates the use of error-prone arithmetic operations.

6.4 Floating-point arithmetic [PLF]

6.4.1 | Applicability to language
Ada specifies adherence to the IEEE Floating Point Standards (IEEE 754, IEEE 854):
Inerability in Ada is as described in ISO/IEC TR 24772-1:2019, 6.4.2.

6.4.2 | Guidance to language users
— Fo¢llow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6:4.5.

— Rather than using predefined types, such as rioat and<¥otg Float, whose precision may vary
aqcording to the target system, declare floating-point types that specify the required precision (for
example, digits 10). Additionally, specifying ranges-of a floating-point type enables constraint
checks which prevents the propagation of infinities~dnd NaNs.

— Ayoid comparing floating-point values for equality. Instead, use comparisons that account for the
approximate results of computations. Consulta numeric analyst when appropriate.

ke use of static arithmetic expressions and static constant declarations when possible, since
stltic expressions in Ada are computéd-at compile time with exact precision.

— Usge Ada's standardized numeric libraries (for example, Generic Elementary Functions) for
cgmmon mathematical operations (trigonometric operations, logarithms, and others).

Use an Ada implementation that supports ISO/IEC 8652:2012, Annex G, and employ the "strict
de" of that annex in_cases where additional accuracy requirements need to be met by floating-
point arithmetic and.the operations of predefined numerics packages, as defined and guaranteed by
the annex.

— Avyoid direct'manipulation of bit fields of floating-point values, since such operations are generally
tdrget-spekific and error-prone. Instead, make use of Ada's predefined floating-point attributes
(S chas 'Exponent).

eases where absolute precision is needed, consider replacement of floating-point types and
operations with fixed-point types and operations.

6.5 Enumerator issues [CCB]

6.5.1 Applicability to language

Enumeration representation clauses (specifications) are used to either specify non-default
representations of an enumeration type, for example when interfacing with external systems, or to
confirm the default representation of a type. Ada specifies that all of the values in the enumeration type
need to be defined in the enumeration representation specification and that the numeric values of the
representation need to preserve the original order. For example:

12 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

type IO Types is (Null Op, Open, Close, Read, Write, Sync);
for IO Types use (Null Op => 0, Open => 1, Close => 2,
Read => 4, Write => 8, Sync => 16);

An array can be indexed by such a type. Ada does not prescribe the implementation model for arrays
indexed by an enumeration type with non-contiguous values. Two options exist. Either the array is
represented “with holes” and indexed by the values of the enumeration type, or the array is represented
contiguously and indexed by the position of the enumeration value rather than the value itself. In
the former case, the Vulnerablhty descrlbed in ISO/IEC TR 24772 1: 2019 6 5 exists only 1f unsafe

Within the type system, the semantlcs are well defmed and safe The Vulnerablllty of unexpected
but well-defined program behaviour on extending an enumeration type exists in Ada. [d pdrticular,
subranges or others choices in aggregates and case statements are susceptible to unintentipnally
capturing newly added enumeration values.

6.5.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.5.5.
— For case statements and aggregates, do not use the others choice.

— For case statements and aggregates, mistrust subranges as chaices after enumeration literals have
been added anywhere but the beginning or the end of the emumeration type definition.

6.6 Conversion errors [FLC]

6.6.1 Applicability to language

Ada does not permit implicit conversions between/different numeric types, hence cases of implidit loss
of data due to truncation cannot occur as they can in languages that allow type coercion between|types
of different sizes.

— Ada permits the definition of subtypes of existing types that can impose a restricted range of yalues,
and implicit conversions can occur for values of different subtypes belonging to the same type, but
such conversions still involve.range checks that prevent any loss of data or violation of the bpunds
of the target subtype.

In the case of explicit con¥ersions, Ada language rules prevent numeric conversion errors by applying
the following.

— Range bound ehecks, which raise an exception if the operand of the conversion exceeds the bpounds
of the target'type or subtype.

Precision is]lost only on explicit conversion from a real type to an integer type or a real type pf less
precision.

As Ada permits a type distinction to be made among numeric or composite values in different unit
systéms, e.g. meters and feet, complex numbers or intervals of real numbers, explicit convefrsions
between such types may not be consistent with application semantics for the types, unless accompanied
with conversion factors.

On structured data, implicit conversions preserve all values. Explicit value conversions omit
components not present in the target type where such differences are allowed in conversions. See in
particular (implicit) upcasts and (explicit) downcasts for OOP in 6.44.

6.6.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.6.5.

© ISO/IEC 2020 - All rights reserved 13

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/1

EC TR 24772-2:2020(E)

— Use Ada's capabilities for user-defined scalar types and subtypes to avoid accidental mixing of
logically incompatible value sets.

— Do not suppress range checks on conversions involving scalar types and subtypes to prevent
generation of invalid data.

— Use static analysis tools during program development to verify that conversions cannot violate the
range of their target.

6.7
With {

string
that u
mitigd
6.8
With
(see 6]

6.9

6.9.1

All ar
bound

An ex
vulne
tight ¢

6.9.2

String termination [CJM]

he exception of unsafe programming (see Clause 4), this vulnerability is not applicable to Ada’as
5 in Ada are not delimited by a termination character. Ada programs that interface to languages
se null-terminated strings and manipulate such strings directly should apply the vaflnerability
tions recommended for that language.

Buffer boundary violation (buffer overflow) [HCB]

he exception of unsafe programming (see Clasue 4), this vulnerability is_hot applicable to Ada
9 and 6.10).

Unchecked array indexing [XYZ]

Applicability to language

fay indexing is checked automatically in Ada, and raises an exception when indexes are out of
s. This is checked in all cases of indexing, including wWhen arrays are passed to subprograms.

blicit suppression of the checks can be requestéd by use of pragma sSuppress, in which case the
rability would apply. However, such suppression is easily detected, and generally reserved for
ime-critical loops, even in production code,

Guidance to language users

— F¢llow the mitigation mechanisms.of ISO/IEC TR 24772-1:2019, 6.9.5.

— U
ag

— W

6.10

With {
Ada a
overfl

be Ada's support for whele=array operations, such as for assignment and comparison, plus
gregates for whole-array initialization, to reduce the use of indexing.

rite explicit bounds tests to prevent exceptions for indexing out of bounds.

Unchecked array copying [XYW]

he exceptign of unsafe programming (see Clause 4), this vulnerability is not applicable to Ada as
lows ar¥ays to be copied by simple assignment (":="). The rules of the language ensure that no
pw,can happen; instead, the exception constraint Error is raised if the target of the assignment

is not

able to contain the value assigned to it. The rules also ensure that overlapping source and target

slices
array

are nmandied COTTectly, I.€. The Target SIice Teceives the original value of the SOUTCE SIICe. SITce
copy is provided by the language, Ada does not provide unsafe functions to copy structures by

address and length.

6.11 Pointer type conversions [HFC]

6.11.1 Applicability to language

The mechanisms available in Ada to alter the type of a pointer value are unchecked type-conversions
and type-conversions involving pointer types derived from a common root type. In addition, uses of the

14

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

unchecked address taking capabilities can create pointer types that misrepresent the true type of the
designated entity (see ISO/IEC 8652:2012, 13.10).

The vulnerabilities described in ISO/IEC TR 24772-1:2019, 6.11, exist in Ada only if unchecked type-
conversions or unsafe taking of addresses are applied (see Clause 4). Other permitted type-conversions
can never misrepresent the type of the designated entity.

Checked type-conversions that affect the application semantics adversely are possible. For example,
when a pointer to a class-wide type is changed to a leaf type, a run-time check is required.

6.11.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.11.5.
— Do not use the features explicitly identified as unsafe.

— Use ‘access which is always type safe.

— Consider using the restriction No Unchecked Conversion, No Uncheckéd Access and No Uge Of
Attribute (Address) to prevent circumventing the type system.

6.12 Pointer arithmetic [RVG]

With the exception of unsafe programming (see Clause 4), thiswulnerability is not applicable to Ada as
Ada does not allow pointer arithmetic.

6.13 Null pointer dereference [XYH]

6.13.1 Applicability to the language

In Ada, this vulnerability is mitigated by compile-time or run-time checks that ensure that no nulltvalue
can be dereferenced. Of course, the constraint Error exception implicitly raised on such derefer¢ncing
needs to be handled or else the vulnerability of a failing system or components prevails.

6.13.2 Guidance to language(users
— Follow the mitigationaechanisms of ISO/IEC TR 24772-1:2019, 6.13.5.
— Use non-null access-to-object types where possible.

— Handle exceptions raised by attempts to dereference null values.
6.14 Dangling reference to heap [XYK]

6.14.4>Applicability to language

Useof unchecked Deallocation can cause dangling references to the heap. The vulnerabilities des¢ribed

iSO NECTD 24772 1.2010 £ 14 avictin Ada vhan thic footenicend cipon oo 0 0 0 o oo ti
HYOAR T4 A0 64 exdstHirAaa-wheR-thiSteaturetsusea-SHeebrrelreckes—Peatteocation

can be applied even though there are outstanding references to the deallocated object.

Ada provides a model in which whole collections of heap-allocated objects can be deallocated safely,
automatically and collectively when the scope of the root access type or the scope of any associated
storage pool object ends.

For global access-to-object types, unless storage pools are used, allocated objects can only be
deallocated through an instantiation of the generic procedure unchecked Deallocation.

© ISO/IEC 2020 - All rights reserved 15

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.14.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.14.5.
— Use local access-to-object types where possible.

— Consider not using Unchecked Deallocation and applying the restriction No Unchecked
Deallocation to enforce this.

— Use cantralled £12 <
e-coRtroneat S

— Consider the use of storage pools and storage subpools.

6.15 Arithmetic wrap-around error [FIF]

With the exception of unsafe programming (see Clause 4), this vulnerability is not applicable to Ada as
wrap-ground arithmetic in Ada is limited to modular types. Arithmetic operations oh|such types use
modulo arithmetic, and thus no such operation can create an invalid value of the type:

For ngn-modular arithmetic, Ada raises the predefined exception constraint Ecror whenever a wrap-
arounfd occurs but implementations are allowed to refrain from doing so whén’a correct final value is
obtairjed. In Ada there is no confusion between logical and arithmetic shijfts,

6.16 Using shift operations for multiplication and division [PIK]

With the exception of unsafe programming (see Clause 4), this-yulnerability is not applicable to Ada as
shift dperations in Ada are limited to the modular types deglared in the standard package interfaces,
whichlare not signed entities.

6.17 Choice of clear names [NAI]

6.17.1 Applicability to language

There|are two possible issues: the use ofthe identical name for different purposes (overloading) and
the use of similar names for different purposes.

This vjulnerability does not address.overloading, which is covered in 6.20.
The risk of confusion by the use of similar names can occur through:

— miixed casing. Ada treats’upper case and lower-case letters in names as identical. Thus, no confusion
cdn arise throughanattempt to use Iltem and ITEM as distinct identifiers with different meanings;

— umderscores abd*periods. Ada permits single underscores in identifiers and they are significant.
Thus, Bigbeg'dnd Big Dog are different identifiers. But multiple underscores (which can be confused
ith a single'underscore) are forbidden, thussig Dogisforbidden. Leading and trailingunderscores
aie alsoforbidden. Periods are not permitted in identifiers at all;

type T and the identifier 1tems for an object denoting an array of item thatis of a type array (.)
of T.The use of Ttem where Ttems was intended or vice versa is detected by the compiler because of
the type violation and the program rejected so no vulnerability would arise;

— international character sets. Ada compilers strictly conform to the appropriate International
Standard for character sets;

— identifier length. All characters in an identifier in Ada are significant. Thus, Long Tdentifiera and
Long Tdentifiers are always different. An identifier cannot be split over the end of a line. The only

16 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

restriction on the length of an identifier is that enforced by the line length and this is guaranteed by

the language standard to be no less than 200.

Ada permits the use of names such as %, xx, and xxx (possibly declared to be of the same type)

and a

programmer can easily, by mistake, write xx where x (or xxx) was intended. Ada does not attempt to

catch such errors.

The use of the wrong name typically results in a failure to compile so no vulnerability arises.

But, if

the wrong name has the same type as the intended name, then an incorrect executable program is

generated.

6.17.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.17.5.

— Avoid the use of similar names to denote different objects of the same type,
— Adopt a project convention for dealing with similar names

— See the Ada Quality and Style Guidel11l.
6.18 Dead store [WXQ]

6.18.1 Applicability to language

This vulnerability exists in Ada as described in ISO/IEGTR 24772-1:2019, 6.18, with the exceptio
in Ada, if a variable is read by a different thread (task):than the thread that wrote a value to the va
itis not a dead store. Simply marking a variable as being vo1atile is usually considered to be too
prone for inter-thread (task) communication by~the Ada community, and Ada has numerous fa
for safer inter thread communication.

Ada compilers do exist that detect and generate compiler warnings for dead stores.

The error in ISO/IEC TR 24772-1:2019;6.18.3, that the planned reader misspells the name of thd
is possible but highly unlikely in.Ada since the language specifies that all objects need to be de
and typed, and the existence ofjtwo objects with almost identical names and compatible typ¢
assignment) in the same scepe.would be readily detectable.

6.18.2 Guidance to language users
— Follow the mifigation mechanisms of ISO/IEC TR 24772-1:2019, 6.18.5.
— Use Ada ¢ompilers that detect and generate compiler warnings for dead stores.

— Usestatic analysis tools to detect such problems.

6,19 Unused variable [YZS]

h that,
riable,
error-
rilities

store
clared
s (for

6.19.1 Applicability to language

This vulnerability exists in Ada as described in [SO/IEC TR 24772-1:2019, 6.19, although Ada compilers

do exist that detect and generate compiler warnings for unused variables.

6.19.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.19.5.

— Do not declare variables of the same type with similar names. Use distinctive iden
and the strong typing of Ada (for example through declaring specific types as in

© ISO/IEC 2020 - All rights reserved

tifiers

17

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

type Pig Counter is range 0 .. 1000;
Pig : Pig Counter;
rather than just
Pig: Integer;)
to reduce the number of variables of the same type.

— Use Ada compilers that detect and generate compiler warnings for unused variables.

d tifi IVOW/1
6.20 Identifiernamereuse owj

IICIITC T IO IITC T T oYy

6.20.1 Applicability to language

Ada i a language that permits local scope, and names within nested scopes can hide identical'hames
declared in an outer scope. As such, it is susceptible to the vulnerability. For subprograms and other
overldaded entities, the problem is reduced by the fact that hiding also takes the signatures of the
entiti¢s into account. Therefore, entities with different signatures do not hide each other:

Name|collisions with keywords cannot happen in Ada because keywords are reserved.

The njechanism of failure identified in ISO/IEC TR 24772-1:2019, 6.20.3, regarding the declaration of
non-uhique identifiers in the same scope cannot occur in Ada because all characters in an identifier are
significant.

6.20.2 Guidance to language users
— Fo¢llow the mitigation mechanisms of ISO/IEC TR 24772:1:2019, 6.20.5.
— Use expanded names whenever confusion is possible,

— Use Ada compilers or static analysis tools that generate warnings for declarations in inner scopes
that hide declarations in outer scopes.

6.21 Namespace issues [B]L]

This julnerability is not applicable to-Ada because Ada does not attempt to disambiguate conflicting
nameg imported from different packages. Instead, use of a name with conflicting imported declarations
cause$ a compile time error. The programmer can disambiguate the name usage by using an expanded
name fthat identifies the exporting package.

6.22 [nitialization of variables [LAV]

6.22.1 Applicability.to language

As in many ladguages, it is possible in Ada to make the mistake of using the value of an uninitialized
varialjle. HoWwever, as described below, Ada prevents some of the most harmful possible effects of using
the vajlue:

The v '
null by default, and every dereference of a pointer that is not null-excluding is checked for a null value.

The checks mandated by the type system apply to the use of uninitialized variables as well. Use of an
out-of-bounds value in relevant contexts causes an exception, regardless of the origin of the faulty value
(see 6.36 regarding exception handling). Thus, the only remaining vulnerability is the potential use of a
faulty but subtype-conformant value of an uninitialized variable, since it is technically indistinguishable
from a value legitimately computed by the application.

For scalar types, the aspect specification pefault value aspect can be specified to provide a default
initial value for otherwise uninitialized objects of the type.

18 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

For record types, default initializations can be specified as part of the type definition. For record
aggregate values can be used to initialize an object to ensure that all components of the objec
been initialized with a value.

types,
t have

For controlled types (those descended from the language-defined type controlled or Limited

Controlled), the user can also specify an Initialize procedure which is invoked on all default-initi
objects of the type.

The pragma Normalize Scalars can be used to ensure thatscalar variables are always initialized

alized

by the

compiler in a repeatable fashion. This pragma 1s designed to 1nitialize variables to an out-of-range
if there is one, to avoid hiding errors.

Lastly, the user can query the validity of a given value. The expression x’valid yields true“if the

value

value

of the scalar variable x conforms to the subtype of x and false otherwise. Thus, the-usér can protect

against the use of out-of-bounds uninitialized or otherwise corrupted scalar values;

6.22.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.225,

— Ifthe compiler has a mode that detects use before initialization, then’ enable this mode and tre
such warnings as errors.

— Where appropriate, specify explicit initializations or default initializations.

— Use the pragma Normalize ScalarsError! Reference source not found. to cause out-of
default initializations for scalar variables.

— Use the ‘valid attribute to identify out-of-range scalar values caused by the use of uniniti
variables, without incurring the raising of@f exception. Note an implementation is permit]
raise an exception for an unchecked Conversion in this case.

Common advice that should be avoided isto perform a “junk initialization” of variables. Initiali
variable with an inappropriate defaulf)value such as zero can result in hiding underlying pro
because the compiler or other stati¢-analysis tools is then unable to detect that the variable ha
used prior to receiving a correctlyzeomputed value.

6.23 Operator precedence/order of evaluation [JCW]

6.23.1 Applicability to language

Since this vulnerability is about "incorrect beliefs" of programmers, there is no way to establish
to how far inCortect beliefs can go. However, Ada is less susceptible to that vulnerability than
other languages, since:

— Adavonly has six levels of precedence and associativity is closer to common expectation
example, an expression likea = B or ¢ = pis parsed as expected,as (A = B) or (C = D);

at any

range

alized
ted to

zing a
blems,
5 been

h limit
many

s. For

—’ mixed logical operators are not allowed without parentheses, for example, "2 or B or c"is

valid,

aswellas "A and B and c",but"a and B or c"isnot; the user has to write " (2 and B) or
"A and (B or C)",

— assignment is not an operator in Ada.

6.23.2 Guidance to language users

Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.23.5.

© ISO/IEC 2020 - All rights reserved

c"or

19

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.24 Side-effects and order of evaluation [SAM]

6.24.1 Applicability to language

There are no operators in Ada with direct side effects on their operands using the language-defined
operations, especially not the increment and decrement operation. Ada does not permit multiple
assignments in a single expression or statement.

There i
functipn modifies globally visible variables or "in out" or "out" parameters. Ada disallows multiple
uses df the same variable within a single expression if one or more of the uses are as "in out" or "out"
paranjeters. Operators in Ada are functions with only "in" parameters, so, when defined by the user,
althoygh they cannot modify their own operands, they can modify global state and therefore have side
effects.

Ada allows the implementation to choose the order of evaluation of expressions withrpperands of the
same precedence level, the order of association is left-to-right. The operands of a bifiary operation are
also efaluated in an arbitrary order, as happens for the parameters of any function call. In the case
of user-defined operators with side effects on global state, this implementation dependency can cause
unpredictability of the side effects.

6.24.2 Guidance to language users

— F¢llow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.24.5.

— Mpke use of one or more programming guidelines which prohibit functions that modify global state
:/Id can be enforced by static analysis.

inimize use of "in out" and "out" parameters ferfunctions.

— Always use brackets to indicate order of evaluation of operators of the same precedence level.
6.25 Likely incorrect expression [KOA}

6.25.1 Applicability to language

An instance of this vulnerability\‘consists of two syntactically similar constructs such that the
inadvértent substitution of onelfor the other can result in a program which is accepted by the compiler
but ddes not reflect the intent-of the author.

The ekamples given inISO/IEC TR 24772-1:2019, 6.25, of are not problems in Ada because of Ada's
strong typing and beealise an assignment is not an expression in Ada.

In Adj, a type-conversion and a qualified expression are syntactically similar, differing only in the
presence or absence of a single character:

Type\Name (Expression) -- a type-conversion
VS
Type Name' (Expression) -- a qualified expression

Typically, the inadvertent substitution of one for the other results in either a semantically incorrect
program which is rejected by the compiler or in a program which behaves in the same way as if the
intended construct had been written. In the case of a constrained array subtype, the two constructs
differ in their treatment of sliding (conversion of an array value with bounds 100 .. 103 to a subtype
with bounds 200 .. 203 succeeds; qualification fails a run-time check).

Similarly, a timed entry call and a conditional entry call with an else-part that happens to begin with
a delay statement differ only in the use of "else" vs. "or" (or even "then abort" in the case of an
asynchronous select Statement).

20 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

Probably the most common correctness problem resulting from the use of one kind of expression where
a syntactically similar expression should have been used has to do with the use of short-circuit vs. non-
short-circuit Boolean-valued operations (for example, "and then" and "or else" vs. "and" and "or"), as in:

if (Ptr /= null) and (Ptr.all.Count > 0) then ... end if;
-- should have used "and then" to avoid dereferencing null

6.25.2 Guidance to language users

— Follow the mitigation mechanisms ot [SO/IEC TR 24772-1:2019, 6.25.5.

— Consider using short-circuit forms by default (errors resulting from the incorrect use of short-¢ircuit
forms are much less common), thought this can make it more difficult to express the“distinction
between the cases where short-circuited evaluation is known to be needed (either4or correftness
or for performance) and those where it is not.

6.26 Dead and deactivated code [XYQ]

6.26.1 Applicability to language

Ada allows the usual sources of dead code (described in ISQ/IEC TR 24772-1:2019, 6.26, and
Reference [22]) that are common to most conventional programuring languages.

6.26.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.26.5.

— Use implementation-specific mechanisms, if provided, to support the elimination of dead cgde. In
some cases, use pragmas SUch as Restricti&ns, Suppress, Or Discard Names to inform the compiler
that some code whose generation would normally be required for certain constructs wofild be
dead because of properties of the overall system, and that therefore the code does not need to be
generated. For example:

package Pkg is

type Enum is (RAaa, Bbb, L£eE);
pragma Discard Names (Enum);
end Pkg;

If Pkg.Enum' Image(and related attributes (e.g. value, Wide Image) of the type Enum are never used,
and if the implémentation normally builds a table of the enumeration literals, then the pragma
allows the eliftination of the table.

6.27 Switch'statements and static analysis [CLL]

6.27 1>Applicability to language

With the exception of unsafe programming (see Clause 4) and the use of default cases, this vulnerpbility
PR hla & Ada oc Ado o ciiac +haot ac al

isneotapplicableto-AdaasAdaensuresthataeasestatementwhich-enlyeperatesoendiserete-types,
provides exactly one alternative for each value of the expression's subtype. This restriction is enforced
at compile time. The others clause can be used as the last choice of a case statement to capture any
remaining values of the case expression type that are not covered by the preceding case choices. If
the value of the expression is outside of the range of this discrete subtype (e.g. due to an uninitialized
variable), then the resulting behaviour is well-defined (constraint Error is raised). Control does not
flow from one alternative to the next. On reaching the end of an alternative, control is transferred to the
end of the case statement.

The remaining vulnerability is that unexpected values are captured by the others clause or a subrange
as case choice. For example, when the range of the type character was extended from 128 characters to
the 256 characters in the Latin-1 character type, an others clause for a case statement with a Character

© ISO/IEC 2020 - All rights reserved 21

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

type case expression originally written to capture cases associated with the 128 characters type now
also captures the 128 additional cases introduced by the extension of the type character. Some of the
new characters needed to be covered by the existing case choices or new case choices.

6.27.2 Guidance to language users

— For case statements and aggregates, avoid the use of the others choice.

statements that are associated with control flow including if statements, loop statéments, case
statements, select statements, and extended return statements. Each of these forms of compound
statements require unique syntax that marks the end of the compound statement.

6.29 Loop control variables [TEX]

With the exception of unsafe programming (see Clause 4), this vulnerability is not applicable to Ada

(called a loop parameter). This value has a constant view and cannot be'updated within the sequence of
statements of the body of the loop.

6.30 Pff-by-one error [XZH]

6.30.1 Applicability to language
Confusion between the need for < and <= or > and >=in a test

Alfor .. loop in Ada does not require.the programmer to specify a conditional test for loop
tgrmination. Instead, the starting and\ending value of the loop are specified which eliminates this
squrce of off-by-one errors. There-atealso special for .. loop structures that iterate through an
entire array or container. These avoid the need to specify any bounds for the iteration. A while
.| 100p however, lets the programmer specify the loop termination expression, which can be
sysceptible to an off-by-on€ error.

Confusion as to the indexTange of an algorithm

Although there arélanguage defined attributes to symbolically reference the start and end values
for a loop iteration, the language does allow the use of explicit values and loop termination tests.
Off-by-one errors can result in these circumstances.

Care sheuld be taken when using the 'rLength attribute in the loop termination expression. The
eypression should generally be relative to the 'First value.

The cfrnh(r fvnlnn' of Ada eliminates the hnfnnh:\] for buffer gverflow assaciated with this

vulnerablhty If the error is not statically caught at compile time, then a run-time check generates
an exception if an attempt is made to access an element outside the bounds of an array.

Failing to allow for storage of a sentinel value

Ada does not use sentinel values to terminate arrays. There is no need to account for the storage of
a sentinel value, therefore this particular vulnerability concern does not apply to Ada.

1) ..This case is somewhat specialized but is important, since enumerations are the one case where subranges turn
bad on the user.

22 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.30.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.30.5.
— Whenever possible, use a for .. loop instead of a while .. loop.

— Whenever possible, use the form of iteration that takes the name of the array or container and
nothing more.

et
R e e

for I in MyArray'Range loop...

— Ifthe 'Length attribute is required to be used, take extra care to ensure that the index ¢computation
considers the starting index value for the array.

6.31 Unstructured programming [EWD]

6.31.1 Applicability to language

Ada programs can exhibit many of the vulnerabilities noted in ISO/IECCFR24772-1:2019, 6.31, leqving a
loop at an arbitrary point, local jumps (goto), and multiple exit points\from subprograms.

However, Ada does not suffer from non-local jumps and multiple‘entries to subprograms.

6.31.2 Guidance to language users

Follow the mitigation mechanisms of ISO/IEC TR 247%2-1:2019, 6.31.5.
6.32 Passing parameters and return values-|CS]J]

6.32.1 Applicability to language

Ada employs the mechanisms (for example, modes in, out and in out) that are recommengled in
ISO/IEC TR 24772-1:2019, 6.32. These mode definitions are not optional, mode in being the defau|t. The
remaining vulnerability is aliaging'when a large object is passed by reference. In addition, Ada refuires
thata function result type be specified and the return value be assigned to the same type variable, making
it much more obvious to thexeader if a function result is not being used (see ISO/IEC 8652:2012, 6.5).

6.32.2 Guidance te-language users

Follow avoidaneeadvice in ISO/IEC TR 24772-1:2019, 6.32.5.
6.33 Dangling references to stack frames [DCM]

6.33:1. Applicability to language

In’Ada, the attribute 'address yields a value of some system-specific type that is not equivalent to a

pointer. The attribute 'access provides an access-to-object value (what other languages call a pointer).
Addresses and access values are not automatically convertible, although a predefined set of generic
functions can be used to convert one into the other. access-to-object values are typed. That is to say,
they can only designate objects of a particular type or class of types.

As in other languages, it is possible to apply the 'address attribute to a local variable, and to make
use of the resulting value outside of the lifetime of the variable. However, 'address is very rarely used
in this fashion in Ada. Most commonly, programs use 'aAccess to designate objects and subprograms,
and the language enforces accessibility checks whenever code attempts to use this attribute to provide
access-to-object to a local object outside of its scope. These accessibility checks eliminate the possibility
of dangling references.

© ISO/IEC 2020 - All rights reserved 23

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/1

ECTR 24772-2:2020(E)

As for all other language-defined checks, accessibility checks can be disabled over any portion of a
program by using pragma Suppress. The attribute unchecked Access produces values that are exempt
from accessibility checks.

6.33.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.33.5.

nly use the 'address attribute on static objects (for example, a register address).

0]
D
— D
U
D
— Aj
— U

D not use 'Address to provide indirect untyped access-to-object to an object.

b not convert between 'address and access-to-object or access-to-subprogram types.
be access types in all circumstances when indirect access is needed.

h not suppress accessibility checks.

roid use of the attribute 'Unchecked Access.

be 'Access attribute in preference to 'address.

— C
6.34

6.34.1

There
stack

execu
which|

In Ada
paran
specif
some
thent
call w

Cautig
in suc
corruj
use of]

— CInsider applying the restriction No_Use Of Attribute (Address) toprehibit use of 'address.

nsider applying the restriction No_Unchecked Access to enforce that 'Unchecked Accessisnotused.
Subprogram signature mismatch [OTR]

Applicability to language

are two concerns identified with this vulnerability. The first is the corruption of the execution
due to the incorrect number or type of actwal parameters. The second is the corruption of the
fion stack due to calls to externally compiled modules. Ada does not supportvariadic subprograms,
eliminates a common source for this vailnerability.

, at compilation time, the parameter-association is checked to ensure that the type of each actual
eter matches the type of the corrésponding formal parameter. In addition, the formal parameter
ication can include default expressions for a parameter. Hence, the procedure can be called with
hctual parameters missing:\In this case, if there is a default expression for the missing parameter,
he call is compiled withoutany errors. If default expressions are not specified, then the procedure
th insufficient actual parameters is flagged as an error at compilation time.

n is advised whén'specifying default expressions for formal parameters, as their use can result
cessful compilation of subprogram calls with an incorrect signature. The execution stack is not
pted in thisievent but the program can be executing with unexpected values. The most appropriate
default €xpressions is when, without them, there would end up being an overloading of the same

name

with fewer parameters that performed essentially the same operation. When calling externally

compilleddn6dules that are Ada program units, the type matching and subprogram interface signatures
are mphitored and checked as part of the compilation and linking of the full application. When calling

externally compiled modules 1n other programming languages, additional steps are needed to ensure
that the number and types of the parameters for these external modules are correct.

6.34.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.34.5.

— M
— M

inimize the use of default expressions for formal parameters.

anage interfaces between Ada program units and program units in other languages by using

pragma Import to specify subprograms that are defined externally and pragma Export to specify
subprograms that are used externally. These pragmas specify the imported and exported aspect

24

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

specifications of the subprograms, this includes the calling convention. All parameters need to be

specified when using pragma TImport and pragma Export.

— UsepragmaConventiontoidentify when an Ada entity should use the calling conventions of a different
programming language facilitating the correct usage of the execution stack when interfacing with

other programming languages.

— Use the ‘valid attribute to check if an object that is part of an interface with another language has

a valid value for its type.

6.35 Recursion [GDL]

6.35.1 Applicability to language

Ada permits recursion. The exception storage Error is raised when the recurring execution res
insufficient storage.

6.35.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6,35.5.

— Ifrecursion is used, then use a storage Error exception handleér to handle insufficient stora
to recurring execution.

— Use the asynchronous control construct to time the€xecution of a recurring call and to terr
the call if the time limit is exceeded.

— Consider applying
pragma Restriction[No_Recursion);Or

pragma Restriction No Reentrancy;
to eliminate this vulnerability.

6.36 Ignored error status and unthandled exceptions [OYB]

6.36.1 Applicability to language

Ada offers a set of predefined exceptions for error conditions that are detected by checks th|
compiled into a program.In addition, the programmer can define exceptions that are appropris
their application. Theseexceptions are handled using an exception handler. Exceptions can be he
in the environment-where the exception occurs or they are propagated out to an enclosing scope.

6.36.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.36.5.

—. Use the result of the ‘va1id attribute to check for the validity of values delivered to an Ada pr

ults in

be due

ninate

at are
nte for
ndled

bgram

from an external device prior to use.

— Consider using the call
Ada.Task Termination.Set Dependents Fallback Handler
to install a handler that is invoked whenever a task terminates.

6.37 Type-breaking reinterpretation of data [AMV]

6.37.1 Applicability to language

Unchecked Conversion can be used to bypass the type-checking rules, and its use is thus unsafe, as
is its equivalent in any other language. The same applies to the use of Unchecked Union, even though

© ISO/IEC 2020 - All rights reserved

25

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

the language specifies various inference rules that the compiler needs to use to catch statically
detectable constraint violations. The fact that unchecked Conversion is a generic function that needs
to be instantiated explicitly (and given a meaningful name) hinders its undisciplined use and places a
loud marker in the code wherever it is used. Well-written Ada code has a small set of instantiations of
Unchecked Conversion. Most implementations require the source and target types to have the same
size in bits, to prevent accidental truncation or missing sign extensions.

Type reinterpretation is a universal programming need, and no usable programming language can
exist without some mechanism that bypasses the type model. Ada provides these mechanisms with

some pdditional safeguards, and makes their use purposely verbose, to alert the writer and the reader
of a pjogram to the presence of an unchecked operation.

6.37.2 Guidance to language users
— F¢llow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.37.5.

— Uge Unchecked Union only in multi-language programs that need to communicateydata between Ada
and C or C++. Otherwise, the use of discriminated types prevents "punning” bétween values of two
distinct types that happen to share storage.

— Ayoid using address clauses to obtain overlays. If the types of the gbjects are the same, then a
rgnaming declaration is preferable. Otherwise, use the pragma Tmpoft{0 inhibit the initialization of
ome of the entities so that it does not interfere with the initializati@n'of the other one.

— Consider applying
pragma Restrictions (No Use Of Pragma (Unchecked Unién)),
pragma Restrictions (No Use Of Aspect (UncheckedUnion)),

(No_Use Of Attribute (Add¥ess)),and
pragma Restrictions ()

td ensure this vulnerability cannot arise.

pragma Restrictions

6.38 Peep vs. shallow copying [YAN]

6.38.1 Applicability to language

The vplnerability described in ISO/IEC TR 24772-1:2019, 6.38, of applies to Ada. It can be mitigated
somewhat by language constructs that allow the creation of abstractions and the addition of user-
defindd copying operations, stuch that inadvertent aliasing problems can be contained within the
abstrdction. The default semantics of assignment create a shallow copy, when applied to the root of a
graph|structure.

6.38.2 Guidance to language users

— F¢llow themitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.38.5.

— Use controlled types and appropriate redefinitions of the Tnitialize, adjust, and Finalize
oli)eration to create deep copies when needed.

— Use a pre-existing container type for trees.
6.39 Memory leak and heap fragmentation [XYL]

6.39.1 Applicability to language

For objects that are allocated from the heap without the use of reference counting, the memory leak
vulnerability is possible in Ada. For objects that allocate from a storage pool, the vulnerability is present
but is restricted to this single pool, which makes it easier to detect memory leaks by verification.
Subpools can be used to further reduce the possibility for memory leaks. For objects of a controlled type

26 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

that uses referencing counting and that are not part of a cyclic reference structure, the vulnerability

does not exist.

Ada ensures that objects designated by an access-to-object type declared in a nested scope are fin

alized

when execution leaves the nested scope. However, it is implementation defined whether storage is
reclaimed for this case. Associating an access-to-object type with a storage pool can ensure that the

storage reclamation takes place.

Ada does not mandate the use of a garbage collector, but Ada implementations are free to provide such

memory reclamation. For applications that use and return memory on an implementation that pr
garbage collection, the issues associated with garbage collection exist in Ada.

6.39.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.39.5.

— Use controlled types and reference counting to implement explicit storage/management sy
that cannot have storage leaks.

— Declare access-to-object types in a nested scope where possible.

— Use a completely static model where all storage is allocated ‘from global memory and exj
managed under program control.

6.40 Templates and generics [SYM]

With the exception of unsafe programming (see Clause' 4), this vulnerability is not applicable f
as the Ada generics model is based on imposing‘a.contract on the structure and operations

bvides

stems

licitly

o Ada
of the

types that can be used for instantiation. Also, explicit instantiation of the generic is required fofr each

particular type.

Therefore, the compiler is able to check:thé generic body for programming errors, independer
actual instantiations. At each actual instantiation, the compiler also checks that the instantiate
meets all the requirements of the generic contract.

Ada also does not allow for ?special case" generics for a particular type. Therefore, behavi
consistent for all instantiations.

6.41 Inheritance [RIP]

6.41.1 Applicability to language
The vulnerability documented in ISO/IEC TR 24772-1:2019, 6.41, applies to Ada.

Ada allows only a restricted form of multiple inheritance, where only one of the multiple anc
(the pareént) is permitted to implement operations. All other ancestors (interfaces) can only s
the @perations’ signature, and whether the operation is required to be overridden, or can sim
fiothing if never explicitly defined. Therefore, Ada does not suffer from multiple inheritance 1

itly of
1 type

our is

estors
pecify
ply do
elated

vulnerabpllities.

Ada has no preference rules to resolve ambiguities of calls on primitive operations of tagged

types.

Hence the related vulnerability documented in ISO/IEC TR 24772-1:2019, 6.41, does not apply to Ada.

6.41.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.41.5.

— Use the overriding indicators on potentially inherited subprograms to ensure that the intended set

of operations are overridden, thus preventing the accidental redefinition or failure to redef
operation of the parent.

© ISO/IEC 2020 - All rights reserved

ine an

27

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

— Specify the aspect specifications aspect Pre’Class and aspect Post’Class aspects when a
primitive operation is initially defined, to indicate the properties of inputs that any overridings
need to accept, and the properties of outputs that any overridings need to produce, as specified by
ISO/IEC 8652:2012, 6.1.1.

6.42 Violations of the Liskov substitution principle or the contract model [BLP]

6.42.1 Applicability to language

This julnerability generally does apply to Ada but is mitigated by the language concepts of specified
and enforced pre- and postconditions of methods.

When(defining one type as a descendant of another and overriding existing primitive operations’of the
ancestor type, the Liskov substitution principle (LSP) argues for ensuring that the importantpfoperties
of the pperations are preserved in the descendant types, according to the rules of behaviouyral subtyping.
In Adg, this can be enforced by specifying these properties using the aspect specifications pre’class
and ppst’class when the operation is first defined, to define the relevant pre<and postconditions
(respdctively) which are to apply to the operations and any overridings. Run-time checks are provided
by th¢ Ada implementation on all calls of these operations and their overridings, to verify that the
inputq provided by the caller satisfy the required preconditions, and that the‘outputs produced by the
operation satisfy the required postconditions. Ada allows these aspect-specifications to be refined
in ovqrridings, but only in ways that are consistent with LSP, meaning that the effective class-wide
preconditions can only be relaxed in overridings, never made more(stringent, and the effective class-
wide postconditions can only be tightened, never made looser. Fhis ensures that if a caller is reaching
an operation of a descendant type while being only aware of thé pre’class and post’class aspects
of an ancestor operation, any input that satisfies the ancestor pre’class still satisfies the descendant
effectlve pre’ Class, and any output that satisfies the descéndant effective rost’ c1lass also satisfies the
ancestor’s Post’Class.

6.42.2 Guidance to language users

— Fg¢llow the mitigation mechanisms of ISOAIEC TR 24772-1:2019, 6.42.5.

— Specify pre’class and Post’ Class forall primitive operations of tagged types.
6.43 Redispatching [PPH]

6.43.1 Applicability to language

The default behaviour-‘ef“the relevant calls is non-dispatching in Ada. But, on explicitly coding a
redispatching call, thisvulnerability applies.

Ada djstinguishés~between a specific type T and a class-wide type T’class. If dispatching is being
perfoymed within a routine on a particular formal parameter, it is preferable that the parameter be
declarjed as¢lass-wide to document this internal use of dispatching. Ada permits an explicit conversion
from & specific type to a class-wide type to perform re-dispatching, but this should be avoided when

possihlezand documented explicitly when necessary.

6.43.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.43.5.

— Ifredispatching is necessary, document the behaviour explicitly.

28 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.44 Polymorphic variables [BKK]

6.44.1 Applicability to language
The vulnerabilities related to upcasts apply to Ada.
The vulnerabilities related to unsafe casts do not apply to Ada, except when unsafe programming (see

Clause 4) is used. The vulnerabilities related to downcasts are mitigated, as run-times checks identify
fanlty uses

Ada checks all conversions to descendant tagged types (downward conversions) to be sure|the run-
time tag of the object being converted matches that of the target type, or one of its desgendants. To
avoid the failure of such a tag check, the programmer should use a class-wide membetship test ("ob
in Target’Class") or rely on a dispatching call to perform the appropriate downward conversion
implicitly.

Although conversions up to ancestors are always structurally safe (upwardyconversions), in that the
ancestor has a subset of the data components of any descendant, a conversion to a specific (as opgposed
to class-wide) ancestor type may violate semantic requirements of the(descendant type, partidularly
if the descendant type is a private extension of the ancestor and has certain desired relationships
between components of the extension and those inherited from the ancestor. By specifying a[Type
Invariant aspect specification on a private extension, the progfammer can ensure that the serpantic
requirements of the private extension, as captured by the type invariant, are preserved acrosp such
conversions to an ancestor specific type, in that they are re-checked after the construct manipylating
the upward conversion is complete.

6.44.2 Guidance to language users

Follow the mitigation mechanisms of ISO/IEC TR\24772-1:2019, 6.44.5.

6.45 Extra intrinsics [LRM]

The vulnerability does not apply to Ada, because all subprograms, whether intrinsic or not, belpng to
the same name space. Ada requires-that all subprograms are explicitly declared, and the same|name
resolution rules apply to all of them, whether they are predefined or user-defined. If two subprograms
with the same name and signature are visible (that is to say nameable) at the same placg in a
program, then a call using:that name is rejected as ambiguous by the compiler, and the programmer
needs to specify (for example, by means of an expanded name) which subprogram is meart (see
ISO/IEC 8652:2012,,6,1):

6.46 Argument passing to library functions [TR]

6.46.1 Applicability to language

The.general vulnerability from ISO/IEC TR 24772-1:2019 that parameters may have values pre¢luded
by‘preconditions of the called routine applies to Ada as well.

However, to the extent that the preclusion of values can be expressed as part of the type system of
Ada, the preconditions are checked by the compiler statically or dynamically and thus are no longer
vulnerabilities. For example, any range constraint on values of a parameter can be expressed in Ada by
means of type or subtype declarations. Type violations are detected at compile time, subtype violations
cause run-time exceptions. In addition, preconditions, postconditions, type invariants, and subtype
predicates can be specified explicitly to express more complex restrictions to be observed by callers.
These are checked at run-time depending on the Assertion Policy in effect, and can be recognized by
other static analysis tools as part of program verification.

© ISO/IEC 2020 - All rights reserved 29

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.46.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.46.5.

— Exploit the type and subtype system of Ada to express restrictions on the values of parameters and
results.

— Specify explicit preconditions and postconditionsError! Reference source not found. for
subprograms wherever practical.

— Specify subtype predicates and type invariantsError! Reference source not found. for subtypés
and private types when appropriate.

— S

6.47

ecify the exception raised or other response to values that do not satisfy the precondition.,

Inter-language calling [D]S]

6.47.1 Applicability to language

The vulnerability applies to Ada, however Ada provides mechanisms to<interface with common

langu
these

ges, such as C, C++, Fortran and COBOL, so that vulnerabilities associated with interfacing with
anguages can be avoided.

6.47.2 Guidance to language users

— Fo¢llow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.47.5.

be the inter-language methods and syntax specified by ISO/IEC 8652 when the routines to be

cdlled are written in languages that ISO/IEC 8652 speécifies an interface with.

be interfaces to the C programming language where the other language system(s) are not covered

by ISO/IEC 8652, but the other language systems have interfacing to C.

— Mike explicit checks on all return valuesfrom foreign system code artifacts, for example by using

tHe ‘validattribute or by performingexplicit tests to ensure that values returned by inter-language
cdlls conform to the expected representation and semantics of the Ada application.

— Co¢nsider handling any exceptions possibly raised in Ada code before returning to a routine from

a

6.48

foreign language, to prevent possible stack corruption if the foreign language cannot handle

ejceptions raised in Ada code.

Dynamically-linkéd code and self-modifying code [NYY]

With the exception/ofunsafe programming (see Clause 4), this vulnerability is not applicable to Ada as
Ada syipports neither dynamic linking nor self-modifying code. The latter is possible only by exploiting

other

vulnerabilities of the language in the most malicious ways and, even then, it is still very difficult

to achjeve.

6.49

ibrary signature [NSQ]

6.49.1 Applicability to language

Ada provides mechanisms to explicitly interface to modules written in other languages. Pragma Import,
pragma Export and pragma Convention permit the name of the external unit and the interfacing
convention to be specified.

Even with the use of pragma Import, pragma Export and pragma Convention, the vulnerabilities stated
in ISO/IEC TR 24772-1:2019, 6.49, of are possible. Names and number of parameters change under

30

© ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

maintenance; calling conventions change as compilers are updated or replaced, or languages are used

for which Ada does not specify a calling convention.

6.49.2 Guidance to language users

Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.49.5.

6.50 Unanticipated exceptions from library routines [HJW]

6.50.1 Applicability to language

Ada programs are capable of handling exceptions at any level in the program, as long as)any exc

pption

naming and delivery mechanisms are compatible between the Ada program and the libiary components.

In such cases, the normal Ada exception handling processes apply, and either the-calling unit oy
subprogram or task in its call chain catches the exception and take appropriate>programmed :
If no action is taken to handle the exception, the task or program where, the exception ocq
terminates.

If the library convention is to report error codes and not by exceptionsthen, if the library comp
themselves are written in Ada, then Ada's exception handling mechanisms let all called unit
any exceptions that are generated and return error conditions>instead. If such exception ha
mechanisms are not put in place, then exceptions can be unexpectedly delivered to a caller.

some
iction.
urred

nents
s trap
ndling

If the interface between the Ada units and the library routine being called does not adequately adldress

the issue of naming, generation and delivery of exceptigns.across the interface, then the vulneral
as expressed in ISO/IEC TR 24772-1:2019, 6.50, apply.

6.50.2 Guidance to language users
— Follow the mitigation mechanisms of ISO/1EC TR 24772-1:2019, 6.50.5.

— Ensure that the interfaces with libraries written in other languages are compatible in the n
and generation of exceptions.

— Put appropriate exception fianidlers in all routines that call library routines, including the ca
exception handler when_others =>.

— Put appropriate excéption handlers in all routines that are called by library routines, includi
catch-all exceptionhandler when others=>.

— Document any exceptions possibly raised by any Ada units being used as library routines.

6.51 Pre-processor directives [NMP]

This vulnerability is not applicable to Ada as Ada does not have a pre-processor.

ilities

aming

tch-all

ng the

6.52 Suppression of language-defined run-time checking [MXB]

6.52.1 Applicability to Language

The vulnerability exists in Ada since pragma suppress() permits explicit suppression of language-
defined checks on a unit-by-unit basis or on partitions or programs as a whole (the language-

defined default, however, is to perform the runtime checks that prevent the runtime vulnerabi

lities).

Pragma Suppress can suppress all language-defined checks or 12 individual categories of checks (see

ISO/IEC 8652:2012, 11.5).

© ISO/IEC 2020 - All rights reserved

31

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

6.52.2 Guidance to language users

Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.52.5.
6.53 Provision of inherently unsafe operations [SKL]

6.53.1 Applicability to Language

Ada provides clearly identified language features to do so. Examples include the generic uncheckeg.
Convetsion for unsafe type-conversions or unchecked Deallocation for the deallocation of heap objects
regardless of the existence of surviving references to the object. If unsafe programming is employed in
a unit| then the unit needs to specify the respective generic unit in its context clause, thus identifying
potentially unsafe units. Similarly, there are ways to create a potentially unsafe global pointerto alocal
object, using the unchecked access attribute.

6.53.2 Guidance to language users

— Fo¢llow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.53.5.

— Ayoid the use of unsafe programming practices.

— Use the pragma Restrictions () to prevent the inadvertent use ofunsafe language constructs.

— Carefully scrutinize any code that refers to a program @nit explicitly designated to provide
upchecked operations.

6.54 Pbscure language features [BRS]

6.54.1 Applicability to language

Ada iga rich language and provides facilities for a wide range of application areas. Because some areas
are specialized, it is possible that a programmier not versed in a special area misuses features for that
area. For example, the use of tasking featuies for concurrent programming requires knowledge of this
domain. Similarly, the use of exceptions and exception propagation and handling requires a deeper
underptanding of control flow issues than some programmers possess.

6.54.2 Guidance to language users
— Fo¢llow the mitigatiofi‘fmechanisms of ISO/IEC TR 24772-1:2019, 6.54.5.
— Usge the pragma-Restriction () to prevent the use of obscure features of the language.

— Similarly, avoid featuresin ISO/IEC 8652:2012, Annexes C to H, unless the application area concerned
isfwell-understood.

— Thetestriction No_Dependence prevents the use of specified pre-defined or user-defined libraries.

6.55 Unspecified behaviour [BQF]

6.55.1 Applicability to language

In Ada, there are two main categories of unspecified behaviour. One has to do with unspecified aspects
of normal run-time behaviour. The other has to do with bounded errors, errors that do not need to
be detected at run-time but for which there is a limited number of possible run-time effects (though
always including the possibility of raising Program Error exception).

32 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

For the normal behaviour category, there are several distinct aspects of run-time behaviour that are

unspecified, including:
— order in which certain actions are performed at run-time;

— number of times a given element operation is performed within an operation invoked on a com
or container object;

— results of certain operations within a language-defined generic package if the actual asso

posite

ciated

withra particutar formatsubprogram does ot eet stated expectations suchras provi
strict weak ordering relationship);

— whether distinct instantiations of a generic or distinct invocations of an operation preduce d
values for tags or access-to-subprogram values.

The index entry in the ISO/IEC 8652 for unspecified provides the full list. Similarly, the index enf
bounded error provides the full list of references to places in ISO/IEC 8652 where a bounded e
described.

Failure can occur due to unspecified behaviour when the programmef did not fully account f]
possible outcomes, and the program is executed in a context where the actual outcome was not
those handled, resulting in the program producing an unintended result.

6.55.2 Guidance to language users

— Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.55.5.

ling a

stinct

ry for
'ror is

or the
one of

— For situations involving generic formal subprograms, ensure that the actual subprogram saftisfies

all the stated expectations.

— For situations involving unspecified values, avoid depending on equality between pote
distinct values.

— For situations involving bounded exrors, avoid the problem completely, by ensuring in othet
thatall requirements for correct operation are satisfied before invoking an operation that can
in a bounded error. See 6.22.féra discussion of uninitialized variables in Ada, a common cau
bounded error.

6.56 Undefined behayiour [EWF]

6.56.1 Applicability to language

In Ada, undefined behaviour is called erroneous execution, and can arise from certain errors th
not requiredto be detected by the implementation, and whose effects are not in general predicta

There dre various kinds of errors that can lead to erroneous execution, including:

—<_¢hanging a discriminant of a record (by assigning to the record as a whole) while there 1

ntially

ways
result
se of a

at are
ble.

emain

active references to subcomponents of the record that depend on the discriminant;

— referring via an access-to-object value, task id, or tag, to an object, task, or type that no longer
at the time of the reference;

— referring to an object whose assignment was disrupted by an abort statement, prior to invo
new assignment to the object;

— sharing an object between multiple tasks without adequate synchronization;
— suppressing a language-defined check that is in fact violated at run-time;

— specifying the address or alignment of an object in an inappropriate way;

© ISO/IEC 2020 - All rights reserved

exists

king a

33

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

— usingUnchecked Conversion;,Address _To Access Conversions Or callinganimported subprogram
to create a value, or reference to a value, that has an abnormal representation.

The full list is given in the index of ISO/IEC 8652 under erroneous execution.

Any occurrence of erroneous execution represents a failure situation, as the results are unpredictable,
and may involve overwriting of memory, jumping to unintended locations within memory and other
uncontrolled events.

6.56.2 Guidance to language users
— Fg¢llow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.56.5.

— Ensure that all data shared between tasks are either private within a protected objectormarked
Atomic.

— Onh any use of Unchecked Deallocation, carefully check to be sure that there arg no remaining
rdferences to the object.

— U$e pragma Suppress sparingly, and only after the code has undergone extensive verification. The
other errors that can lead to erroneous execution are less common, but.elearly in any given Ada
application, care is required when using features such as:

—t abort,

—1 Unchecked Conversion;

—1 Address To Access Conversions;

— the results of imported subprograms;

— discriminant-changing assignments to global variables.
6.57 Implementation-defined behaviour)[FAB]

6.57.1 Applicability to language

There|are a number of situations ih.Ada where the language semantics are implementation defined, to
allow [the implementation to chogse an efficient mechanism, or to match the capabilities of the target
envirqnment. Each of these situations is identified in ISO/IEC 8652:2012, Annex M, and implementations
are rejquired to provide dacumentation associated with each item in ISO/IEC 8652:2012, Annex M, to
provide the programmer*with guidance on the implementation choices.

A failyre can occur-in an Ada application due to implementation-defined behaviour if the programmer
presumed the implementation made one choice, when in fact it made a different choice that affected
the results of the'execution. In many cases, a compile-time message or a run-time exception indicates
the prjesencéof such a problem. For example, the range of integers supported by a given compiler is
implementation defined. However, if the programmer specifies a range for an integer type that exceeds
that sppported by the implementation, then a compile-time error is indicated, and if at run time a

computation exceeds the base range of an integer type, then Constraint Error IS raised.

Failure due to implementation-defined behaviour is generally due to the programmer presuming a
particular effect that is not matched by the choice made by the implementation. As indicated above,
many such failures are indicated by compile-time error messages or run-time exceptions. However,
there are cases where the implementation-defined behaviour may be silently misconstrued, such as
if the implementation presumes Ada.Exceptions.Exception Information returns a string with a
particular format, when in fact the implementation does not use the expected format. If a program is
attempting to extract information from ada.Exceptions.Exception Information for the purposes of
logging propagated exceptions, then the log may end up with misleading or useless information if there
is a mismatch between the programmer’s expectation and the actual implementation-defined format.

34 © ISO/IEC 2020 - All rights reserved

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

ISO/IEC TR 24772-2:2020(E)

Many implementation-defined limits have associated constants declared in language-defined packages,
generally package system. In particular, the maximum range of integers is given by system.Min Int

System.Max Int, and other limits are indicated by constants such as System.Max Binary Modulus,

System.Memory Size, System.Max Mantissa, and similar. Other implementation-defined limits are
implicit in normal ‘First and ‘rast attributes of language-defined (sub) types, such as system.
Priority'First and System.Priority'Last. Furthermore, the implementation-defined representation/
aspect specification of types and subtypes can be queried by language-defined attributes. Thus, code
can be parameterized to adjust to implementation-defined properties without modifying the code.

6.57.2 Guidance to language users

6.58 Deprecated language features [MEM]

6.58.1 Applicability to language

If obsolescent language features are used/then the mechanism of failure for the vulnerability
described in ISO/IEC TR 24772-1:2019, 6:58.3.

6.58.2 Guidance to language us€rs

6.59 Conecurrency — Activation [CGA]

6.59.1~Applicability to language

Adais open to this vulnerability but provides features for its mitigation. A task failing during acti

Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.57.5.

Be aware of the contents of ISO/IEC 8652:2012, Annex M and avoid implementation-d
behaviour whenever possible.

cfined

Make use of the constants and subtype attributes provided in package/sy$tem and elsewhere to

avoid exceeding implementation-defined limits.

Minimize use of any predefined numeric types, as the ranges<nd precisions of these 3
implementation defined. Instead, declare your own numeric\types to match your part
application needs.

When there are implementation-defined formats for, sfrings, such as Exception Inforn|
localize any necessary processing in packages with implementation-specific variants.

Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.58.5.

Use pragma Restrichions (No Obsolescent Features) to prevent the use of any obsol
features.

Refer to [SO/JEC 8652:2012, Annex |, to determine whether a feature is obsolescent.

re all
icular

htion,

/ is as

pscent

vation

1 - e H 41 e Ao 4 1l L . Tl 4 4 . 1 pa |
diwdysS I'dlSTS dlil TALTPLUIUIL I LT dULIVAUIITg tdoSR (C.5. IS KINg LI TOL). TIHTC dUUVAUIIg tdSK UU

S not

continue executing until all its dependent tasks have completed activation. A task can always check that
another task is executable (i.e. not terminated).

6.59.2 Guidance to language users

Follow the mitigation mechanisms of ISO/IEC TR 24772-1:2019, 6.59.5.
Always have a handler to catch activation failures.

If possible, declare all tasks statically at the library level.

© ISO/IEC 2020 - All rights reserved

35

https://standardsiso.com/api/?name=791124a8c41bc51a403719f6555f2d08

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Language concepts
	4.1 Enumeration type
	4.2 Exception
	4.3 Hiding
	4.4 Implementation defined
	4.5 Type conversions
	4.6 Operational and Representation Attributes
	4.7 User defined types
	4.8 Pragma compiler directives
	4.8.1 Pragma Atomic
	4.8.2 Pragma Atomic_Components
	4.8.3 Pragma Convention
	4.8.4 Pragma Detect_Blocking
	4.8.5 Pragma Discard_Names
	4.8.6 Pragma Export
	4.8.7 Pragma Import
	4.8.8 Pragma Normalize_Scalars
	4.8.9 Pragma Pack
	4.8.10 Pragma Restrictions
	4.8.11 Pragma Suppress
	4.8.12 Pragma Unchecked_Union
	4.8.13 Pragma Volatile
	4.8.14 Pragma Volatile_Components

	4.9 Separate compilation
	4.10 Storage pool
	4.11 Unsafe programming

	5 General guidance for Ada
	5.1 Ada language design
	5.2 Top avoidance mechanisms

	6 Specific guidance for Ada
	6.1 General
	6.2 Type system [IHN]
	6.2.1 Applicability to language
	6.2.2 Guidance to language users

	6.3 Bit representation [STR]
	6.3.1 Applicability to language
	6.3.2 Guidance to language users

	6.4 Floating-point arithmetic [PLF]
	6.4.1 Applicability to language
	6.4.2 Guidance to language users

	6.5 Enumerator issues [CCB]
	6.5.1 Applicability to language
	6.5.2 Guidance to language users

	6.6 Conversion errors [FLC]
	6.6.1 Applicability to language
	6.6.2 Guidance to language users

	6.7 String termination [CJM]
	6.8 Buffer boundary violation (buffer overflow) [HCB]
	6.9 Unchecked array indexing [XYZ]
	6.9.1 Applicability to language
	6.9.2 Guidance to language users

	6.10 Unchecked array copying [XYW]
	6.11 Pointer type conversions [HFC]
	6.11.1 Applicability to language
	6.11.2 Guidance to language users

	6.12 Pointer arithmetic [RVG]
	6.13 Null pointer dereference [XYH]
	6.13.1 Applicability to the language
	6.13.2 Guidance to language users

	6.14 Dangling reference to heap [XYK]
	6.14.1 Applicability to language
	6.14.2 Guidance to language users

	6.15 Arithmetic wrap-around error [FIF]
	6.16 Using shift operations for multiplication and division [PIK]
	6.17 Choice of clear names [NAI]
	6.17.1 Applicability to language
	6.17.2 Guidance to language users

	6.18 Dead store [WXQ]
	6.18.1 Applicability to language
	6.18.2 Guidance to language users

	6.19 Unused variable [YZS]
	6.19.1 Applicability to language
	6.19.2 Guidance to language users

	6.20 Identifier name reuse [YOW]
	6.20.1 Applicability to language
	6.20.2 Guidance to language users

	6.21 Namespace issues [BJL]
	6.22 Initialization of variables [LAV]
	6.22.1 Applicability to language
	6.22.2 Guidance to language users

	6.23 Operator precedence/order of evaluation [JCW]
	6.23.1 Applicability to language
	6.23.2 Guidance to language users

	6.24 Side-effects and order of evaluation [SAM]
	6.24.1 Applicability to language
	6.24.2 Guidance to language users

	6.25 Likely incorrect expression [KOA]
	6.25.1 Applicability to language
	6.25.2 Guidance to language users

	6.26 Dead and deactivated code [XYQ]
	6.26.1 Applicability to language
	6.26.2 Guidance to language users

	6.27 Switch statements and static analysis [CLL]
	6.27.1 Applicability to language
	6.27.2 Guidance to language users

	6.28 Demarcation of control flow [EOJ]
	6.29 Loop control variables [TEX]
	6.30 Off-by-one error [XZH]
	6.30.1 Applicability to language
	6.30.2 Guidance to language users

	6.31 Unstructured programming [EWD]
	6.31.1 Applicability to language
	6.31.2 Guidance to language users

	6.32 Passing parameters and return values [CSJ]
	6.32.1 Applicability to language
	6.32.2 Guidance to language users

	6.33 Dangling references to stack frames [DCM]
	6.33.1 Applicability to language
	6.33.2 Guidance to language users

	6.34 Subprogram signature mismatch [OTR]
	6.34.1 Applicability to language
	6.34.2 Guidance to language users

	6.35 Recursion [GDL]
	6.35.1 Applicability to language
	6.35.2 Guidance to language users

	6.36 Ignored error status and unhandled exceptions [OYB]
	6.36.1 Applicability to language
	6.36.2 Guidance to language users

	6.37 Type-breaking reinterpretation of data [AMV]
	6.37.1 Applicability to language
	6.37.2 Guidance to language users

	6.38 Deep vs. shallow copying [YAN]
	6.38.1 Applicability to language
	6.38.2 Guidance to language users

	6.39 Memory leak and heap fragmentation [XYL]
	6.39.1 Applicability to language
	6.39.2 Guidance to language users

	6.40 Templates and generics [SYM]
	6.41 Inheritance [RIP]
	6.41.1 Applicability to language
	6.41.2 Guidance to language users

	6.42 Violations of the Liskov substitution principle or the contract model [BLP]
	6.42.1 Applicability to language
	6.42.2 Guidance to language users

	6.43 Redispatching [PPH]
	6.43.1 Applicability to language
	6.43.2 Guidance to language users

	6.44 Polymorphic variables [BKK]
	6.44.1 Applicability to language
	6.44.2 Guidance to language users

	6.45 Extra intrinsics [LRM]
	6.46 Argument passing to library functions [TRJ
	6.46.1 Applicability to language
	6.46.2 Guidance to language users

	6.47 Inter-language calling [DJS]
	6.47.1 Applicability to language
	6.47.2 Guidance to language users

	6.48 Dynamically-linked code and self-modifying code [NYY]
	6.49 Library signature [NSQ]
	6.49.1 Applicability to language
	6.49.2 Guidance to language users

	6.50 Unanticipated exceptions from library routines [HJW]
	6.50.1 Applicability to language
	6.50.2 Guidance to language users

	6.51 Pre-processor directives [NMP]
	6.52 Suppression of language-defined run-time checking [MXB]
	6.52.1 Applicability to Language
	6.52.2 Guidance to language users

	6.53 Provision of inherently unsafe operations [SKL]
	6.53.1 Applicability to Language
	6.53.2 Guidance to language users

	6.54 Obscure language features [BRS]
	6.54.1 Applicability to language
	6.54.2 Guidance to language users

	6.55 Unspecified behaviour [BQF]
	6.55.1 Applicability to language
	6.55.2 Guidance to language users

	6.56 Undefined behaviour [EWF]
	6.56.1 Applicability to language
	6.56.2 Guidance to language users

	6.57 Implementation-defined behaviour [FAB]
	6.57.1 Applicability to language
	6.57.2 Guidance to language users

	6.58 Deprecated language features [MEM]
	6.58.1 Applicability to language
	6.58.2 Guidance to language users

	6.59 Concurrency — Activation [CGA]
	6.59.1 Applicability to language
	6.59.2 Guidance to language users

	6.60 Concurrency — Directed termination [CGT]
	6.60.1 Applicability to language
	6.60.2 Guidance to language users

	6.61 Concurrent data access [CGX]
	6.61.1 Applicability to language
	6.61.2 Guidance to language users

	6.62 Concurrency — Premature termination [CGS]
	6.62.1 Applicability to language
	6.62.2 Guidance to language users

	6.63 Protocol lock errors [CGM]
	6.63.1 Applicability to language
	6.63.2 Guidance to language users

	6.64 Reliance on external format strings [SHL]

	7 Language-specific vulnerabilities for Ada
	8 Implications for standardization
	Bibliography
	Index

