INTERNATIONAL ISO/IEC
STANDARD 9075-3

Fifth edition
2016-12-15

Information technology —'Database
languages — SQL —

Part 3:
Call-Level Interface (SQL/CLI)

Technologies de l'informdtion — Langages de base de donnégs —
SQL —

Partie 3: Interface deniveau d’appel (SQL/CLI)

Reference number

ISO/IEC 9075-3:2016(E)
e ° ©ISO/IEC 2016

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

Contents Page
=110 o P, G .iX
INEPOHUCTION. . e D X
R 1S Y o 0T o - S S 1
2 INormative referenCes.t e e .3
2.1 ISO and IEC standards. e .3
3 Definitions, notations, and CONVENLIONS.ottt e e ...5
3.1 DefinitioNS. ... o N ...5
3.11 Definitions provided in Part 3. o T ...5
3.2 CoNVENLIONS. .ot ...5
3.2.1 Specification of routine definitions. L e ...5
N [©o T o] o] N
4.1 Introduction t0 SQL/CLL. O T
4.2 REIUIN COOBS. . . o\ttt e e s e et et e 11
4.3 Diagnostics areas in SQL/CLL. 8 o e .11
431 Setting of ROW_NUMBER and COLUMN_NUMBER fields.o .. 15
4.4 Miscellaneous CharaCteristiCs. N ot .15
441 Handles. N .. 15
4472 NUIl terminated StHiNGS.t .15
443 NUIL POINEErS. . o .16
444 ENvironment attributes: o . o .16
445 ConNECLioN AttriDULES. «ot .17
4.4.6 Statement attribULES.17
447 CLI deSCIIREOI-AIAS. . .« « v v et ettt e e e e e e e e e e e e e e .18
448 Obtaining.diagnostics during multi-row fetch. i .19
4.5 SQLANVOKEA FOULINES. . . . ottt e e e e .19
45.1 Result sets returned by SQL-invoked procedures.ttt e .19
4.6 L T 550 .. 20
46.1 General description of cursors .20
4.7 CHENt-SEIVEr OPEIAtION. oottt et et e et e e e e e 20
5 Call-Level Interface SPeCIfiCatiONS.ttt 21
5.1 SO FOULINE>. . oo e 21
5.2 <CLI routine> INVOCALION.ottt e e et e e e e e e e 29
5.3 IMplicit SEt CONNEBCLION. o e e 32
5.4 Preparing a Statement. o 33
5.5 EXECULING @ STAtEMENL. 35

©ISO/IEC 2016 — All rights reserved

Contents iii

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

Implicit CLI prepared CUISOL.o e e e e e e e e e e e e 37
Implicit CLI procedural result CUISOr. oo 39
INItIAl CLl CUISO. . . ottt e e e e e e e e e 40
Implicit DESCRIBE USING ClIaUSE.ot 41
Implicit EXECUTE USING and OPEN USING Clauses.ottt 47
Implicit CALL USING Clause.o e e e e e e e e e e et e et ieaa s 53
Fetching @ rowset. e .. 57
Implicit FETCH USING clause. N T ..61
Character string retrieval. e .. 67
Binary string retrieval.68
Deferred parameter check.o i e N .. 69
CLI-specific status COOES.ot e e e P .. 70
Description of CLI item descriptor areas. T i .12
Other tables associated with CLIL. O ..84
SQL/CLI data type COrrespondences.covvvneennen e D J111
SQL/CLI FOULINES. . .ottt O .123
ANIOCCONNECT. . . o N .123
AlIOCENV. ... N .124
AllocHaNdIe. N .125
AL S M. L .129
BindCol. R . 130
BINOParamMEter. . . .ot T e e 132
CanCel. . A 136
ClOSECUISOr. . ot ST 138
COlAIIULE. . . . s e e .139
ColumnPrivileges. L1441
COlUMINS. o e e ettt e e e e . 147
CONNECE. . o . 157
COPY DS . . vt N e e e .161
DatAS OUICES. . . e ettt e . 162
DeSCriDEC Ol N o .164
DI CONNE L) o ottt . 166
o 1 . 168
0 PP 172
EXECDIIECE. . . . ot 174
EXECULE. L . 175
=] (] 176
FetChSCrOll. L . 177
BT N EY S, .ot 178
FreeC ONNECT. . o oottt e 191
FrEBENV. . 192
FreeHandle. 193
I S ML, .« o 196

iv Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.28 G ONNBC AL, . . oo e 198
6.29 GetCUISOIN M. . o .ot e e e 200
6.30 GElDatA. . . .o e 201
6.31 GetDESCRIeld. . ..o 207
6.32 GEIDESCREC. . . ottt e 209
6.33 GetDiagFIeld. . . 211
6.34 GetDIAgREC. .« . ottt . 220
6.35 GelENV AL, . o e e ON L . 222
6.36 GetFeaturelnfo. L . 224
6.37 GEEFUNCHIONS. . . ot e e ST . 227
6.38 GetINfO. ..o NN . 228
6.39 GetLength. . .o P . 232
6.40 GetParambData.o e T .234
6.41 GtPOSItION. . .o NN . 240
6.42 GetSessionInfo. e D . 242
6.43 G S MU AT, . .. AN e . 244
6.44 GetSUBSEIING. . ..o S . 247
6.45 GetTypelnfo.o Y . 249
6.46 MOrERESUIES. . . o e e . 253
6.47 NEXIRESUIL. . .o N . 254
6.48 NumResultCols. o S . 255
6.49 ParambData. 256
6.50 o =T 0=V . 261
6.51 PrimaryKeys. . ..o e . 262
6.52 PutData. e . 267
6.53 ROW G OUNT. .« . T e e e . 270
6.54 Sl ONNEC AT, . . o e e e e .271
6.55 St CUISOINAIMIE. . . . o e e ettt ettt e et e e . 273
6.56 SetDesCRIeld. T e . 275
6.57 SEIDESCREC. . . o) e . 280
6.58 SB NV A, . N o . 282
6.59 SO S M A N . o o e . 284
6.60 SPeCial O UMNS. 288
6.61] 2= 11 - . 295
6.62 TADlEPIIVIIEgES. . . o . 297
6.63 FaDIES. o e e . 302
7 AOditiomatdatamamputation Totes 309
7.1 Effect Of OPENING @ CUISOL. . . . o oottt e e e e e e e e e e e 309
8 DYNAMIC SO L. .t 311
8.1 <preparable dynamiC CUISOr NamE>.ot ettt 311
9 Definition SChema. e 313
9.1 SQL_CONFORMANCE base table. 313
9.2 SQL_IMPLEMENTATION_INFO base table. e 314

©ISO/IEC 2016 — All rights reserved Contents v

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

9.3 SQL_SIZING base table. 317
10 CONTOIMANCE.ttt e et e et e e e 319
10.1 Claims of conformance to SQL/CLL. e e 319
10.2 Additional conformance requirements for SQL/CLI. i 319
10.3 Implied feature relationships of SQL/CLL. e e e 320
AnngxA(imformmative) —SQt—Corformance Summary .. .321
Anngx B (informative) Implementation-defined elements........... i . . 323
Anngx C (informative) Implementation-dependent elements..........................¢0 337
Anngx D (infomative) Deprecated features..............ccoiiiiiii AL .343
Anngx E (informative) Incompatibilities with ISO/IEC 9075:2011 and 9075:2008(y~. 345
Anngx F (informative) SQL feature taxonomy...............coovivveii o ot . 347
Anngx G (informative) Defect reports not addressed in this edition of this part of ISO/IEC 9075. .|. 349
Anngx H (informative) Typical header files....... N .351
H.1 Cheader file SQLCLLH. e o . 351
H.2 COBOL library item SQLCLL. L) . 364
Anngx | (informative) Sample C programs. S i .375
1.1 Create table, insert, select. T e . 375
1.2 Interactive QUENY.ot t ON . 378
1.3 Providing long dynamic arguments at Execute tie.ot . 382
o P . 385

vi Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

Tables
Table Page
1 Header fields in SQL/CLI diagnOStiCS @ras.ottt et ettt e e e e e e e e e e 13
2 Stattstecord-fieldsin-SQHEHegrostiesaress—mmmmmmmm m m m m .. 13
3 Supported calling conventions of SQL/CLI routines by language.o G .24
4 Abbreviated SQL/CLI geNeriC NAMES.ottt e e e e N .. 24
5 SQLSTATE class and subclass codes for SQL/CLI-specific conditions.0«.7. 70
6 Fields in SQL/CLI row and parameter descriptor areas.coovvinennenee oo, 77
7 Codes used for implementation data types in SQL/CLI. oo NN .. 79
8 Codes used for application data types in SQL/CLL.81
9 Codes associated with datetime data types in SQL/CLI. 5 i .. 82
10 |Codes associated with <interval qualifier> in SQL/CLL. =\ . . o .. 82
11 |Codes associated with <parameter mode> in SQL/CLI. Gt ..83
12 |Codes associated with user-defined types in SQL/CLL.y ..83
13 |Codes used for SQL/CLI diagnostic fields. 5 .. 84
14 |Codes used for SQL/CLI handle types. N .. 86
15 |Codes used for transaction termination. 8 .. 86
16 |Codes used for environment attributes. ottt N .. 86
17 |Codes used for connection attributes. o e e .. 87
18 |Codes used for statement attributes. s .. 87
19 |Codes used for FreeStmt Options.ottt e e e .. 87
20 [Datatypes of attributes. AN ..88
21 |Codes used for SQL/CLI descriptor fields. . ..y . oo oo e .. 88
22 |Ability to set SQL/CLI descriptor fields. s ..ot e .91
23 |Ability to retrieve SQL/CLI descriptorfiglds.o .. 93
24 |SQL/CLI descriptor field default valtes. 96
25 [Codes used for fetCh orientation .. & . .. oot e .. 98
26 [Multi-row fetch Status COABS .) . o ottt .. 99
27 [Miscellaneous codes Used IRLCLL. ottt e .. 99
28 [Codes used to identify.SQL/CLI rOULINES. oottt e e . 100
29 |Codes and data types.for implementation information. 103
30 [Codes and data types for session implementation information. i . 105
31 |Values for TRANSACTION ISOLATION OPTION with StartTran. 105
32 [Values for TRANSACTION ACCESS MODE with StartTran. 105
33 |Codes used for CONCISE data Ty PeS. vttt e e . 106
34 |Codestused with concise datetime data types in SQL/CLL. i e . 108
35 [Cades used with concise interval data types in SQL/CLL. i . 108
36 Concise codes used with datetime data types in SQL/CLI. i 109
37 Concise codes used with interval data types in SQL/CLI. o 109
38 Special parameter ValUES. o 109
39 Column types and scopes used with SpecialColumns. i 110
40 SQL/CLI data type correspondences for Ada.t e 111
41 SQL/CLI data type correspondences for C.ttt 112
42 SQL/CLI data type correspondences for COBOL.ttt e 114
43 SQL/CLI data type correspondences for FOrtran. 115

©ISO/IEC 2016 — All rights reserved Contents vii

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

44
45
46
47
48
49

SQL/CLI data type correspondences for M. i e 117
SQL/CLI data type correspondences for Pascal.o 118
SQL/CLI data type correspondences for PL/L. o 119
Implied feature relationships of SQL/CLL. o 320
Feature taxonomy and definition for mandatory features. i 347
Feature taxonomy for optional features. i e 348

viii Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical

16(E)

Commission) form the spemahzed system for worldw1de standardization. National bodles that are members

estab 1shed by the respectlve organlzatlon to deal W1th partlcular ﬁelds of technlcal act1v1ty ISO and IE(
techrfical committees collaborate in fields of mutual interest. Other international organizations, governm
and rjon-governmental, in liaison with ISO and IEC, also take part in the work. In the field of informatig
techrjology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are descril]
the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types
document should be noted. This document was drafted in accordance with the editorial rules of the ISO
Diregtives, Part 2 (see www.iso.org/directives).

Attenjtion is drawn to the possibility that some of the elements of this docunieit may be the subject of p4
rights. ISO and IEC shall not be held responsible for identifying any or all’such patent rights. Details of]
patent rights identified during the development of the document will be in the Introduction and/or on thg
list of patent declarations received (see www.iso.org/patents).

Any frade name used in this document is information given for:the convenience of users and does not
consa[':ute an endorsement.

For an explanation on the meaning of ISO specific termsiand expressions related to conformity assessmg
well s information about ISO's adherence to the World* Trade Organization (WTO) principles in the
Techhpical Barriers to Trade (TBT) see the following™URL: www.iso.org/iso/foreword.html.

The ¢gommittee responsible for this document 18ISO/IEC JTC 1, Information technology, SC 32, Data
mandgement and interchange.

ed in
of
1IEC

tent
any
ISO

nt, as

This fifth edition of ISO/IEC 9075-3 caneels and replaces the fourth edition (ISO/IEC 9075-3:2008), which

has been technically revised.

A list of all parts in the ISO/IEC 9075 series, published under the general title Information technol ogy —
Datapase languages — QL= can be found on the ISO website.

NOTH The individual parts of multi-part standards are not necessarily published together. New editions of one or more partg
be published witheut publication of new editions of other parts.

can

©ISO/IEC 2016 — All rights reserved Foreword ix

www.iso.org/iso/foreword.html
www.iso.org/directives
www.iso.org/patents
https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

Introduction

The organization of this part of ISO/IEC 9075 is as follows:

1)
2)

3)

4)
5)

6)
7)
8)
9)

10)
11)

12)

13)

14)

15)

16)

Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

Clause 2, “Normative references”, identifies additional standards that, through reference in this part
SO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

Clause 3, “Definitions, notations, and conventions”, defines the notations and conventions used in thi
of ISO/IEC 9075.

Clause 4, “Concepts”, presents concepts used in the definition of the Call-Level Interface.

Clause 5, “Call-Level Interface specifications”, defines facilities for using SQI through a Call-Leve
Interface.

Clause 6, “SQL/CLI routines”, defines each of the routines that comprise the Call-Level Interface.
Clause 7, “Additional data manipulation rules”, defines additional«ules for data manipulation.
Clause 8, “Dynamic SQL”, defines the SQL dynamic statements.

Clause 9, “Definition Schema”, specifies extensions to the Definition Schema required for support g
Call-Level Interface.

Clause 10, “Conformance”, defines the criteria fors:econformance to this part of ISO/IEC 9075.

Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the conformance
fequirements of the SQL language.

Annex B, “Implementation-defined.elements”, is an informative Annex. It lists those features for wi
he body of this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the et
n SQL-data and/or schemas, orany other behavior is partly or wholly implementation-defined.

Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those features for v
he body of this part of ASO/IEC 9075 states that the syntax, the meaning, the returned results, the ef
n SQL-data and/or_sehemas, or any other behavior is partly or wholly implementation-dependent.

Committee intend will not appear in a future revised version of this part of ISO/IEC 9075.

incompatibilities with the previous version of this part of ISO/IEC 9075.

part

f the

ich
fect

vhich
fect

Annex D, “Deprecated features”, is an informative Annex. It lists features that the responsible Technical

A\nnex E;“Ihcompatibilities with ISO/IEC 9075:2011 and 9075:2008”, is an informative Annex. It llists

\hAnex F, “SQL feature taxonomy”, is an informative Annex. It identifies features of the SQL langua

ge

specified in this part of ISO/IEC 9075 by an identifier and a short descriptive name. This taxonomy IS
to specify conformance.

used

17) Annex G, “Defect reports not addressed in this edition of this part of ISO/IEC 9075, is an informative
Annex. It describes the Defect Reports that were known at the time of publication of this part of this
International Standard. Each of these problems is a problem carried forward from the previous edition of
ISO/IEC 9075. No new problems have been created in the drafting of this edition of this International

x Call-Level Interface (SQL/CLI)

Standard.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

18) Annex H, “Typical header files”, is an informative Annex. It provides examples of typical definition files
for application programs using the SQL Call-Level Interface.

19) Annex I, “Sample C programs”, is an informative Annex. It provides examples of using the SQL Call-
Level Interface in the C programming language.

In the text of this part of ISO/IEC 9075, Clauses and Annexes begin new odd numbered pages, and in Clause 5,
“Cal I_CVCI IIILCIbeC OpCblflballUllo y thluuull u:auoc J.C, “Cunfm IIIG.II\;U y quuylauaca I'I:!Cldlll IICVV payco ny

resulting blank space is not significant.

©ISO/IEC 2016 — All rights reserved Introduction Xi

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

(Blank page)

xii Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

INTERNATIONAL STANDARD ISO 9075-3:2016(E)

Information technology — Database languages — SQL —

Part| 3:
Cal|-Level Interface (SQL/CLI)

1 Hcope

This part of ISO/IEC 9075 defines the structures and procedures that can be usedtg execute statements pf the
dataljase language SQL from within an application written in a programming-language in such a way that
procgdures used are independent of the SQL statements to be executed.

©ISO/IEC 2016 — All rights reserved Scope 1

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

(Blank page)

2 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
2.1 1SO and IEC standards

2 Normative references

g P PP
only the edition cited applies. For undated references, the latest edition of the referenced document (ineluiding

any

2.1

[l

[l

[l

Information and Definition Schemas (SQL/Schemata).

[l
[l
[l
[l

nces,

mendments) applies.

ISO and IEC standards

01539-1] ISO/IEC 1539-1:2004, Information technology — Programming\lariguages — Fortran —
rt 1. Base language.

01539-2] ISO/IEC 1539-2:2000, Information technology — Programming languages — Fortran —
rt 2: Varying length character strings.

01989] I1SO 1989:2002, Information technology — Programming languages — COBOL.
06160] 1SO 6160:1979, Programming languages — PL/I.(Endorsement of ANSI X3.53-1976).
07185] ISO/IEC 7185:1990, Information technolagy— Programming languages — Pascal.
08652] ISO/IEC 8652:1995, Information techpology — Programming languages — Ada.
08652_Corl] ISO/IEC 8652:1995/Cor.1:2001.

09075-1] ISO/IEC 9075-1:2016, Information technology — Database languages — QL — Part 1:

09075-11] ISO/IEC 9075-11:2016, Information technology — Database languages — SQL — Partt 11

09899] ISO/IEC,9899:1999, Programming languages — C.
09899_Cor1] ISO/IEC 9899:1999/Cor 1:2001.
09899:-Cor2] ISO/IEC 9899:1999/Cor 2:2004.
©@9899_Cor3] ISO/IEC 9899:1999/Cor.3:2007

[1SO10206] ISO/IEC 10206:1991, Information technology — Programming languages — Extended Pascal.
[1SO11756] ISO/IEC 11756:1999, Information technology — Programming languages — M.

©ISO/IEC 2016 — All rights reserved Normative references 3

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

(Blank page)

4 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

3 Definitions, notations, and conventions

3.1 Definitions

This Cratse modifies Clause 3, ~Delinitions, Notations, and conventions ~, in TSO/TEC 9075-2.

3.1 | Definitions

This Bubclause modifies Subclause 3.1, “Definitions”, in |SO/IEC 9075-2.

3.1.1 Definitions provided in Part 3

For the purposes of this document, the following definitions apply.

3.1.1}1 datasource
synonym for the SQL-server that is part of the current SQL-connection

3.1.142 handle

an SQL/CLI application to reference that €LI resource

3.1.1}3 inner table
second operand of a left outer joincorthe first operand of a right outer join

3.1.1}4 pseudo-column
column that is part of a table but is not part of the descriptor for that table

NOTE 2 — An example,of such a pseudo-column is an implementation-defined row identifier.

3.1.15 rowset

3.1.146 SQL/CL}-application
applicationthat invokes <CLI routine>s specified in this part of ISO/IEC 9075

3.2 | .Conventions

one or more rows-retrieved in a single invocation of the Fetch and FetchScroll routines

CLI object returned by an SQL/CLI implementation when a CLI resource is allocated and usgd by

This Subclause modifies Subclause 3.3, “Conventions’, in I1SO/IEC 9075-2.

3.2.1 Specification of routine definitions

The routines in this document are specified in terms of:

©ISO/IEC 2016 — All rights reserved Definitions, notations, and conventions 5

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
3.2 Conventions

— Function: A short statement of the purpose of the routine.
— Definition: The name of the routine and the name, mode, and data type of each of its parameters.

— General Rules: A specification of the run-time effect of the routine. Where more than one General Rule
is used to specify the effect of a routine, the required effect is that which would be obtained by beginning
with the first General Rule and applying the Rules in numeric sequence until a Rule is applied that specifies

imphes-achangetr-seguence-orterminaton teattor-ofthe- Rues—Intess-otherwise-spegified
terminates when the lastip the

() O OTtheaPP eSO v, v

or implied by a specific Rule that is applied, application of General Rules
gequence has been applied.

6 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

4.1 Introduction to SQL/CLI

4 Concepts

This

4.1
This

The
9075

lause modities Clause 4, ~Concepts, I 130/MTEC YUo-Z.

Introduction to SQL/CLI

Qubclause is modified by Subclause 4.18, “Introduction to SQL/CLI™, in ISO/IEC 9075-9.

Call-Level Interface (SQL/CLI) is a binding style for executing SQL statements: This part of ISO/IH

provides specifications for routines that:

Allocate and deallocate resources.

Control connections to SQL-servers.

Execute SQL statements using mechanisms similar to dynami¢ SQL.
Dbtain diagnostic information.

Control transaction termination.

Dbtain information about the SQL/CLI implemeéntation and the SQL-implementation.

A handleis a CLI object returned by an SQL/CL{Limplementation when a CLI resource is allocated; the h

IS USq
resoy
cessi
hand
descr
routi
alloc
respe
be ug

Each

d by an SQL/CLI application to referenge that CLI resource. The AllocHandle routine allocates the
rces to manage an SQL-environment,an SQL-connection, a CLI descriptor area, or SQL-statement
ng; when invoked, it returns an envirenment handle, a connection handle, a descriptor handle, or a state
e, respectively. An SQL-connection is allocated in the context of an allocated SQL-environment. C
ptor areas and SQL-statements are allocated in the context of an allocated SQL-connection. The FreeH
ne deallocates a specified'resource. The AllocConnect, AllocEnv, and AllocStmt routines can be use

ctively, instead of using the AllocHandle routine. The FreeConnect, FreeEnv, and FreeStmt routine
ed to deallocate-the’specific resource instead of using FreeHandle.

term
usin

The
nect

allocated SQL-environment has an attribute that determines whether output character strings are nu
nated byhe'SQL/CLI implementation. The SQL/CLI application can set the value of this attribute
the roltine SetEnvAttr and can retrieve the current value of the attribute by using the routine GetEn

C

andle

pro-
ment
||
andle
d to

hte the resources to manage an SQL-connection, an SQL-environment, and SQL-statement processing,

can

by
Attr.

5CoN-

ennect routine establishes an SQL-connection, which becomes the current SQL-connection . The Di

Cccurs

automatically whenever the SQL/CLI application switches processing to a dormant SQL-connection, which
then becomes the current SQL-connection.

The ExecDirect routine is used for a one-time execution of an SQL-statement. The Prepare routine is used to
prepare an SQL-statement for subsequent execution using the Execute routine. In all three cases, the executed
SQL-statement can contain dynamic parameters.

©ISO/IEC 2016 — All rights reserved

Concepts 7

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.1 Introduction to SQL/CLI

The interface for a description of dynamic parameters, dynamic parameter values, the result columns of a
<dynamic select statement> or <dynamic single row select statement>, and the target specifications for the
result columns is a CLI descriptor area. A CLI descriptor area for each type of interface is automatically allocated
when an SQL-statement is allocated. The SQL/CLI application may allocate additional CLI descriptor areas
and nominate them for use as the interface for the description of dynamic parameter values or the description
of target specifications by using the routine SetStmtAttr. The SQL/CLI application can determine the handle
value_of the descriptor area ently being used for a specific interface b ing the routine GetStmtAttr.
The GetDescField and GetDescRec routines enable information to be retrieved from a CLI descriptor ared. The
CopyDesc routine enables the contents of a CLI descriptor area to be copied to another CLI descriptor afea.

When a <dynamic select statement> or <dynamic single row select statement> is prepared or execlted ifnme-
diately, a description of the result columns is automatically provided in the applicable CLI implementatipn
desciliptor area. In this case, the SQL/CLI application may additionally retrieve information-by using the
DescfibeCol and/or the ColAttribute routine to obtain a description of a single result column and by usirlg the
NumResultCols routine to obtain a count of the number of result columns. The SQL/CLI application sets alues
in the CLI application descriptor area for the description of the corresponding targét'specifications either
expligitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the routine BindCpl.

When an SQL-statement is prepared or executed immediately, a description of the dynamic parameters ig
autorpatically provided in the applicable CLI implementation descripter area if this facility is supported Ry the
current SQL-connection. An attribute associated with the allocated SQL-connection indicates whether tHis
facility is supported. The value of the attribute may be retrieved using the routine GetConnectAttr. Rega
of wihether automatic description is supported, all dynamic inputand input/output parameters shall be d
in the application descriptor area before SQL-statement execution. This can be done either explicitly, by lsing
the rgutines SetDescField and SetDescRec, or implicitly,by-using the routine BindParameter. The value|of a

dynamic input or input/output parameter may be established before SQL-statement execution (immediat
parameter value) or may be provided during SQL-statément execution (deferred parameter value). Its description
in the CLI descriptor area determines which method is in use. The ParamData routine is used to cycle thjough
and process deferred input and input/output parameter values. The PutData routine is used to provide the deferred
valugs. The PutData routine also enables the-values of character string input and input/output parameters|to be
provided piece by piece.

Befofe a <call statement> is prepared.or executed immediately, the SQL/CLI application may choose whether
or nojt to bind any dynamic output'parameters in the CLI application descriptor area. This can be done either
expligitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the routine BindPgram-
eter. AAfter execution of the statement, values of unbound output and input/output parameters can be individually
retrigved using the GetParamData routine. The GetParamData routine also enables the retrieval of the vajues
of chpracter and binary-String output and input/output parameters to be accomplished piece by piece.

When a <dynamic select statement> or <dynamic single row select statement> is executed, a CLI prepared
cursar is implicitly declared and opened. The name of the cursor is determined by the cursor name propgrty
assodiated with the allocated SQL-statement, which can be supplied by the SQL/CLI application by usifg the
routine SetCursorName. If a cursor name is not supplied by the SQL/CLI application, the value of the cyrsor
namg property associated with the allocated SQL-statement is an implementation-dependent cursor namd. The
cursor name property associated with the alfocated SQL-Statement can be retrieved Dy using the GetCursorName
routine. The operational sensitivity, scrollability, and holdability properties of a CLI prepared cursor are
determined by the CURSOR SENSITIVITY, CURSOR SCROLLABLE, and CURSOR HOLDABLE attributes,
respectively, of the allocated SQL-statement at the time the CLI cursor is declared and opened. The SQL/CLI
application can set the values of these attributes by using the SetStmtAttr routine and can retrieve the current
values of these attributes by using the GetStmtAttr routine. The operational returnability property of a CLI
prepared cursor is implementation-defined.

8 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.1 Introduction to SQL/CLI

The Fetch and FetchScroll routines are used to position an open CLI cursor on a row and to retrieve the values
of bound columns for that row. A bound column is one whose target specification in the specified CLI
descriptor area defines a location for the target value. The Fetch routine always positions the open CLI cursor
on the next row, whereas the FetchScroll routine may be used to position the open CLI cursor on any of its
rows. The use of FetchScroll with a FetchOrientation other than NEXT is permitted only if the operational
scrollablllty property of the CLI cursor is SCROLL The Fetch and FetchScroII routmes can also retrleve mul-

ARRAY_SIZE field of the appllcable appllcatlon row descrlptor to the de3|red number of rows. Note thdt the
single row fetch is just a special case of multi-row fetch, where the rowset size is 1 (one).

Valugs for unbound columns can be individually retrieved by using the GetData routine. The GetData roptine
also ¢nables the retrieval of the values of character and binary string columns to be accomplistied piece by
piece. The current row of a CLI cursor is a row of the current rowset indicated by the CURRENT OF POSITION
attripute of the allocated SQL-statement associated with the CLI cursor. The current row’can be deleted pr
updated by executing a <preparable dynamic delete statement: positioned> or a <preparable dynamic upfdate
statefment: positioned>, respectively, for that CLI cursor under a different allocated*SQL-statement to th¢ one
undef which the CLI cursor was opened. The CloseCursor routine enables a CLcursor to be closed.

Result sets can be returned to the SQL/CLI application as a result of invoking the Execute or ExecDirect rojitine,
supplying a statement handle whose current statement is a <call statement>. If the <call statement> invoKes an
SQLtinvoked procedure SP that returns a non-empty result set sequence RSS, then a CLI procedural result
cursdr is automatically associated with the statement handle. The result set of this CLI procedural result qursor
is the first result set of RSS. The SQL/CLI application can learn:that a cursor has been automatically opgned
by inpoking NumResultCols to determine if the ColumnCount-is positive. If there is more than one resulf set
in the result set sequence, then the others can be processed one at a time or in parallel. To process the reqult
sets @ne at a time, once the processing of a given result'set is complete, the MoreResults routine is used {o
determine whether there are any additional result sets’and, if there are, to position the CLI procedural regult
cursdr before the first row in the next result set. To-process the result sets in parallel, the NextResult routjne is
used [to determine whether there are any additional result sets and, if there are, to position a CLI procedural
resulf cursor associated with another statement handle before the first row in the next result set.

When a CLI procedural result cursor is associated with a result set, the operational sensitivity, scrollability,
and Holdability properties of the CLkprocedural result cursor are those of the result set as it was received|from
the sfored procedure. (The CURSOR SENSITIVITY, CURSOR SCROLLABLE, and CURSOR HOLDABLE
attriputes of the allocated SQLEstatement are ignored; using SetStmtAttr to set these attributes has no effgct on
the cprresponding operatiomal properties of a CLI procedural result cursor.) The operational returnability
propérty of a CLI procedural result cursor is implementation-defined. A CLI procedural result cursor is fot
updatable. Otherwise,.a’CLI procedural result cursor is processed in the same way as a CLI prepared cufsor.

Spec|al routines,.called catalog routines are available to return result sets from the Information Schema. These
routines are:

— ColumnPrivileges: Returns a list of the privileges held on the columns whose names adhere to the requested
attern(s) W|th|n a smgle speC|f|ed table Most of this mformatlon can also be obtalned by using the

FHation

Schema.

— Columns: Returns the column names and attributes for all columns whose names adhere to the requested
pattern(s). Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the COLUMNS view of the Information Schema.

— ForeignKeys: Returns either the primary key of a single specified table together with the foreign keys in
all other tables that reference that primary key or the foreign keys of a single specified table together with

©ISO/IEC 2016 — Al rights reserved Concepts 9

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

4.1

Introduction to SQL/CLI

all the primary and unique keys in all other tables that are referenced by those foreign keys. Most of this
information can also be obtained by using the ExecDirect routine to issue an appropriate query on the
TABLE_CONSTRAINTS view and the REFERENTIAL_CONSTRAINTS view of the Information
Schema.

PrimaryKeys: Returns a list of the columns that constitute the primary key of a single specified table. Most
of this information can also be obtained by using the ExecDirect routine to issue an appropriate query on
e view and the view of the Tnformation Schg¢ma.

pecialColumns: Returns a list of the columns which can uniquely identify any row within a single,spegified
ble. Most of this information can also be obtained by using the ExecDirect routine to issue-an'appropriate
uery on the COLUMNS view of the Information Schema.

ables: Returns information about the tables whose names adhere to the requested pattern(s) and type(s).
ost of this information can also be obtained by using the ExecDirect routine to issue’an appropriate uery
n the TABLES view of the Information Schema.

TablePrivileges: Returns a list of the privileges held on tables whose names adhere to the requested pattgrn(s).
Most of this information can also be obtained by using the ExecDirect routine to issue an appropriate guery
on the TABLE_PRIVILEGES view of the Information Schema.

Thesg special routines are only available for a small portion of the métadata that is available in the Infornation
Schema. Other metadata (for example, that about SQL-invoked routines, triggers, and user-defined typed) can

be oljtained by executing appropriate queries on the views of the-Information Schema.

The

SetPosition, GetLength, and GetSubString routines caf’each be used with its own independent statgment

hand|e to access a string value at the server that is represented by a Large Object locator in order to do any of

the following:

The

The GetPosition routine may be used to determine whether a given substring exists within that string and,
iIf it does, to obtain an integer value that indicates the starting position of the first appearance of the given
gubstring.

The GetLength routine may be used-to obtain the length of that string as an integer.

The GetSubString routine may be used to retrieve a portion of a string, or alternatively, to create a npw
L arge Object value at the Server which is a portion of the string and to return a Large Object locator]|that
flepresents that value.

Error, GetDiagField;and GetDiagRec routines obtain diagnostic information about the most recent rqutine

operating on a particular resource. The Error routine always retrieves information from the next status record,
whergas the GetDRiagField and GetDiagRec routines may be used to retrieve information from any status rdcord.

The

GetDiagField routine.

umber.of rows affected by the last executed SQL-statement can be obtained by using the RowCount or

An S -transaction is terminated by using the EndTran routine. An SQL -transaction is implicitly initiated
whenever a CLI routine is invoked that requires the context of an SQL-transaction and no SQL-transaction is
active. An SQL-transaction is explicitly started, and its characteristics set, by using the StartTran routine.

The

NOTE 3 — Applications are prohibited from using the ExecDirect or Execute routines to execute <start transaction statement>s,
<commit statement>s, <rollback statement>s, and <release savepoint statement>s.

Cancel routine is used to cancel the execution of a concurrently executing SQL/CLI routine; it is also used

to terminate the processing of deferred parameter values and the execution of the associated SQL-statement.

10 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.1 Introduction to SQL/CLI

The GetFeaturelnfo, GetFunctions, Getinfo, GetSessionInfo, and GetTypelnfo routines are used to obtain
information about the implementation. The DataSources routine returns a list of names that identify SQL-servers
to which the SQL/CLI application may be able to connect and returns a description of each such SQL-server.

4.2 Return codes

The gxecution of a CLI routine causes one or more conditions to be raised. The status of the executions,indicated
by a gode that is returned either as the result of invoking a CLI routine that is a CLI function or.as the value of
the ReturnCode argument of a CLI routine that is a CLI procedure.

The return code values and meanings are described in the following list. If more than one réturn code is possible,
then the one appearing later in the list is the one returned.

— A value of 0 (zero) indicates Success. The CLI routine executed successfully:

— A value of 1 (one) indicates Success with information. The CLI routiné-executed successfully but
ompletion condition was raised: warning.

t=—4

— A value of 100 indicates No data found. The CLI routine executedsuccessfully but a completion conglition
vas raised: no data.

— A value of 99 indicates Data needed. The CLI routine did not complete its execution because addit{onal
ata is needed. An exception condition was raised: CLI-specific condition — dynamic parameter value
eeded.

— A value of -1 indicates Error. The CLI routine did not execute successfully. An exception conditionjother
han CLI-specific condition — invalid handle orCLI-specific condition — dynamic parameter value ngeded
as raised.

— AP value of -2 indicates Invalid handle:The CLI routine did not execute successfully because an excgption
ondition was raised: CLI-specific eondition — invalid handle.

Aftell the execution of a CLI routie,the values of every output argument that corresponds to an output
parameter whose value is not explicitly defined by this part of ISO/IEC 9075 is implementation-dependdnt.

In adfition to providing thelreturn code, for all CLI routines other than Error, GetDiagField, and GetDiagRec,
the SQL/CLI implementatien records information about completion conditions and about exception cond|tions
otherthan CLI-specifi¢ condition — invalid handle in the diagnostics area associated with the resource being
utilized. The resouree’being utilized by a routine is the resource identified by its input handle. In the cas¢ of
Copy|Desc, whichitakes two input handles, the resource being utilized is the one identified by TargetDescHgndle.

4.3 [“Diagnostics areas in SQL/CI |

Each diagnostics area comprises header information consisting of fields that contain general information
relating to the routine that was executed and zero (0) or more status records containing information about
individual conditions that occurred during the execution of the CLI routine. A condition that causes a status
record to be generated is referred to as a status condition.

At the beginning of the execution of any CLI routine other than Error, GetDiagField, and GetDiagRec, the
diagnostics area for the resource being utilized is emptied. If the execution of such a routine does not result in

©ISO/IEC 2016 — All rights reserved Concepts 11

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.3 Diagnostics areas in SQL/CLI

the exception condition CLI-specific condition— invalid handle or the exception condition CLI-specific condition

— dynamic parameter value needed, then:
— Header information is generated in the diagnostics area.

— If the routine's return code indicates Success, then no status records are generated.

— If the routine's return code indicates No data found, then no status record is generated correspondir
PQLSTATE value '02000' but there may be status records generated corresponding to SQLSTATE v
D2nnn', where 'nnn' is an implementation-defined subclass code.

are generated, then the corresponding records in the diagnostics area have the ROW_NUMBER field set ’llo the

correspond to any row in the rowset, or the record is generated as a result of calling a routine other than
or FetchScroll, the ROW_NUMBER field is set to zero. The COLUMN_NUMBER field of the status re
contgins the column number (if any) to which this exception or warning cendition applies. If the status r
does |not apply to any column, then COLUMN_NUMBER is set to zero.

Status records in the diagnostics area are ordered by ROW_NUMBER! If multiple status records are gene
for te same ROW_NUMBER value, then the order in which the'second and subsequent of those status re
appear is implementation-dependent. Which of those status réCerds appears first is also implementation-
dependent, except that:

— $tatus records corresponding to transaction rollback have precedence over status records correspon

j0 other exceptions, which in turn have precedenee over status records corresponding to the compleﬂ:on

¢ondition no data, which in turn have precedence over status records corresponding to the completi
¢ondition warning.

— Apart from any status records corresponding to an implementation-specified no data, any status rec
¢orresponding to an implementation=specified condition that duplicates, in whole or in part, a condi
dgefined in this part of ISO/IEC.9075 shall not be the first status record.

The rfoutines GetDiagField and GetDiagRec retrieve information from a diagnostics area. The SQL/CLI

be refrieved. Efror returns a result code but does not modify the identified diagnostics area.

The RowCount routine retrieves the ROW_COUNT field from the diagnostics area for the specified state)
hand|e-RowCount returns a result code and may cause status records to be generated.

gto
hlue

nings
ot
etch

cord
pcord

rated
cords

ling

n

brd
ion

\ppli-
P as

S
ds to

ment

A CLI diagnostics area comprises the header fields specified under “Header fields” Table 1, “Header fields in
SQL/CLI diagnostics areas”, as well as zero (0) or more status records, each of which comprises the fields

specified under “Status record fields” Table 2, “Status record fields in SQL/CLI diagnostics areas”.

12 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.3 Diagnostics areas in SQL/CLI

Table 1 — Header fields in SQL/CLI diagnostics areas

Field

Data type

DYNAMIC_FUNCTION

CHARACTER VARYING (L1)

DYNAMIC_FUNCTION_CODE INTEGER
MPRE INTEGER
NUMBER INTEGER
RETURNCODE SMALLINT
ROW_COUNT INTEGER
TRANSACTIONS_COMMITTED INTEGER
TRANSACTIONS_ROLLED_BACK [INTEGER
TRANSACTION_ACTIVE INTEGER

Implementation-defined header field

Implementation=defined data type

254

(Vhere L is an implementation-defined integer not less than.128 and L1 is an implementation-defined integer not less thary

Table 2 — Status.record fields in SQL/CLI diagnostics areas

Field

Data type

CATALOG_NAME

CHARACTER VARYING (L)

CILASS_ORIGIN

CHARACTER VARYING (L1)

COLUMN_NAME

CHARACTER VARYING (L)

COLUMNINUMBER

INTEGER

CONDITION_IDENTIFIER

CHARACTER VARYING (L)'

CONDITION_NUMBER

INTEGER

CONNECTION_NAME

CHARACTER VARYING (L)

CONSTRAINT_CATALOG

CHARACTER VARYING (L)'

CONSTRAINT_NAME

CHARACTER VARYING (L)'

©ISO/IEC 2016 — All rights reserved

Concepts 13

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.3 Diagnostics areas in SQL/CLI

Field

Data type

CONSTRAINT_SCHEMA

CHARACTER VARYING (L)'

CURSOR_NAME

CHARACTER VARYING (L)'

MFSSAGE_LENGTH

INTEGER

MFSSAGE_OCTET_LENGTH

INTEGER

MESSAGE_TEXT

CHARACTER VARYING (L1)

NATIVE_CODE

INTEGER

PARAMETER_MODE

CHARACTER VARYING (L)'

PARAMETER_NAME

CHARACTER VARYING (LY

PARAMETER_ORDINAL_POSITION

INTEGER

ROUTINE_CATALOG

CHARACTER VARYING (L)

ROUTINE_NAME

CHARACTERVARYING (L)

ROUTINE_SCHEMA

CHARACTER VARYING (L)'

ROW_NUMBER

INTEGER

SCHEMA_NAME

CHARACTER VARYING (L)

SERVER_NAME

CHARACTER VARYING (L)

SQLSTATE

CHARACTER (5)

SRECIFIC_NAME

CHARACTER VARYING (L)

SYUBCLASS.ORIGIN

CHARACTER VARYING (L1)

TABLE\NAME

CHARACTER VARYING (L)'

TRIGGER_CATALOG

CHARACTER VARYING (L)T

TRIGGER_NAME

CHARACTER VARYING (L)'

TRIGGER_SCHEMA

CHARACTER VARYING (L)

Implementation-defined status field

Implementation-defined data type

14 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

4.3 Diagnostics areas in SQL/CLI

Field Data type

T Where L is an implementation-defined integer not less than 128 and L1 is an implementation-defined integer not less than
254.

Alld

iagnostics area fields specified in other parts of ISO/IEC 9075 that are not included in this table are

not

appli

4.3.1

Exce
fieldg

4.4

441

The A
type
asaf
In ge
ifar

consfraints as follows:

(

The
isim

Spec
the e

cable to SQL/CLI.

Setting of ROW_NUMBER and COLUMN_NUMBER fields

bt where otherwise specified in this part of ISO/IEC 9075, the ROW_NUMBER apd COLUMN_NUM
in a status record are always 0 (zero).

Miscellaneous characteristics

Handles

AllocHandle routine returns a handle that uniquely. identifies the allocated resource. Although the da
Df a handle parameter is INTEGER, its value hasho meaning in any other context and should not be
umeric operand or modified in any way.

heral, if the related resource cannot be alloeated, then a handle value of zero is returned. However,
psource has been successfully allocated, processing of that resource can subsequently fail due to me

f additional memory is required-but is not available, then an exception condition is raised: CLI-spex
ondition — memory allocation error.

f previously allocated (memory cannot be accessed, then an exception condition is raised: CLI-spec
ondition — memory-management error.

NOTE 4 — Ng diagnostic information is generated in this case.

alidity of ahandle in a compilation unit other than the one in which the identified resource was allo
blementation-defined.

fying\(the address of) a valid handle as the output handle for an invocation of AllocHandle does not
[fect of reinitializing the identified resource. Instead, a new resource is allocated and a new handle

BER

ta
used

Pven
mory

pific

fic

cated

have
alue

Overv

vrites the old one.

4.4.2 Null terminated strings

An input character string provided by the SQL/CLI application may be terminated by the implementation-
defined null character that terminates C character strings. If this technique is used, the application may set the

©ISO/

IEC 2016 — All rights reserved Concepts 15

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.4 Miscellaneous characteristics

associated length argument to either the length of the string excluding the null terminator or to -3, indicating
NULL TERMINATED.

If the NULL TERMINATION attribute for the SQL-environment is True, then all output character strings
returned by the SQL/CLI implementation are terminated by the implementation-defined null character that
terminates C character strings. If the NULL TERMINATION attribute is False, then output character strings
are not null terminated.

4.4.3 Null pointers

If thg programming language of the invoking SQL/CLI application supports pointers, thenthe SQL/CLI
application may provide a zero-valued pointer, referred to as a null pointer, in the following circumstancgs:

— In lieu of an output argument that is to receive the length of a returned charactet string. This indicatep that
he SQL/CLI application wishes to prohibit the return of this information.

— In lieu of other output arguments where specifically allowed by this part-of ISO/IEC 9075. This indicates
hat the SQL/CLI application wishes to prohibit the return of this information.

— Inlieu of input arguments where specifically allowed by this part.of ISO/IEC 9075. The semantics offsuch
4 specification depend on the context.

If thg SQL/CLI application provides a null pointer in any other circumstances, then an exception conditipn is
raiseql: CLI-specific condition — invalid use of null pointer:

If thg NULL TERMINATION attribute for the SQL-environment is False, then specifying a zero buffer
for am output argument is equivalent to specifying-a null pointer for that output argument.

ize

4.4.4 Environment attributes

Envitfonment attributes are associated with each allocated SQL-environment and affect the behavior of QLI
functions in that SQL-environment.

The GetEnvAttr routine ehables the SQL/CLI application to determine the current value of a specific attribute.
For attributes that maycbe'set by the user, the SetEnvAttr routine enables the SQL/CLI application to set|the

valud of a specific aftribute. Attribute values may be set by the SQL/CLI application whenever there are no
SQL {connections-allocated within the SQL-environment.

Tablg 16, “Codes used for environment attributes”, and Table 20, “Data types of attributes”, in Subclause|5.19,
“Other tables associated with CLI”, indicate for each attribute its name, code value, data type, possible values,
and Whether the attribute may be set using SetEnvAttr.

The NULL TERMINATION attribute determines whether output character strings are null terminated by the
SQL/CLI implementation. The attribute is set to True when an SQL-environment is allocated.

16 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.4 Miscellaneous characteristics

4.45 Connection attributes

Connection attributes are associated with each allocated SQL-connection and affect the behavior of CLI functions
operating in the context of that allocated SQL-connection.

The GetConnectAttr routine enables the SQL/CLI application to determine the current value of a specific con-
nectionattribute Ear cannection attributes that may he set hy the user_the SetCannectAttr routine enables the

SQLCLI application to set the value of a specific connection attribute.

Tablg 17, “Codes used for connection attributes”, and Table 20, “Data types of attributes”, in Subgclause 5.19,
“Other tables associated with CLI”, indicate for each connection attribute its name, code value}data typg,
poss;[nle values and whether the connection attribute may be set using SetConnectAttr.

The POPULATE IPD attribute determines whether the SQL/CLI implementation will populate the implgmen-
tation) parameter descriptor with an item descriptor area for each <dynamic parameter specification> when an
SQL istatement is prepared or executed immediately. The POPULATE IPD attribuit€ is automatically set pach
time pn SQL-connection is established for the allocated SQL-connection.

The $AVEPOINT NAME connection attribute specifies the savepoint to be referenced in an invocation qf the
EndTran routine that uses the SAVEPOINT NAME ROLLBACK or SAVEPOINT NAME RELEASE Cpm-
pletionType, respectively. The SAVEPOINT NAME attribute is set to-a zero-length string when the SQL
conngction is allocated.

444 Statement attributes

Statement attributes are associated with each allocated SQL-statement and affect the processing of SQL-ftate-
mentp under that allocated SQL-statement.

The GetStmtAttr routine enables the SQL/CLI application to determine the current value of a specific statgment
attrijute. For statement attributes that may be set by the user, the SetStmtAttr routine enables the SQL/CLI
application to set the value of a spegific statement attribute.

Tablg 18, “Codes used for statement attributes”, and Table 20, “Data types of attributes”, in Subclause 5J19,
“Other tables associated with.Ci”, indicate for each statement attribute its name, code value, data type, pogsible
valugs, and whether the statement attribute may be set by using SetStmtAttr.

The APD HANDLE statement attribute is the value of the handle of the current application parameter
desciliptor for the alloeated SQL-statement. The statement attribute is set to the value of the handle of the
autorpatically allocated application parameter descriptor when the SQL-statement is allocated.

The ARD HANDLE statement attribute is the value of the handle of the current application row descriptpr for
the alllocated SQL-statement. The statement attribute is set to the value of the handle of the automatically allgcated
application row descriptor when the SQL-statement is allocated.

The IPD HANDLE statement attribute is the value of the handle of the implementation parameter descriptor
associated with the allocated SQL-statement. The statement attribute is set to the value of the handle of the
automatically allocated implementation parameter descriptor when the SQL-statement is allocated.

The IRD HANDLE statement attribute is the value of the handle of the implementation row descriptor associated
with the allocated SQL-statement. The statement attribute is set to the value of the handle of the automatically
allocated implementation row descriptor when the SQL-statement is allocated.

©ISO/IEC 2016 — All rights reserved Concepts 17

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.4 Miscellaneous characteristics

The CURSOR SCROLLABLE statement attribute determines the scrollability of the CLI prepared cursor
implicitly declared when Execute or ExecDirect are invoked. The statement attribute is set to NONSCROL-
LABLE when the SQL-statement is allocated.

The CURSOR SENSITIVITY statement attribute determines the sensitivity to changes of the CLI prepared
cursor implicitly declared when Execute or ExecDirect are invoked. The statement attribute is set to ASENSITIVE
when the SQL-statement is allocated.

The CURSOR HOLDABLE statement attribute determines the holdability of the CLI prepared cursor imp‘icitly
declared when Execute or ExecDirect are invoked. The statement attribute is set to HOLDABLE or NONHOLD-
ABLE when the statement is allocated, depending on the values of the CURSOR COMMIT BEHAVIOR item
used by the GetInfo routine.

Whether or not a CLI cursor is returnable is implementation-defined.

The gtatement attribute CURRENT OF POSITION identifies the row in the rowset to which a positioned update
or dejete operation applies. This is set to 1 (one) when an SQL-statement is initialy-allocated. It is reset o 1

(one)whenever Fetch or FetchScroll are successfully executed when the ARRAY) SIZE is 1 (one) or the dursor
is scrpllable; otherwise, it is set to an implementation-defined value indicating.the current row within the rowset.

The INEST DESCRIPTOR statement attribute determines whether nested-descriptor items are permitted jn a
CLI glescriptor. Nested descriptor items are used to describe ROW, ARRAY, and MULTISET data types| The
stateinent attribute is set to FALSE when the SQL-statement is allacated.

4.4 CLI descriptor areas

A CL|l descriptor area provides an interface for a description of <dynamic parameter specification>s, <dyrfamic
parameter specification> values, result columns 6f<dynamic select statement>s and <dynamic select statemgnt>s,
or <tgrget specification>s for the result columns.

Each|descriptor area comprises header fields and zero or more item descriptor areas. The header fields gre
specified in Table 6, “Fields in SQL/CLI row and parameter descriptor areas”. The header fields include ja
COUNT field that indicates the number of item descriptor areas and an ALLOC_TYPE field that indicatps
whether the CLI descriptor area was allocated by the user or automatically allocated by the SQL/CLI implgmen-
tation.

The Header fields includeARRAY _SIZE, ARRAY_STATUS_POINTER, and ROWS_PROCESSED_POIN[TER.
Thesg three fields aré.used to support the fetching of multiple rows with one invocation of Fetch or FetchSgroll.

Each|CLI item.descriptor area consists of the fields specified following “Status record fields” in Table 6, “Hields
in SQL/CLI.rfow and parameter descriptor areas”.

The CLI descriptor areas for the four interface types are referred to as an implementation parameter desctiptor
(IPD), an application parameter descriptor (APD), an implementation row descriptor (IRD), and an applidation
row descriptor (ARD), respectively. IPDs and IRDs are collectively known as implementation descriptor areas;
APDs and ARD:s are collectively known as application descriptor areas.

When an SQL-statement is allocated, a CLI descriptor area of each type is automatically allocated by the
SQL/CLI implementation. The ALLOC_TYPE fields for these CLI descriptor areas are set to indicate
AUTOMATIC. A CLI descriptor area allocated by the user has its ALLOC_TYPE field set to indicate USER,
and can only be used as an APD or ARD. The handle values of the IPD, IRD, current APD, and current ARD
are attributes of the allocated SQL-statement. The SQL/CLI application can determine the current values of

18 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.4 Miscellaneous characteristics

these attributes by using the routine GetStmtAttr. The current APD and ARD are initially the automatically-
allocated APD and ARD, respectively, but can subsequently be changed by changing the corresponding attribute
value using the routine SetStmtAttr.

The routines GetDescField and GetDescRec enable information to be retrieved from any CLI descriptor area.
The routines SetDescField and SetDescRec enable information to be set in any CLI descriptor area except an
IRD. The routine BindCol implicitly sets information in the current ARD. The routine BindParameter implicitly
sets ipformation in the current APD and the current TPD. The CopyDesc routine enables the contents of any

CLI glescriptor area to be copied to any CLI descriptor area except an IRD.

NOTE 5 — Although there is no need to set a DATA_POINTER field in the IPD to align with the consistency check-that applies
the case of an APD or ARD, setting this field causes the item descriptor area to be validated.

4.4.4 Obtaining diagnostics during multi-row fetch

When Fetch or FetchScroll is used to fetch a rowset, exceptions or warnings may’be raised during the retfieval
of one or more rows in the rowset. The status of each row (that is, informatien‘about whether that row infthe
rowset was successfully retrieved or not) is available in the array addresseddy the ARRAY_STATUS POINTER
field pf the applicable IRD. The cardinality of this array is the same asd¢he ARRAY _SIZE field of the cofre-
spongling ARD. For each row in the rowset, the corresponding element of this array has one of the following
valugs:

— A value of 0 (zero) indicates Row success, meaning that the row was fetched successfully.

— A value of 6 indicates Row success with information, meaning that the row was fetched successfu
but a completion condition was raised: warning;

yl

— A value of 3 indicates No row, meaning thatythere is no row at this position in the rowset. This condition
gccurs when a partial rowset is retrieved jbecause the result set ended.

— A value of 5 indicates Row error, meaning that the row was not fetched successfully and an except|on
ondition was raised.

Each|Row success with information or Row Error generates one or more status records in the diagnostics
area.|The ROW_NUMBER field'for each status record has the value of the row position within the rowsgt to
which this status record corresponds.

45| SQL-invoked routines

This Bubelause modifies Subclause 4.33, “SQL-invoked routines”, in |SO/IEC 9075-2.

4.5.1 Result sets returned by SQL-invoked procedures

This Subclause modifies Subclause 4.33.6, ““Result sets returned by SQL-invoked procedures”, in |SO/IEC
9075-2.

©ISO/IEC 2016 — All rights reserved Concepts 19

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
4.5 SQL-invoked routines

— \ Insert a new list element in the 7th paragraph \ The current rowset, consisting of a contiguous subsequence
of the sequence of rows. The current rowset may be an empty subsequence located before a specific row,
or an empty subsequence located after the last row of the sequence of rows.

NOTE 6 — The position of the result set is a position within the current rowset of the result set, as indicated by the SQL-
statement attribute CURRENT OF POSITION. If the value of this attribute does not indicate a row of the result set, then
there is no current row.

46| Cursors

This Bubclause modifies Subclause 4.38, “Cursors”, in |SO/IEC 9075-2.

4.6.1 General description of cursors

This Bubclause maodifies Subclause 4.38.1, “General description of cursors™; in |SO/IEC 9075-2.

| Insett after 3rd paragraph|A CLI cursor is a cursor created by the SQK/CLI implementation and associgted

with pn allocated SQL-statement. If the allocated SQL-statement i$ processing a <dynamic select statement>
or a §dynamic single row select statement>, then the CLI cursofiis a CLI prepared cursor. If the CLI curfor is
procgssing a result set returned by an SQL-invoked proceduré;:then the CLI cursor is a CLI procedural result
cursqr.

|Replace 1st list item||of the 5th paragraph|

— The kind of cursor (standing, declared dynamie; extended dynamic, received, PTF dynamic, CLI pregared,
r CLI procedural result).

|Inseft after 2nd list item|[in 3rd list item}{of the 5th paragraph|

. f the cursor is a CLI cursor, then‘a <cursor name>.

[Inseft after 5th list item|[in 4th(list item||of the 5th paragraph|

. f the cursor is a CLI cursor, then the allocated SQL-statement associated with the cursor.

4.7 Client-Server operation

This Rubclauise modifies Subclause 4.45, ““Client-server operation™, in |SO/IEC 9075-2.

|Inse tthis paragraph | If the execution of a CLI routine causes the implicit or explicit execution of an <4QL
procedure statement> by an SQL-server, diagnostic information is passed in an implementation-dependent
manner to the SQL-client and then into the appropriate diagnostics area. The effect on diagnostic information
of incompatibilities between the character repertoires supported by the SQL-client and the SQL-server is
implementation-dependent.

20 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

5 Call-Level Interface specifications

ISO/IEC 9075-3:2016(E)
5.1 <CLI routine>

5.1 <CLI routine>

This

Function

Describe SQL/CLI routines in a generic fashion.

Format

CL1 routine> ::=
<CLI routine name> <CLI parameter list> [<CLI returns clause>]

<CLI| routine name> ::=
<CLI name prefix> <CLl generic name>

<CLI| name prefix> ::=
KCLI by-reference prefix>

| rRCL1 by-value prefix>

<CLI| by-reference prefix> ::
SQLR

<CLI
SQL

<CLI

by-value prefix> ::=

generic name> ::=
N\l locConnect

A\l locEnv

A\l locHandle

A\l locStmt
BindCol
BindParameter
Cancel
CloséeCursor
ColAttribute
ColumnPrivileges

Rubclause is modified by Subclause 19.1, ““<CLI routine>"’, in | SO/IEC 9075-9.

Columns
Connect
CopyDesc
DataSources
DescribeCol
Disconnect
EndTran
Error
ExecDirect

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 21

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.1 <CLI routine>

Execute

Fetch
FetchScroll
ForeignKeys
FreeConnect
FreeEnv
FreeHandle
FreeStat
CetConnectAttr
CetCursorName
CetData
CetDescField
CetDescRec
CetDiagField
CetDiagRec
CetEnvAttr
CetFeaturelnfo
CetFunctions
CetInfo
Cetlength
CetParamData
CetPosition
CetSessionlnfo
CetStmtAttr
CetSubString
CetTypelnfo
MoreResults
NextResult
NumResultCols
ParamData
Prepare
PrimaryKeys
PutData
RowCount
SetConnectAttr
SetCursorName
SetDescField
SetDescRec
SetEnvAttr
SetStmtAttr
SpecialColumns
StartTran
fablePrivileges
fables
cimplementation-defined CLlI generic name>

<CLI| parameter list> ::=
<lgFO paren> <CLIl parameter declaration>
[{ <comma> <CLI parameter declaration> }... | <right paren>

<CLl parameter declaration> ::=
<CLl parameter name> <CLl parameter mode> <CLl parameter data type>

<CL1 parameter name> :-:=
I'l See the individual CLI routine definitions

<CLI parameter mode> ::=
IN

22 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

| ouT
| DEFIN
| DEFOUT
| DEF

<CLI

parameter data type> ::=
INTEGER

| SMALLINT

<CLI
RE

<imp
I

ISO/IEC 9075-3:2016(E)
5.1 <CLI routine>

ANY
CHARACTER <left paren> <length> <right paren>

returns clause> ::=
TURNS SMALLINT

fementation-defined CLI generic name> :-:=
See the Syntax Rul es

Syntax Rules

1) s

2) 9

3)
4)

5) |
|

6)

d)

©ISO/

)

ot contain a <CLI returns clause> is called a CLI procedure:

here shall be no <separator> between the <CLI namerefix> and the <CLI generic name>.

CCLI routine> is a pre-defined routine written in a programming language that is invoked by a compilation
yinit of the same programming language. Let HL be that programming language.

CLI routine> that contains a <CLI returns clause> is called @/CLI function. A <CLI routine> that does

or each CL1I function CF, there is a corresponding.CLI procedure CP, with the same <CLI routine ngme>.
he <CLI parameter list> for CP is the same as'the <CLI parameter list> for CF but with the followling

dditional <CLI parameter declaration>:

eturnCode OUT SMALLINT

S supported.

Case:

q) If <CLI parameter,mode> is IN, then the parameter is an input parameter. The value of an inpu

argument is established when a CLI routine is invoked.

argument’is established when a CLI routine is executed.

during the execution of a related CL I routine.

HL shall support either the invocation of CF or the invocation of CP. It is implementation-defined which

—

If <CLI parameter mode> is OUT, then the parameter is an output parameter. The value of an qutput

¢) If.<CLI parameter mode> is DEFIN, then the parameter is a deferred input parameter. The vallie of
a.deferred input argument for a CLI routine R is not established when R is invoked, but subsequently

If <CLI parameter mode> is DEFOUT, then the parameter is a deferred output parameter. The value

of a deferred output argument for a CLI routine R is not established by the execution of R but subse-

quently by the execution of a related CLI routine.

If <CLI parameter mode> is DEF, then the parameter is a deferred parameter. The value of a deferred

argument for a CLI routine Ris not established by the execution of R but subsequently by the execution

of a related CLI routine.

IEC 2016 — All rights reserved

Call-Level Interface specifications 23

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.1
7)

8)

9)

10)

11)

<CLI routine>

The value of an output, deferred output, deferred input, or deferred parameter is an address. It is either a
non-pointer host variable passed by reference or a pointer host variable passed by value.

A by-value version of a CLI routine is a version that expects each of its non-character input parameters to
be provided as actual values. A by-reference version of a CLI routine is a version that expects each of its
input parameters to be provided as an address. By-value and by-reference versions of the CLI routines

shall be supported according to Table 3, “Supported calling conventions of SQL/CLI routines by language”,

for each of the Tanguages identified in the Tirst column of that table.

e[z Table 3 — Supported calling conventions of SQL/CLI routines by langUage

_anguage By-value By-reference
Ada ([1S08652]) Optional Required
C ([1S09899]) Required Optional
COBOL ([1S01989]) Optional Required
;j))rtran ([1SO1539-1] and [ISO1539- | Notsupported | Required
M ([1SO11756]) Optional Required
Pascal ([1SO7185] and [I1SO10206]) | Optional Required
PL/1 ([1SO6160]) Optional Required

he <implementation-defined CL1.generic name> for an implementation-defined CLI function shal
different from the <CLI gengric:name> of any other CLI function. The <implementation-defined CL.
generic name> for an implementation-defined CLI procedure shall be different from the <CLI gene

fa<CLI routine> is a by-reference routine, then its <CLI routine name> shall contain a <CLI by-refe
prefix>. Otherwise, its <CLI routine-name> shall contain a <CLI by-value prefix>.

ame> of any other CLIprocedure.

Any <CLI routine name> that cannot be used by an implementation because of its length or becausg
ade identical to-seme other <CLI routine name> by truncation is effectively replaced with an abbrev

ame according-to the following rules:

a) Any.<CLI by-value prefix> remains unchanged.

fence

be

c

itis
iated

[cs]Table 4 — Abbreviated SQL/CLI generic names

idted

Generic Name

Abbreviation

AllocConnect

AC

24 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.1 <CLI routine>

Generic Name

Abbreviation

AllocEnv AE
AllocHandle AH
AHeeStmt AS
BindCol BC
BindParameter BP
Cancel CAN
CloseCursor CC
ColAttribute CO
ColumnPrivileges CP
Columns CcoL
Connect CON
CopyDesc CD
DataSources DS
DescribeCol DC
Disconnect DIS
EndTran ET
Error ER
FxecDirect ED
Fxecute EX
Fetch FT
FetehScroll FTS
OTETgNTKEYS FK
FreeConnect FC
FreeEnv FE
FreeHandle FH

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 25

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.1 <CLI routine>

Generic Name Abbreviation
FreeStmt FS
GetConnectAttr GCA
etCursorName GEN
GetData GDA
GetDescField GDF
GetDescRec GDR
GetDiagField GXF
GetDiagRec GXR
GetEnvAttr GEA
GetFeaturelnfo GFI
GetFunctions GFU
GetInfo Gl
(GetLength GLN
(GetParamData GPD
GetPosition GPO
GetSessionInfo GSI
GetStmtAttr GSA
(GetSubString GSB
GetTypelnfo GTI
MoreResults MR
NextResult NR
NumResuttCots NRC
ParamData PRD
Prepare PR
PrimaryKeys PK

26 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.1 <CLI routine>

Generic Name Abbreviation
PutData PTD
RowCount RC
SetConnectAt SGA
SetCursorName SCN
SetDescField SDF
SetDescRec SDR
SetEnvALttr SEA
SetStmtAttr SSA
SpecialColumns SC

StartTran STN
TablePrivileges TP

Tables TAB
Implementation- Implementation-defined;,abbreviation
defined CLI routine

12) et CRbe a <CLI routine> and let RN\be its <CLI routine name>. Let RNU be the value of UPPER(RN).

Case:

124

4) If HL supports case senSitive routine names, then the name used for the invocation of CR shall bg RN.

) If HL does not suppart <simple Latin lower case letter>s, then the name used for the invocation of
CRshall be RNUY:

¢) If HL does.fiot Support case sensitive routine names, then the name used for the invocation of CRshall
be RN or RNU.

13) LLet operative data type correspondence table be the data type correspondence table for HL as specified
in Subclause 5.20, “SQL/CLI data type correspondences”. Refer to the two columns of the operativg data
tiype, correspondence table as the “SQL data type column” and the “host data type column”.

14) LetTI, TS TC, and TV be the types listed in the host data type column for the rows that contains INTEGER,
SMALLINT, CHARACTER(L) and CHARACTER VARYING(L), respectively, in the SQL data type
column.

a) If TSis “None”, then let TS=TI.
b) If TCis “None”, then let TC=TV.

¢) Foreach parameter P,

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 27

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.1 <CLI routine>

Access Rules

General Rules

1)

Conformance Rules

1)

2)

3)

4)

5)

6)

7)

28

Case:

i) If the CLI parameter data type is INTEGER, then the type of the corresponding argument
be TI.

shall

i) If the CLI parameter data type is SMALLINT, then the type of the corresponding argument

shall be TS

iii) Ifthe CLI parameter data type is CHARACTER(L), then the type of the corresponding argy
shall be TC.

iv) If the CLI parameter data type is ANY, then
Case:
1) If HL is C, then the type of the corresponding argument shall be~vei d *”.

2) Otherwise, the type of the corresponding argument shall be anytype (other than “N
listed in the host data type column.

¢) If the CLI routine is a CLI function, then the type of the returnedwalue is TS

[None.

The rules for invocation of a <CLI routine>-are specified in Subclause 5.2, “<CLI routine> invocati

[Vithout Feature C001, “CLI reutine invocation in Ada”, a conforming SQL/CLI application shall n
ontain an invocation of a <CLI routine> written in Ada.

(Vithout Feature C002,(“CLI routine invocation in C”, a conforming SQL/CLI application shall not cg
qn invocation of a <CLJ routine> written in C.

(Vithout Featuré.C003, “CLI routine invocation in COBOL ", a conforming SQL/CLI application sh
Mot contain an‘invocation of a <CLI routine> written in COBOL.

(Vithout-Feature C004, “CLI routine invocation in Fortran”, a conforming SQL/CLI application sha
¢ontainan invocation of a <CLI routine> written in Fortran.

ment

hne”)

DN,

Dt

ntain

all

| not

ithout Feature C005, “Cl | routine invocation in MUMPS ”, a conforming SQL/CI I application s

hall

not contain an invocation of a <CLI routine> written in M.

Without Feature C006, “CLI routine invocation in Pascal”, a conforming SQL/CLI application shall
contain an invocation of a <CLI routine> written in Pascal.

not

Without Feature C007, “CLI routine invocation in PL/I”, a conforming SQL/CLI application shall not

contain an invocation of a <CLI routine> written in PL/I.

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.2 <CLI routine> invocation

5.2 <CLI routine> invocation

Function

Specify the rules for invocation of a <CLI routine>.

Syn|tax Rules

1) Let HL be the programming language of the invoking host program.

2) A CLI function or CLI procedure is invoked by the HL mechanism for invoking functions or procedures,
flespectively.

3) et RNM be the <CLI routine name> of the <CLI routine> invoked by the host program and let RN he the
$QL/CLI routine identified by RNM. The number of arguments provided in.the invocation shall be the
game as the number of <CLI parameter declaration>s for RN.

4) lLet DA be the data type of the i-th argument in the invocation and let DR be the <CLI parameter data fype>
f the i-th <CLI parameter declaration> of RN. DA shall be the Hl-equivalent of DP as specified by|the
ules of Subclause 5.1, “<CLI routine>".

General Rules

1) If the value of any input argument provided by the-host program is not a value of the data type of th
parameter, or if the value of any output argumentresulting from the execution of the <CLI routine> |s not
3 value supported by the SQL/CLI applicationfer that parameter, then the effect is implementation-defined.

2) Let GRN be the <CLI generic name> of\RN.
3) When the <CLI routine> is called hy the SQL/CLI application:

1%

qd) The values of all input arguments to RN are established.
b) Case:

i) If RN is acCl=1 routine with a statement handle as an input parameter, RN has no accompanying
handledype parameter, and GRN is not Error, then:

1)</ 'the statement handle does not identify an allocated SQL-statement, then an exception
condition is raised: CLI-specific condition —invalid handle. Otherwise, let She the allocated
SQL-statement identified by the statement handle.

2) If GRN is not Cancel, then the diagnostics area associated with Sis emptied.

3) Let CDbe the allocated SQL-connection with which Sis associated.

4) If there is no established SQL-connection associated with C, then an exception condition
is raised: connection exception — connection does not exist. Otherwise, let EC be the
established SQL-connection associated with C.

5) If ECis not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connection”, are applied with EC as dormant SQL-connection.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 29

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.2 <CLI routine> invocation

4)

5)

30 Call-Level Interface (SQL/CLI)

)

3)

i) If RN is a CLI routine with a descripto

Case:

3)

Case:

6) If GRN is neither Cancel nor ParamData nor PutData and there is a deferred parameter
number associated with S then an exception condition is raised: CLI-specific condition —

function sequence error.
7) RNis invoked.

r handle as an input parameter and RN has no acco

U Al o 49, Vioige Ao O N

1) If the descriptor handle does not identify an allocated CLI descriptor area, then an.exce
condition is raised: CLI-specific condition — invalid handle. Otherwise, let D|be the
cated CLI descriptor area identified by the descriptor handle.

2) The diagnostics area associated with D is emptied.
3) Let Cbe the allocated SQL-connection with which D is associated.

4) If there is no established SQL-connection associated with C,\then an exception cond
is raised: connection exception — connection does not exist”Otherwise, let EC be th
established SQL-connection associated with C.

5) If ECis not the current SQL-connection, then the General Rules of Subclause 5.3, “Im
set connection”, are applied with EC as dormant SQL-connection.

6) RN is invoked.

iii) Otherwise, RN is invoked.

If RN is a CLI function, then:

i) The values of all output arguments are established.
i) Let RC be the return value.

If RN is a CLI procedurethen:

i) The values of all,output arguments are established except for the argument associated wi
ReturnCode parameter.

i) Let RChethe argument associated with the ReturnCode parameter.

If RNLdid not complete execution because it requires more input data, then:

i) RC is set to indicate Data needed.

mpa-

ption
allo-

ition
e

plicit

h the

A An avecantinn canditian ic raicad: Cl l_checific condition dvnamic narameatar value n
H) ~R-excepHoR-cehcHHeRHSHaisea—ot=—-SpecHc-6eRaHoR eRaAt e

1
TParGITIcTeT ot

ed.

b)

If RN executed successfully, then:

i) Either a completion condition is raised: successful completion, or a completion condition is

raised: warning, or a completion condition is raised: no data.

i) Case:

1) Ifacompletion condition is raised: successful completion, then RC is set to indicate Success.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.2 <CLI routine> invo

cation

2) If acompletion condition is raised: warning, then RC is set to indicate Success with

information.

3) If acompletion condition is raised: no data, then RC is set to indicate No data found.

¢) If RN did not execute successfully, then:

i) All changes made to SQI -data or schemas by the execution of RN are canceled

i) One or more exception conditions are raised as determined by the General Rules of this
other Subclauses of this part of ISO/IEC 9075 or by implementation-defined rules,

iii) Case:

set to indicate Invalid handle.
2) Otherwise, RC is set to indicate Error.

6) Case:

appropriate diagnostics area as specified in Subclause 4.2)“Return codes”, and Subclause 4.3,
“Diagnostics areas in SQL/CLI”.

) Otherwise, no diagnostics area is updated.

hnd

1) If an exception condition is raised: CLI-specific condition — invalid‘handle, then R is

3) If GRN is neither Error nor GetDiagField nor GetDiagRec, and RC indicates neither Invalid hgndle
nor Data needed, then diagnostic information resulting from¢he execution of RN is placed intq the

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 31

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.3

5.3

Implicit set connection

Implicit set connection

Function

Specify the rules for an implicit SET CONNECTION statement.

General Rules

1)
2)

3)
4)

5)

6)

32 Call-Level Interface (SQL/CLI)

et DC be the dormant SQL-connection specified in an application of this Subclause.

f an SQL-transaction is active for the current SQL-connection and the SQL-implementation does n
qupport transactions that affect more than one SQL-server, then an exception condition is raised: feg
mot supported — multiple server transactions.

f DC cannot be selected, then an exception condition is raised: connection exgeption — connection fa

The current SQL-connection CC and current SQL-session become a dormant SQL-connection and a do
$QL-session, respectively. The SQL-session context for CC is preserved and is not affected in any
by operations performed over the selected SQL-connection.

NOTE 7 — The SQL-session context is defined in Subclause 4.43, “SQL>Sessions”, in [1SO9075-2].

[DC becomes the current SQL-connection and the SQL-session associated with DC becomes the cur
BOL-session. The SQL-session context is restored to the,same state as at the time DC became dorm

NOTE 8 — The SQL-session context information is defined-in Subclause 4.43, “SQL-sessions”, in [ISO9075-2].

The SQL-server for the subsequent execution of<SQL-statements via CLI routine invocations is set t
of the current SQL-connection.

o
ture

lure.

mant
jay

rent
ANt.

D that

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.4 Preparing a statement

5.4 Preparing a statement

Function

Prepare a statement.

General Rules

1)

2)
3)

4)

5)

6)

7)

8)

©ISO/IEC 2016 — All rights reserved

Let S TL, ST, and INV be the ALLOCATED STATEMENT, TEXT LENGTH, STATEMENT TEXT, ar
INVOKER, respectively, in an application of this Subclause.

f an open CLI cursor is associated with S then an exception condition is raised: imvalid cursor stats
Case:
q) If TL is not negative, then let L be TL.

) If TL indicates NULL TERMINATED, then let L be the number of octets of ST that precede the
implementation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised: CLI-specifie’eondition — invalid string length or b
length.

Case:

q) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string lengt
buffer length.

) Otherwise, let P be the first L octets of(ST.

positioned>, then let CN be the cursor name referenced by P. Let C be the allocated SQL-connection
vhich Sis associated. If CN is nat the name of a CLI cursor associated with another allocated SQL-stats
dssociated with C, then an exception condition is raised: invalid cursor name.

f one or more of the following are true, then an exception condition is raised: syntax error or acces
iolation.

3) P does not conform to the Format, Syntax Rules or Access Rules for a <preparable statement>
is a <starttransaction statement>, a <commit statement>, a <rollback statement>, or a <release save
statement>.

NOTE 9 — See Table 37, “SQL-statement codes”, in [ISO9075-2] for the list of <preparable statement>s. Othd

of ISO/IEC 9075 may have corresponding tables that define additional codes representing statements defined by
parts of ISO/IEC 9075.

\174

Liffer

N or

f P is a <preparable dynamic delete statement: positioned> or a <preparable dynamic update statenpent:

with
ment

Srule

Dr P
point

r parts
those

) P contains a <Simple comments.

c) P contains a <dynamic parameter specification> whose data type is undefined as determined by the

rules specified in Subclause 20.7, “<prepare statement>", in [ISO9075-2].

The data type of any <dynamic parameter specification> contained in P is determined by the rules specified

in Subclause 20.7, “<prepare statement>", in [1ISO9075-2].

Let DTGN be the default transform group name and TFL be the list of user-defined type name—transform

group name pairs used to identify the group of transform functions for every user-defined type that i

s ref-

Call-Level Interface specifications 33

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.4 Preparing a statement

erenced in P. DTGN and TFL are not affected by the execution of a <set transform group statement> after
P is prepared.

9) The following objects associated with Sare destroyed:
a) Every prepared statement.

) The cursor declaration descriptor every cursor instance descriptor of any CL | cursor.

) Every select source.

gd) IfINVis “Prepare”, then every executed statement.
f a cursor associated with Sis destroyed, then so are any prepared statements that referénce that cugsor.
10) IPis prepared.

11) If INVis “Prepare”, then the prepared statement is associated with S

12) If Pisa<dynamic select statement> or a <dynamic single row select statement>, then P becomes the $elect
gource associated with S

13) The General Rules of Subclause 5.9, “Implicit DESCRIBE USING clause”, are applied with SSand Sas
POURCE and ALLOCATED STATEMENT, respectively.

14) The validity of a prepared statement in an SQL-transaction.different from the one in which the statenent
vas prepared is implementation-defined.

34 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

9.5

ISO/IEC 9075-3:2016(E)
5.5 Executing a statement

Executing a statement

Function

Execute a statement.

General Rules

1)

2)

©ISO/IEC 2016 — All rights reserved

flespectively, in an application of this Subclause.
IP is executed as follows:
Case:

4) If Pisa <dynamic select statement> or a <dynamic single row select statement>, then the Geng
Rules of Subclause 5.6, “Implicit CLI prepared cursor”, are appliedte P as SELECT SOURCE,
ALLOCATED STATEMENT, and INV as INVOKER, respectively:

) Otherwise:

i) If INV is not “ParamData”, then the General Rules of Subclause 5.10, “Implicit EXECU
USING and OPEN USING clauses”, are applied’with EXECUTE as TYPE, P as SOURCH
Sas ALLOCATED STATEMENT.

NOTE 10 — When this Subclause is invokéd from ParamData, Subclause 5.10, “Implicit EXECUTE 4
and OPEN USING clauses”, must havecbeen previously invoked.

i) Case:
1) If Pis a <preparable dynamic delete statement: positioned>, then:

A) Let CRbe the cursor referenced by P and let SCR be the allocated SQL-statemg
associated with CR.

B) Let T be'the implicit or explicit <target table> of P, as defined by the Syntax R
for<preparable dynamic delete statement: positioned>.

C)~"The General Rules of Subclause 15.5, “Effect of a positioned delete”, in ISO/IE
9075-2, are applied with CRas CURSOR, P as STATEMENT, and TT as TARGH
For the purposes of the application of these Rules, the row in CR identified by §
CURRENT OF POSITION statement attribute is the current row of CR.

D) If the execution of P deleted the current row of CR, then the effect on the fetcheg
if any, associated with SCR is implementation-defined.

Let S P, and INV be the ALLOCATED STATEMENT, the PREPARED STATEMENT, and the- TNVOKER,

ral
Sas

F, and

SING

nt

Rules

C
ET.
CR's

row,

2) If Pisa<preparable dynamic update statement: positioned>, then:

A) Let CRbe the cursor referenced by P and let SCR be the allocated SQL-statement

associated with CR.

B) Let SCL be the <set clause list> contained in P.

C) Let TT be the implicit or explicit <target table> of P, as defined by the Syntax Rules

for <preparable dynamic update statement: positioned>.

Call-Level Interface specifications 35

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.5 Executing a statement

D) The General Rules of Subclause 15.6, “Effect of a positioned update”, in ISO/IEC
9075-2, are applied with CRas CURSOR, SCL as SET CLAUSE LIST, P as STATE-
MENT, and TT as TARGET. For the purposes of the application of these Rules, the
row in CRidentified by SCRs CURRENT OF POSITION statement attribute is the
current row of CR.

E) If the execution of P updated the current row of CR, then the effect on the fetched
row, It any, associated with SCRis implementation-defined.

3) Otherwise, the results of the execution are the same as if the statement were containgd in
an <externally-invoked procedure> and executed; these are described in Subclause 13.3,
“<externally-invoked procedure>”, in [ISO9075-2].

iii) If P is a <call statement>, then

1) The General Rules of Subclause 5.11, “Implicit CALL USING clause”, are applied fo P
as SOURCE and Sas ALLOCATED STATEMENT.

2) If the result set sequence RSSof the SQL-invoked procedure that was invoked by the|<call
statement> is non-empty, then the General Rules of Subclause 5.7, “Implicit CLI procddural
result cursor”, are applied, with Sas ALLOCATED STATEMENT and RSSas RESULT SET
SEQUENCE.

3) et Rbe the value of the ROW_COUNT field from the diagnostics area associated with S
4) Rbecomes the row count associated with S

5) If P executed successfully, then any executed statement associated with Sis destroyed and P becomgs the
gxecuted statement associated with S

36 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.6 Implicit CLI prepared cursor

5.6 Implicit CLI prepared cursor

Function

Specify the cursor declaration descriptor and cursor instance descriptor of a CLI prepared cursor.

General Rules

1) LetSS AS and INV be respectively a SELECT SOURCE, ALLOCATED STATEMENT, and-J NVOKER
gpecified in an application of this Subclause.

2) Ifthereis no CLI cursor associated with AS, then the General Rules of Subclause 5:8;*“Initial CLI cufsor”,
qre applied, with ASas ALLOCATED STATEMENT.

3) et CID be the cursor instance descriptor of the cursor associated with AS-and’let CDD be the cursgr
dleclaration descriptor of CID.

4) The kind of cursor in CID is set to CLI prepared cursor.

5) The declared properties of the cursor declaration descriptor of CID are set as follows:
qd) The cursor's declared sensitivity is

Case:

i) If the value of the CURSOR SENSITIMITY attribute of ASis INSENSITIVE, then INSENSI-
TIVE.

i) If the value of the CURSOR SENSITIVITY attribute of ASis SENSITIVE, then SENSITIVE.

iii) Otherwise, ASENSITIVE.

) The cursor's declared scrollability is
Case:
i) If the value of the CURSOR SCROLLABLE attribute of ASis SCROLLABLE, then SCRPLL.
i) Otherwise;NO SCROLL.

) The cursorisdeclared holdability is
Case:
i) If the value of the CURSOR HOLDABLE attribute of ASis HOLDABLE, then WITH HOLD.
ii) Otherwise, WITHOUT HOLD.

d) The cursor's declared returnability is implementation-defined.

6) If INVis not “ParamData”, then the General Rules of Subclause 5.10, “Implicit EXECUTE USING and
OPEN USING clauses”, are applied with OPEN as TYPE, SSas SOURCE, and ASas ALLOCATED
STATEMENT.

NOTE 11 — When this Subclause is invoked from ParamData, Subclause 5.10, “Implicit EXECUTE USING and OPEN
USING clauses”, must have been previously invoked.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 37

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.6 Implicit CLI prepared cursor

7) The General Rules of Subclause 7.1, “Effect of opening a cursor”, are applied with CID as CURSOR.

NOTE 12 — In applying this Subclause, the values of <dynamic parameter specification>s are described by the implementation
parameter descriptor and application parameter descriptor of AS as explained in Subclause 5.10, “Implicit EXECUTE USING
and OPEN USING clauses™.

38 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

5.7

ISO/IEC 9075-3:20
5.7 Implicit CLI procedural result ¢

Implicit CLI procedural result cursor

Function

16(E)
ursor

Specify the cursor declaration descriptor and cursor instance descriptor of a CLI procedural result cursor.

General Rules

1)

2)

3)

4)
5)

6)
7)

©ISO/IEC 2016 — All rights reserved

et ASbe the ALLOCATED STATEMENT and let RSShe the RESULT SET SEQUENCE specified i
gpplication of this Subclause.

f there is no CLI cursor associated with AS, then the General Rules of Subclause 58y “Initial CLI cu
qre applied, with ASas ALLOCATED STATEMENT.

Let CID be the cursor instance descriptor of the cursor associated with ASandJet CDD be the curso
laration descriptor of CID.

The kind of cursor in CID is set to CLI procedural result cursor.

f RSSis not empty, then the General Rules of Subclause 15.2, “Effect of receiving a result set”, in [ISO
2] are applied, with CID as CURSOR and RSSas RESULT SET SEQUENCE.

et CSbe the <cursor specification> in the result set desetiptor of CID.

The General Rules of Subclause 5.9, “Implicit DESCRIBE USING clause”, are applied with CSas SOU
qdnd ASas ALLOCATED STATEMENT.

l an

sor”,

dec-

D075-

RCE

Call-Level Interface specifications 39

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.8 Initial CLI cursor

5.8 Initial CLI cursor

Function

Create the initial cursor declaration descriptor and cursor instance descriptor of a CLI cursor.

General Rules

1) lLet AShe the ALLOCATED STATEMENT in an application of this Subclause.
2) A cursor declaration descriptor CDD is created as follows:

3) The kind of cursor is undefined.

) The provenance of the cursor is the SQL-session identifier of AS

¢) The name of the cursor is the cursor name property associated withtAS
@) The cursor's origin is AS

@) The cursor's declared properties are undefined.

3) A cursor instance descriptor CID is created, as follows:

4) The cursor declaration descriptor is CDD.

b) The SQL-session identifier is the SQL-sessionvidentifier of AS

) The cursor's state is closed.

4) CID is the CLI cursor associated with AS

40 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

5.9

ISO/IEC 9075-3:2016(E)

5.9 Implicit DESCRIBE USING ¢

Implicit DESCRIBE USING clause

lause

This Subclause is modified by Subclause 19.2, “Implicit DESCRIBE USING clause™, in 1SO/IEC 9075-9.

Function

Spec|fy the rules for an implicit DESCRIBE USING clause.

General Rules

1)
2)

3)
4)

5)

©ISO/IEC 2016 — All rights reserved

tively, associated with AS

et HL be the programming language of the invoking host program.

tively a character string representation of the prepared statement-and a numeric code that identifies 1
tiype of the prepared statement.

et Sand AShbe a SOURCE and an ALLOCATED STATEMENT specified in the rules of this Subclapise.

et IRD and IPD be the implementation row descriptor and implementation parameter descriptor, respec-

The value of DYNAMIC_FUNCTION and DYNAMIC_FUNCTIOND CODE in IRD and IPD are respec-

he

A\ representation of the column descriptors of the <select list> columns for the prepared statement is gtored

in IRD as follows:
3) Case:
)] If there is a select source associated with AS, then:
1) Let TBL be the table defined by Sand let D be the degree of TBL.
Case:

A) If the value.ofthe statement attribute NEST DESCRIPTOR is True, then let NS

1 (one) €< D, be the number of subordinate descriptors of the descriptor for th
colump)of T.

B) .Otherwise, let NS, 1 (one) <i < D, be 0 (zero).
2) ~TOP_LEVEL_COUNT is setto D. If D is 0 (zero), then let TD be 0 (zero); otherwi
TD be D + 25, (NS). COUNT is set to TD.

3) Let S be the collection of <select list> columns of TBL.

e i-th

e, let

4) Case:

A) If some subset of S is the primary key of TBL, then KEY_TYPE is set to 1 (one).

B) If some subset of S is the preferred key of TBL, then KEY_TYPE is set to 2.
C) Otherwise, KEY_TYPE is set to O (zero).
i) Otherwise:
1) Let D be 0 (zero). Let TD be 0 (zero).

Call-Level Interface specifications 41

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.9 Implicit DESCRIBE USING clause
2) KEY_TYPE is set to 0 (zero).

b) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor areas are
set so that the i-th item descriptor area contains the descriptor of the j-th column of TBL such that:

i) The descriptor for the first such column is assigned to the first descriptor area.

ii) The descriptor for the j+1-th column is assigned to the i+NS+1-th item descriptor area

iii) Ifthe value of the statement attribute NEST DESCRIPTOR is True, then the implicitly~orflered
subordinate descriptors for the j-th column are assigned to contiguous item descriptor argas
starting at the i+1-th item descriptor area.

) The descriptor of a column consists of values for LEVEL, TYPE, NULLABLE, NAME, UNNAMED,
KEY_MEMBER, and other fields depending on the value of TYPE as described below. Those fields
and fields that are not applicable for a particular value of TYPE are set to jmaplementation-dependent
values. The DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields
are not relevant in this case.

)] If the item descriptor area is set to a descriptor that is immediately subordinate to another Wyhose
LEVEL value is some value k, then LEVEL is set to k+1;-atherwise, LEVEL is set to O (zero).

i) TYPE is set to a code as shown in Table 7, “Codeg-used for implementation data types ir
SQL/CLI”, indicating the data type of the colummn or subordinate descriptor.

iii) Case:
1) If the value of LEVEL is 0 (zero), then:

A) If the resulting column is pessibly nullable, then NULLABLE is set to 1 (one); gther-
wise NULLABLE is setyto O (zero).

B) If the column name isimplementation-dependent, then NAME is set to the implgmen-
tation-dependent;name of the column and UNNAMED is set to 1 (one); otherwjse,
NAME is set-to the <derived column> name for the column and UNNAMED i set

to 0 (zero):
C) Case:
D If a <select list> column C is a member of a primary or preferred key of [TBL,

then KEY_MEMBER is set to 1 (one).
I[1) Otherwise, KEY_MEMBER is set to 0 (zero).
2) Otherwise:
A) NULLABLE is setto 1 (one).

B) €ase:
1) If the item descriptor area describes a field of a row type, then
Case:

1) If the name of the field is implementation-dependent, then NAME is set
to the implementation-dependent name of the field and UNNAMED is set
to 1 (one).

42 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.9 Implicit DESCRIBE USING clause

2) Otherwise, NAME is set to the name of the field and UNNAMED is set
to O (zero).

I1) Otherwise, UNNAMED is set to 1 (one) and NAME is set to an implementation-
dependent value.

C) KEY_MEMBER is set to 0 (zero).

1)

2)

3)

4)

5)

6)

)

iv) Case:

If TYPE indicates a <character string type>, then LENGTH is set to the lengthormaximum
length in characters of the character string. OCTET_LENGTH is set to thexmaximum
possible length in octets of the character string. If HL is C, then the lengthis specified in

LENGTH and OCTET_LENGTH do not include the implementation-defined null character
that terminates a C character string. CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, and CHARACTER_SET NAME are setto.the <character set name>
of the character string's character set. COLLATION_CATALOG;\COLLATION_SCHEMA,
and COLLATION_NAME are set to the <collation name>_of the character string's collgtion.

If TYPE indicates a <binary string type>, then LENGTHand OCTET_LENGTH arq both
set to the length or maximum length in octets of the binary string.

If TYPE indicates an <exact numeric type>, then’PRECISION and SCALE are set tp the
precision and scale of the exact numeric.

If TYPE indicates an <approximate numeric type>, then PRECISION is set to the pregision
of the approximate numeric.

If TYPE indicates a <datetime-type>, then LENGTH is set to the length in positions ¢f the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Tablg 9,
“Codes associated with datetime data types in SQL/CLI”, to indicate the specific datg¢time
data type, and PRECISION is set to the <time precision> or <timestamp precision>|as
applicable.

If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of thg
interval type; DATETIME_INTERVAL_CODE is set to a code as specified in Table|10,

“Codes associated with <interval qualifier> in SQL/CLI”, to indicate the specific <inferval
qualifiers, DATETIME_INTERVAL_PRECISION is set to the <interval leading field
precision>, and PRECISION is set to the <interval fractional seconds precision>, if appli-
cable.

If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length
octets of the reference type, USER_DEFINED_TYPE_CATALOG,

USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are se} to
the <user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referencgable

n

8)

Dase table.

If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to
the <user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined
type name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to
the CURRENT_TRANSFORM_GROUP_FOR_TYPE for the user-defined type.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 43

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.9 Implicit DESCRIBE USING clause

USER_DEFINED_TYPE_CODE is set to a code as specified in Table 12, “Codes associated
with user-defined types in SQL/CLI”, to indicate the category of the user-defined type.

9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) [oo)lf TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinal
the array type.

ity of

6) et C be the allocated SQL-connection with which ASis associated.
7) If POPULATE IPD for Cis False, then no further rules of this Subclause are applied.

8) If POPULATE IPD for Cis True, then a descriptor for the <dynamic parameter specification>s for the
prepared statement is stored in IPD as follows:

3)

)

¢)

Let D be the number of <dynamic parameter specification>s in S
Case:

i) If the value of the statement attribute NEST DESCRIPTOR is@ue, then let NS, 1 (one)
be the number of subordinate descriptors of the descriptor for the i-th input dynamic paran

i) Otherwise, let NS, 1 (one) <i £ D, be 0 (zero).
TOP_LEVEL_COUNT issetto D. If D is 0 (zero), then.let TD be 0 (zero); otherwise, let TD b
D + 22, (NS). COUNT is set to TD.

NOTE 13 — The KEY_TYPE field is not relevant_in this case.

If TD is zero, then no item descriptor areas-are set. Otherwise, the first TD item descriptor areas
set so that the i-th item descriptor area e¢ontains a descriptor of the j-th <dynamic parameter spec
tion> such that:

i) The descriptor for the first'such <dynamic parameter specification> is assigned to the firg

descriptor area.

i) The descriptor far the j+1-th <dynamic parameter specification> is assigned to the i+NS
item descriptor.area.

iii) Ifthe valueof the statement attribute NEST DESCRIPTOR is True, then the implicitly or
subordinate descriptors for the j-th <dynamic parameter specification> are assigned to contig
item descriptor areas starting at the i+1-th item descriptor area.

The descriptor of a <dynamic parameter specification> consists of values for LEVEL, TYPE, N
LABLE, NAME, UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_POSITIO
PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER |

<D,
neter.

D

are
fica-

+1-th

lered
uous

UL-
N,
SPE-
ds

CIFIC_NAME, and other fields depending on the value of TYPE as described below. Those fie

44 Call-Level Interface (SQL/CLI)

and Tields that are not applicable Tor a particular value of T YPE are Set to implementation-depe
values. The DATA_POINTER, INDICATOR_POINTER, OCTET_LENGTH_POINTER,
RETURNED_CARDINALITY_POINTER, and KEY_MEMBER fields are not relevant in this

dent

case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is some value k, then LEVEL is set to k+1; otherwise, LEVEL is set to 0 (zero).

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.9 Implicit DESCRIBE USING clause

i) TYPE is set to a code as shown in Table 7, “Codes used for implementation data types in
SQL/CLI”, indicating the data type of the <dynamic parameter specification> or subordinate
descriptor.

iii) NULLABLE is setto 1 (one).

NOTE 14 — This indicates that the <dynamic parameter specification> can have the null value.

1)

2)

3)

4)

5)

6)

7)

V) KEY_MEMBER 1S setto 0 (zero).
V) UNNAMED is set to 1 (one) and NAME is set to an implementation-dependent value.

vi) Case:

If TYPE indicates a <character string type>, then LENGTH is set to the.length or maximum
length in characters of the character string. OCTET_LENGTH is sebto the maximum
possible length in octets of the character string. If HL is C, then'the lengths specified in

LENGTH and OCTET_LENGTH do not include the implementation-defined null character
that terminates a C character string. CHARACTER_SET_ (CATALOG, CHARAC-
TER_SET_SCHEMA, and CHARACTER_SET NAME are set to the <character set name>
of the character string's character set. COLLATION_CATALOG, COLLATION_SCHEMA,
and COLLATION_NAME are set to the <collationthame> of the character string's collgtion.

If TYPE indicates a <binary string type>, thendLENGTH and OCTET_LENGTH arq both
set to the length or maximum length in octets of the binary string.

If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set tp the
precision and scale of the exact numeric.

If TYPE indicates an <approximate numeric type>, then PRECISION is set to the pregision
of the approximate numeric:

If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions ¢f the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Tablg 9,

“Codes associated with datetime data types in SQL/CLI”, to indicate the specific dat¢time
data type, and-PRECISION is set to the <time precision> or <timestamp precision>|as
applicable,

If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of thg
interval type, DATETIME_INTERVAL_CODE is set to a code as specified in Table|10,
“Coules associated with <interval qualifier> in SQL/CLI”, to indicate the specific <interval
qualifier>, DATETIME_INTERVAL_PRECISION is set to the <interval leading field
precision>, and PRECISION is set to the <interval fractional seconds precision>, if appli-
cable.

If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length{in
octets of the reference type, USER_DEFINED_TYPE_CATALOG,

8)

USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_T YPE_NAME are set to
the <user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are set to the qualified name of the referenceable
base table.

If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to
the <user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME are set to the <user-defined

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 45

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.9 Implicit DESCRIBE USING clause

type name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set to
the CURRENT_TRANSFORM_GROUP_FOR_TYPE <user-defined type name>.
9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) [oe)lf TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of
the array type.

9) |If LEVEL is 0 (zero) and the prepared statement being described is a <call statement>, then:
qd) Let SRbe the subject routine for the <routine invocation> of the <call statement>.

) Let Dy be the x-th <dynamic parameter specification> simply contained in an SQL.argtment Ay of
the <call statement>.

) Let Py be the y-th SQL parameter of SR

NOTE 15 — A P whose <parameter mode> is IN can be a <value expression> that cahfains zero, one, or more <dyjnamic
parameter specification>s. Thus:

— Every Dy maps to one and only one Py.
— Several Dy instances can map to the same Py,

— There can be Py instances that have no Dy instances that map to them.

¢) The PARAMETER_MODE value in the descriptor fareach Dy is set to the value from Table 11,
“Codes associated with <parameter mode> in SQL/CLI”, that indicates the <parameter mode> ¢f Py,

¢) The PARAMETER_ORDINAL_POSITION:value in the descriptor for each Dy is set to the ordinal
position of Py.

1) The PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, and PARAME-
TER_SPECIFIC_NAME values-in-the descriptor for each Dy is set to the values that identify the cat-

alog, schema, and specific name‘of SR.

46 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.10 Implicit EXECUTE USING and OPEN USING cl

5.10 Implicit EXECUTE USING and OPEN USING clauses

Function

Specify the rules for an implicit EXECUTE USING clause and an implicit OPEN USING clause.

General Rules

1)

2)

3)
4)

©ISO/IEC 2016 — All rights reserved

auses

Let T, S and ASbe the TYPE, SOURCE, and ALLOCATED STATEMENT, respectively, specified in
flules of this Subclause.

et IPD, ARD, and APD be the current implementation parameter descriptor, current-application ro
dlescriptor, and current application parameter descriptor, respectively, for AS

et C be the allocated SQL-connection with which Sis associated.

alues, respectively, for the statement being executed. Let D be the number of <dynamic parameter g
fication>s in S Let NAPD be the value of COUNT for APD and let NIPD be the value of COUNT for

3) If NAPD is less than zero, then an exception condition is\aised: dynamic SQL error — invalid
descriptor count.

b) If NIPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count.

¢) IfNIPD is less than D, then an exception ¢endition is raised: dynamic SQL error — using clauss
not match dynamic parameter specifications.

¢) Let NIDAL be the number of item descriptor areas in IPD for which LEVEL is 0 (zero). If NID.

QL error — using clause doesnot match dynamic parameter specifications.

¢) Ifthe first NIPD item descriptor areas of IPD are not valid as specified in Subclause 5.18, “Descri
of CLI item descriptdr areas”, then an exception condition is raised: dynamic SQL error — usin
clause does not match dynamic parameter specifications.

1) Let AD be thezminimum of NAPD and NIPD.
@) For each©fthe first AD item descriptor areas of APD, if TYPE indicates DEFAULT, then:

i) Let TP, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectiv
for the corresponding item descriptor area of IPD.

the

<

IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specificatipn>

peci-
IPD.

does

AL is

greater than D, then it is implementation-defined whether an exception condition is raised: dynamic

btion
Jd

ely,

alue

i) The data type, precision, and scale of the described <dynamic parameter specification>

(Or part thereof, 1T the item descriptor area IS a subordinate descriptor) are setto 1P, P, an
respectively, for the purposes of this invocation only.

h) If the first AD item descriptor areas of APD are not valid as specified in Subclause 5.18, “Descri

d C,

ption

of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL error — using

clause does not match dynamic parameter specifications.

i) For the first AD item descriptor areas in APD:

Call-Level Interface specifications 47

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.10 Implicit EXECUTE USING and OPEN USING clauses

i)

If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D, then

an exception condition is raised: dynamic SQL error — using clause does not match dynamic

parameter specifications.

i) If all of the following are true, then an exception condition is raised: dynamic SQL error

using clause does not match dynamic parameter specifications.

J

1) Thaoaal £ il o L VWP N | Al P2
J.} 1T vadrut ur Uit 1T1UoL valtauic duuiltootyu IJ_y
2) At least one of the following is true:

A) TYPE does not indicate ROW and the item descriptor area is not subordinate tg

an

item descriptor area for which the value of the host variable addressed by the INDI-

CATOR POINTER is not negative.
B) TYPE indicates ARRAY or ARRAY LOCATOR.
C) TYPE indicates MULTISET or MULTISET LOCATOR.

3) The value of the host variable addressed by DATA_POIWNTER is not a valid value of
data type represented by the item descriptor area.

For each of the first AD item descriptor areas ADIDA in APD;:

i) If the OCTET_LENGTH_POINTER field of ARIDA has the same non-zero value as the
INDICATOR_POINTER field of IDA, then SHARE is true for ADIDA, otherwise, SHAR
false for ADIDA.

Case:

1) If SHARE is true for ADIDA and the value of the commonly addressed host variable
appropriate 'Code’ for SQINULL DATA in Table 27, “Miscellaneous codes used in
then NULL is true for ARIDA.

2) If SHARE is false fo/ADIDA, INDICATOR_POINTER is not zero, and the value of
host variable addressed by INDICATOR_POINTER is the appropriate 'Code' for SQ
NULL DATANN Table 27, “Miscellaneous codes used in CLI”, then NULL is true fg
ADIDA.

3) Otherwise, NULL is false for ADIDA.

i) If NULLE s false for ADIDA, OCTET _LENGTH_POINTER is not 0 (zero), and the valu
the host variable addressed by OCTET_LENGTH_POINTER is the appropriate 'Code' fof
NULL DATA in Table 27, “Miscellaneous codes used in CLI”, then DEFERRED is true
ADIDA; otherwise, DEFERRED is false for ADIDA.

if all of the following are true for any item descriptor area in the first AD item descriptor areas of

the

E is

s the

CLI”,

the
L

b of
SQL
for

\PD,

then an exception condition is raised: dynamic SOL error — using clause does not match dynar

hic

parameter specifications.

i) DEFERRED is true for the item descriptor area.

i) Either of the following is true:
1) The value of LEVEL is zero and TYPE indicates ROW, ARRAY, or MULTISET.
2) LEVEL is greater than 0 (zero).

48 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights re

served

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.10 Implicit EXECUTE USING and OPEN USING clauses

NOTE 16 — This rule states that a parameter whose type is ROW, ARRAY, or MULTISET shall be bound;
it cannot be a deferred parameter.

1) For each item descriptor area whose LEVEL is 0 (zero) and for each of its subordinate descriptor
areas, if any, for which DEFERRED is false in the first AD item descriptor areas of APD and whose
corresponding <dynamic parameter specification> has a <parameter mode> of PARAM MODE IN
or PARAM MODE INOUT, refer to the corresponding <dynam|c parameter speC|f|cat|on> value as

N n and rafar o tha ~Aorracm A Alln A a0 orfin >
aft IIIIIIICUI(ALC |JouounCLC| Yarte-artfrerertote \.zUIICJlJUI IuIIIH uyllullll\., |Jou ulllULUl opcbllluuu\u as

an immediate parameter.

m) Let IDA be the i-th item descriptor area of APD whose LEVEL value is 0 (zero). Let SDT be the data
type represented by IDA. The associated value of IDA, denoted by SV, is defined as follows.

Case:
i) If NULL is true for IDA, then SV is the null value.

i) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field values are|the
associated values of the immediately subordinate descriptor areas of IDA.

iii) Otherwise:
1) LetV be the value of the host variable addressed by DATA_POINTER.
2) Case:
A) If TYPE indicates CHARACTERthen
Case:

1) If OCTET_LENGTH_POINTER is zero or if OCTET_LENGTH_POINTER
is not zero and.the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, then lef L be
the number.of characters of V that precede the implementation-defined null
character_that terminates a C character string.

I1) Otherwise, let Q be the value of the host variable addressed by
OCTET_LENGTH_POINTER and let L be the number of characters wholly
contained in the first Q octets of V.

B)-“Otherwise, let L be zero.

3) » ket SV be V with effective data type SDT, as represented by the length value L and Ry the
values of the TYPE, PRECISION, and SCALE fields.

m) LetFDT be the effective data type of the i-th immediate parameter as represented by the values ¢f the
TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_T YPE_CATALOG, USER_DEFINED_T YPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the i-th item descrlptor area of IPD for which the LEVEL value is 0 (zero), and all its subor-
dinate descriptor areas.

0) Let DT be the effective data type of the i-th bound parameter as represented by the values of the
TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 49

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.10 Implicit EXECUTE USING and OPEN USING clauses

USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the corresponding item descriptor area of APD for which the LEVEL is 0 (zero), and all its
subordinate descriptor areas.

p) Case:
i) If DT is a locator type, then let TV be the value SV.
i) If SDT and TDT are predefined types, then:

1) Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13,/<east specification>’|, in
[1ISO9075-2], and there is an implementation-defined conveérsion from type SDT to
type TDT, then that implementation-defined conversion/is effectively performed
converting SV to type TDT, and the result is the value' TV of the i-th bound targét.

B) Otherwise:

—

)i If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specificatipn>",
in [1ISO9075-2], then ansexception condition is raised: dynamic SQL errqr —
restricted data typedttribute violation.

I1) The <cast specification>

CAST (/SVAS TDT)
is effectively performed and the result is the value TV of the i-th bound target.

2) Let UDT be'the effective data type of the actual i-th immediate parameter, defined t¢ be
the data-type represented by the values of the TYPE, LENGTH, PRECISION, SCALE,
DATETHVE_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, CHARAC-
TERVSET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would automatically be set in the corresponding item descfiptor
area of IPD if POPULATE IPD was True for C.

3) Case:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in
[1ISO9075-2], and there is an implementation-defined conversion from type SDT to
type UDT, then that implementation-defined conversion is effectively performed,
converting SV to type UDT and the result is the value TV of the i-th immediate
parameter.

50 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

B) Otherwise:

ISO/IEC 9075-3:2016(E)
5.10 Implicit EXECUTE USING and OPEN USING clauses

1) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6. 13 ‘<cast speC|f|cat|on>

Case:

Case:

1)

restrlcted data type attrl bute vi oI atlon
I1) The <cast specification>

CAST (TV AS UDT)

is effectively performed and the result is the value of thei~th immediate
parameter.

iii) If DT is a predefined type and TDT is a user-defined type, then:
1) Let DT be the data type identified by TDT.

IFTSFPT is compatible with SDT, then

Case:

1)

2) If the current SQL-session has a group name corresponding to the user-defined namg of
DT, then let GN be that group name; otherwises let GN be the default transform grodip
name associated with the current SQL-session

3) The Syntax Rules of Subclause 9.27, “De&termination of a to-sql function”, in [ISO9075-
2], are applied with DT as TYPE and GN as GROUP.

A) If there is an applicable to=sgl function, then let TSF be that to-sql function. If TSF is
an SQL-invoked methad, then let TSFPT be the declared type of the second SQL
parameter of TSF; ptherwise, let TSFPT be the declared type of the first SQL parafneter
of TSF.

ith

If TSF is an SQL-invoked method, then TSF is effectively invoked
the value returned by the function invocation:
DTO

as the first parameter and SV as the second parameter. The result of gvalu-
ating the expression TSF(DT(), SV) is the value of the i-th immediate

1)

©ISO/IEC 2016 — All rights reserved

2)

Pardmeter.

Otherwise, TSF is effectively invoked with SV as the first parameter. The
result of evaluating the expression TSF(SV) is the value of the i-th imme-
diate parameter.

Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

Call-Level Interface specifications 51

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.10 Implicit EXECUTE USING and OPEN USING clauses

B) Otherwise, an exception condition is raised: dynamic SQL error — data typetransform
function violation.
q) |If DEFERRED is true for at least one of the first AD item descriptor areas of APD, then:
i) Let PN be the parameter number associated with the first such item descriptor area.

ii) PN becomes the deferred parameter number associated with AS

iii) If Tis'EXECUTE', then Shecomes the statement source associated with AS

iv) An exception condition is raised: CLI-specific condition — dynamic parameter-value negded.

52 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

5.11

ISO/IEC 9075-3:2016(E)

5.11 Implicit CALL USING ¢

Implicit CALL USING clause

Function

Specify the rules for an implicit CALL USING clause.

Gen

1)
2)

3)

©ISO/IEC 2016 — All rights reserved

3)

)

¢)

eral Rules

et Sand AShe a SOURCE and an ALLOCATED STATEMENT specified in the rules of this Subclal

et IPD and APD be the current implementation parameter descriptor and current application row
dlescriptor, respectively, for AS

IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specificati
alues, respectively, for the <call statement> being executed. Let D be the pumber of <dynamic para
gpecification>s in S

Let AD be the value of the COUNT field of APD. If AD is less than zero, then an exception cong
is raised: dynamic SQL error — invalid descriptor count.

For each item descriptor area in the APD whose LEVEL"S O (zero) in the first AD item descrip

lause

ISE.

on>
meter

ition

or

areas of APD, and for all of their subordinate descriptorareas, refer to a <dynamic parameter specifi-
cation> value whose corresponding item descriptor,areas have a non-zero DATA_POINTER vajue
and whose corresponding <dynamic parameter specification> has a <parameter mode> of PARAM

MODE OUT or PARAM MODE INOUT as a:bound target and refer to the corresponding <dyr]
parameter specification> as a bound parameter.

If any item descriptor area corresponding to a bound target in the first AD item descriptor areas
APD is not valid as specified in Sub¢lause 5.18, “Description of CLI item descriptor areas”, the

exception condition is raised: dynamic SQL error — using clause does not match target specificaI ons.

Let SDT be the effective data type of the i-th bound parameter as represented by the values of t
TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INT
VAL_PRECISION, GHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHAR
TER_SET_NAME;USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEM
USER_DEFINED,-TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NA
fields in the i-thsitem descriptor area of IPD for which the LEVEL is 0 (zero) and all of its subord
descriptor.areas. Let SV be the value of the output parameter, with data type SDT.

amic

of
nan

e
FR-
AC-
A,
ME
inate

If TYPEdndicates USER-DEFINED TYPE, then let the most specific type of the i-th bound paraineter

whoséwalue is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item desc
area of IPD.

iptor

f)

9)

Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,

INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively, in the item
descriptor area of APD corresponding to the i-th bound target (or part thereof, if the item descri
area is a subordinate descriptor).

Case:
)] If TYPE indicates CHARACTER, then:

ptor

Call-Level Interface specifications 53

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.11 Implicit CALL USING clause

i)

1)

2)

Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 7, “Codes used for implementation data types in SQL/CLI".

Let LV be the implementation-defined maximum length for a CHARACTER VARYING
data type.

Otherwise, let UT be TYPE and let LV be 0 (zero).

ﬂu) Let TDT be the effective data type of the i-th bound target as represented by the type UT, the(lepgth

) Case:

i)

If TDT is a locator type, then

Case:

1)

value LV, and the values of the PRECISION, SCALE, CHARACTER_SET CATALOG, EHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_ CATALOG,

USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG
SCOPE_SCHEMA, and SCOPE_NAME fields in the corresponding item descriptof-area of APD for
which the LEVEL is 0 (zero) and all its subordinate descriptor areas.

If SV is not the null value, then a locator L that uniguely identifies SV is generated arjd the
value TV of the i-th bound target is set to an implementation-dependent four-octet vlue
that represents L.

2) Otherwise, the value TV of the i-th boundtarget is the null value.
i) If SDT and TDT are predefined types, then
Case:
1) If the <cast specification>
CAST (SV AS TDI-)
does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in
[1ISO9075-2}-and there is an implementation-defined conversion from type SDT to type
TDT, thenthat implementation-defined conversion is effectively performed, convertjng
SV to type-TDT, and the result is the value TV of the i-th bound target.
2) Otherwise:
A) If the <cast specification>
CAST (SV AS TDT)
does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>’|, in
[1SO9075-2], then an exception condition is raised: dynamic SQL error — restrjicted
data type attribute violation.
B) The <cast specification>
CAST (SV AS TDT)
is effectively performed and the result is the value TV of the i-th bound target.
iii) If SDTis a user-defined type and TDT is a predefined data type, then:

54 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.11 Implicit CALL USING cl

1) Let DT be the data type identified by SDT.

2)

3)

ause

If the current SQL-session has a group name corresponding to the user-defined name of
DT, then let GN be that group name; otherwise, let GN be the default transform group
name associated with the current SQL-session.

The Syntax Rules of Subclause 9.25, “Determination of a from-sql function”, in [ISO9075-

- Wal N faln'alNin

J
K

Let IDA be the top-level item descriptor area corrgsponding to the i-th output parameter.

) Case:

i) If TYPE indicates ROW, then

[aX | ¥ wahiadaaatlb- DT V] -
<], AdiTappItu wWitdT T do T 1T L dlTu OIN do TOIUUT.

Case:

A)

B)

Case:

1)

If TV is the null value, then

Case:

A)

B)

If there is an applicable from-sgl function, then let FSF be that from-sgl functiop and

let FSFRT be the <returns data type> of FSF.

Case:

1) If FSFRT is compatible with TDT, then the from-sgl function TSF is effectively
invoked with SV as its input parameter and the result of evaluating TSF($V) is

the value TV of the i-th bound target.

I1) Otherwise, an exception condition is raised: dynamic SQL error — restrilcted

data type attribute violation.

Otherwise, an exception condition is raiséd. dynamic SQL error — data typetrangform

function violation.

If 1P is anull pointer for IDA or for any of the subordinate descriptor areas of IDA

that'are not subordinate to an item descriptor area whose type indicates ARRAY
ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, then an exceptic
condition is raised: data exception — null value, no indicator parameter.

Otherwise, the value of the host variable addressed by IP for IDA, and those in pll
subordinate descriptor areas of IDA that are not subordinate to an item descriptof area
whose TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET

LOCATOR are set to the appropriate 'Code’ for SQL NULL DATA in Table 27,
“Miscellaneous codes used in CLI”, and the values of variables addressed by D

©ISO/IEC 2016 — All rights reserved

2)

LF are implementation-daependent.

P and

Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the i-th
field of TV by applying GR 3)k) to the i-th subordinate descriptor area of IDA as IDA, the
value of i-th field of TV as TV, the value of the i-th field of SV as SV, and the data type of
the i-th field of SV as DT.

i) Otherwise,

Case:

Call-Level Interface specifications 55

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.11 Implicit CALL USING clause

1) If TVis the null value, then
Case:

A) IfIP is a null pointer, then an exception condition is raised: data exception — null
value, no indicator parameter.

B) Otherwise, the value of the haost variable addressed by IP is set to the appropriate
'‘Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in CLK and
the values of the host variables addressed by DP and LP are implementation-deperdent.

2) Otherwise:

A) If IPis not a null pointer, then the value of the host variable addréssed by IP is et to
0 (zero).

B) Case:
1) If TYPE indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TV is a zero-length character stringithen it is implementation-defined
whether or not an exception conditior'is raised: data exception — zgro-
length character string.

2) The General Rules of Subclause 5.14, “Character string retrieval”, are
applied with DP, TV, OLsand LP as TARGET, VALUE, TARGET OCTET
LENGTH, and RETURNED OCTET LENGTH, respectively.

1)) If TYPE indicates BINARY LARGE OBJECT, then the General Rules o
Subclause 5.15, “Binary string retrieval”, are applied with DP, TV, OL, and LP
as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

1) If TYPEindicates ARRAY, ARRAY LOCATOR, MULTISET, or MULT|ISET
LOCATOR and if RETURNED_CARDINALITY_POINTER is not 0 (zgro),
then'the value of the host variable addressed by RETURNED_ CARDINAL-
ITY POINTER is set to the cardinality of TV.

IV)™) - Otherwise, the value of the host variable addressed by DP is set to TV.

56 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.12 Fetching a rowset

5.12 Fetching a rowset

Subclause Signature

“Fetching a rowset” [General Rules] (

Parameter- “Al L OCATED STATEMENT”
Pgrameter: “FETCH ORIENTATION”,
Pdrameter: “FETCH OFFSET”

)

Function

Spec|fy the rules for fetching a rowset.

General Rules

1)

2)

3)

4)

5)

6)

7)
8)

9)
10)

©ISO/IEC 2016 — All rights reserved

DFFSET in an application of the General Rules of this Subclause)

f there is no executed statement associated with S then aneéxception condition is raised: CLI-specifi
rondition — function sequence error.

f FO is not one of the code values in Table 25; “Codes used for fetch orientation”, then an exceptio
ondition is raised: CLI-specific condition*==invalid fetch orientation.

gxception condition is raised: CLI-specific condition — invalid fetch orientation.

field of ARD.
| et AD be the value of'the COUNT field in the header of ARD.

fFor each item descfiptor area in ARD whose LEVEL is 0 (zero) in the first AD item descriptor areas
ARD, and for allof their subordinate descriptor areas, refer to a <target specification>whose correspo:lx
item descripter area has a non-zero value of DATA POINTER as a bound target and refer to the co

ponding-<select list> column as a bound column.

et.BC be the number of bound columns.

e a7/ N\ H oo
Furdirt, L (UIT) =T = DC.

a) Let IDA be the item descriptor area of ARD corresponding to the i-th bound target and let TT be
value of the TYPE field of IDA.

b) If TT indicates DEFAULT, then:

i) Let IRD be the implementation row descriptor associated with S

-

et Sbhe the ALLOCATED STATEMENT, let FO be the FETCH ORIENTATION, and let OShe the FETCH

c

f there is no open CLI cursor associated with S, then<an exception condition is raised: invalid cursor gtate;
otherwise, let CR be the open CLI cursor associated with Sand let T be the table associated with CR.

f the operational scrollability property~of CRis NO SCROLL, and FO does not indicate NEXT, thgn an

et ARD be the current appligation row descriptor for Sand let N be the value of the TOP_LEVEL_CQUNT

of
ding

re-

the

Call-Level Interface specifications 57

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.12 Fetching a rowset

i) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,

for the item descriptor area of IRD corresponding to the i-th bound column.

iii) The data type, precision, and scale of the <target specification> described by IDA are effectively

set to CT, P, and SC, respectively, for the purposes of this fetch only.

11) Case:

12)

13)

ii

If FO indicates ABSOLUTE or RELATIVE, then let J be OS
If FO indicates NEXT or FIRST, then let J be +1.

after the last row of R, preserving their order in T.

i) Otherwise, let T; be an empty table.

) If FO indicates PRIOR or LAST, then let J be -1.
et R be the rowset on which CR s positioned and let ASbe the value of the ARRAY)SIZE field injthe
header of ARD.
et T; be a result set of the same degree as T.
Case:
3) IfFOindicates ABSOLUTE, FIRST, or LAST, then let T; contaiwall rows of T, preserving their prder
inT.
) If FO indicates NEXT, or indicates RELATIVE with a-positive value of J, then
Case:
i) If T is empty or if R contains the last row of T, then let T; be a table of no rows.
i) If CRis positioned before the start-af the result set, then let T; contain all rows of T, preseyving
their order in T.
iii) Otherwise, let T; contain.akl-rows of T after the last row of R, preserving their order in T.
) If FO indicates PRIOR or indicates RELATIVE with a negative value of J, then
Case:
)] If T is empty or if R contains the first row of T, then let T; be a table of no rows.
i) If CR.is positioned after the end of the result set, then let T; contain all rows of T, preserying
theirorder in T.
iii) .< Otherwise, let T; contain all rows of T before the first row of R, preserving their order inT.
¢) AFFO indicates RELATIVE with a zero value of J, then
Case:
i) If Ris not empty, then let T; be a result set comprising all the rows in Rand all the rows of T

14) Let N be the number of rows in T;. If Jis positive, then let K be J. If Jis negative, then let K be N+J+1. If
Jis zero, then let K be 1 (one).

58 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

15) Case:

ISO/IEC 9075-3:2016(E)
5.12 Fetching a rowset

a) If Kis greater than 0 (zero), then

Case:

i)

If (K+ AS- 1) is greater than N, then

i)

Case:
)

i)
Case:

i)
i)

i)

) If Kis less than 0 (zero), but the absolute value of K 15 less than or equal to AS then

) Otherwise, no SQL-data values-are assigned and a completion condition is raised: no data.

No further rules of this Subclause are applied.

Case:
1) If Jis less than O (zero), then
Case:

A) If (K+ AS-1) is greater than the number of rows in T, then CRds positioned or]
rowset that has all the rows in T.

B) Otherwise, CRis positioned on the rowset whose first rowis the K-th row of T;
rowset has ASrows.

2) Otherwise, if K is less than N, then CR is positioned an'the rowset that has all the ro
Tt

Otherwise, CR s positioned on the rowset whose first’row is the K-th row of Ty; that row
has ASrows.

If ASis greater than the number of fows in T, then CR s positioned on the rowset that h3
the rows in T.

Otherwise, CRis positioned on the rowset that has the first ASrows in T.

If FO indicates RELATIVE with J equal to zero, then the position of CR is unchanged.

If FO indicates NEXT, indicates ABSOLUTE or RELATIVE with K greater than N, or ind
LAST; then CRis positioned after the last row.

Q@therwise, FO indicates PRIOR, FIRST, or ABSOLUTE or RELATIVE with K not greg
than N and CR is positioned before the first row.

the

that

WS in

et

s all

cates

—

er

16) Let-NRbe the rowsetonwhich CRispositionedLet ASR and RPP he the values of the ARRAY _STA-

TUS_POINTER and ROWS_PROCESSED_POINTER fields respectively in the header of the IRD of S

17) If RPP is not a null pointer, then set the value of the host variable addressed by RPP to 0 (zero).
18) Let ROWS DERIVED be 0 (zero).
19) Let RSbe the number of rows in NR.

For RN, 1 (one) < RN < RS let R be the RN-th row of NR.

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 59

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.12 Fetching a rowset

Case:

20) Case:

3)

If an exception condition is raised during derivation of any <derived column> associated with R and
ASP is not a null pointer, then set the RN-th element of ASP to 5 (indicating Row error). For all status
records that result from the application of this Rule, the ROW_NUMBER field is set to RN and the

COLUMN_NUMBER field is set to the appropriate column number, if any.

If ROWS _DERIVED is greater than 0 (zero), then:
)] Let SShe the select source associated with S
i) NR becomes the fetched rowset associated with S

iii) The General Rules of Subclause 5.13, “Implicit FETCH USING:cladse”, are applied with SS
as SOURCE, RSas ROWS and Sas ALLOCATED STATEMENT) respectively, resulting {n
ROWS ASSGNED.

Case:

1) If ROWS ASSGNED is greater than 0 (zero) ROWS ASIGNED is less than AS, and ASP
is not O (zero), then set the ROWS_ASS GNED+1-th through AS-th elements of ASP|to 3
(indicating No row). If ROWS_ASSIGNED-is less than AS then a completion conditjon is
raised: warning. If RPP is not a null pginter, then the value of the host variable addrpssed
by RPP is set to the value of ROWS ASS GNED.

2) If ROWS ASSIGNED is 0 (zero);then the values of all bound targets are implementgtion-
dependent and CR remains positioned on NR.

) Otherwise, the values of all boundtargets are implementation-dependent and CR remains positjoned

on R

21) If ROWS DERIVED is greater than 0 (zero) and ROWS_ASS GNED is greater than 0 (zero), then the palue

¢of the CURRENT OF POSITION attribute of Sis set to
Case:

3)

) Otherwise;an implementation-defined value indicating the current row in the rowset.

If ASis 1 (one)orif CRis scrollable, then 1 (one).

60 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

5.13 Implicit FETCH USING clause

5.13 Implicit FETCH USING clause

Function

Specify the rules for an implicit FETCH USING clause.

General Rules

1)

2)
3)

4)

©ISO/IEC 2016 — All rights reserved

et S RS and ASbe respectively a SOURCE, ROWS, and ALLOCATED STATEMENT spetified in 3
gpplication of this Subclause.

| et RA be 0 (zero).

et IRD and ARD be the current implementation row descriptor and current application row descrip
flespectively, associated with AS

IRD and ARD describe the <select list> columns and <target specification>s, respectively, for the cg
alues that are to be retrieved. Let D be the degree of the table definedby S

3) Let AD be the value of the COUNT field of ARD. If AD is less'than zero, then an exception cong
is raised: dynamic SQL error — invalid descriptor count:

i) For each item descriptor area in ARD whose LEVEL<jis 0 (zero) in the first AD item descriptor
of ARD, and for all of their subordinate descriptor-areas, refer to a <target specification> whose ¢

corresponding <select list> column as a bound column.

) If any item descriptor area corresponding to a bound target in the first AD item descriptor areas
ARD is not valid as specified in Subclause 5.18, “Description of CLI item descriptor areas”, the

q) Let SDT be the effective datatype of the i-th bound column as represented by the values of the T
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL |
CISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEM
USER_DEFINED.TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NA
fields in the i-thuitem descriptor area of IRD whose LEVEL is 0 (zero) and all of its subordinate
descriptor areas.

¢) If TYPEsindicates USER-DEFINED TYPE, then let the most specific type of the i-th bound co
whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIEIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item desc
area of IRD.

n

or,

umn

ition

reas
orre-

sponding item descriptor areas have a non-zero DATA_POINTER as a bound target and refer tg the

of
nan

exception condition is raised: dynamic SQL error — using clause does not match target specificafions.

YPE,
PRE-

A,
ME

umn

iptor

INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields, respectively, in the item
descriptor area of ARD corresponding to the i-th bound target (or part thereof, if the item descri
area is a subordinate descriptor).

g) Let ASP be the value of the ARRAY_STATUS POINTER field in IRD.
h) For RN ranging from 1 (one) through RS if the RN-th row of the rowset has been fetched, then:

) Let TYPE, OL, DP, TP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,

ptor

Call-Level Interface specifications 61

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.13 Implicit FETCH USING clause

Let SV be the value of the <select list> column, with data type SDT.

Let DPE, IPE, and LPE be the addresses of the RN-th element of the arrays addressed by DP,

IP, and LP, respectively.
Case:
1) If TYPE indicates CHARACTER, then:

vi)

A) Let UT be the code value corresponding to CHARACTER VARYING as specif
in Table 7, “Codes used for implementation data types in SQL/CLI".

B) Let LV be the implementation-defined maximum length fora CHARACTER
VARYING data type.

2) Otherwise, let UT be TYPE and let LV be 0 (zero).

Let TDT be the effective data type of the i-th bound target as represented by the type UT
length value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATA
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED."-TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALQG, SCOPE_SCHEMA, and
SCOPE_NAME fields in the item descriptor area o6f\ARD whose LEVEL is 0 (zero) and
its subordinate descriptor areas.

Let LTDT be the data type on the last fetch of the'i-th bound target, if any. If any of the follg
is true, then is implementation-defined whether or not an exception condition is raised: dyr
L error — restricted data type attributé violation.

1) LTDT and TDT both identify a\binary large object type and only one of LTDT and T
a binary large object locator.

2) LTDTand TDT both identify a character large object type and only one of LTDT and
is a character large(©object locator.

3) LTDT and TDI both identify an array type and only one of LTDT and TDT is an arr
locator.

4) LTDT and“TDT both identify a multiset type and only one of LTDT and TDT is a md
locater

5) 4 TDTand TDT both identify a user-defined type and only one of LTDT and TDT is a
defined type locator.

Case:

1) If TDTis a locator type, then;

ed

the
| OG,

all of

wing
amic

DT is

DT

y

Itiset

user-

62 Call-Level Interface (SQL/CLI)

A) 1T SV IS notthe null value, then a 1ocator L that uniquely taentities SV IS generate

and

the value TV of the i-th bound target is set to an implementation-dependent four-octet

value that represents L.
B) Otherwise, the value TV of the i-th bound target is the null value.
2) If SDTand TDT are predefined types, then

Case:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.13 Implicit FETCH USING clause

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in
[ISO9075-2], and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed,

CONVETNG SV 1o Type TDT, and the Tesult 15 the valtue TV of the =t bound targgt.

B) Otherwise:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6,13, “<cast specificatipn>",
in [1SO9075-2], then an exception condition is raised: dynamic SQL errgr —
restricted data type attribute violation.

I1) The <cast specification>

CAST (SV AS TDT)
is effectively performed and the-result is the value TV of the i-th bound target.

For every status record that results from the application of this Rule, the
ROW_NUMBER field is:setto RN and the COLUMN_NUMBER field ifs set
toi. If ASP is not a null\pointer, then the RN-th element of the array addrgssed
by ASP is set to:

1) If there werecompletion conditions: warning raised during the appligation
of this Rule; then 6 (indicating Row success with information).

2) If there were exception conditions raised during the application of this
Rule, then 5 (indicating Row error).

I1l) _The'<cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th bound target.

) DT is a user-defined type and TDT is a predefined data type, then:
A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-defined pame
of DT, then let GN be that group name; otherwise, let GN be the default transfoym
group name associated with the current SQL-session.

C) The Syntax Rules of Subclause 9.25, “Determination of a from-sgl function”, in
[1ISO9075-2], are applied with DT and GN as TYPE and GROUP, respectively.

Case:

1) If there is an applicable from-sql function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 63

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.13 Implicit FETCH USING clause

Case:
1) If FSFRT is compatible with TDT, then the from-sgl function TSF is

effectively invoked with SV as its input parameter and the result of evalu-

ating TSF(SV) is the value TV of the i-th bound target.

2) Other\lee an exceptlon condltlon |s raised: dynamic SQL error —

b aclat

1)

viii) Case:

Case:

Case:

1)

1)

Case:

vii) Let IDA be the top-level item descriptor area corresponding to the i-th bound-¢olumn.

1) If TYPE indicates ROW, then

A) If TV is the null value, then

A) If TV is the null value, then

HI =0
Festt ILA.C\J uataa Ly'JC G.l.l.l IlJul.U VIUIG.LI onf:

Otherwise, an exception condition is raised: dynamic SQL error —-data
transform function violation.

If IPE is a null pointer for IDA gr for any of the subordinate descriptor a
of IDA that are not subordinate.to an item descriptor area whose type ind
ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR
an exception condition is.raised: data exception — null value, no indicat
parameter.

Otherwise, the value of the host variable addressed by IPE for IDA, and
in all subordinate’descriptor areas of IDA that are not subordinate to an i

fype

[eas
cates
then
DY

hat
em

descriptor areawhose TYPE indicates ARRAY, ARRAY LOCATOR, MUL-

TISET, orrMULTISET LOCATOR, is set to the appropriate '‘Code' for S
NULL. DATA in Table 27, “Miscellaneous codes used in CLI”, and the
of variables addressed by DPE and LPE are implementation-dependent.

DL

alues

B) OtherwisSe, the i-th subordinate descriptor area of IDA is set to reflect the value ¢f the
i-thfield of TV by applying GR 4)h)viii) to the i-th subordinate descriptor area o
as)IDA, the value of i-th field of TV as TV, the value of the i-th field of SV as S\,
the data type of the i-th field of SV as SDT.

2) { Otherwise,

f IDA
and

Case:

)i If IPE is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter.

I1) Otherwise, the value of the host variable addressed by IPE is set to the a

ppro-

priate ‘Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used
in CL1”, and the values of the host variables addressed by DPE and LPE are

implementation-dependent.

64 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights re

served

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

B) Otherwise:

1)

1)

ISO/IEC 9075-3:20

16(E)

5.13 Implicit FETCH USING clause

If IPE is not a null pointer, then the value of the host variable addressed by IPE
is set to O (zero).

Case:

1)

If TYPE indicates CHARACTER or CHARACTER | ARGE OBIJE

T,

2)

then:

a) If TVisazero-length character string, then it is implementation-dgfined

whether or not an exception condition is raised: data exception
zero-length character string.

b) The General Rules of Subclause 5.14, “Charactet-string retrieval

,are

applied with DPE, TV, OL, and LPE as TARGET, VALUE, TARGET

OCTET LENGTH, and RETURNED OCTET LENGTH, respect

c) For every status record that results from-the application of the pr
ing Subrule, the ROW_NUMBER field is set to RN and the CO

vely.

pced-
L_

UMN_NUMBER field is set to i JIf ASP is not a null pointer, thgn the

RN-th element of the array,addressed by ASP is set to:

i) If there were completion conditions: warning raised durir
application of.the preceding Subrule, then 6 (indicating |
success with,information).

i) If there:.were exception conditions raised during the applid
of the preceding Subrule, then 5 (indicating Row error)

If TYPE indicates BINARY, BINARY VARYING, or BINARY LAR
OBJECH,.then the General Rules of Subclause 5.15, “Binary string

retrieval”, are applied with DPE, TV, OL, and LPE as TARGET, VAL

TARGET OCTET LENGTH, and RETURNED OCTET LENGTH, re
tively.

For every status record that results from the application of this Rule
ROW_NUMBER field is set to RN and the COLUMN_NUMBER fi
set toi. If ASP is not a null pointer, then the RN-th element of the ar
addressed by ASP is set to:

a) Ifthere were completion conditions: warning raised during the
cation of this Rule, then 6 (indicating Row success with informa

b) If there were exception conditions raised during the application ¢
Rule, then 5 (indicating Row error).

gthe
ROW

ation

RGE

UE,
Spec-

the
bld is
Fay

\ppli-
fion).

f this

©ISO/IEC 2016 — All rights reserved

3)

4)

IT 1YPE Indicates ARRAY, ARRKAY LOCATOR, MULTISET, or

UL-

TISET LOCATOR, and if RETURNED_CARDINALITY_POINTER is

not a null pointer, then the value of the host variable addressed by

RETURNED_CARDINALITY_POINTER is set to the cardinality of TV.

Otherwise, the value of the host variable addressed by DPE is set to
and the value of the host variable addressed by LPE is implementati
dependent.

TV
on-

Call-Level Interface specifications 65

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.13 Implicit FETCH USING clause
3) If there were no exception conditions raised during the application of this Rule, then:
A) RAis incremented by 1 (one).

B) If ASPis not a null pointer, then set the RN-th element of the array pointed to by ASP
to 0 (zero, indicating Row success).

5) is the result of this Subclause

66 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.14 Character string retrieval

5.14 Character string retrieval

Function

Specify the rules for retrieving character string values.

General Rules

1) LetT,V,TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED-OCTET
L ENGTH specified in an application of this Subclause.

2) If TLis not greater than zero, then an exception condition is raised: CLI-specific condition — invalid tring
llength or buffer length.

3) lLet L be the length in octets of V.

4) If RL is not a null pointer, then the value of the host variable addressed\by’RL is set to L.
5) Case:

q) If null termination is False for the current SQL-environment; then

Case:

)] If L is not greater than TL, then the first L octets of T are set to V and the values of the remajining
octets of T are implementation-dependent:

i) Otherwise, T is set to the first TL ogtets of V and a completion condition is raised: warnihg —
string data, right truncation.

) Otherwise, let NB be the length in©ctets of a null terminator in the character set of T.
Case:

i) If L is not greaterthan (TL—NB), then the first (L+NB) octets of T are set to V concatenated with
a single implementation-defined null character that terminates a C character string. The values
of the remaining characters of T are implementation-dependent.

i) Otherwise, T is set to the first (TL—NB) octets of V concatenated with a single implementation-
defined null character that terminates a C character string and a completion condition is raised:
warning — string data, right truncation.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 67

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.15 Binary string retrieval

5.15 Binary string retrieval

Function

Specify the rules for retrieving binary string values.

General Rules

1) LetT,V,TL, and RL be a TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED-OCTET
L ENGTH specified in an application of this Subclause.

2) If TL is not greater than zero (0), then an exception condition is raised: CLI-specific:condition — inyalid
$tring length or buffer length.

3) lLet L be the length in octets of V.
4) If RL is not a null pointer, then RL is set to L.
5) Case:

q) IfLisnotgreater than TL, then the first L octets of T are sebto’V and the values of the remaining gctets
of T are implementation-dependent.

b) Otherwise, T is set to the first TL octets of V and acgompletion condition is raised: warning — gring
data, right truncation.

68 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.16 Deferred parameter check

5.16 Deferred parameter check

Function

Check for the existence of deferred dynamic parameters when accessing a CLI descriptor.

General Rules

1) Let DA be a DESCRIPTOR AREA specified in an application of this Subclause.
2) lLet Cbe the allocated SQL-connection with which DA is associated.
3) lLet L1 be the set of all allocated SQL-statements associated with C.

4) lLet L2 be the set of all allocated SQL-statements in L1 which have an associated deferred paramete
mumber.

5) et L3 be the set of all CLI descriptor areas that are either the current application parameter descriptqr for,
or the implementation parameter descriptor associated with, an allocated SQL-statement in L2.

6) If DAis contained in L3, then an exception condition is raised<CL{-specific condition — function seqiience
error.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 69

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.17 CLI-specific status codes

5.17 CLI-specific status codes

Some of the conditions that can occur during the execution of CLI routines are CLI-specific. The corresponding
status codes are listed in Table 5, “SQLSTATE class and subclass codes for SQL/CLI-specific conditions”.

Table 5 — SOLSTATE class and subclass codes for SQL/CL I-specific conditions

[
Cakegory Condition Class | Subcondition Subelaks
X CLI-specific condition HY (no subclass) 000
associated statement is not pre- 007
pared

attempt to concatenateanull value | 020

attribute cannet-be set now 011
column type-out of range 097
dynamic parameter value needed | (Seeth
Note ache
end of the
table)
function sequence error 010

inconsistent descriptor information | 021

invalid attribute identifier 092
invalid attribute value 024
invalid cursor position 109
invalid data type 004

invalid data type in application 003
descriptor

invalid descriptor field identifier | 091

invalid fetch orientation 106

invalid Functionld specified 095

invalid handle (Seethe
Note at the
end of the
table)

70 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.17 CLI-specific status codes

Category | Condition Class | Subcondition Subclass

invalid information type 096
invalid LengthPrecision value 104
mvalid naramatar maoda 10E,
ivatid-parametermode 105
invalid retrieval code 103
invalid string length or buffer 090
length

invalid transaction operation code | 012

invalid use of automatically-allo- | 017
cated descriptor-handle

invalid use ofnull pointer 009
limiten number of handles 014
exceeded

memory allocation error 001
memory management error 013

non-string data cannot be sentin | 019

pieces

non-string data cannot be used 055
with string routine

nullable type out of range 099
operation canceled 008

optional feature not implemented | CO0

row value out of range 107

scope out of range 098

server declined the cancellation 018
request

NOTE 17 — No subclass code is defined for the subcondition invalid handle since no diagnostic information can be generated in
this case, nor for the subcondition dynamic parameter value needed, since no diagnostic information is generated in this case.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 71

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

5.18 Description of CLI item descriptor areas

This Subclause is modified by Subclause 19.3, “Description of CLI itemdescriptor areas”, in | SO/IEC 9075-9.

Function

Spec|fy the identifiers, data types and codes for fields used in CLI item descriptor areas.

Syntax Rules

1)

2)

3)

4)

5)

CLI item descriptor area comprises the fields specified in Table 6, “Fields in SQL/CLI row and pa
ter descriptor areas”.

iven a CLI item descriptor area IDA in which the value of LEVEL is some.valte N, the immediate

bordinate descriptor areas of IDA are those CLI item descriptor areas in\which the value of LEVH
+1 and whose position in the CLI descriptor area follows that of IDA'and precedes that of any CL

escriptor area in which the value of LEVEL is less than N+1. The subordinate descriptor areas of |
re those CLI item descriptor areas that are immediately subordinate descriptor areas of IDA or that
ubordinate descriptor areas of an CLI item descriptor area that\is Immediately subordinate to IDA.

iven a data type DT and its descriptor DE, the immediately~subordinate descriptors of DE are defin
e

Case:

q) If DT is ROW, then the field descriptors of.the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) 1f DTis ARRAY or MULTISET, therrthe descriptor of the associated element type of DT. The s
dinate descriptors of DE are those descriptors that are immediately subordinate descriptors of [
that are subordinate descriptorsof a descriptor that is immediately subordinate to DE.

Siven a descriptor DE, let SDE; represent its j-th immediately subordinate descriptor. There is an im
rdering of the subordinate descriptors of DE, such that:

) SDE; is in the first ordinal position.

) The ordinakposition of SDEj.; is K+NSt1, where K is the ordinal position of SDE;j and NSiis tf
numberefisubordinate descriptors of SDE;. The implicitly ordered subordinate descriptors of S
occupy/contiguous ordinal positions starting at position K+1.

et kDA be an item descriptor area in an implementation parameter descriptor. IDA is valid if and or

ram-

y -
Lis
item
DA
are

ed to

bor-
E or

plied

e
:)Ej

ly if

Il-of the following are true:

a)
b)

TYPE is one of the code values in Table 7, “Codes used for implementation data types in SQL/CLI”.

If LEVEL is O (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT of the implemen-
tation parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas
in the implementation parameter descriptor.

Exactly one of the following is true:

Case:

72 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

6)

7)

©ISO/IEC 2016 — All rights reserved

ISO/IEC 9075-3:20
5.18 Description of CLI item descriptor

16(E)
areas

i) TYPE indicates CHARACTER or CHARACTER VARYING, or CHARACTER LARGE
OBJECT and LENGTH is a valid length value for a <character string type>.

i) TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT and LENGTH
is a valid length value for a <binary string type>.

iii) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for-the-NUMERICHata typc

iv) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and seale vialues
for the DECIMAL data type.

V) TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.

vi) TYPE indicates FLOAT and PRECISION is a valid precision value forc¢he’ FLOAT data [ype.

vii) TYPE indicates DECFLOAT and PRECISION is a valid precision/value for the DECFLDAT
data type.

viii) TYPE indicates BOOLEAN.

iX) TYPE indicates a <datetime type>, DATETIME_INTERVAL_CODE is one of the code alues
in Table 9, “Codes associated with datetime data typesin SQL/CLI”, and PRECISION i$ a
valid precision value for the <time precision> or <timeStamp precision> of the indicated datgtime
data type.

X) TYPE indicates an <interval type>, DATETUME_INTERVAL_CODE is one of the code Values
in Table 10, “Codes associated with <interval qualifier> in SQL/CLI”, to indicate the <inferval
qualifier> of the interval data type, DATETIME_INTERVAL_PRECISION is a valid <inferval
leading field precision>, and PRECISION is a valid precision value for <interval fractional
seconds precision>, if applicable:

xi) TYPE indicates USER-DEFINED TYPE.

xii) TYPE indicates REF.

xiii) TYPE indicates ROW, the value N of DEGREE is a valid value for the degree of a row type,
there are exactly N immediately subordinate descriptor areas of IDA, and those item descfiptor
areas are valid.

Xiv) [o]TYRE-indicates ARRAY or ARRAY LOCATOR, the value of CARDINALITY is a vglid
value for the maximum cardinality of an array, there is exactly one immediately subordimate
descriptor area of IDA, and that item descriptor area is valid.

xV)SMYPE indicates an implementation-defined data type.

et‘HL'be the programming language of the invoking host program. Let operative data type corresponglence

table be the data type correspondence table for HL as specified in Subclause 5.20, “SQL/CL | data type

correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

A CLI item descriptor area in a CLI descriptor area that is not an implementation row descriptor is consistent
if and only if all of the following are true:

a) TYPE indicates DEFAULT or is one of the code values in Table 8, “Codes used for application data
types in SQL/CLI".

Call-Level Interface specifications 73

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

8)

9)

10)

11)

74 Call-Level Interface (SQL/CLI)

b) All of the following are true:

i)
i)
i)

TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI".

TYPE is neither ROW, ARRAY, nor MULTISET.

The row that contains the SQL data type corresponding to TYPE in the SQL data type column

of the operative data type correspondence table does not contain “None” in the host dat

type

vi)

vii)

Case:

¢) Exactly one of the following is true:

et IDA be a CLI item descriptorarea in an application parameter descriptor. Let IDA1 be the correspo
item descriptor area in the implementation parameter descriptor.

f the OCTET_LENGTH_POINTER field of IDA has the same non-zero value as the INDICA-
TOR_POINTER field:of1DA, then SHARE is true for IDA; otherwise, SHARE is false for IDA.

q) If SHARE:s true and the value of the commonly addressed host variable is the appropriate 'Cod
SQLNULL DATA in Table 27, “Miscellaneous codes used in CLI”, then NULL is true for IDA

b) AFSHARE is false, INDICATOR_POINTER is not zero, and the value of the host variable addrg
by INDICATOR_POINTER is the appropriate 'Code’ for SQL NULL DATA in Table 27, “Misg

column.

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale Values

for the NUMERIC data type.

TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale Values

for the DECIMAL data type.
TYPE indicates FLOAT and PRECISION is a valid precision.value for the FLOAT data

(o] TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT, CHARA(
LARGE OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJi
BINARY LARGE OBJECT LOCATOR, SMALLINT,INTEGER, BIGINT, REAL, DOU
PRECISION, USER-DEFINED TYPE LOCATOR; or REF.

TYPE indicates ROW and, where N is the value’of the DEGREE field in the correspond
item descriptor area in the implementation parameter descriptor, there are exactly Nimmed
subordinate descriptor areas of IDA, and'those item descriptor areas are valid.

TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR
there is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item desc
area is valid.

TYPE indicates an implementation-defined data type.

[ype.

L TER
ECT,
BLE

ng
ately

riptor

nding

e' for

ssed
ella-

NEoUs codes Used in CLI™, then NULL 15 true for IDA
¢) Otherwise, NULL is false for IDA.

If NULL is false, OCTET_LENGTH_POINTER is not zero, and the value of the host variable addressed
by OCTET_LENGTH_POINTER the appropriate 'Code’ for DATA AT EXEC in Table 27, “Miscellaneous
codes used in CLI”, then DEFERRED is true for IDA; otherwise, DEFERRED is false for |DA.

12) IDAis valid if and only if:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20
5.18 Description of CLI item descriptor

16(E)
areas

a) TYPE is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, and
at least one of the following is true:

TYPE is ROW, ARRAY, or MULTISET.

i)
i)

The row of the operative data type correspondences table that contains the SQL data type cor-
responding to the value of TYPE in the SQL data type column does not contain 'None' in the

Case:

i)

L tolaotao o Loan
rnuot udatd ty gyt Luruttirt.

) If LEVEL is O (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the applic
parameter descriptor associated with IDA. DA shall be one of exactly TLC item descriptorarea
the implementation parameter descriptor.

) One of the following is true:

TYPE indicates CHARACTER, CHARACTER LARGE OBJECT; BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, and one of the fellowing is true:

1)
2)
3)

4)

5)

6)

NULL is true.
DEFERRED is true.

OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDAL is PAR/
MODE IN or PARAM MODE INOUT, the'value V of the host variable addressed b
OCTET_LENGTH_POINTER is greater than zero, and the number of characters w
contained in the first V octets of the host variable addressed by DATA_POINTER is
valid length value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, or BINARY LARGE OBJECT data type, as indicated by TYHR

OCTET_LENGTH_PQINTER is not zero, PARAMETER_MODE in IDA1 is PARA
MODE IN or PARAMMODE INOUT, the value of the host variable addressed by
OCTET_LENGTH_BOINTER indicates NULL TERMINATED, and the number of
characters of the value of the host variable addressed by DATA_POINTER that preg
the implementation-defined null character that terminates a C character string is a vz
length value for a CHARACTER, CHARACTER LARGE OBJECT, BINARY, BIN
VARY ING; or BINARY LARGE OBJECT data type, as indicated by TYPE.

OCTET_LENGTH_POINTER is zero, PARAMETER_MODE in IDAlis PARAM M

ation
S in

AM

y
nolly

a

E.
AM

ede
hlid
ARY

ODE

IN-er PARAM MODE INOUT, and the number of characters of the value of the hog
variable addressed by DATA_POINTER that precede the implementation-defined n

—*

character that terminates a C character string is a valid length value for a CHARACTER,
CHARACTER LARGE OBJECT, BINARY, BINARY VARYING, or BINARY LARGE

OBJECT data type, as indicated by TYPE.
PARAMETER_MODE in IDA1 is PARAM MODE OUT.

i)

©ISO/IEC 2016 — All rights reserved

TYPE indicates CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT
LOCATOR, or USER-DEFINED TYPE LOCATOR and one of the following is true:

1)
2)

NULL is true.
DEFERRED is true.

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

Call-Level Interface specifications 75

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

13)

76 Call-Level Interface (SQL/CLI)

iv) TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values

for the DECIMAL data type.
v) TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.

vi) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

vii) TYPE indicates REF and one of the following is true:

1) NULL is true.
2) DEFERRED is true.

viii) TYPE indicates ROW and, where N is the value of the DEGREE field in the‘Correspond
item descriptor area in the implementation parameter descriptor, there are.€xactly Nimmed
subordinate descriptor areas of IDA, and those item descriptor areas are valid.

iX) [TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, orMULTISET LOCAT(
there is exactly 1 (one) immediately subordinate descriptor arealof DA, and that item desc
area is valid.

X) TYPE indicates an implementation-defined data type.

¢) One of the following is true:

i) DATA_POINTER is zero and NULL is true.

i) DATA_POINTER is zero and DEFERRED-is true.

iii) DATA _POINTER is not zero and exactly one of the following is true:
1) NULL is true.
2) DEFERRED is true.

3) PARAMETER_MODE in IDAL is PARAM MODE IN or PARAM MODE INOUT
the value of thethost variable addressed by DATA POINTER is a valid value of the
type indicatechby TYPE.

4) PARAMETER_MODE in IDAL is PARAM MODE OUT.
\ CLI item descriptor-area in an application row descriptor is valid if and only if:

3) TYPE is ene.of the code values in Table 8, “Codes used for application data types in SQL/CLI’
at least one of the following is true:

i) TYPE is ROW, ARRAY, or MULTISET.

ng
ately

R,
iptor

and
data

, and

e COr-

) The row of the operatlve data type correspondences table that contains the SQL data typ

host data type column

| the

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor areas in

the implementation parameter descriptor.
c) One of the following is true:

Case:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values
for the NUMERIC data type.

TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values

TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.

[es]TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, CHARACTER LARGE
OBJECT LOCATOR, BINARY, BINARY VARYING, BINARY LARGE OBJECT;BINARY
LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECI-
SION, USER-DEFINED TYPE LOCATOR, or REF.

TYPE indicates ROW and, where N is the value of the DEGREE field inc¢the corresponding
item descriptor area in the implementation parameter descriptor, there are-exactly N immedjately
subordinate descriptor areas of IDA, and those item descriptor areas ‘aré valid.

TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR
there is exactly 1 (one) immediately subordinate descriptor aréa,0f DA, and that item descfiptor

i)
for the DECIMAL data type.
iii)
iv)
v)
vi)
area is valid.
vii)

TYPE indicates an implementation-defined data type:

14) Table 6, “Fields in SQL/CLI row and parameter descriptor areds”, specifies the codes associated with|user-

defined types in SQL/CLI.

Table 6 — Fields in SQL/CLI row and parameter descriptor areas

Figld Data Type
ALLOC_TYPE SMALLINT
ARRAY_SIZE INTEGER

ARRAY_STATUS_POINTER

host variable address of INTEGER

COUNT

SMALLINT

DYNAMIC_FUNCFION

CHARACTER VARYING(L)

DYNAMIC_FUNCTION_CODE

INTEGER

KEY_TYPRE

SMALLINT

ROWS PROCESSED_POINTER

host variable address of INTEGER

TOP_LEVEL_COUNT

SMALLINT

Implementation-defined header field

Implementation-defined data type

CARDINALITY

INTEGER

CHARACTER_SET_CATALOG

CHARACTER VARYING(L)

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 77

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I

5.18 Description of CLI item descriptor areas

EC 9075-3:2016(E)

Field

Data Type

CHARACTER_SET_NAME

CHARACTER VARYING(L)

CHARACTER_SET_SCHEMA

CHARACTER VARYING(L)

C

DLLATION_CATALOG

CHARACTER VARYING(L)

C(

DLLATION_NAME

CHARACTER VARYING(L)

DLLATION_SCHEMA

CHARACTER VARYING(L)

URRENT_TRANSFORM_GROUP

CHARACTER VARYING(LL)!

DATA _POINTER host variable address
DATETIME_INTERVAL_CODE SMALLINT
DATETIME_INTERVAL_PRECISION SMALLINT

DEGREE INTEGER
INDICATOR_POINTER host,variable address of INTEGER
KEY_ _MEMBER SMALLINT

LENGTH INTEGER

LEVEL INTEGER

NAME CHARACTER VARYING(L)
NULLABLE SMALLINT

OCTET_LENGTH INTEGER
OCTET_LENGTH/POINTER host variable address of INTEGER
PARAMETER MODE SMALLINT
PARAMETER_ORDINAL_POSITION SMALLINT

P

RAMETER_SPECIFIC_CATALOG

CHARACTER VARYING(L)"

PARAMETER_SPECIFIC_NAME CHARACTER VARYING(L)!

PARAMETER_SPECIFIC_SCHEMA CHARACTER VARYING(L)!

PRECISION SMALLINT

78 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.18 Description of CLI item descriptor areas

Field

Data Type

RETURNED_CARDINALITY_POINTER

host variable address of INTEGER

SCALE

SMALLINT

S("f'\DI: CATALOG
A AN N — =

+
CHARAUTER VARYITNG(L)"

SGOPE_NAME

CHARACTER VARYING(L)

SCOPE_SCHEMA

CHARACTER VARYING(L)

SH

ECIFIC_TYPE_CATALOG

CHARACTER VARYING(L)'

SRECIFIC_TYPE_NAME CHARACTER VARYING(D)"
SRECIFIC_TYPE_SCHEMA CHARACTER VARYING(L)
TYPE SMALLINT
UNNAMED SMALLINT
U$ER_DEFINED_TYPE_CATALOG CHARACTER VARYING(L)'

U

SER_DEFINED_TYPE_CODE

SMALLINT

U

SER_DEFINED_TYPE_NAME

CHARACTER VARYING(L)

U

SER_DEFINED_TYPE_SCHEMA

CHARACTER VARYING(L)

Im

plementation-defined item field

Implementation-defined data type

t
the

fVhere L is an implementatjon-defined integer not less than 128, and L1 is the implementation-defined maximum length fpr
<general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

Ger

1)

eral Rules

Table 7;*Codes used for implementation data types in SQL/CLI”, specifies the codes associated with the
$QL. data types used in implementation descriptor areas.

[is]Table 7 — Codes used for implementation data types in SQL/CLI

Data Type Code
ARRAY 50
BIGINT 25

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 79

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

Data Type Code
BINARY 60
BINARY LARGE OBJECT 30
HNARYWARYNG 64
BOOLEAN 16
CHARACTER 1 (one)
CHARACTER LARGE OBJECT 40
CHARACTER VARYING 12
DATE, TIME, TIME WITH TIME ZONE, TIMES- 9
TAMP, or TIMESTAMP WITH TIME ZONE
DECFLOAT 26
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
INTERVAL 10
MULTISET 55
NUMERIC 2
REAL 7
REF 20
ROW 19
SMALLEINT 5
USER-DEFINED TYPE 17
Implementation-defined data type < 0 (zero)

2) Table 8, “Codes used for application data types in SQL/CLI”, specifies the codes associated with the SQL
data types used in application descriptor areas.

80 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

[oo] Table 8 — Codes used for application data types in SQL/CLI

Data Type Code
Implementation-defined data type <0 (zero)
ARRAY LOCATOR 51
BIGINT 25
BINARY 60
BINARY LARGE OBJECT 30
BINARY LARGE OBJECT LOCATOR 31
BINARY VARYING 61
CHARACTER 1 (one)
CHARACTER LARGE OBJECT 40
CHARACTER LARGE OBJECT LOCATOR 41
DECFLOAT 26
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
MULTISET LOCATOR 56
NUMERIC 2
REAL 7
REF 20
SMALLINT 5
USER-DEFINED TYPE LOCATOR 18

3) Table 9, “Codes associated with datetime data types in SQL/CLI”, specifies the codes associated with the
datetime data types allowed in SQL/CLI.

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 81

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

o] Table 9 — Codes associated with datetime data types in SQL/CLI

Datetime Data Type Code
DATE 1 (one)
TIME 2
TIME WITH TIME ZONE 4
TIMESTAMP 3
TIMESTAMP WITH TIME ZONE 5

4) Table 10, “Codes associated with <interval qualifier> in SQL/CLI”, specifiés‘the codes associated with
finterval qualifier>s for interval data types in SQL/CLI.

[cs]Table 10 — Codes associated with <interval qualifier> in SQL/CLI

Interval qualifier Code
DAY 3
DAY TO HOUR 8
DAY TO MINUTE 9
DAY TO SECOND 10
HOUR 4
HOUR TO MINUTE 11
HOUR TO SECOND 12
MINUTE 5
MINUTE TOSECOND 13
MONTH 2
SEGOND 6
YEAR 1 (one)
YEAR TO MONTH 7

5) Table 11, “Codes associated with <parameter mode> in SQL/CLI”, specifies the codes associated with the

SQL parameter modes.

82 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.18 Description of CLI item descriptor areas

Table 11 — Codes associated with <parameter mode> in SQL/CLI

Parameter mode Code
PARAM MODE IN 1 (one)
PARAM MODE INOUT 2
PARAM MODE OUT 4

Table 12 — Codes associated with user-defined types in SQL/CLI

User-defined Type Code
DISTINCT 1 (one)
STRUCTURED 2

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 83

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I

5.19 Other tables associated with CLI

5.19 Other tables associated with CLI

EC 9075-3:2016(E)

This Subclause is modified by Subclause 19.4, “Other tables associated with CLI", in |SO/IEC 9075-9.

The tables contained in this Subclause are used to specify the codes used by the various CLI routines.

Tabte 13— Codes used for SQL/Ctidiagnostit fietds

Figld Code Type
CATALOG_NAME 18 Status
CLASS_ORIGIN 8 Status
COLUMN_NAME 21 Status
COLUMN_NUMBER 1247 Status
CONDITION_IDENTIFIER 25 Status
CONDITION_NUMBER 14 Status
CONNECTION_NAME 10 Statuis
CONSTRAINT_CATALOG 15 Status
CONSTRAINT_NAME 17 Status
CONSTRAINT _SCHEMA 16 Status
CURSOR_NAME 22 Status
DYNAMIC_FUNCTION 7 Header
DYNAMIC_FUNCTION_GODE 12 Header
MESSAGE_LENGTH 23 Status
MFSSAGE_OCTET_LENGTH 24 Status
MFSSAGE_TEXT 6 Status
MPRE 13 Header
NATIVE_CODE 5 Status
NUMBER 2 Header
PARAMETER_MODE 37 Status
PARAMETER_NAME 26 Status

84 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.19 Other tables associated with CLI

Field Code Type
PARAMETER_ORDINAL_POSITION | 38 Status
RETURNCODE 1 (one) Header
ROUHNE-GATALOG 27 Status
ROUTINE_NAME 29 Status
ROUTINE_SCHEMA 28 Status
ROW_COUNT 3 Header
ROW_NUMBER -1248 Status
SCHEMA_NAME 19 Status
SERVER_NAME 11 Status
SRECIFIC_NAME 30 Status
SQLSTATE 4 Status
SUBCLASS_ORIGIN 9 Status
TABLE_NAME 20 Status
TRANSACTION_ACTIVE 36 Header
TRANSACTIONS_COMMITTED 34 Header
TRANSACTIONS_ROLLED_BACK | 35 Header
TRIGGER_CATALOG 31 Status
TRIGGER_NAME 33 Status
TRIGGER_SCHEMA 32 Status
Implementafion-defined diagnostics | < ¢ (zero)? Header
header field

Imjplementation-defined diagnostics | < o (zero)! Status

status Tield

! Except for values in this table that are less than 0 (zero).

©ISO/

IEC 2016 — All rights reserved

Call-Level Interface specifications 85

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Table 14 — Codes used for SQL/CLI handle types

Handle type Code
CONNECTION HANDLE 2
DESCRIPTOR HANDLE 4
ENVIRONMENT HANDLE 1 (one)
STATEMENT HANDLE 3

Implementation-defined handle type

<1 (one) or > 100

Table 15 — Codes used for transaction terminatien

type

Tgrmination type Code
COMMIT 0 (zero)
RPLLBACK 1 (one)
SAVEPOINT NAME ROLLBACK 2
SAVEPOINT NAME RELEASE 4
COMMIT AND CHAIN 6
ROLLBACK AND CHAIN 7
Implementation-defined termination <0 (zero)

Table 16 — Codes used for environment attributes

Altribute Code May be set
NULL TERMINATION 10001 Yes
Implementation-defined environment | = 0 (zero), Implementation-defined
attribtite exceptvatues

given above

86 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.19 Other tables associated with CLI

Table 17 — Codes used for connection attributes

Attribute Code May be set
POPULATE IPD 10001 No
SAVEPOINT NAME 10027 Yes
Implementation-defined connection 2 0 (zero), Implementation-defined
atfribute except values

given above

Table 18 — Codes used for statement attributes

Attribute Code May be set
APD HANDLE 10011 Yes
ARD HANDLE 10010 Yes
IPD HANDLE 10013 No
IRD HANDLE 10012 No
CURRENT OF POSITION 10027 Yes
CURSOR HOLDABLE =3 Yes
CURSOR SCROLLABLE -1 Yes
CURSOR SENSITIVITY -2 Yes
METADATA ID 10014 Yes
NEST DESCRIPTOR 10029 Yes
Implementationzdefined statement 2 0 (zero), Implementation-defined
atfribute except values

given above

Tabte 19— Codes used for FreeStmtoptions

Option Code
CLOSE CURSOR 0 (zero)
FREE HANDLE 1 (one)

©ISO/

IEC 2016 — All rights reserved

Call-Level Interface specifications 87

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Option Code
UNBIND COLUMNS 2
UNBIND PARAMETERS 3
REALLOGAFE 4
o] Table 20 — Data types of attributes
Altribute Data type Values
NULL TERMINATION INTEGER 0 (False) 1 (True)
PQPULATE IPD INTEGER 0 (False) 1 (True)
APD HANDLE INTEGER Handle value
ARD HANDLE INTEGER Handle value
IPD HANDLE INTEGER Handle value
IRD HANDLE INTEGER Handle value
CURRENT OF POSITION INTEGER Integer value denoting the current row in the rowset
CURSOR HOLDABLE INTEGER 0 (NONHOLDABLE) 1 (HOLDABLE)
CURSOR SCROLLABLE INTEGER 0 (NONSCROLLABLE) 1 (SCROLLABLE)
CURSOR SENSITIVITY INTEGER 0 (ASENSITIVE) 1 (INSENSITIVE) 2 (SENSI-
TIVE)
METADATA ID INTEGER 0 (FALSE) 1 (TRUE)
NEST DESCRIPTOR INTEGER 0 (FALSE) 1 (TRUE)
SAVEPOINT NAME CHARACTER Not specified
Table 21 — Codes used for SQL/CLI descriptor fields
Fietd Code SOt tem Descriptor Name Type
ALLOC_TYPE 1099 (Not applicable) Header
ARRAY_SIZE 20 (Not applicable) Header
ARRAY_STATUS POINTER 21 (Not applicable) Header

88 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Field Code SQL Item Descriptor Name Type
CARDINALITY 1040 CARDINALITY Item
CHARACTER_SET_CATALOG 1018 CHARACTER_SET_CATALOG Item
CHARACFER—SETFNAME 1020 SHARACHER—SETNAME Hem
CHARACTER_SET_SCHEMA 1019 CHARACTER_SET_SCHEMA ltem
COLLATION_CATALOG 1015 COLLATION_CATALOG Item
COLLATION_NAME 1017 COLLATION_NAME Item
COLLATION_SCHEMA 1016 COLLATION_SCHEMA Item
COUNT 1001 COUNT Headef
CURRENT_TRANSFORM_GROUP | 1039 (Not applicable) Item
DATA_POINTER 1010 DATA Item
DATETIME_INTERVAL_CODE 1007 DATETIME_INTERVAL_CODE Item
DATETIME_INTERVAL_PRECI- 26 DATETIME_INTERVAL_PRECISION | Item
SION

DEGREE 1041 DEGREE Item
DYNAMIC_FUNCTION 1031 DYNAMIC_FUNCTION Headef
DYNAMIC_FUNCTION_CODE 1032 DYNAMIC_FUNCTION_CODE Headef
INDICATOR_POINTER 1009 INDICATOR Item
KEY_MEMBER 1030 KEY_MEMBER Item
KEY_TYPE 1029 KEY_TYPE Headef
LENGTH 1003 LENGTH Item
LEVEL 1042 LEVEL Item
NAME 1011 NAME Item
NULLABLE 1008 NULLABLE Item
OCTET_LENGTH 1013 OCTET_LENGTH Item
OCTET_LENGTH_POINTER 1004 Both OCTET_LENGTH (input) and Item

[I?LIIEt;I'URNED_OCTET_LENGTH (out-

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 89

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Field Code SQL Item Descriptor Name Type

PARAMETER_MODE 1021 PARAMETER_MODE Item

PARAMETER_ORDINAL_POSITION | 1022 PARAMETER_ORDINAL_POSITION | Item

Pﬁ RAMETEDR CSDECIEIC CATALQOG 1022 PARAMETED CSDECICIC CATALOG ltam
I TN NTVIE-T T _\JI L=~ l\-/_vl ALY =) = =g LEEARLIAY AR Y A A} ==3u gn == | _\ll L= 4 B} I\J_\Jl ALY ==) = =g eTrm

TOCO

PARAMETER_SPECIFIC_NAME 1025 PARAMETER_SPECIFIC_NAME ltem

PARAMETER_SPECIFIC_SCHEMA | 1024 PARAMETER_SPECIFIC_SCHEMA] Item

PRECISION 1005 PRECISION Item
RETURNED_CARDINAL- 1043 RETURNED_CARDINALATY Item
ITlY_POINTER

ROPW_PROCESSED_POINTER 34 (Not applicable) Headef
SCALE 1006 SCALE Item
SCOPE_CATALOG 1033 SCOPE..CATALOG Item
SCOPE_NAME 1034 SCOPE_NAME Item
SCOPE_SCHEMA 1035 SCOPE_SCHEMA Item
SRECIFIC_TYPE_CATALOG 1036 (Not applicable) Item
SRECIFIC_TYPE_NAME 1038 (Not applicable) Item
SRECIFIC_TYPE_SCHEMA 1037 (Not applicable) Item
TOP_LEVEL_COUNT 1044 TOP_LEVEL_COUNT Headef

PE 1002 TYPE Item

NNAMED 1012 UNNAMED Item

bER_DEFINED_TYPE_NAME 1028 USER_DEFINED_TYPE_NAME Item

T
U
USER_DEFINED_TYPE_CATALOG | 1026 USER_DEFINED_TYPE_CATALOG | Item
U
U

bER,_ DEFINED_TYPE_SCHEMA | 1027 USER_DEFINED_TYPE_SCHEMA Item

USER_DEFINED_TYPE_CODE 1045 USER_DEFINED_TYPE_CODE Item

90 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Field Code SQL Item Descriptor Name Type

Implementation-defined descriptor 0 (zero) | Implementation-defined descriptor Header
header field through | header field
999, or 2
1200,
exciud=
ing val-
ues
defined
in this
table

Implementation-defined descriptor item | O (zero) | Implementation-defined descriptor item | ltem
figld through | field
999, or 2
1200,
exclud-
ing val-
ues
defined
in this
table

Table 22 — Ability to $et’SQL/CLI descriptor fields

May be set
Fipld ARD IRD APD IPD
ALLOC_TYPE No No No No'
ARRAY _SIZE No No
ARRAY_STATUS POINTER
CARDINALITY No No No
CHARACTER_SET_CATALOG No
CHARACTER_SET_NAME No
CHARACTER_SET_SCHEMA No
COLLATION_CATALOG No
COLLATION_NAME No
COLLATION_SCHEMA No

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 91

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

May be set
Field ARD IRD APD IPD
COUNT No
CURRENFFRANSFORM-GROUR Ne Ne Ne Ne
DATA_POINTER No
DATETIME_INTERVAL_CODE No
DATETIME_INTERVAL_PRECISION No
DEGREE No No No
DYNAMIC_FUNCTION No No No No
DYNAMIC_FUNCTION_CODE No No No No
INDICATOR_POINTER No No
KEY_MEMBER No No No No
KEY_TYPE No No No No
LENGTH No
LEVEL No
NAME No
NULLABLE No
OCTET_LENGTH No
OCTET_LENGTH_ROINTER No No
PARAMETER_MODE No No No
PARAMETER ORDINAL_POSITION No No No
PARAMETER_SPECIFIC_CATALOG No No No
PARAMETER _SPECIFIC NAME NoO NoO NoO
PARAMETER_SPECIFIC_SCHEMA No No No
PRECISION No
RETURNED_CARDINALITY_POINTER No No

92 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

May be set

Field ARD IRD APD IPD
ROWS_PROCESSED_POINTER No No
SGALE Ne
SCOPE_CATALOG No
SCOPE_NAME No
SCOPE_SCHEMA No
SRECIFIC_TYPE_CATALOG No No No No
SRECIFIC_TYPE_NAME No No No No
SRECIFIC_TYPE_SCHEMA No No No No
TOP_LEVEL_COUNT No
TYPE No
UNNAMED No
USER_DEFINED_TYPE_CATALOG No
USER_DEFINED_TYPE_NAME No
USER_DEFINED_TYPE_SCHEMA No
USER_DEFINED_TYPE_CODE No No No No
Implementation-defined descriptor header field ID ID ID ID
Implementation-definge-descriptor item field ID ID ID ID
T Where “No” means-that the descriptor field is not settable, “ID” means that it is implementation-defined whether or not the
degcriptor field is-settable, and the absence of any notation means that the descriptor field is settable.

Table 23 — Ability to retrieve SQL/CLI descriptor fields

May be retrieved

Field ARD IRD APD IPD
ALLOC_TYPE PS
ARRAY_SIZE No No

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 93

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

May be retrieved
Field ARD IRD APD IPD
ARRAY_STATUS_POINTER
CARBHNALHRY Ne RS Ne
CHARACTER_SET_CATALOG PS
CHARACTER_SET_NAME PS
CHARACTER_SET_SCHEMA PS
COLLATION_CATALOG PS
COLLATION_NAME PS
COLLATION_SCHEMA PS
COUNT PS
CURRENT_TRANSFORM_GROUP PS
DATA_POINTER No No'
DATETIME_INTERVAL_CODE PS
DATETIME_INTERVAL_PRECISION PS
DEGREE No PS No
DYNAMIC_FUNCTION No No
DYNAMIC_FUNCTION_CODE No No
INDICATOR_POINTER No No
KEY_MEMBER No PS No No
KEY_TYRE No PS No No
LENGTH PS
LEVEL PS
NAME PS
NULLABLE PS
OCTET_LENGTH PS

94 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.19 Other tables associated with CLI

May be retrieved
Field ARD IRD APD IPD
OCTET_LENGTH_POINTER No No
PARAMEFER—MODBE Ne RS Ne Ne
PARAMETER_ORDINAL_POSITION No PS No No
PARAMETER_SPECIFIC_CATALOG No PS No No
PARAMETER_SPECIFIC_NAME No PS No No
PARAMETER_SPECIFIC_SCHEMA No PS No No
PRECISION PS
RETURNED_CARDINALITY_POINTER No No
ROWS_PROCESSED_POINTER No No
SCALE PS
SCOPE_CATALOG PS
SCOPE_NAME PS
SCOPE_SCHEMA PS
SRECIFIC_TYPE_CATALOG PS
SRECIFIC_TYPE_NAME PS
SRECIFIC_TYPE_SCHEMA PS
TOP_LEVEL_COUNT PS
TYPE PS
UNNAMED PS
USER. DEFINED_TYPE_CATALOG PS
USER DEFINED—TYPE NAME PS
USER_DEFINED_TYPE_SCHEMA PS
USER_DEFINED_TYPE_CODE PS
Implementation-defined descriptor header field ID ID ID ID

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 95

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

May be retrieved

Field ARD IRD APD IPD

Implementation-defined descriptor item field ID ID ID ID

Ty , »

only when a prepared or executed statement is associated with the IRD, the absence of any notation means that the descriptdr

field is retrievable, and “ID” means that it is implementation-defined whether or not the descriptor field is retrievable;

Table 24 — SQL/CLI descriptor field default values

Default values

Fipld ARD IRD APD IPD

ALLOC_TYPE AUTO- AUTO- AUTO- AUTO-
MATIC or MATIC MATIC or MATIC
USER USER

ARRAY_SIZE 1 (one) 1 (one)

ARRAY_STATUS_POINTER Null Null Null Null

CARDINALITY

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

COUNT 0 (zero) 0 (zero)'

CURRENT_TRANSFORM_GROUP

DATA_POINTER NuH NuH

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECI-

SION

DEGREE

96 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Default values

Field

ARD

IRD

APD IPD

DYNAMIC_FUNCTION

D\

NAMIC _EUNCTION-CODE
NV oo o oo

IN

DICATOR_POINTER

Null

Null

K

EY_MEMBER

K

EY TYPE

LE

ENGTH

LE

EVEL

0 (zero)

0 (zero)

\ME

ULLABLE

CTET_LENGTH

CTET_LENGTH_POINTER

Null

Null

PA

RAMETER_MODE

PA

RAMETER_ORDINAL_POSITION

PA

RAMETER_SPECIFIC_CATALOG

PA

RAMETER_SPECIFIC_NAME

PA

RAMETER_SPECIFIC (SCHEMA

PH

RECISION

RE
IT|

FTURNED_CARDINAL-
Y_POINTER

Null

Null

R(

DWS__PROCESSED_POINTER

Null

Null

S(

LALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

©ISO/

IEC 2016 — All rights reserved

Call-Level Interface specifications 97

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Default values

Field ARD IRD APD IPD

SPECIFIC_TYPE_NAME

S ECIEIC _TVPRE SCHENMA
Eomto T T T E=E_Oor =ivi/x

TOP_LEVEL _COUNT 0 (zero) 0 (zero)

(PE DEFAULT DEFAULT

NNAMED

SER_DEFINED_TYPE_CATALOG

SER_DEFINED_TYPE_NAME

clc|c|c| H

bER_DEFINED_TYPE_SCHEMA

U$ER_DEFINED_TYPE_CODE

Implementation-defined descriptor ID 1D ID ID
hefder field

Implementation-defined descriptor item | ID ID ID ID
figld

T Where “Null” means that the descriptor field's default'value is a null pointer, the absence of any notation means that the
degcriptor field's default value is initially undefined-"“ID” means that the descriptor field's default value is implementation-defingd,
angl any other value specifies the descriptor field's.default value.

Table 25 — Codes used for fetch orientation

Fqtch Orientation Code
NEXT 1 (one)
FIRST 2
LAST 3
PRIOR 4
ABSOLUTE 5
RELATIVE 6

98 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Table 26 — Multi-row fetch status codes

Return code meaning | Return code

Row success 0 (zero)

RTW success with 6

information
RJJW error 5
No row 3

[os]Table 27 — Miscellaneous codes used in CLA

CTntext Code | Indicates

A‘Iocation type 1 (one) [AUTOMATIC

A‘Iocation type 2 USER

Altribute value 0 FALSE, NONSCROLLABLE, ASENSITIVE, NO NULLS,
(zero) | NONHOLDABLE

Aftribute value 1 (one) | TRUE, SCROLLABLE, INSENSITIVE, NULLABLE, HOLD-

ABLE

Altribute value 2 SENSITIVE

Data type 0 ALL TYPES
(zere)

Data type =99 APD TYPE

Data type -99 ARD TYPE

Data type 99 DEFAULT

Deferrableconstraints 5 INITIALLY DEFERRED

D¢ferrable constraints 6 INITIALLY IMMEDIATE

Deferrable constraints 7 NOT DEFERRABLE

Input string length -3 NULL TERMINATED

Input or output data -1 SQL NULL DATA

Parameter length -2 DATA AT EXEC

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 99

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I

EC 9075-3:2016(E)

5.19 Other tables associated with CLI

Context Code | Indicates

Referential Constraint 0 CASCADE
(zero)

Referential Constraint 1 (one) | RESTRICT

Referential Constraint 4 SET DEFAULT

Réferential Constraint 2 SET NULL

Rdferential Constraint 3 NO ACTION

o] Table 28 — Codes used to identify SQL/CLI routines

Generic Name Code
A‘IocConnect 1 (one)
A‘IocEnv 2
A‘IocHandIe 1001
A‘IocStmt 3
Bi}-.dc:ol 4
Bitharameter 72
Cancel 5
ClioseCursor 1003
ColAttribute 6
ColumnPrivileges 56
Columns 40
Connect 7
CopyDesc 1004
DataSources 57
DescribeCol 8
Disconnect 9
EndTran 1005

100 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Generic Name Code
Error 10
ExecDirect 11
Exeeute 12
Fetch 13
FgtchScroll 1021
FdreignKeys 60
FreeConnect 14
FreeEnv 15
FreeHandle 1006
FreeStmt 16
GegtConnectAttr 1007
G¢tCursorName 17
GetData 43
GetDescField 1008
Ge¢tDescRec 1009
Gg¢tDiagField 1010
G¢tDiagRec 1011
GetEnvAttr 1012
GétFeaturelnfo 1027
Ge¢tFunctions 44
Getinfo 45
Gettength 1622
GetParamData 1025
GetPosition 1023
GetSessionInfo 1028

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 101

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.19 Other tables associated with CLI

Generic Name Code
GetStmtAttr 1014
GetSubString 1024
GetFypetafo 44
MpreResults 61
NéxtResult 73
NiimResultCols 18
PgramData 48
Prepare 19
PrimaryKeys 65
PdtData 49
RowCount 20
SgtConnectAttr 1016
SgtCursorName 21
SqtDescField 1017
SdtDescRec 1018
SgtEnvAttr 1019
SgtStmtAttr 1020
SpecialColumns 52
StartTran 74
TablePrivileges 70
Tables 54

| Mplementation-
defined CLI routine

<0 (zero), or 400 through 1299, or = 2000

102 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

[os]Table 29 — Codes and data types for implementation information

Information Type Code Data Type
CATALOG NAME 10003 CHARACTER(1)
COLLATING SEQUENCE 10004 CHARACTER(254)
CURSOR COMMIT BEHAVIOR 23 SMALLINT

DATA SOURCE NAME 2 CHARACTER(128)
DBMS NAME 17 CHARACTER(254)
DBMS VERSION 18 CHARACTER(254)
DEFAULT TRANSACTION ISOLA- | 26 INTEGER

TION

IDENTIFIER CASE 28 SMALLINT
MIAXIMUM CATALOG NAME 34 SMALLINT
LENGTH

MAXIMUM COLUMN NAME 30 SMALLINT
LENGTH

MiTAXIMUM COLUMNS IN GROUP | 97 SMALLINT

B

MrXIMUM COLUMNS IN ORDER”| 99 SMALLINT

B

M|AXIMUM COLUMNS IN SELECT | 100 SMALLINT
M|AXIMUM COLUMNS IN TABLE | 101 SMALLINT
MlAXIMUM CONCURRENT 1 (one) SMALLINT
ACTIVITIES

MIAXIMUM CURSOR NAME 31 SMALLINT
LENGTH

MAXIMUM DRIVER CONNEC- 0 (zero) SMALLINT
TIONS

MAXIMUM IDENTIFIER LENGTH | 10005 SMALLINT
MAXIMUM SCHEMA NAME 32 SMALLINT
LENGTH

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 103

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Information Type Code Data Type
MAXIMUM STATEMENT OCTETS | 20000 SMALLINT
MAXIMUM STATEMENT OCTETS | 20001 SMALLINT
DATA
MAXIMUM STATEMENT OCTETS | 20002 SMALLINT
SCHEMA
M|AXIMUM TABLENAME LENGTH | 35 SMALLINT
M|AXIMUM TABLES IN SELECT 106 SMALLINT
MIAXIMUM USER NAME LENGTH | 107 SMALLINT
NULL COLLATION 85 SMALLINT
ORDER BY COLUMNS IN SELECT | 90 CHARACTER(1)
SEARCH PATTERN ESCAPE 14 CHARACTER(1)
SERVER NAME 13 CHARACTER(128)
SRECIAL CHARACTERS 94 CHARACTER(254)
TRANSACTION CAPABLE 46 SMALLINT
TRANSACTION ISOLATION 72 INTEGER
OPTION
Implementation-defined information Implementa- | Implementation-defined data type
type tion-defined
code
SQL implementation information 21000 CHARACTER(L]') or INTEGER
through
24999
SQL sizing infermation 25000 INTEGER
through
29999
Implementation-defined implementa- | 11000 CHARAGCTERA N o INTEGER
tion information through N
14999
Implementation-defined sizing informa- | 15000 INTEGER
tion through
19999

L isthe implementation-defined maximum length of a variable-length character string.

104 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

NOTE 18 — Additional implementation information items are defined in Subclause 6.49, “SQL_IMPLEMENTATION_INFO
base table”, in [ISO9075-11].

Additional sizing items are defined in Subclause 6.50, “SQL_SIZING base table”, in [ISO9075-11].

Table 30 — Codes and data types for session implementation information

Information Typc Cotle Data Typc genct atvatte opcuifibatim 1
CURRENT USER | 47 CHARACTER(L") | USER and CURRENT_USER
CURRENT 20004 | cHARACTER(LT) | CURRENT_DEFAULT_TRANS-
DEFAULT TRANS- FORM_GROUP

FORM GROUP

CURRENT PATH {20005 | cpaRACTER(LT) | CURRENT_PATH
CURRENTROLE | 20006 | cHARACTER(LT) | CURRENT-ROLE

SESSION USER 20007 | cHARACTER(LT) | SESSI@N_USER

SYSTEM USER 20008 | cHARACTER(LT) | SYSTEM_USER

CURRENT CATA- [20009 | cHARACTER(LIY. | CURRENT_CATALOG

LOG

CURRENTSCHEMA | 20010 | cHaRAGTER(LT) | CURRENT_SCHEMA

+

Where L is the implementation-defined maximdm length of the corresponding <general value specification>.

Table 31 — Values f0r"-TRANSACTION ISOLATION OPTION with StartTran

Information Type Value
READ UNCOMMIZTED 1 (one)
READ COMMITTED 2
REPEATABKE READ 4
SHERIALIZABLE 8

Table 32 — Values for TRANSACTION ACCESS MODE with StartTran

Information Type

Value

READ ONLY

1 (one)

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 105

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Information Type Value

READ WRITE 2

Table 33 — Codes used for concise data types

[
DJita Type Code
Implementation-defined data type <0 (zero)
CHARACTER 1 (one)
CHAR 1 (one)
NUMERIC 2
DECIMAL 3

DEC 3
INTEGER 4

INT 4
SMALLINT 5
FUOAT 6
REAL 7
DOUBLE 8
DECFLOAT 26
B1NARY 60
B‘NARY VARY ING 61
VARBINARY' 61
CHARACTER VARYING 12
CHAR VARYING 12
VARCHAR 12
BOOLEAN 16
USER-DEFINED TYPE 17
ROW 19

106 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Data Type Code
REF 20
BIGINT 25
BINARY-LARGE-OBIECT 36
BLOB 30

CHARACTER LARGE OBJECT 40

CLOB 40
ARRAY 50
MULTISET 55
DATE 01
TIME 92
TI|MESTAMP 93
TI|ME WITH TIME ZONE 94
TIMESTAMP WITH TIME ZONE | 95
INTERVAL YEAR 101
INTERVAL MONTH 102
INTERVAL DAY 103
INTERVAL HOUR 104
INTERVAL MINUTE 105
INTERVAL SECOND 106
INTERVALCYEAR TO MONTH 107
INTERVAL DAY TO HOUR 108
INTERVAC DAY-TOMINGTE 109
INTERVAL DAY TO SECOND 110
INTERVAL HOUR TO MINUTE | 111

INTERVAL HOUR TO SECOND 112

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 107

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Data Type

Code

INTERVAL MINUTE TO SECOND

113

Table 34 — Codes used with concise datetime data types in SQL/CLI

|
CJJncise Data Type Code

Data Type Code Datetime Interval Code
91 9 1 (one)
92 9 2
93 9 3
94 9 4
935 9 5

Table 35 — Codes used with concise intervaldata types in SQL/CLI

Concise Data Type Code Data Type Code Datetime Interval Code
141 10 1 (one)
102 10 2

103 10 3

104 10 4

105 10)

106 10 6

147 10 7

108 10 8

109 10 9

11|O 10 10

111 10 11

112 10 12

113 10 13

108 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Table 36 — Concise codes used with datetime data types in SQL/CLI

Datetime Interval Code Concise Code
1 (one) 91
2 92
3 93
4 94
5 95

Table 37 — Concise codes used with interval data types.in"SQL/CLI
Datetime Interval Code Code
1 (one) 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109
10 110
11 111
12 112
13 113

Table 38 — Special parameter values

Value Name Value | Data Type
ALL CATALOGS %' CHARACTER(1)

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 109

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.19 Other tables associated with CLI

Value Name Value | Data Type
ALL SCHEMAS %' CHARACTER(1)
ALL TYPES %' CHARACTER(1)

Table 39 — Column types and scopes used with SpecialColumns

Context Code | Indicates

Special Column Type 1 BEST ROWID
(one)

Sqope of Row Id 0 SCOPE CURRENT ROW
(zero)

Sqope of Row Id 1 SCOPE TRANSACTION
(one)

Sdope of Row Id 2 SCOPE SESSION

Pseudo Column Flag 0 PSEUDOUNKNOWN
(zero)

Pseudo Column Flag 1 NOT PSEUDO
(one)

Pseudo Column Flag 2 PSEUDO

110 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

5.20 SQL/CLI data type correspondences

This Subclause is modified by Subclause 19.5, “SQL/CLI data type correspondences”, in | SO/IEC 9075-9.
This Subclause is modified by Subclause 19.1, ““SQL/CLI data type correspondences”, in 1SO/IEC 9075-14.

Funetien
Spec|fy the SQL/CLI data type correspondences for SQL data types and host language types assogiated vith
the rgquired parameter mechanisms, as shown in Table 3, “Supported calling conventions of SQL/CLI routines
by lapguage”.
In the following tables, let P be <precision>, She <scale>, L be <length>, T be <time fra¢tional seconds preci-
sionx, and Q be <interval qualifier>.
Tablles
[oo]:a| Table 40 — SQL/CLI data type correspondences for Ada

SQL Data Type Ada Data Type

ARRAY None

ARRAY LOCATOR SQL_STANDARD:INT

B1GINT SQL_STANDARD.BIGINT

B1NARY (L) SQL.STANDARD.CHAR, with PLENGTH of L

B1NARY LARGE OBJECT (L)

SQL_STANDARD.CHAR, with P'LENGTH of L

L

CATOR

B<1>NARY LARGE OBJECT

SQL_STANDARD.INT

BINARY VARYING (L)

SQL_STANDARD.CHAR, with P'LENGTH of L

BOOLEAN SQL_STANDARD.BOOLEAN
CHARACTER'(L) SQL_STANDARD.CHAR, with P'LENGTH of L
E:LHARACTER LARGE OBJECT | SQL_STANDARD.CHAR, with PPLENGTH of L
CHARACTER LARGE OBJECT | SQL_STANDARD.INT

LOCATOR

CHARACTER VARYING (L) None

DATE None

DECFLOAT(P) None

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 111

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type Ada Data Type
DECIMAL(P,S) None
DOUBLE PRECISION SQL_STANDARD.DOUBLE_PRECISION
FLLIOAHR Nere
INTEGER SQL_STANDARD.INT
INTERVAL(Q) None
MP LTISET None
MlJ LTISET LOCATOR SQL_STANDARD.INT
NUMERIC(P,9 None
REAL SQL_STANDARD.REAL
REF SQL_STANDARD.CHAR Mith P'LENGTH of L
ROW None
SI‘YIALLINT SQL_STANDARD.SMALLINT
TI|ME(T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
U$ER-DEFINED TYPE LOCA-% SQL_STANDARD.INT
TOR
[[=|Table 41 — SQL/CLI data type correspondences for C
SQL Data Typé C Data Type
ARRAY None
ARRAY'LOCATOR long
BIGINT long long
BINARY (L) char, with length L
BINARY LARGE OBJECT (L) | char, with length L
BINARY LARGE OBJECT long
LOCATOR

112 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type

C Data Type

BINARY VARYING (L)

char, with length L

BOOLEAN

short

C ARACTER (1)
e e e amy)

1
chaf, With rengtn (L+1)7K

CHARACTER LARGE OBJECT
(L

char, with length (L+1)*k*

CHARACTER LARGE OBJECT
LOCATOR

long

CHARACTER VARYING (L)

char, with length (L+1)*k*

DATE None
DECFLOAT(P) None
DECIMAL(P,S) None
DOUBLE PRECISION double
FILOAT(P) None
INTEGER long
INTERVAL(Q) None
M'JLTISET Nonhe
MULTISET LOCATOR long
NUMERIC(P,9 None
REAL float
REF char, with length L
ROW None
SI‘YIALLINT short
TIME(T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
USER-DEFINED TYPE LOCA- | long

TOR

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 113

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type C Data Type

Lkis the length in units of C char of the largest character in the character set associated with the SQL data type.

[sJuaj Table 42 — SQL/CLI data type correspondences for COBOL

SQL Data Type COBOL Data Type

ARRAY None

ARRAY LOCATOR PICTURE S9(PI1) USAGE BINARY, where Pl is implementation
defined

BIGINT PICTURE S9(BPI) USAGE BINARY, wheteBPI is implementatign-
defined

B1NARY L) alphanumeric, with length L

B1NARY LARGE OBJECT (L) | alphanumeric, with length L

B<1>NARY LARGE OBJECT PICTURE S9(PI) USAGE BINARY, where PI is implementation

LOCATOR defined

BINARY VARYING (L) alphanumeric, withlength L

BOOLEAN PICTURE X

CHARACTER (L) alphanumeric, with length L

CHARACTER LARGE OBJECT | alphanumeric, with length L
(L

CHARACTER LARGE OBJEET | PICTURE S9(PI) USAGE BINARY, where PI is implementation
LPCATOR defined

CHARACTER VARYING (L) None

DATE None
DECFLOAT(P) None
DECIMAL(P,S) None
DOUBLE PRECISION None
FLOAT(P) None
INTEGER PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined
INTERVAL(Q) None

114 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type COBOL Data Type

MULTISET None

MULTISET LOCATOR PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined

NUMERIC(P,S) USAGE DISPLAY SIGN LEADING SEPARATE, with PICTURE
as specifiedl

REAL None

REF alphanumeric, with length L

ROW None

SMALLINT PICTURE S9(SPI) USAGE BINARY{where SPI is implementatiqn-
defined

TIME(T) None

TIMESTAMP(T) None

U$ER-DEFINED TYPE None

USER-DEFINED TYPE LOCA- | PICTURE S9(PI) USAGE BINARY, where PI is implementation
TOR defined

! Qase:

1) If S=P, then a PICTURE with an 'S' followed by a V' followed by P '9's.

2)| If P>S>0 (zero), then a PICTURE with an 'S’ followed by P-S'9's followed by a 'V' followed by S'9's.
3)| If S=0 (zero), then a PICTURE with an 'S' followed by P '9's optionally followed by a 'V'.

olaTable 43 — SQL/CLI data type correspondences for Fortran

SQL Data Type Fortran Data Type

ARRAY None

ARRAY LOCATOR INTEGER

BIGINT None

BINARY (L) CHARACTER, with length L

BINARY LARGE OBJECT (L) | CHARACTER, with length L

BINARY LARGE OBJECT INTEGER
LOCATOR

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 115

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I

EC 9075-3:2016(E)

5.20 SQL/CLI data type correspondences

SQL Data Type

Fortran Data Type

BINARY VARYING (L) CHARACTER, with length L
BOOLEAN LOGICAL
CHARAGCTFER(L) CHARAGCFER~with-length-
EZLHARACTER LARGE OBJECT | CHARACTER, with length L
CHARACTER LARGE OBJECT [INTEGER
LOCATOR
CHARACTER VARYING (L) None
DATE None
DECFLOAT(P) None
DECIMAL(P,S None
DOUBLE PRECISION DOUBLE PRECISION
FLOAT(P) None
INTEGER INTEGER
INTERVAL(Q) None
M'J LTISET INore
MlJLTISET LOCATOR INTEGER
NUMERIC(P,S) None
REAL REAL
REF CHARACTER, with length L
ROW None
SMAEKLINT None
TINME{T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
USER-DEFINED TYPE LOCA- | INTEGER
TOR
116 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.20 SQL/CLI data type correspondences

[o]u| Table 44 — SQL/CLI data type correspondences for M

SQL Data Type M Data Type
ARRAY None
ARRAY LOCATOR character
B1GINT None
B1NARY (L) character
B1NARY LARGE OBJECT (L) | character
B<1>NARY LARGE OBJECT character
LPCATOR

BINARY VARYING (L) character
BOOLEAN None
CHARACTER (L) None
CHARACTER LARGE OBJECT | character
(L

CHARACTER LARGE OBJECT | character
LPCATOR

CHARACTER VARYING (L) character with maximum length L
DATE None
DECFLOAT(P) None
DECIMAL(P,S character
DOUBLE PRECISION None
FILOAT(P) None
INTEGER character
INTERVAL(Q) Nore
MULTISET None
MULTISET LOCATOR character
NUMERIC(P,S character

©ISO/IEC 2016 — All rights reserved

Call-Level Interface specifications 117

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

5.20 SQL/CLI data type correspondences

TOR

SQL Data Type M Data Type
REAL character
REF character
ROW Nere
SI‘I/IALLINT None
TI|ME(T) None
TIMESTAMP(T) None
USER-DEFINED TYPE None
USER-DEFINED TYPE LOCA- | character

[oo[a] Table 45 — SQL/CLI data type correspondences for Pascal

SQL Data Type

Pascal Data Type

ARRAY None

ARRAY LOCATOR INTEGER

B1GINT None

B1NARY (L) PACKED ARRAY[1..L] OF CHAR

BINARY LARGE OBJECT (L);
L p 1 (one)

PACKED ARRAY([1..L] OF CHAR

BINARY LARGE OBJECT
LPCATOR

INTEGER

BINARY VARYING (L)

PACKED ARRAY([1..L] OF CHAR

BOOLEAN

BOOLEAN

CHARACTER (1)

CHAR

CHARACTER (L), L > 1 (one)

PACKED ARRAY([1..L] OF CHAR

(L),L>1(one)

CHARACTER LARGE OBJECT

PACKED ARRAY[1..L] OF CHAR

LOCATOR

CHARACTER LARGE OBJECT

INTEGER

118 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type Pascal Data Type
CHARACTER VARYING (L) None
DATE None
DEGFLOAT(R) Nere
DECIMAL(P,S) None
DOUBLE PRECISION None
FILOAT(P) None
INTEGER INTEGER
INTERVAL(Q) None
M’J LTISET None
MlJLTISET LOCATOR INTEGER
NUMERIC(P,9 None
REAL REAL
REF, L > 1 (one) PACKED ARRAY([1..L] OF CHAR
ROW None
SI‘I/IALLINT None
TI|ME(T) None
TIMESTAMP(T) None
U$ER-DEFINED TYPRE None
USER-DEFINED-DYPE LOCA- | INTEGER
TOR
[oo]1a]Table 46 — SQL/CLI data type correspondences for PL/I
SQL Data Type PL/I Data Type
ARRAY None
ARRAY LOCATOR FIXED BINARY (PI), where PI is implementation-defined
BIGINT FIXED BINARY (BPI), where BPI is implementation-defined

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 119

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type PL/I Data Type

BINARY (L) CHARACTER(L)

BINARY LARGE OBJECT (L) | CHARACTER(L) VARYING

BINARY-LARGE-OBIECT FXED-BHINARY-(PH-where-RHs-Hrplementation-defined
LPCATOR

BINARY VARYING (L) CHARACTER(L) VARYING

BPOLEAN BIT(1)

CHARACTER (L) CHARACTER(L)

CHARACTER LARGE OBJECT | CHARACTER(L) VARYING
(L

CHARACTER LARGE OBJECT | FIXED BINARY (PI), where PI iscimplementation-defined
LOCATOR

CHARACTER VARYING (L) CHARACTER(L) VARYANG

DATE None

DECFLOAT(P) None

DECIMAL(P,S) FIXED DECIMAL(P,9

DOUBLE PRECISION None

FILOAT(P) FLOAT BINARY (P)

INTEGER FIXED BINARY (PI), where PI is implementation-defined
INTERVAL(Q) None

MPLTISET None

MlJLTISET LOECATOR FIXED BINARY(PI), where Pl is implementation-defined
NUMERIC(P,9 None

READ None

REF CHARACTER VARYING (L)

ROW None

SMALLINT FIXED BINARY (SPI1), where SPI is implementation-defined
TIME(T) None

120 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
5.20 SQL/CLI data type correspondences

SQL Data Type PL/I Data Type

TIMESTAMP(T) None

USER-DEFINED TYPE LOCA- | None

TOR

U$ER-DEFINED TYPE FIXED BINARY (PI), where PI is implementation-defined

©ISO/IEC 2016 — All rights reserved Call-Level Interface specifications 121

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

(Blank page)

122 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.1 AllocConnect

6 SQL/CLI routines

This [Clause 1s modified by Clause 20, ~SQL/CLT routines , in TSO/TET 9075-9.

Subcjause 5.1, “<CLI routine>", defines a generic CLI routine. This Subclause describes the individual CLI
routines in alphabetical order.

For convenience, the variable <CLI name prefix> is omitted and the <CLI generic name> jis‘dsed for the
descifiptions. For presentation purposes (and purely arbitrarily), the routines are presented-as functions rather
than s procedures.

6.1 AllocConnect

Function

Allogate an SQL-connection and assign a handle to it.

Definition

AllofConnect (

EnvironmentHandle IN INTEGER,
ConnectionHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) Let EH be the value pf\EnvironmentHandle.

2) AllocHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE, with EH as
the value of InputHandle and with ConnectionHandle as OutputHandle.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 123

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.2 AllocEnv

6.2 AllocEnv

Function

Allocate an SQL-environment and assign a handle to it.

Definition

AllogEnv (
EnvironmentHandle ouT INTEGER)
RETURNS SMALLINT

General Rules

1) AllocHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE, with zgro as
the value of InputHandle, and with EnvironmentHandle as OutputHandle.

124 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

6.3

Fun

ISO/IEC 9075-3:2016(E)
6.3 AllocHandle

AllocHandle

ction

Allocate a resource and assign a handle to it.

Def

nition

AllofpHandle (
HandleType IN SMALLINT,
I nputHandle IN INTEGER,
DutputHandle ouT INTEGER)

Gen

1)

2)
q

3)

[«

a) IfHT indicates ENVIRONMENT HANDLE;then:

RETURNS SMALLINT

eral Rules

et HT be the value of HandleType and let IH be the value of InputHandle.

f HT is not one of the code values in Table 14, “Codes used forSQL/CLI handle types”, then an exce
ondition is raised: CLI-specific condition — invalid handl€e:

Case:

)] If the maximum number of SQL-environments that can be allocated at one time has alre
been reached, then an exception:condition is raised: CLI-specific condition — limit on nu
of handles exceeded. A skeleton SQL-environment is allocated and is assigned a unique
that is returned in OutputHandle.

i) Case:

1) If the memory requirements to manage an SQL-environment cannot be satisfied, thg
OutputHandle is set to zero and an exception condition is raised: CLI-specific condi
— mémory allocation error.

NOTE 19 — No diagnostic information is generated in this case as there is no valid environment
that can be used in order to obtain diagnostic information.

2) If the resources to manage an SQL-environment cannot be allocated for implementg
defined reasons, then an implementation-defined exception condition is raised. A ske
SQL-environment is allocated and is assigned a unique value that is returned in Out
putHandle.

ption

hdy
mber
value

n
ion

handle

tion-
eton

3) Otherwise, the resources to manage an SQL-environment are allocated and are referred to

as an allocated SQL-environment. The allocated SQL-environment is assigned a uni
value that is returned in OutputHandle.

b) If HT indicates CONNECTION HANDLE, then:

©ISO/

que

i) If IH does not identify an allocated SQL-environment or if it identifies an allocated skeleton

SQL-environment, then OutputHandle is set to zero and an exception condition is raised:
specific condition — invalid handle.

CLlI-

IEC 2016 — All rights reserved SQL/CLI routines 125

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.3 AllocHandle

i) Let E be the allocated SQL-environment identified by IH.

iii) The diagnostics area associated with E is emptied.

iv) Ifthe maximum number of SQL-connections that can be allocated at one time has already been
reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

V) Case:

vi)

vii)

vifi)

) If HT indicates STATEMENT HANDLE, then:

1) If the memory requirements to manage an SQL-connection cannot be satisfied;-then|Out-
putHandle is set to zero and an exception condition is raised: CLI-specificceondition—
memory allocation error.

2) If the resources to manage an SQL-connection cannot be allocatedfor implementatipn-
defined reasons, then OutputHandle is set to zero and an implementation-defined exception
condition is raised.

3) Otherwise, the resources to manage an SQL-connectionqare-allocated and are referrgd to
as an allocated SQL-connection. The allocated SQL-¢ohnection is associated with B and
is assigned a unique value that is returned in OutputHandle.

If IH does not identify an allocated SQL-conpection, then OutputHandle is set to zero arjd an
exception condition is raised: CLI-specific condition — invalid handle.

Let C be the allocated SQL-connection.identified by IH.
The diagnostics area associated withC is emptied.

If there is no established SQL-eonnection associated with C, then OutputHandle is set tg zero
and an exception condition jsiraised: connection exception — connection does not exist. Qther-
wise, let EC be the established SQL-connection associated with C.

If the maximum number of SQL-statements that can be allocated at one time has already|been
reached, then OutputHandle is set to zero and an exception condition is raised: CLI-spegfic
condition — lignit on number of handles exceeded.

If EC is notithe current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connpection”, are applied with EC as dormant SQL-connection.

If the-memory requirements to manage an SQL-statement cannot be satisfied, then OutputHpndle
i8:5et to zero and an exception condition is raised: CLI-specific condition — memory allodation
error.

If the resources to manage an SQL-statement cannot be allocated for implementation-defined
reasons, then QutputHandle is set to zero and an implementation-defined exception condition

is raised.

The resources to manage an SQL-statement are allocated and are referred to as an allocated
L -statement. The allocated SQL-statement is associated with C and is assigned a unique
value that is returned in OutputHandle.

The following CLI descriptor areas are automatically allocated and associated with the allocated
SQL-statement:

126 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.3 AllocHandle
1) Animplementation parameter descriptor.
2) Animplementation row descriptor.
3) An application parameter descriptor.

4) An application row descriptor.

For each of these descriptor areas, the ALLOC_TYPE Tield 1s set to indicate AUTOMAT]IC.
For each of these descriptor areas, fields with non-blank entries in Table 24, “SQL/CL]
descriptor field default values”, are set to the specified default values. All other fields in the
CLI item descriptor areas are initially undefined.

xi) The statement attributes of the allocated SQL statement are set as follows:

1) The automatically allocated application parameter descriptor becomes the value of the
APD HANDLE attribute for the allocated SQL-statement anddhe-automatically allocated
application row descriptor becomes the value of the ARD HANDLE attribute for the
allocated SQL-statement.

2) The automatically allocated implementation parameterdescriptor becomes the valug¢ of
the IPD HANDLE attribute for the allocated SQL-statement and the automatically allgcated
implementation row descriptor becomes the valug of the IRD HANDLE attribute fof the
allocated SQL-statement.

3) The CURSOR SCROLLABLE attribute 1sset to NONSCROLLABLE.
4) The CURSOR SENSITIVITY attripute is set to ASENSITIVE.

5) The CURSOR HOLDABLE attribute is set to NONHOLDABLE.

6) The CURRENT OF POSITION attribute is set to 1 (one).

7) The NEST DESCRIRTOR attribute is set to FALSE.

xii) The cursor name property associated with the allocated SQL-statement is set to a unique
implementation-dépendent name that has the prefix 'SQLCUR' or the prefix 'SQL_CUR'

@) If HT indicates DESCRIPTOR HANDLE, then:

i) If IH doeS-not identify an allocated SQL-connection then OutputHandle is set to zero anfl an
exception ‘condition is raised: CLI-specific condition — invalid handle.

i) Let{C be the allocated SQL-connection identified by IH.
iii). T he diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set tg zero
and an exception condition is raised: connection exception — connection does not exist. Qther-
wise, let EC be the established SQL-connection associated with C.

V) If the maximum number of CLI descriptor areas that can be allocated at one time has already
been reached, then OutputHandle is set to zero and an exception condition is raised: CLI-specific
condition — limit on number of handles exceeded.

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit
set connection”, are applied with EC as dormant SQL-connection.

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 127

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.3 AllocHandle

vii) Case:
1) If the memory requirements to manage a CLI descriptor area cannot be satisfied, then

OutputHandle is set to zero and an exception condition is raised: CLI-specific condition
— memory allocation error.

2) If the resources to manage a CLI descriptor area cannot be allocated for implementation-
dafiaacl a than-Ortantl landla s i 2o el ardnanlanacntoti o Aol o/ thﬂ
ulcTimicu Tvasvlio, UiIcTl uutpuu iariuic ro ovttu Zvru aria arr it I|JICI FCTIAtivrimucTimncu TAUU

condition is raised.

3) Otherwise, the resources to manage a CLI descriptor area are allocated and are referfed to
as an allocated CLI descriptor area. The allocated CLI descriptor area is associated yvith
C and is assigned a unique value that is returned in OutputHandle. The ALLOC_TY|PE
field of the allocated CLI descriptor area is set to indicate USER. Other fields of the|allo-
cated CLI descriptor area are set to the default values for an ARD specified in Table[24,
“SQL/CLI descriptor field default values”. Fields in the CLI item-descriptor areas npt set
to a default value are initially undefined.

128 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

6.4 AllocStmt

Function

ISO/IEC 9075-3:2016(E)
6.4 AllocStmt

Allocate an SQL-statement and assign a handle to it.

Definition

AllogStmt (

ConnectionHandle
StatementHandle
RETURNS SMALLINT

General Rules

1) et CH be the value of ConnectionHandle.

IN
ouT

INTEGER,
INTEGER)

2) AllocHandle is implicitly invoked with HandleType indicating.STATEMENT HANDLE, with CH as the

alue of InputHandle, and with StatementHandle as OutputHandle.

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 129

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.5 BindCol

6.5 BindCol

Function

Describe a target specification or array of target specifications.

Definition

BindCol (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
fargetType IN SMALLINT,
fargetValue DEFOUT ANY,
BufferLength IN INTEGER,
StriLen_or_Ind DEFOUT INTEGER)

RETURNS SMALLINT

General Rules

1) lLet Shbe the allocated SQL-statement identified by StatementHandle.
2) lLet HV be the value of the handle of the current applieation row descriptor for S

3) et ARD be the allocated CLI descriptor area idestified by HV and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

4) ILet CN be the value of ColumnNumber.

5) If CNis less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descr]iptor
iindex.

6) If CNis greater than N, then
Case:

q) If the memory requirements to manage the larger ARD cannot be satisfied, then an exception condition
is raised: ClLl=Specific condition — memory allocation error.

) Otherwisg; the TOP_LEVEL_COUNT field of ARD is set to CN and the COUNT field of ARD|is
incremented by 1 (one).

7) Let FTibe the value of TargetType.
8)

table be the data type correspondence table for HL as specmed in Subclause 5.20, “SQL/CLI data type
correspondences”. Refer to the two columns of the operative data type correspondences table as the SQL
data type column and the host data type column.

9) If either of the following is true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) TT does not indicate DEFAULT and is not one of the code values in Table 8, “Codes used for appli-
cation data types in SQL/CLI”.

130 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.5 BindCol

b) TT is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the

row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

10) Let BL be the value of BufferLength.

11) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string

I) v o Ff o | vy
bllgLIIUI MUTTCT TCHYU .

12) L et IDA be the item descriptor area of ARD specified by CN.

13) If an exception condition is raised in any of the following General Rules, then the TYPE, OCTETF LEN{GTH,
LENGTH, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields ¢f
DA are set to implementation-dependent values and the value of COUNT for ARD is\unchanged.

14) The data type of the <target specification> described by IDA is set to TT.
15) The length in octets of the <target specification> described by IDA is set to-BL.

16) The length in characters or positions of the <target specification> descriljed by IDA is set to the maximum
mumber of characters or positions that may be represented by the data type TT.

17) The address of the host variable or array of host variables that iscto receive a value or values for the <farget

gpecification> or <target specification>s described by IDA issét to the address of TargetValue. If Tafget-
/alue is a null pointer, then the address is set to 0 (zero).

18) The address of the <indicator variable> or array of <indicator variable>s associated with the host variable
or host variables addressed by the DATA_POINTER-field of IDA is set to the address of StrLen_or_[Ind.

19) The address of the host variable or array of hostvariables that is to receive the returned length (in charafters)

f the <target specification> or <target specification>s described by IDA is set to the address of
trLen_or_Ind.

20) Restrictions on the differences allowed between ARD and IRD are implementation-defined, except ds

pecified in the General Rules of Subclause 5.13, “Implicit FETCH USING clause”, and the General Rules
f Subclause 6.30, “GetData”s

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 131

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.6 BindParameter

6.6 BindParameter

Function

Describe a dynamic parameter specification and its value.

Definition

BindParameter (

StatementHandle IN INTEGER,
ParameterNumber IN SMALLINT,
I nputOutputMode IN SMALLINT,
ValueType IN SMALLINT,
ParameterType IN SMALLINT,
ColumnSize IN INTEGER,
DecimalDigits IN SMALLINT,
ParameterValue DEF ANY,
BufferLength IN INTEGER,
StriLen_or_Ind DEF INTEGER)

RETURNS SMALLINT

General Rules

1) lLet Shbe the allocated SQL-statement identified by StatementHandle.
2) lLet HV be the value of the handle of the current application parameter descriptor for S

3) Let APD be the allocated CLI descriptorarea identified by HV and let N2 be the value of the
TOP_LEVEL_COUNT field of APD:.

4) lLet PN be the value of ParametertNumber.

5) [If PNis less than 1 (one),then an exception condition is raised: dynamic SQL error — invalid descrjptor
iindex.

6) lLet IOM be the value-ef InputOutputMode.

7) If IOM is not one.of the code values in Table 11, “Codes associated with <parameter mode> in SQL/CLI”,
then an exception condition is raised: CLI-specific condition — invalid parameter mode.

8) Let VT heithe value of ValueType.

lence

9) LetHL be the programming language of the invoking host program. Let operative data type correspon(

=12 a a acnanadanea L] a¥a a¥a B Ta ila e

correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL
data type column and the host data type column.

10) If any of the following are true, then an exception condition is raised: CLI-specific condition — invalid
data type in application descriptor.

a) VT does not indicate DEFAULT and is not one of the code values in Table 8, “Codes used for appli-
cation data types in SQL/CLI”.

132 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.6 BindParameter

b) VT is one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

11) Let PT be the value of ParameterType.

12) If PT is not one of the code values in Table 33, “Codes used for concise data types”, then an exception
gonthtientst+atset—SH opouflu eonditon Hivate-data typc

13) Let IPD be the implementation parameter descriptor associated with Sand let N1 be the value-efthd
TOP_LEVEL_COUNT field of IPD.

14) If PN is greater than N1, then
Case:

3) Ifthe memory requirements to manage the larger IPD cannot be satisfied, then’an exception congition
is raised: CLI-specific condition — memory allocation error.

) Otherwise, the TOP_LEVEL_COUNT field of IPD is set to PN andthe COUNT field of APD is
incremented by 1 (one).

15) If PN is greater than N2, then
Case:

3) Ifthe memory requirements to manage the larger APD cannot be satisfied, then an exception condlition
is raised: CLI-specific condition — memory allecation error.

) Otherwise, the TOP_LEVEL_COUNT field’of APD is set to PN and the COUNT field of APD [is
incremented by 1 (one).

16) Let IDA1L be the item descriptor area of \PD specified by PN.

17) Let CSbe the value of ColumnSize, let DD be the value of DecimalDigits, and let BL be the value gf
BufferLength.

18) Case:

3) IfPTisone of the values listed in Table 34, “Codes used with concise datetime data types in SQL/CLI”,
then:

i) Thedata type of the <dynamic parameter specification> described by IDAL is set to a cofle
shown in the Data Type Code column of Table 34, “Codes used with concise datetime data
types in SQL/CLI”, indicating the concise data type code.

i) The datetime interval code of the <dynamic parameter specification> described by IDAL|is set
to a code shown in the Datetime Interval Code column in Table 34, “Codes used with cohcise

COUTTT

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1 is set
to CS

iv) Case:

1) If the datetime interval code of the <dynamic parameter specification> indicates DATE,
then the time fractional seconds precision of the <dynamic parameter specification>
described by IDAL is set to zero.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 133

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.6 BindParameter

2) Otherwise, the time fractional seconds precision of the <dynamic parameter specification>

described by IDA1 is set to DD.

b) If PTisone of the values listed in Table 35, “Codes used with concise interval data types in SQL/CLI”,
then:

i) The data type of the <dynamic parameter specification> described by IDAL is set to a code
OI IUVVII III LhU I.JG.I.C\ I_pr \./UdC L;U:UIIIII Uf Tablc 35, “CUdCO UOCd VVILh \;UI IbIOC II ILCI VG.: dG.LG. ypeS
in SQL/CLI”, indicating the concise data type code.

i) The datetime interval code of the <dynamic parameter specification> described hy|IDALl|is set
to a code shown in the Datetime Interval Code column in Table 35, “Codes usedwith copcise
interval data types in SQL/CLI”, indicating the concise data type code. Let\DIC be that ¢ode.

iii) The length (in positions) of the <dynamic parameter specification> desefribed by IDAL i set
to CS

iv) Let LSbe 0 (zero).

V) If IOM is PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pginter,
and BL is greater than zero, then:

1) Let PV be the value of ParameterValue.

2) Let FC be the value of
SUBSTR (PV FROM 1 FOR 1)

3) If FCis <plus sign> or <minus gign>, then let LSbe 1 (one).

vi) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTH TO
SECOND, then therinterval fractional seconds precision of the <dynamic parameter gpec-
ification> described by IDAL is set to DD. If DD is 0 (zero), then let DP be 0 (zero)] oth-
erwise, let DPpe 1 (one).

2) Otherwisg, the interval fractional seconds precision of the <dynamic parameter specifica-
tion> described by IDAL is set to zero.

vii) Case:
1<AFDICindicates YEAR TO MONTH, DAY TO HOUR, HOUR TO MINUTE or MINUTE

TO SECOND, then let IL be 3.

2) If DIC indicates DAY TO MINUTE or HOUR TO SECOND, then let IL be 6.

3) If DIC indicates DAY TO SECOND, then let IL be 9.

4) Otherwise, let IL be zero.

viii) Case:

134 Call-Level Interface (SQL/CLI)

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval leading field precision of the <dynamic parameter specification>

described by IDAL is set to CS-IL-DD-DP-LS

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

6.6 BindParameter

2) Otherwise, the interval leading field precision of the <dynamic parameter specification>

described by IDA1 is set to CS-IL-LS

c) Otherwise:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to PT.

ii) If PT indicates a character string type, then the length (in characters) of the <dynamic parameter
specification> described by IDAL is set to CS

iii) If PT indicates a numeric type, then the precision of the <dynamic parameter specification>
described by IDAL is set to CS

iv) If PTindicates a numeric type, then the scale of the <dynamic parameter specification> desgribed
by IDAL is set to DD.

19) LLet IDA2 be the item descriptor area of APD specified by PN.

20) If an exception condition is raised in any of the following General Rules,.then:

qd) The TYPE, LENGTH, PRECISION, and SCALE fields of IDAL are set to implementation-dependent
values and the values of the TOP_LEVEL_COUNT and COUNF fields of IPD are unchanged.

b) The TYPE, DATA_POINTER, INDICATOR_POINTER{and OCTET_LENGTH_POINTER fields
of IDA2 are set to implementation-dependent values and-the values of the TOP_LEVEL_COUNT and
COUNT fields of APD are unchanged.

21) The parameter mode of the <dynamic parameter specification> described by IDAZ2 is set to IOM.

22) The data type of the <dynamic parameter specification> described by IDA2 is set to VT.

23) The address of the host variable that is to provide a value for the <dynamic parameter specification> jalue
escribed by IDAZ2 is set to the address of ParameterValue. If ParameterValue is a null pointer, then fhe
ddress is set to 0 (zero).

24) The address of the <indicator variable> associated with the host variable addressed by the DATA_POINTER
ield of IDAZ2 is set to the address of StrLen_or_Ind.

25) The address of the host variable that is to define the length (in octets) of the <dynamic parameter spgcifi-
ation> value described by IDAZ2 is set to the address of StrLen_or_Ind.

26) If IOM is PARAM-MODE OUT or PARAM MODE INOUT and BL is not greater than zero, then ap

gxception condition is raised: CLI-specific condition — invalid string length or buffer length.

27) The lengtlrin octets of the <dynamic parameter specification> value described by IDAZ2 is set to BL

28) If IONpis PARAM MODE IN or PARAM MODE INOUT, ParameterValue is not a null pointer, and BL

is greater than O (zero), then let PV be the value of the <dynamic parameter specification> value described

y-+HDA2.

29) Restrictions on the differences allowed between APD and IPD are implementation-defined, except as
specified in the General Rules of Subclause 5.10, “Implicit EXECUTE USING and OPEN USING clauses”,
Subclause 5.11, “Implicit CALL USING clause”, and the General Rules of Subclause 6.49, “ParamData”.

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 135

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.7 Cancel

6.7

Function

Cancel

Attempt to cancel execution of a CLI routine.

Definition

Cancgel (

General Rules

1) lLet Sbe the allocated SQL-statement identified by StatementHandle.

StatementHandle IN INTEGER)
RETURNS SMALLINT

2) Case:
3) |If there is a CLI routine concurrently operating on S theh:
i) Let RN be the routine name of the concurrent<CLI routine.
i) Let C be the allocated SQL-connection with which Sis associated.
iii) Let EC be the established SQL-connection associated with C and let SSbe the SQL-servier
associated with EC.
iv) SSis requested to cancel the.execution of RN.
V) If SSrejects the cancellatiofr request, then an exception condition is raised: CLI-specific conglition
— server declined the'cancellation request.
vi) If SSaccepts the cancellation request, then a completion condition is raised: successful conple-
tion.
NOTE20= Acceptance of the request does not guarantee that the execution of RN will be cancelled.
vii) If SSsueceeds in canceling the execution of RN, then an exception condition is raised fof RN:
CKJ~specific condition — operation canceled.
NOTE 21 — Canceling the execution of RN does not destroy any diagnostic information already genergted by
its execution.
NOTE 22 — The method of passing control between concurrently operating programs is implementation-deperjdent.
) If thora 1o o Aafarrad mnavarnatar Ay nconntatad vanthh © 4.
U} muiiviTo aucitiTTu rJGI AT TTUTTiveT doovuLTatLu villt O UricTr.
i) The diagnostics area associated with Sis emptied.
i) The deferred parameter number is removed from association with S
iii) Any statement source associated with Sis removed from association with S
¢) Otherwise:

136 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.7 Cancel

)] The diagnostics area associated with Sis emptied.

i) A completion condition is raised: successful completion.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 137

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.8 CloseCursor

6.8 CloseCursor

Function

Close a cursor.

Definition

ClosgCursor (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) lLet Sbe the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associated with S then an exception condition is raised: CLI-specific
rondition — function sequence error.

3) Case:

3) If there is no open CLI cursor associated with S, _then an exception condition is raised: invalid cursor
State.

) Otherwise:

i) Let CR be the CLI cursor associated with S The General Rules of Subclause 15.4, “Effeft of
closing a cursor”, in [ISO9075=2] are applied, with CRas CURSOR and DESTROY as DISPO-
STION.

i) Any fetched row assgciated with Sis removed from association with S

138 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

6.9

ISO/IEC 9075-3:2016(E)

6.9 ColAttr

ColAttribute

Function

Get a column attribute.

Def

nition

ColAgtribute (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
Fieldldentifier IN SMALLINT,
CharacterAttribute OUT CHARACTER(L),
BufferLength IN SMALLINT,
StringlLength OUT SMALLINT,

wherg L has a maximum value equal to the implementation-definedémaximum length of a variable-lengt
chardcter string.

General Rules

1)
2)

3)

4)
5)

6)
7)

8)

9

©ISO/IEC 2016 — All rights reserved

NumericAttribute OUT INTEGER)
RETURNS SMALLINT

et She the allocated SQL-statement identified by: StatementHandle.

f there is no prepared or executed statement-associated with S then an exception condition is raised:
gpecific condition — function sequence.error.

et IRD be the implementation row-descriptor associated with Sand let N be the value of the
TOP_LEVEL_COUNT field of IRD:

et FI be the value of Fieldldentifier.

f FI is not one of the cedevalues in Table 21, “Codes used for SQL/CLI descriptor fields”, then an
gxception condition is-taised: CLI-specific condition — invalid descriptor field identifier.

L et CN be the value’of ColumnNumber.

fields”, thiat contains FI.

et EDT be the value of the Data Type column in the row of Table 6, “Fields in SQL/CLI row and

ibute

=

CLlI-

et TYPE bethe value of the Type column in the row of Table 21, “Codes used for SQL/CLI descriptor

arameter descriptor areas”, whose Field column contains the value of the Field column in the row

f

lable Z1, “Codes used 1or SQL/CLI descriptor Tields™, that contains .

If TYPE is 'ITEM', then:

a) If Nis zero, then an exception condition is raised: dynamic SQL error — prepared statement not a

cursor specification.

b) If CNis less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

SQL/CLI routines 139

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.9 ColAttribute

c) If CNis greater than N, then a completion condition is raised: no data.

d) Let IDA be the item descriptor area of IRD specified by the CN-th descriptor area in IRD for which
LEVEL is 0 (zero).

e) LetDTand DIC be the values of the TYPE and DATETIME_INTERVAL_CODE fields, respectively,
for IDA.

10) If TYPE is 'HEADER, then:

qd) IfCNis less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index.

12) Let RI be the number of the descriptor record in IRD that is the CN-th deseriptor area for which LE
is 0 (zero).

Case:

ii)

b) If CNis greater than N, then a completion condition is raised: no data.
¢) Let CN be 0 (zero).
11) Let DH be the handle that identifies IRD.

3) IfFDT indicates character string, then let the information be retrieved from IRD by implicitly exed
GetDescField as follows:

GetDescField (DH, R, FI,

) Otherwise,
Case:
i) If FI indicates TYPE, then

CharacterAttribute, BufferLength, StringLength)

Case:

EL

uting

1) If DT indicafes a <datetime type>, then NumericAttribute is set to the concise code palue

corresponding to the datetime interval code value DIC as defined in Table 36, “Con
codes-used with datetime data types in SQL/CLI™.

2) A DT indicates INTERVAL, then NumericAttribute is set to the concise code value (

ise

orre-

sponding to the datetime interval code value DIC as defined in Table 37, “Concise cpdes

used with interval data types in SQL/CLI”.
3) Otherwise, NumericAttribute is set to DT.

Otherwise, let the information be retrieved from IRD by implicitly executing GetDescFi¢ld as

140 Call-Level Interface (SQL/CLI)

follows:

GetDescField (DH, R, FI,
NumericAttribute, BufferLength, StringlLength)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20
6.10 ColumnPriv

6.10 ColumnPrivileges

Function

16(E)
ileges

Return a result set that contains a list of the privileges held on the columns whose names adhere to the requested

patte

urce.

Def

Colu

wher
of a

Ger
1)
2)
3)
4)
5)

rn or patterns within a single specified table stored in the Information Schema of the connected data s
nition

mnPrivileges (

StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
amelLengthl IN SMALLINT,
SchemaName IN CHARACTER(L2),
amelLength2 IN SMALLINT,
FableName IN CHARACTER(L3),
amelLength3 IN SMALLINT,
ColumnName IN CHARACTER(L4),
amelLength4 IN SMALLINT)

RETURNS SMALLINT

b each of L1, L2, L3, and L4 has a maximum value equalto’the implementation-defined maximum |
ariable-length character string.

eral Rules

| et She the allocated SQL-statement identified by StatementHandle.

et C be the allocated SQL-connection with which Sis associated.
et EC be the established SQL<connection associated with C and let SShe the SQL-server on that conne
et COLUMN_PRIVHEEGES QUERY be a table, with the definition:

REATE TABLE COLUMN_PRIVILEGES_QUERY (

f an open CLI cursor is associatedwith S then an exception condition is raised: invalid cursor statg.

bngth

174

ction.

TABLE_CAF CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
GRANTOR CHARACTER VARYING(128),
GRANTEE CHARACTER VARYING(128) NOT NULL,
PRTVILEGE CHARACTER VARYING(1Zs) NOT NULL,
1S_GRANTABLE CHARACTER VARYING(3))

6) COLUMN_PRIVILEGES QUERY contains a row for each privilege in SSs Information Schema COL-
UMN_PRIVILEGES view where:

a)

©ISO/IEC 2016 — All rights reserved

Let SUP be the value of Supported that is returned by the execution of GetFeaturelnfo with FeatureType

= 'FEATURE' and Featureld = 'C041' (corresponding to the feature “Information Schema metadata

constrained by privileges”).

SQL/CLI routines 141

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.10 ColumnPrivileges

b) Case:
i) If the value of SUP is 1 (one), then COLUMN_PRIVILEGES QUERY contains a row for each

privilege in SSs Information Schema COLUMN_PRIVILEGES view.

i) Otherwise, COLUMN_PRIVILEGES QUERY contains a row for each privilege in SSs Infor-
mation Schema COLUMN_PRIVILEGES view that meets implementation-defined authorization

ritart
CITICTIA.

Wise,

AME

['YPE

me-

ame,

7) For each row of COLUMN_PRIVILEGES QUERY:

3) If the implementation does not support catalog names, then TABLE_CAT is the null value; other
the value of TABLE_CAT in COLUMN_PRIVILEGES QUERY is the value of the TABLE _CATALOG
column in the COLUMN_PRIVILEGES view in the Information Schema.

B) The value of TABLE_SCHEM in COLUMN_PRIVILEGES QUERY is thevalue of the
TABLE_SCHEMA column in the COLUMN_PRIVILEGES view.

) Thevalue of TABLE_NAME in COLUMN_PRIVILEGES QUERY isthe value of the TABLE_N
column in the COLUMN_PRIVILEGES view.

@) The value of COLUMN_NAME in COLUMN_PRIVILEGES-QUERY is the value of the COLA
UMN_NAME column in the COLUMN_PRIVILEGES yiew.

@) Thevalue of GRANTOR in COLUMN_PRIVILEGES -QUERY is the value of the GRANTOR cglumn
in the COLUMN_PRIVILEGES view.

1) Thevalue of GRANTEE in COLUMN_PRIVILEGES QUERY is the value of the GRANTEE cdlumn
in the COLUMN_PRIVILEGES view.

@) Thevalue of PRIVILEGE in COLUMNPRIVILEGES QUERY is the value of the PRIVILEGE 1
column in the COLUMN_PRIVILEGES view.

) The value of IS_ GRANTABLE in"COLUMN_PRIVILEGES QUERY is the value of the
IS_GRANTABLE column in.the COLUMN_PRIVILEGES view.

8) Let NL1, NL2, NL3, and NL4be the values of NameLengthl, NameLength2, NameLength3, and N3
L ength4, respectively.

9) Let CATVAL, SCHVAL,TBLVAL, and COLVAL be the values of CatalogName, SchemaName, TableN
dnd ColumnName_reSpectively.

10) If the METABATA ID attribute of Sis TRUE, then:

3) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table 29, “Codes and data types for implementation information”, is "Y', then an exception condlition
is raised: CLI-specific condition — invalid use of null pointer.

)~ IT SChemaName IS a nult pointer or it CofumniName is a nutl pointer, then an exception conaditi

raised: CLI-specific condition — invalid use of null pointer.

nis

11) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid use
of null pointer.

12) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero. If ColumnName is a null pointer, then NL4
is set to zero.

142 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.10 ColumnPrivileges

13) Case:
a) If NL1is not negative, then let L be NL1.

b) IfNL1lindicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised: Cl 1-specific condition — invalid string length or buffer
length.

| et CATVAL be the first L octets of CatalogName.

14) Case:
d) If NL2 is not negative, then let L be NL2.

) If NL2 indicates NULL TERMINATED, then let L be the number of octets'of' SchemaName tha
precede the implementation-defined null character that terminates a C character string.

—

) Otherwise, an exception condition is raised: CLI-specific condition~= invalid string length or buffer
length.

et SCHVAL be the first L octets of SchemaName.
15) Case:
4) If NL3is not negative, then let L be NL3.

b) If NL3indicates NULL TERMINATED, then letl: be the number of octets of TableName that pr¢cede
the implementation-defined null character that terminates a C character string.

¢) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

et TBLVAL be the first L octets of FableName.
16) Case:
q) If NL4 is not negative;-then let L be NL4.

) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName that
precede the implementation-defined null character that terminates a C character string.

) Otherwise; an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

et COLVAL be the first L octets of ColumnName.
17) Case:

a) If the METADATA ID attribute of Sis TRUE, then:

i) Case:
1) If the value of NL1 is zero, then let CATSTR be a zero-length string.
2) Otherwise,

Case:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 143

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.10 ColumnPrivileges

A)

If SUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("CATVAL") FROM CHAR_LENGTH(TRIM("CATVAL")) FOR 1)
= """ then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("CATVAL") FROM 2
FOR CHAR_LENGTH(TRIM("CATVAL")) - 2)

i)

i)

B)

Case:

1)
2)

If the value of NL2 is zero, then let SCHSTR be a zero-length'string.
Otherwise,

Case:

A)

B)

Case:

1)
2)

Hthe value of NL3 is zero, then let TBLSTR be a zero-length string.
Otherwise,

Case:

A)

antHet CATSTR bethecharacter-string:
TABLE_CAT = "TEMPSTR" AND
Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER("CATVAL") AND

If SUBSTRING(TRIM("SCHVAL") FROM- 1 FOR 1) = ="~ and if SUB-
STRING(TRIM("SCHVAL ") FROM¢CHAR_LENGTH(TRIM("SCHVAL")) FOR| 1)
= """ then let TEMPSTR be the walue obtained from evaluating:

SUBSTRING(TRIM(" SCHVAL ")-\FROM 2
FOR CHAR_LENGTH(TRIM@ISCHVAL®)) - 2)

and let SCHSTR be theCharacter string:
TABLE_SCHEM =~*FEMPSTR" AND
Otherwise,let*SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER("SCHVAL") AND

If SUBSTRING(TRIM("TBLVAL") FROM 1 FOR 1) = "~ and if SUB-

144 Call-Level Interface (SQL/CLI)

STRINGCCTIRIMC"TRI /AL "N CDAM CHAD I ENCTHATDIM"TRI \/AL "N CAD l)
=4 A ALE AN RLIA W~ —n a — S aE) R L A — — A AR R R AW R AN RLIL W = £ —y oy S LAY

||||||

= == then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("TBLVAL") FROM 2
FOR CHAR_LENGTH(TRIM("TBLVAL®)) - 2)

and let TBLSTR be the character string:

TABLE_NAME = "TEMPSTR®™ AND

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.10 ColumnPrivi

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER("TBLVAL") AND

leges

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.
2) Otherwise,

Case:

A) If SUBSTRING(TRIM(*COLVAL") FROM 1 FOR 1) = """ andqfSUB-
STRING(TRIM("COLVAL") FROM CHAR_LENGTH(TRIM("CQLVAL")) FOR| 1)
= """ then let TEMPSTR be the value obtained from evaluating:
SUBSTRING(TRIM("COLVAL") FROM 2

FOR CHAR_LENGTH(TRIM(®COLVAL")) - 2)
and let COLSTR be the character string:
COLUMN_NAME = *TEMPSTR"

B) Otherwise, let COLSTR be the character String:

UPPER(COLUMN_NAME) = UPPER("EOLVAL ")
) Otherwise,

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation infgrma-
tion”, that corresponds to the lnformation Type SEARCH PATTERN ESCAPE in that sgme
table.

i) Let ESC be the value ofiinfoValue that is returned by the execution of GetInfo() with the palue
of InfoType set to SPC.

iii) If the value of NLDis zero, then let CATSTR be a zero-length string; otherwise, let CATS|R be
the character.string:

TABLE _CAF = "CATVAL" AND

iv) Ifthevalue of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSIR be
the-character string:
TABLE_SCHEM = *SCHVAL" AND

V) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME = "TBLVAL" AND
Vi) If the value of NL4 is zero, then let COLSTR be a zero-length string; otherwise, let COLSTR

©ISO/IEC 2016 — All rights reserved

be the character string:

COLUMN_NAME LIKE "COLVAL" ESCAPE "ESC" AND

SQL/CLI routines 145

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.10 ColumnPrivileges

18) Let PRED be the result of evaluating:

CATSTR || * " Il SCHSTR || = " || TBLSTR || = " || COLSTR || = = || 1=1
19) Let STMT be the character string:

SELECT *

FROM COLUMN_PRIVILEGES_QUERY

HERE PRED
RDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, PRIVILEGE

20) ExecDirect is implicitly invoked with Sas the value of StatementHandle, STMT as the value-of Statement-
Text, and the length of STMT as the value of TextLength.

146 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

6.11 Columns

Function

Based on the specified selection criteria, return a result set that contains information about columns of tables
stored in the information schemas of the connected data source

Definition

Colupns (
StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
amelLengthl IN SMALLINT,
SchemaName IN CHARACTER(L2),
amelLength2 IN SMALLINT,
FableName IN CHARACTER(L3),
amelLength3 IN SMALLINT,
ColumnName IN CHARACTER(L4),
amelLength4 IN SMALLINT)

RETURNS SMALLINT

wherp each of L1, L2, L3, and L4 has a maximum value equalto’the implementation-defined maximum Igngth
of a yariable-length character string.

General Rules

1) Let Sbe the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated@ith S then an exception condition is raised: invalid cursor stats

\174

3) lLet C be the allocated SQL-connection with which Sis associated.
4) lLet ECbe the established SQL<connection associated with C and let SSbe the SQL-server on that conneftion.
5) Let COLUMNS QUERYbe a table, with the definition:

REATE TABLE COLUMNS_QUERY (

TABLE_CAF CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
DATA_TYPE SMALLINT NOT NULL,

TYPE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_STZE INTEGER,

BUFFER_LENGTH INTEGER,

DECIMAL_DIGITS SMALLINT,

NUM_PREC_RADIX SMALLINT,

NULLABLE SMALLINT NOT NULL,

REMARKS CHARACTER VARYING(254),
COLUMN_DEF CHARACTER VARYING(254),
SQL_DATA_TYPE SMALLINT NOT NULL,

SQL_DATET IME_SUB INTEGER,
CHAR_OCTET_LENGTH INTEGER,

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 147

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

ORDINAL_POSITION

INTEGER NOT NULL,

IS_NULLABLE CHARACTER VARYING(254),
CHAR_SET_CAT CHARACTER VARYING(128),
CHAR_SET_SCHEM CHARACTER VARYING(128),
CHAR_SET_NAME CHARACTER VARYING(128),
COLLATION_CAT CHARACTER VARYING(128),
COLLATION_SCHEM CHARACTER VARYING(128),
COLLATHON—NAME CHARACTERVARYANG(128)
UDT_CAT CHARACTER VARYING(128),
UDT_SCHEM CHARACTER VARYING(128),
UDT_NAME CHARACTER VARYING(128),
DOMAIN_CAT CHARACTER VARYING(128),
DOMAIN_SCHEM CHARACTER VARYING(128),
DOMAIN_NAME CHARACTER VARYING(128),
SCOPE_CAT CHARACTER VARYING(128),
SCOPE_SCHEM CHARACTER VARYING(128),
SCOPE_NAME CHARACTER VARYING(128),
MAX_CARDINALITY INTEGER,

DTD_IDENTIFIER CHARACTER VARYING(128),
IS_SELF_REF CHARACTER VARYING(128),

UNIQUE (TABLE_CAT,

TABLE_SCHEM, TABLE_NAME, COLUMN_NAME))

6) COLUMNS QUERY contains a row for each column described\by SSs Information Schema COLUMNS

cl)

)

3)

b)

iew where:

Let SUP be the value of Supported that is returned by, theé execution of GetFeaturelnfo with Featurg Type
= 'FEATURE' and Featureld = 'C041' (corresponding to the feature “Information Schema metadlata
constrained by privileges™).

Case:

i) If the value of SUPis 1 (one), then COLUMNS_QUERY contains a row for each row descrjibing

a column in SSs InformationySchema COLUMNS view.

i) Otherwise, COLUMNS QUERY contains a row for each row describing a column in SSs

Information Schema COLUMNS view that meets implementation-defined authorization criteria.
7) For each row of COLUMNS QUERY:

The value of TABLE_CAT in COLUMNS QUERY is the value of the TABLE_CATALOG colymn
in the COLUMNS view. If SSdoes not support catalog names, then TABLE_CAT is set to the null

value.

The valugof TABLE_SCHEM in COLUMNS QUERY is the value of the TABLE_SCHEMA cglumn
in theex COLUMNS view.

The value of TABLE_NAME in COLUMNS QUERY is the value of the TABLE_NAME colunlm in

the COLUMNS view.

d)

The value of COLUMN_NAME in COLUMNS_QUERY is the value of the COLUMN_NAME column
in the COLUMNS view.

The value of DATA_TYPE in COLUMNS _QUERY is determined by the values of the DATA_TYPE

and INTERVAL_TYPE columns in the COLUMNS view.

Case:

148 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
DATA_TYPE in COLUMNS QUERY is the appropriate 'Code' from Table 33, “Codes used
for concise data types”, that matches the interval specified in the INTERVAL_TYPE column
in the COLUMNS view.

Otherwise, the value of DATA_TYPE in COLUMNS QUERY is the appropriate ‘Code’ from
Table 33, “Codes used for concise data types”, that matches the value specified in the

Case:

i)

DATA_TYPE column in the COLUMNS view.

1) The value of TYPE_NAME in COLUMNS_QUERY is an implementation-defined value that is the
character string by which the data type is known at the data source.

@) The value of COLUMN_SIZE in COLUMNS QUERY is

If the value of DATA_TYPE in the COLUMNS view is 'CHARACTER', 'CHARACTER
VARYING','CHARACTER LARGE OBJECT', 'BINARY", 'BINARY VARYING' or 'BINARY
LARGE OBJECT, then the value is that of the CHARACTERMAXIMUM_LENGTH |n the
same row of the COLUMNS view.

If the value of DATA_TYPE in the COLUMNS view-is 'DECIMAL' or 'NUMERIC', thep the
value is that of the NUMERIC_PRECISION column in the same row of the COLUMNS pview.

If the value of DATA_TYPE in the COLUMNSiew is 'SMALLINT', 'INTEGER', 'BIG|INT',
'FLOAT', 'DECFLOAT', 'REAL', or'DOUBLE PRECISION', then the value is implementgtion-
defined.

If the value of DATA_TYPE inthe COLUMNS view is 'DATE', ' TIME', TIMESTAMP', 'TIME
WITH TIME ZONE', or ' TIMESTAMP WITH TIME ZONE!', then the value of COLUMN_[SIZE
is that determined by SR 39), innSubclause 6.1, “<data type>”, in [ISO9075-2], where the value
of <time fractional seconds precision> is the value of the DATETIME_PRECISION cold§mn

in the same row of the COLUMNS view.

If the value of DATA. TYPE in the COLUMNS view is 'INTERVAL', then the value of
COLUMN_SIZE"isthat determined by the General Rules of Subclause 10.1, “<interval quali-
fier>", in [1SO9075-2], where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in the
same-row of the COLUMNS view.

2)<{)The value of <interval leading field precision> is the value of the INTERVAL_PRECI$ION
column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the NUMERIC_PRE-
CISION column in the same row of the COLUMNS view.

Vi)

vii)

ITThe value of DATA_TYPE in the COLUMNS View IS 'REF", then the value is the fength in
octets of the reference type.

Otherwise, the value is implementation-dependent.

h) The value of BUFFER_LENGTH in COLUMNS_QUERY is implementation-defined.

NOTE 23 — The purpose of BUFFER_LENGTH in COLUMNS_QUERY is to record the number of octets transferred
for the column with a Fetch routine, a FetchScroll routine, or a GetData routine when the TYPE field in the application
row descriptor indicates DEFAULT. This length excludes any null terminator.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 149

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

The value of DECIMAL_DIGITS in COLUMNS QUERY is
Case:

i) If the value of DATA_TYPE in the COLUMNS view is one of 'DATE', TIME', TIMESTAMP',
"TIME WITH TIME ZONE', or 'TIMESTAMP WITH TIME ZONE', then the value of DECI-
MAL_DIGITS in COLUMNS 5> QUERY is the value of the DATETIME_PRECISION column

-tk f"f'\l LINAMNLC

+
Hthe-COToOivitvy o VHEW:

i) If the value of DATA_TYPE in the COLUMNS view is one of ' NUMERIC', 'DECHMAL]{,
'SMALLINT', 'INTEGER', or 'BIGINT, then the value of DECIMAL_DIGITS ih
COLUMNS QUERY is the value of the NUMERIC_SCALE column in the CODUMNS piew.

iii) Otherwise, the value of DECIMAL_DIGITS in COLUMNS QUERY is the null value.

The value of NUM_PREC_RADIX in COLUMNS QUERY is the value of the NUMERIC_PRECI-
SION_RADIX column in the COLUMNS view.

If the value of the IS_ NULLABLE column in the COLUMNS view-i$-NQO', then the value of NUL-

LABLE in COLUMNS_QUERY is set to the appropriate 'Code’ forNO NULLS in Table 27, “Mijscel-
laneous codes used in CLI"; otherwise it is set to the appropriate 'Code' for NULLABLE from Tabje 27,
“Miscellaneous codes used in CLI”.

The value of REMARKS in COLUMNS QUERY is ansimplementation-defined description of the
column.

The value of COLUMN_DEF in COLUMNS _QUERY is the value of the COLUMN_DEFAULT cdlumn
in the COLUMNS view.

The value of SQL_DATETIME_SUB in COLUMNS _QUERY is determined by the value of the
DATA_TYPE column in the same row@©f the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code’ for the any of
the data types 'DATE'; 'TIME', TIMESTAMP', TIME WITH TIME ZONE', or TIMESTAMP
WITH TIME ZONE' from Table 33, “Codes used for concise data types”, then the value |is the
matching 'Datetime Interval Code' from Table 34, “Codes used with concise datetime data ftypes
in SQL/CLY”.

i) If the-value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' for any of|the
INFERVAL data types from Table 33, “Codes used for concise data types”, then the valle is
the-matching 'Datetime Interval Code' from Table 35, “Codes used with concise interval [data
types in SQL/CLI".

iify - Otherwise, the value is the null value.

Thn \lolnn r\f f‘I_II\D ﬁPTET I I:I\IPTI_I |n Pf\l I II\III\IQ ﬁl II:DV thavalio nftha CHIADAC
tHe— v C- ottt/ o</ Yo

p)

q)

TER_OCTET_ LENGTH column in the COLUMNS VIEW

The value of ORDINAL_POSITION in COLUMNS _QUERY is the value of the ORDINAL_POSITION
column in the COLUMNS view.

The value of IS_ NULLABLE in COLUMNS QUERY is the value of the IS NULLABLE column in
the COLUMNS view.

150 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

r) The value of SQL_DATA TYPE in COLUMNS QUERY is determined by the value of the
DATA_TYPE column in the same row of the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' for any of the
data types 'DATE', 'TIME', TIMESTAMP', TIME WITH TIME ZONE', or ' TIMESTAMP

MAATLLTIMNAL ZONIC! £ o0 Toll [aYo B 1Tav--| P A for Bad data oo o oo ol H th
vVTITTT TTIVIL ZUINL, TTUTIT TAUTC 09, CUUTS USTU TUT LUTIUTST UdLA Ty Puo -, TITCTT UITC VAarut S e

matching 'Code’ from Table 7, “Codes used for implementation data types in SQL/CLI™,

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate 'Code' fof any of|the
INTERVAL data types from Table 33, “Codes used for concise data types”, themthe valye is
the matching 'Code' from Table 7, “Codes used for implementation data typesin SQL/CLI".

iii) Otherwise, the value is the same as the value of DATA_TYPE in COLUMNS_QUERY.

§) Thevalue of CHAR_SET_CAT in COLUMNS QUERY is the value of the CHARACTER_SET_[CAT-
ALOG column in the COLUMNS view. If SSdoes not support catalogaames, then CHAR_SET [CAT
is set to the null value.

1) The value of CHAR_SET_SCHEM in COLUMNS QUERY is the value of the CHARAC-
TER_SET_SCHEMA column in the COLUMNS view.

&) The value of CHAR_SET_NAME in COLUMNS QUERY is the value of the CHARAC-
TER_SET_NAME column in the COLUMNS view:

) The value of COLLATION_CAT in COLUMNS QUERY is the value of the COLLATION_CATALOG
column in the COLUMNS view. If SSdoes not support catalog names, then COLLATION_CAT is
set to the null value.

V) The value of COLLATION _SCHEM.in COLUMNS QUERY is the value of the COLLA-
TION_SCHEMA column in the COALUMNS view.

) The value of COLLATION_NAME in COLUMNS QUERY is the value of the COLLATION_NAME
column in the COLUMNS view.

y) The value of UDT_CAT in COLUMNS QUERY is the value of the USER_DEFINED_TYPE_CAT-
ALOG column in the\COLUMNS view. If SSdoes not support catalog names, then UDT_CAT |is set
to the null value,

1) The value of UDT_SCHEM in COLUMNS QUERY is the value of the
USER_DEFINED_TYPE_SCHEMA column in the COLUMNS view.

da) The value of UDT_NAME in COLUMNS QUERY is the value of the USER_DEFINED_TYPE_NAME
column in the COLUMNS view.

db)- The value of DOMAIN_CAT in COLUMNS_QUERY is the value of the DOMAIN_CATALO(

columninthe COF LIMMS vaw L SS dnac nat ctinnart eatalaa namac than DOMAIN-_CAT 1c et to
CoOTOTT T T It o O OV IOV ICY OO ToC oot Su P PO CoOtCTT o o tvi/ Yy o7 vi— 1o o0

rt-catalog-ram
the null value.

ac) The value of DOMAIN_SCHEM in COLUMNS_QUERY is the value of the DOMAIN_SCHEMA
column in the COLUMNS view.

ad) The value of DOMAIN_NAME in COLUMNS_QUERY is the value of the DOMAIN_NAME column
in the COLUMNS view.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 151

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

8)

9)

10)

11)

12)

13)

152 Call-Level Interface (SQL/CLI)

ae) The value of SCOPE_CAT in COLUMNS_QUERY is the value of the SCOPE_CATALOG col

umn

in the COLUMNS view. If SSdoes not support catalog names, then SCOPE_CAT is set to the null

value.

af) The value of SCOPE_SCHEM in COLUMNS_QUERY is the value of the SCOPE_SCHEMA column

in the COLUMNS view.
the COLUMNS view.
qdh) The value of MAX_CARDINALITY in COLUMNS_QUERY is the value of the MAXIMUM _(
DINALITY column in the COLUMNS view.

column in the COLUMNS view.

3j) The value of IS_SELF_REF in COLUMNS_QUERY is the value of the.JS_ SELF_REFEREN(
column in the COLUMNS view.

et NL1, NL2, NL3, and NL4 be the values of NameLengthl, NameLength2, NameLength3, and N3
_ength4, respectively.

et CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of;€atalogName, SchemaName, TableN
and ColumnName, respectively.

f the METADATA ID attribute of Sis TRUE, then:
q) If CatalogName is a null pointer and the value 0fthe CATALOG NAME information type from

is raised: CLI-specific condition — invalid use of null pointer.

) If SchemaName is a null pointer, or.if TableName is a null pointer, or if ColumnName is a null po
then an exception condition is raised: CLI-specific condition — invalid use of null pointer.

f CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
to zero. If TableName is a nullpointer, then NL3 is set to zero. If ColumnName is a null pointer, ther
is set to zero.

Case:
q) If NL1is not negative, then let L be NL1.

b) If NL1indieates NULL TERMINATED, then let L be the number of octets of CatalogName that pr
the implémentation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or b
length.

qi) The value of DTD_IDENTIFIER in COLUMNS_QUERY is the value of the DFD. IDENTIFIE

me-

ame,

Table 29, “Codes and data types for implementation information”, is "Y', then an exception condlition

inter,

is set
NL4

bcede

Liffer

€T CATVAL be The Tirst L OCtets of CatalogiName.
Case:
a) If NL2is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that

precede the implementation-defined null character that terminates a C character string.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let SCHVAL be the first L octets of SchemaName.
14) Case:

.) 3
I) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that.pr¢cede

the implementation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

et TBLVAL be the first L octets of TableName.
15) Case:
q) If NL4 is not negative, then let L be NL4.

) If NL4 indicates NULL TERMINATED, then let L be the numbep of octets of ColumnName thz
precede the implementation-defined null character that terminates a C character string.

—

) Otherwise, an exception condition is raised: CLI-specific‘condition — invalid string length or buffer
length.

L et COLVAL be the first L octets of ColumnName.
16) Case:
q) If the METADATA ID attribute of Sis TRUE, then:
i) Case:
1) If the value of NL1\is/'zero, then let CATSTR be a zero-length string.
2) Otherwise,
Case:

A) JHSUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("CATVAL") FROM CHAR_LENGTH(TRIM("CATVAL")) FOR| 1)
= """ then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM("CATVAL") FROM 2
FOR CHAR_LENGTH (TRIM("CATVAL")) - 2)

and let CATSTR be the character string:

TABLE_CAT = "TEMPSTR" AND
B) Otherwise, let CATSTR be the character string:
UPPER(TABLE_CAT) = UPPER("CATVAL") AND
i) Case:
1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 153

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

2) Otherwise,

Case:

A) If SUBSTRING(TRIM("SCHVAL®") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("SCHVAL") FROM CHAR_LENGTH(TRIM(*SCHVAL")) FOR 1)
= """, then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM("SCHVAL") FROM 2
FOR CHAR_LENGTH (TRIM("SCHVAL®)) - 2)

and let SCHSTR be the character string:
TABLE_SCHEM = "TEMPSTR" AND
B) Otherwise, let SCHSTR be the character string:
UPPER(TABLE_SCHEM) = UPPER("SCHVAL") AND
iii) Case:
1) If the value of NL3 is zero, then let TBLSTR be a-zero-length string.
2) Otherwise,

Case:

A) If SUBSTRING(TRIM("TBLVAL®) FROM 1 FOR 1) = "'~ and if SUB-
STRING(TRIM("TBLVAL ")~FROM CHAR_LENGTH(TRIM("TBLVAL")) FOR| 1)
= """, then let TEMPSTRbe the value obtained from evaluating:

SUBSTRING (TRIM("TBLVAL™) FROM 2
FOR CHAR_LENGTH (TRIM(*TBLVAL®)) - 2)

and let TBLSTRbe the character string:
TABLE_NAME = "TEMPSTR" AND
B) Otherwise, let TBLSTR be the character string:
UPPER(TABLE_NAME) = UPPER("TBLVAL") AND
iv) Case:
1) If the value of NL4 is zero, then let COLSTR be a zero-length string.
2) Otherwise,

Case:

A) If SUBSTRING(TRIM(*COLVAL") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("COLVAL") FROM CHAR_LENGTH(TRIM("COLVAL")) FOR 1)
= """, then let TEMPSTR be the value obtained from evaluating:

154 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

SUBSTRING (TRIM("COLVAL") FROM 2
FOR CHAR_LENGTH (TRIM("COLVAL®)) - 2)

and let COLSTR be the character string:

COLUMN_NAME = "TEMPSTR"

B) Otherwise, let COLSTR be the character string:
UPPER(COLUMN_NAME) = UPPER("COLVAL")

) Otherwise:

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation infgrma-
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that sgme
table.

i) Let ESC be the value of InfoValue that is returned by the execution of Getlnfo() with the palue
of InfoType set to SPC.

iii) Ifthe value of NL1 is zero, then let CATSTR be a zero=length string; otherwise, let CATSIR be
the character string:

TABLE_CAT = "CATVAL" AND

iv) Ifthe value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSIR be
the character string:

TABLE_SCHEM LIKE "SCHVAL® ESCAPE “ESC" AND

NOTE 24 — The pattern value(specified in the string to the right of LIKE may use the escape character|that is
indicated by the value of the'SEARCH PATTERN ESCAPE information type from Table 29, “Codes ar|d data
types for implementation information”.

V) If the value of NL3.is\zéro, then let TBLSTR be a zero-length string; otherwise, let TBLS|R be
the character string:

TABLE_NAME LIKE "TBLVAL®" ESCAPE "ESC" AND

NOTE\25 — The pattern value specified in the string to the right of LIKE may use the escape character|that is
indicated by the value of the SEARCH PATTERN ESCAPE information type from Table 29, “Codes arjd data
types for implementation information”.

vi) _(Ifithe value of NL4 is zero, then let COLSTR be a zero-length string. Otherwise, let COLISTR
be the character string:

COLUMN_NAME = "COLVAL" AND

17) Let PRED be the result of evaluating:

CATSTR || " " || SCHSTR |

I
TBLSTR || Il COSTR I = ° 1l

1=1
18) Let STMT be the character string:

SELECT *

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 155

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.11 Columns

FROM COLUMNS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

19) ExecDirect is implicitly invoked with Sas the value of StatementHandle, STMT as the value of Statement-
Text, and the length of STMT as the value of TextLength.

156 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

6.12 Connect

Function

Establish a connection.

ISO/IEC 9075-3:2016(E)
6.12 Connect

Definition

Conngct (
ConnectionHandle
ServerName
NameLengthl
serName
NameLength2
\uthentication
NameLength3
RETURNS SMALLINT

wherg:

IN
IN
IN
IN
IN
IN
IN

INTEGER,
CHARACTER(L1),
SMALLINT,
CHARACTER(L2),
SMALLINT,
CHARACTER(L3),
SMALLINT)

— |1 has a maximum value of 128.

— L2 has a maximum value equal to the implementation-defined maximum length of a variable-length [char-

jcter string.

— L3 and has an implementation-defined maximum,value.

General Rules

1) Case:

) Otherwise:

i) Let Cbethe allocated SQL-connection identified by ConnectionHandle.

i) The diagnostics area associated with C is emptied.

q) If ConnectionHandle does:not identify an allocated SQL-connection, then an exception conditipn is
raised: CLI-specific condition — invalid handle.

2) If an SQL:transaction is active for the current SQL-connection and the implementation does not sugport

orted — multiple server transactions.

4:ansactions that affect more than one SQL-server, then an exception condition is raised: feature not|sup-

3) Ifthere is an established SQL-connection associated with C, then an exception condition is raised: connection
exception — connection name in use.

4) Case:

a) If ServerName is a null pointer, then let NL1 be zero.

b) Otherwise, let NL1 be the value of NameLengthl.

5) Case:

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 157

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.12 Connect

6)

7)
8)

9)

10)

11)

a)
b)

c)

If NL1 is not negative, then let L1 be NL1.

If NL1 indicates NULL TERMINATED, then let L1 be the number of octets of ServerName that precede
the implementation-defined null character that terminates a C character string.

Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

ase:

)
)

)

cl)

)

3)
)

d l)
b)

3)
)

et E be the allocated SQL-environment with which C is associated.

Case:

Case:

the implementation-defined null character.that terminates a C character string.

Case:

Case:

If L1 is zero, then let ' DEFAULT" be the value of S\N.

If L1is greater than 128, then an exception condition is raised: CLI-specific condition —invalid gtring
length or buffer length.

Otherwise, let SN be the first L1 octets of ServerName.

If UserName is a null pointer, then let NL2 be zero.

Otherwise, let NL2 be the value of NameLength2.

If NL2 is not negative, then let L2 be NL2.
If NL2 indicates NULL TERMINATED, then et L2 be the number of Octets of UserName that pr¢cede

Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

If Authentication is a nullspointer, then let NL3 be zero.

Otherwise, let NL3 be.the value of NameLength3.

If NL3 is net megative, then let L3 be NL3.

If NL3.Indicates NULL TERMINATED, then let L3 be the number of octets of Authentication that
precede the implementation-defined null character that terminates a C character string.

Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer

length.

12) Case:

a)

If the value of SN is 'DEFAULT', then:

i) If L2 is not zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

i) If L3 is not zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

158 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.12 Connect

iii) If an established default SQL-connection is associated with an allocated SQL-connection
associated with E, then an exception condition is raised: connection exception — connection

namein use.
b) Otherwise:
i) If L2 is zero, then let UN be an implementation-defined <user identifier>.

i) If L2 is non-zero, then:

1) Let UV be the first L2 octets of UserName and let UN be the result of
TRIM (BOTH * * FROM "W/~")

2) If UN does not conform to the Format and Syntax Rules of a <useridentifier>, thenfan
exception condition is raised: invalid authorization specification.

3) If UN does not conform to any implementation-defined restrictions on its value, thef an
exception condition is raised: invalid authorization specification.

iii) Case:
1) If L3is not zero, then let AU be the first L3 octéets)of Authentication.

2) Otherwise, let AU be an implementation-defined authentication string, whose length may
be zero.

13) Case:

3) If the value of SN is 'DEFAULT", then the-default SQL-session is initiated and associated with the
default SQL-server. The method by which'the default SQL-server is determined is implementation-
defined.

) Otherwise, an SQL-session is initiated and associated with the SQL-server identified by SN. Th
method by which SN is used to-determine the appropriate SQL-server is implementation-define

O D

14) If an SQL-session is successfully initiated, then:

3) The current SQL-connection and current SQL-session, if any, become a dormant SQL-connectiopn and
a dormant SQL-session respectively. The SQL-session context information is preserved and is njot
affected in any-way by operations performed over the initiated SQL-connection.

NOTE, 26\ The SQL-session context information is defined in Subclause 4.43, “SQL-sessions”, in [ISO90754].

b) The initiated SQL-session becomes the current SQL-session and the SQL-connection establish¢d to
that-SQL -session becomes the current SQL-connection and is associated with C.

NOTE 27 — If an SQL-session is not successfully initiated, then the current SQL-connection and current SQL-sgssion,
if any, remain unchanged.

15) If the SQL-client cannot establish the SQL-connection, then an exception condition is raised: connection
exception — SQL-client unable to establish SQL-connection.

16) If the SQL-server rejects the establishment of the SQL-connection, then an exception condition is raised:
connection exception — SQL-server rejected establishment of SQL-connection.

NOTE 28 — AU and UN are used by the SQL-server, along with other implementation-dependent values, to determine
whether to accept or reject the establishment of an SQL-session.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 159

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.12 Connect

17) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is set to the
SQL-server identified by SN.

18) The SQL-session user identifier and the current user identifier are set to UN. The current role name is set
to the null value.

160 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.13 CopyDesc

6.13 CopyDesc

Fun

ction

Copy a CLI descriptor.

Def

Copy

Gen
1)

q

2)

3)

4)

5)

6)

) Otherwise, let SD be the CLI descriptor area identified’by SourceDescHandle.

) Otherwise:

The General Rules of Sub¢lause 5.16, “Deferred parameter check”, are applied to SD as the DESCRIH

The General Rulesof Subclause 5.16, “Deferred parameter check”, are applied to TD as the DESCRIH

1+ cannet:modify an implementation row descriptor.

nition

Desc (

SourceDescHandle IN INTEGER,
fargetDescHandle IN INTEGER)

RETURNS SMALLINT

eral Rules

Case:

is raised: CLI-specific condition — invalid handle.

Case:

is raised: CLI-specific condition — invalid*handle.

i) Let TD be the CLI descriptor area identified by TargetDescHandle.

i) The diagnostics areawassociated with TD is emptied.
\REA.

\REA.

f TD is an-implementation row descriptor, then an exception condition is raised: CLI-specific condi

| et’AT be the value of the ALLOC_TYPE field of TD.

4) If SourceDescHandle does not identify an allocated CLI descriptor area, then an exception conglition

1) If TargetDescHandle does not identify an allecated CLI descriptor area, then an exception condition

TOR

TOR

fion

7)

The contents of TD are replaced by a copy of the contents of SD.

8) The ALLOC_TYPE field of TD is set to AT.

©ISO/

IEC 2016 — All rights reserved SQL/CLI routines 161

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.14 DataSources

6.14 DataSources

Function

Get server name(s) that the SQL/CLI application can connect to, along with description information, if available.

Definition

Datapources (

wherg L1 and L2 have maximum values equal to the implementation-defined maximum length of a varia
length character string.

General Rules

1)
2)

3)

4)
5)
6)

7)

8)

9)

162 Call-Level Interface (SQL/CLI)

FnvironmentHandle IN INTEGER,
Direction IN SMALLINT,
ServerName ouT CHARACTER(L1),
BufferLengthl IN SMALLINT,
NameLengthl ouT SMALLINT,
Description ouT CHARACTER(L2),
BufferLength?2 IN SMALLINT,
NameLength2 ouT SMALLINT)

RETURNS SMALLINT

| et EH be the value of EnvironmentHandle.

f EH does not identify an allocated SQL-enavironment or if it identifies an allocated skeleton SQL-€
ffonment, then an exception condition.is raised: CLI-specific condition — invalid handle.

et E be the allocated SQL-environment identified by EH. The diagnostics area associated with E is
gmptied.

et BL1 and BL2 be the values of BufferLengthl and BufferLength2, respectively.
et D be the value of-Direction.

f D is not either-the’/code value for NEXT or the code value for FIRST in Table 25, “Codes used for
grientation”, then‘an exception condition is raised: CLI-specific condition — invalid retrieval code.

Let SN1,.SN\b, SN, etc., be an ordered set of the names of SQL-servers to which the SQL/CLI applig

ble-

nvi-

fetch

ation

mightpe-eligible to connect (where the mechanism used to establish this set is implementation-defined).
NOTE 29 — SNy, SNy, SN, etc., are the names that an SQL/CLI application would use in invocations of Connect, rgther

o PR TPy L1] £l oM
uiarmr e attudl TidITics UT LT O\WJL=oCTVET S,

Let D4, Dy, D3, €tc., be strings describing the SQL-servers named by SNy, SN, SN3, etc. (again provided

via an implementation-defined mechanism).

Case:

a) If D indicates FIRST, or if DataSources has never been successfully called on EH, or if the previous

call to DataSources on EH raised a completion condition: no data, then:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.14 DataSources

)] If there are no entries in the set SN, SNy, SN, etc., then a completion condition is raised: no
data and no further rules for this Subclause are applied.

i) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with ServerName,
N, BL1, and NameLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED

OCTET LENGTH, respectively.

i) The General Rules of Subclause 5.14, "Character siring retrieval”, are applied with Description,
D4, BL2, and NameLength2 as TARGET, VALUE, TARGET OCTET LENGTH, and REFURNED

OCTET LENGTH, respectively.
i) Otherwise,

)] Let SN, be the ServerName value that was returned on the previous call to:DataSources on EH.

i) If there is no entry in the set after S\, then a completion conditioniAs-raised: no data angl no
further rules for this subclause are applied.

iii) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with ServerName,
WNy+1, BLL, and NameLengthl as TARGET, VALUE, TARGET OCTET LENGTH, and

RETURNED OCTET LENGTH, respectively.

iv) The General Rules of Subclause 5.14, “Character.string retrieval”, are applied with Description,
Dn+1, BL2, and NameLength2 as TARGET, VALUE, TARGET OCTET LENGTH, and
RETURNED OCTET LENGTH, respectively.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 163

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.15 DescribeCol

6.15 DescribeCol

Function

Get column attributes.

Def

Desc

wher
chara

Gen

1)
2)

3)

4)

5)
6)

7)

8)
9

164 Call-Level Interface (SQL/CLI)

q

q

gpecific condition — function sequence error.

TOP_LEVEL_COUNT field of IRD.

$pecification.

nition

FibeCol (

StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
ColumnName ouT CHARACTER(L),
BufferLength IN SMALLINT,
NameLength ouT SMALLINT,
DataType ouT SMALLINT,
ColumnSize ouT INTEGER,
DecimalDigits ouT SMALLINT,
Nullable ouT SMALLINT)

RETURNS SMALLINT

e | has a maximum value equal to the implementation-defined maximum length of a variable-lengt
cter string.

eral Rules

et She the allocated SQL-statement identified by StatementHandle.

f there is no prepared or executed statement associated with S then an exception condition is raised:
et IRD be the implementation ‘row descriptor associated with Sand let N be the value of the

f N is zero, then an exeeption condition is raised: dynamic SQL error — prepared statement not a ¢
L et CN be the valye’of ColumnNumber.

f CN is lessithan 1 (one) or greater than N, then an exception condition is raised: dynamic SQL errg
nvalid descriptor index.

et RI'be the number of the descriptor record in IRD that is the CN-th descriptor area for which LE

=

CLlI-

LI SOr

/EL

5'Q7(zero). Let C be the <select list> column described by the item descriptor area of IRD specified 4

v RI.

Let BL be the value of BufferLength.

Information is retrieved from IRD:

a) Case:

i) If the data type of C is datetime, then DataType is set to the value of the Code column from
Table 36, “Concise codes used with datetime data types in SQL/CLI", corresponding to the

datetime interval code of C.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.15 DescribeCol

i) If the data type of Cis interval, then DataType is set to the value of the Code column from
Table 37, “Concise codes used with interval data types in SQL/CLI”, corresponding to the
datetime interval code of C.

iii) Otherwise, DataType is set to the data type of C.
b) Case:

)] If the data type of Cis character string, then ColumnSize is set to the maximum length ip dctets
of C.

i) If the data type of C is exact numeric or approximate numeric, then ColumnSize,is set tq the
maximum length of C in decimal digits.

iii) If the data type of C is datetime or interval, then ColumnSize is set to the'length in positjons
of C.

iv) I the data type of C is a reference type, then ColumnSize is set-to the length in octets of|that
reference type.

V) Otherwise, ColumnSize is set to an implementation-dependent value.

i) If the data type of C is exact numeric, then DecimalDigits is set to the scale of C.

i) If the data type of Cis datetime, then DecimalDigits is set to the time fractional seconds pregision
of C.

iii) If the data type of C is interval, then®ecimalDigits is set to the interval fractional secongls
precision of C.

iv) Otherwise, DecimalDigits is.set to an implementation-dependent value.
@) If Cis known not null, then Nullable is set to 1 (one); otherwise, Nullable is set to 0 (zero).

¢) The name associated with.Chis retrieved. If C has an implementation-dependent name, then the palue
retrieved is the implemeéntation-dependent name for C; otherwise, the value retrieved is the <derived
column> name of C. Let V be the value retrieved. The General Rules of Subclause 5.14, “Chargcter

string retrieval”, are.applied with ColumnName, V, BL, and NameLength as TARGET, VALUE,
TARGET OCTET-LENGTH, and RETURNED OCTET LENGTH, respectively.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 165

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

I1ISO/
6.16

IEC 9075-3:2016(E)
Disconnect

6.16 Disconnect

Function

Terminate an established connection.

Def

Discpnnect (

General Rules

1)

2)

3)

4)

5)

6)

166

nition

ConnectionHandle IN INTEGER)
RETURNS SMALLINT

Case:

3) If ConnectionHandle does not identify an allocated SQL-conhection, then an exception conditi
raised: CLI-specific condition — invalid handle.

) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.
i) The diagnostics area associated with C:is emptied.

Case:

q) If there is no established SQL-connection associated with C, then an exception condition is rais
connection exception — connectigr’does not exist.

) Otherwise, let EC be the established SQL-connection associated with C.

et L1 be a list of the allocated SQL-statements associated with C. Let L2 be a list of the allocated (
dlescriptor areas associated.with C.

f EC is active, then
Case:

3) If any-allocated SQL-statement in L1 has a deferred parameter number associated with it, then
exception condition is raised: CLI-specific condition — function sequence error.

) _“Qtherwise, an exception condition is raised: invalid transaction state — active SQL-transaction.

DN IS

CLI

Apl

Forevery attocated SQL-Statement AST L1
a) Let SH be the StatementHandle that identifies AS

b) FreeHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE and wit
as the value of Handle.

NOTE 30 — Any diagnostic information generated by the invocation is associated with C and not with AS

For every allocated CLI descriptor area AD in L2:

h SH

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.16 Disconnect

a) Let DH be the DescriptorHandle that identifies AD.

b) FreeHandle is implicitly invoked with HandleType indicating DESCRIPTOR HANDLE and with DH
as the value of Handle.

NOTE 31 — Any diagnostic information generated by the invocation is associated with C and not with AD.

7) Let CC be the current SQL-connection.

8) jhe SQL-session associated with EC is terminated. EC is terminated, regardless of any exception cordjtions
hat might occur during the disconnection process, and is no longer associated with C.

9) If any error is detected during the disconnection process, then a completion condition is raised: warping
1+ disconnect error.

10) If EC and CC were the same SQL-connection, then there is no current SQL-connegtion. Otherwise,|CC
flemains the current SQL-connection.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 167

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.17

EndTran

6.17 EndTran

Function

Terminate an SQL-transaction.

Def

EndT

Gen
1)

2)
q

3)

)

Case:

Case:

i)

i)

Case:
)

nition

Fan (

HandleType IN SMALLINT,
Handle IN INTEGER,
CompletionType IN SMALLINT)

RETURNS SMALLINT

eral Rules

et HT be the value of HandleType and let H be the value of Handle.

) If HT indicates STATEMENT HANDLE, then

If HT indicates DESCRIPTOR HANDLE, then

f HT is not one of the code values in Table 14, “Codes used forSQL/CLI handle types”, then an exception
ondition is raised: CLI-specific condition — invalid handl€e:

If H does not identify an allo¢ated SQL-statement, then an exception condition is raised:|CLI-
specific condition — invatid-handle.

Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute identifier.

If H daésnot identify an allocated CLI descriptor area, then an exception condition is ra|sed:
CLIsspecific condition — invalid handle.

i) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute idenfifier.
) If:HT indicates CONNECTION HANDLE, then

Case:

i) If H does not identify an allocated SQL-connection, then an exception condition is raised: CLI-

i)

specific condition — invalid handle.
Otherwise:
1) Let Cbe the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

168 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

4)
5)

6)
7)

8)
9)

10)
11)

12)

©ISO/IEC 2016 — All rights reserved

ISO/IEC 9075-3:20

16(E)

6.17 EndTran

3) If Chas an associated established SQL-connection that is active, then let L1 be a list con-

taining C; otherwise, let L1 be an empty list.
d) If HT indicates ENVIRONMENT HANDLE, then

Case:

i) If H does not identify an allocated SQI -environment or if it identifies an allocated SQI_-envi-
ronment that is a skeleton SQL-environment, then an exception condition is raised: CLI<specific
condition — invalid handle.

i) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) LetL be alist of the allocated SQL-connections associated with’E. Let L1 be a list gf the
allocated SQL-connections in L that have an associated established SQL-connectior] that
is active.

et CT be the value of CompletionType.

f CT is not one of the code values in Table 15, “Codes used for transaction termination”, then an exception
ondition is raised: CLI-specific condition — invalid transaction operation code.

f L1 is empty, then no further rules of this Subclause are applied.

f the current SQL-transaction is part of an encompassing transaction that is controlled by an agent pther

than the SQL-agent, then an exception conditionis raised: invalid transaction termination.
| et L2 be a list of the allocated SQL-statements associated with allocated SQL-connections in L1.

f any of the allocated SQL-statementsdr L2 has an associated deferred parameter number, then an
gxception condition is raised: CLI-specific condition — function sequence error.

et L3 be a list of the open Cl.l\cursors associated with allocated SQL-statements in L2.

3) Case:

)] If CFindicates COMMIT or COMMIT AND CHAIN, then let LOC be the list of all nor
holdable cursors in L3.

i) Otherwise, let LOC be the list of all cursors in L3.
) orOC ranging over all CLI cursors in LOC:

f CT indicates COMMIT{ COMMIT AND CHAIN, ROLLBACK, or ROLLBACK AND CHAIN, then:

A L ot Sha the allacated SOOI —ctatemant with which OC is accqaciatad
} =etobe-tHeaHoGate o' Fi=—StateMe AW HA-AHGR- D H5aSSo6Iatea-

i) The General Rules of Subclause 15.4, “Effect of closing a cursor”, in [ISO9075-2] are applied,

with OC as CURSOR and DESTROY" as DISPOS TION.
iii) Any fetched row associated with Sis removed from association with S
If CT indicates COMMIT or COMMIT AND CHAIN, then:

SQL/CLI routines 169

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.17 EndTran

a)

b)

If an atomic execution context is active, then an exception condition is raised: invalid transaction

termination.

For every temporary table associated with the current SQL-transaction that specifies the ON COMMIT
DELETE option and that was updated by the current SQL-transaction, the invocation of EndTran with
CT indicating COMMIT is effectively preceded by the execution of a <delete statement: searched>

that specifies DELETE FROM T, where T is the <table name> of that temporary table.

4)

13) If CT indicates SAVEPOINT NAME RELEASE, then:

3)

)
)

The effects specified in the General Rules of Subclause 17.4, “<set constraints mode statementj

[1SO9075-2], occur as if the statement SET CONSTRAINTS ALL IMMEDIATE were exécute
Case:
)] If any constraint is not satisfied, then any changes to SQL-data or schemas, that were ma

the current SQL-transaction are canceled and an exception condition is‘raised: transactign

rollback — integrity constraint violation.

i) If the execution of any <triggered SQL statement> is unsuccessful, then all changes to S
data or schemas that were made by the current SQL-transactionare cancelled and an exce
condition is raised: transaction rollback — triggered action exception.

iii) Ifany other error preventing commitment of the SQL-transaction has occurred, then any ch
to SQL-data or schemas that were made by the current SQL-transaction are canceled ang
exception condition is raised: transaction rollback with an implementation-defined subc
value.

iv) Otherwise, any changes to SQL-data or sehemas that were made by the current SQL-transg
are made accessible to all concurrent and subsequent SQL-transactions.

Every savepoint established in the current‘SQL-transaction is destroyed.
Every valid non-holdable locator value'is marked invalid.

The current SQL-transaction is'terminated. If CT indicates COMMIT AND CHAIN, then a new
transaction is initiated with.the same access mode and isolation level as the SQL-transaction ju
minated. Any branch tranSactions of the SQL-transaction are initiated with the same access mod
isolation level as the gorresponding branch of the SQL-transaction just terminated.

.

A

,in

e by

QL-

ption

inges
an
ass

ction

5QL-
t ter-
e and

If HT is not CONNECTION HANDLE, then an exception condition is raised: CLI-specific condlition

— invalid-handle.
Let SPbe the value of the SAVEPOINT NAME connection attribute of C.

If\SP does not specify a savepoint established within the current SQL-transaction, then an exce
condition is raised: savepoint exception — invalid specification.

ption

d)

The savepoint identified by SP and all savepoints established by the current SQL-transaction subsequent

to the establishment of SP are destroyed.

14) If CT indicates ROLLBACK or ROLLBACK AND CHAIN, then:

a)

If an atomic execution context is active, then an exception condition is raised: invalid transaction

termination.

b) All changes to SQL-data or schemas that were made by the current SQL-transaction are canceled.

170 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

6.17 EndTran

Every savepoint established in the current SQL-transaction is destroyed.

Every valid locator value is marked invalid.

The current SQL-transaction is terminated. If CT indicates ROLLBACK AND CHAIN, then a new
SQL-transaction is initiated with the same access mode and isolation level as the SQL-transaction just
terminated. Any branch transactions of the SQL-transaction are initiated with the same access mode

£ ilo M1

15) If CT indicates SAVEPOINT NAME ROLLBACK, then:

3)

)
)

d)

)

)

=~ lLatiaon-lavwal +h i Baaaa-branaak tran. froaa ok Fo oot ol
alrua 1ovuratiuiT IcviT do LT CUTTTOUTTUTTTY DTATICIT UT UTT O\ Alnodviivlt juot teimmmatltu.

If HT is not CONNECTION HANDLE, then an exception condition is raised: CLI-speeific conglition

—invalid handle.
Let SP be the value of the SAVEPOINT NAME connection attribute of C.

If SP does not specify a savepoint established within the current SQL-transaetion, then an exce
condition is raised: savepoint exception — invalid specification.

ption

If an atomic execution context is active and SP specifies a savepointestablished before the begifning

of the most recent atomic execution context, then an exception condition is raised: savepoint exce
— invalid specification.

Any changes to SQL-data or schemas that were made by the current SQL-transaction subseque
the establishment of SP are canceled.

All savepoints established by the current SQL-transaction subsequent to the establishment of S
destroyed.

Every valid locator that was generated in thé’current SQL-transaction subsequent to the establish
of SP is marked invalid.

For every open CLI cursor OC in L3that was opened subsequent to the establishment of SP:
)] Let She the allocated SQL-statement with which OC is associated.

i) The General Rulestof Subclause 15.4, “Effect of closing a cursor”, in [ISO9075-2] are ap
with CRas CURSOR and DESTROY as DISPOS TION.

iii) Any fetched.row associated with OC is removed from association with S

The status of any open CLI cursors in L3 that were opened by the current SQL-transaction befo
establishment of SP is implementation-defined.

NOTE 32 — The current SQL-transaction is not terminated, and there is no other effect on the SQL-data or sch

tion

Nt to

P are

ment

Dlied,

e the

Emas.

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 171

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.18 Error

6.18 Error

Function

Return diagnostic information.

Definition

Errofy (
FnvironmentHandle IN INTEGER,
ConnectionHandle IN INTEGER,
StatementHandle IN INTEGER,
5glstate OUT CHARACTER(5),
NativeError OUT INTEGER,
MessageText OUT CHARACTER(L),
BufferLength IN SMALLINT,
fextLength OUT SMALLINT)

RETURNS SMALLINT

=

wherg L has a maximum value equal to the implementation-definéd maximum length of a variable-lengt
chardcter string.

General Rules

1) Case:

q) If StatementHandle identifies an allocated SQL-statement, then let IH be the value of StatementHandle
and let HT be the code value for STATEMENT HANDLE from Table 14, “Codes used for SQL/CLI
handle types”.

) If StatementHandle is zerg'and ConnectionHandle identifies an allocated SQL-connection, ther] let
IH be the value of ConriectionHandle and let HT be the code value for CONNECTION HANDLE
from Table 14, “Codes.used for SQL/CLI handle types”.

) If ConnectionHandle is zero and EnvironmentHandle identifies an allocated SQL-environment,|then
let IH be the value of EnvironmentHandle and let HT be the code value for ENVIRONMENT HANDLE
from Table 14, “Codes used for SQL/CLI handle types”.

@) OtherwiSe, an exception condition is raised: CLI-specific condition — invalid handle.

2) Let Rbethe most recently executed CLI routine, other than Error, GetDiagField, or GetDiagRec, for which
IH-was passed as a value of an input handle.

NOTE 33 — The GetDiagField, GetDIagRec and ETTor routines may cause EXCEpLion of COmpIetion condrtions to be raised,
but they do not cause status records to be generated.

3) Let N be the number of status records generated by the execution of R. Let AP be the number of status
records generated by the execution of R already processed by Error. If N is zero or AP equals N then a
completion condition is raised: no data, Sqlstate is set to '00000', the values of NativeError, MessageText,
and TextLength are set to implementation-dependent values, and no further rules of this Subclause are
applied.

172 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.18 Error

4) Let SRbe the first status record generated by the execution of R not yet processed by Error. Let RN be the
number of the status record SR. Information is retrieved by implicitly executing GetDiagRec as follows:

GetDiagRec (HT, IH, RN, Sqlstate,
NativeError, MessageText, BufferLength, TextLength)

5) Add SRto the list of status records generated by the execution of R already processed by Error.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 173

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.19 ExecDirect

6.19 ExecDirect

Function

Execute a statement directly.

Definition

Execpirect (

StatementHandle IN INTEGER,
StatementText IN CHARACTER(L),
fextlLength IN INTEGER)

RETURNS SMALLINT

=

wherg L has a maximum value equal to the implementation-defined maximum'‘length of a variable-lengt
chardcter string.

General Rules

1) Let She the allocated SQL-statement identified by StatementHandle.
2) et TL be the value of TextLength.
3) lLet ST be the value of StatementText.

4) The General Rules of Subclause 5.4, “Preparing a statement”, are applied, with Sas ALLOCATED
$TATEMENT, TL as TEXT LENGTH, ST as-STATEMENT TEXT, and “ExecDirect” as INVOKER.

5) The General Rules of Subclause 5.5,%‘Executing a statement”, are applied, with Sas ALLOCATED
$TATEMENT, P as PREPARED STATEMENT, and “ExecDirect” as INVOKER.

174 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.20 Execute

6.20 Execute

Function

Execute a prepared statement.

Definition

Execpte (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) lLet Sbe the allocated SQL-statement identified by StatementHandle.

2) |If there is no prepared statement associated with S then an exception condition is raised: CLI-specific
tondition — function sequence error. Otherwise, let P be the statement that was prepared.

3) [Ifan open CLI cursor is associated with S then an exceptien-condition is raised: invalid cursor stat¢

M4

4) The General Rules of Subclause 5.5, “Executing a statément”, are applied, with Sas ALLOCATED
$TATEMENT, P as PREPARED STATEMENT, and “Execute” as INVOKER.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 175

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.21 Fetch

6.21 Fetch

Function

Fetch the next rowset of a CLI cursor.

Definition

Fetch (
StatementHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) lLet Sbe the allocated SQL-statement identified by StatementHandle.

2) The General Rules of Subclause 5.12, “Fetching a rowset”, are applied with Sas ALLOCATED STATEMENT,

INEXT as FETCH ORIENTATION, and 1 (one) as FETCH OFESET.

176 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.22 FetchScroll

6.22 FetchScroll

Function

Position a CLI cursor on the specified rowset and retrieve values from that rowset.

Definition

FetcpScroll (

StatementHandle IN INTEGER,
FetchOrientation IN SMALLINT,
FetchOffset IN INTEGER)

RETURNS SMALLINT

General Rules

1) lLet She the allocated SQL-statement identified by StatementHardle.
2) et FO be the value of FetchOrientation.
3) Let OShbe the value of FetchOffset.

4) The General Rules of Subclause 5.12, “Fetching a rowset”, are applied with Sas ALLOCATED STATEMENT,
IFO as FETCH ORIENTATION, and OSas FETCHOFFSET.

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 177

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.23

ForeignKeys

6.23 ForeignKeys

Function

Return a result set that contalns information about foreign keys either in or referencmg a smgle specified table

Def

Fore

he primary key of a single specified table together with the foreign keys in all other tables that refe
hat primary key.

nition

ignKeys (

StatementHandle IN INTEGER,
PKCatalogName IN CHARACTER(L1),
amelLengthl IN SMALLINT,
PKSchemaName IN CHARACTER(L2),
amelLength2 IN SMALLINT,
PKTableName IN CHARACTER(L3),
amelLength3 IN SMALLINT,
-FKCatalogName IN CHARACTER(L4)Y
amelLength4 IN SMALLINT,
FKSchemaName IN CHARACTER(L5),
amelLength5 IN SMALL INF,
-KTableName IN CHARACTER(L6),
amelLength6 IN SMALLINT)

RETURNS SMALLINT

either:

[ence

The foreign keys of a single specified table together with the primary or unique keys toavhich they nefer.

mum

174

ction.

wherg each of L1, L2, L3, L4, L5, and L6-has a maximum value equal to the implementation-defined maxi
length of a variable-length characterstring.
Gerneral Rules
1) Let She the allocated SQL-statement identified by StatementHandle.
2) If an open CLd eursor is associated with S then an exception condition is raised: invalid cursor stats
3) lLet C bethe allocated SQL-connection with which Sis associated.
4) lLet ECDe the established SQL-connection associated with C and let SShe the SQL-server on that conne
5) LetFOREIGNKEYSOUERY-beatablewith-the-definition:
CREATE TABLE FOREIGN_KEYS_QUERY (
UK_TABLE_CAT CHARACTER VARYING(128),
UK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
UK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
UK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
FK_TABLE_CAT CHARACTER VARYING(128),
FK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
FK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
178 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

6)
7)

©ISO/IEC 2016 — All rights reserved

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

FK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
ORDINAL_POSITION SMALLINT NOT NULL,

UPDATE_RULE SMALLINT,

DELETE_RULE SMALLINT,

FK_NAME CHARACTER VARYING(128),

UK_NAME CHARACTER VARYING(128),
DEFERABILITY SMALLINT,

UNAQUE—OR—PRIMARY. CHARACTERECD)

et PKN and FKN be the value of PKTableName and FKTableName, respectively.
Case:

4) If CHAR_LENGTH(PKN) = 0 (zero) and CHAR_LENGTH(FKN) # 0 (zero), then the result s¢
returned describes all the foreign keys (if any) of the specified table, and descrilies the primary

unique keys to which they refer.

i)

vi)

vii)

Let FKSrepresent the set of rows formed by a natural inner joingn the values in the CO
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME colun
between the rows in SSs Information Schema REFERENTIAL_ CONSTRAINTS view an
matching rows in SSs Information Schema TABLE_CONSTRAINTS view.

Let UK represent the row in SSs Information Schema/TABLE_CONSTRAINTS view th
defines the primary or unique key referenced by-an individual foreign key in FKS Thisr
obtained by matching the values in the UNIQUE CONSTRAINT_CATALOG,

UNIQUE_CONSTRAINT_SCHEMA, and®NIQUE_CONSTRAINT_NAME columns
row of FKSto the values in the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA
CONSTRAINT_NAME columns in TABLE_CONSTRAINTS.

Let FK_COLSrepresent the set of rows in SSs Information Schema KEY_COLUMN_US
view that define the columns within an individual foreign key row in FKS

Let FKS COLSrepresent-the set of rows in the combination of all FK_COLS sets.

Let UK_COLSrepresent the set of rows in SSs Information Schema KEY_COLUMN_US
view that define theixcolumns within an individual UK.

Let UKS COLSrepresent the set of rows in the combination of all UK_COLSssets.

Let XKS.COL Srepresent the set of extended rows formed by the inner equijoin of FKS (
and UKS COLSmatching CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, C(
STRAINT_NAME, and POSITION_IN_UNIQUE_CONSTRAINT in FKS_COLS with
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME, and
ORDINAL_POSITION in UKS COLS respectively.

—

pr

\|_
ns
d the

at
DW iS

ina

, and

AGE

AGE

COLS
N-

Let FKS COLS NAME be the name of each column of FKS COLS considered in turn; Te
I

names of the columns of XKS_COLSoriginating from FKS_COLSare respectively "F_

viii)

FKS_COLS_NAME.

Let UKS COLS NAME be the name of each column of UKS_COLSconsidered in turn; the
names of the columns of XKS COLSooriginating from UKS COLSare respectively *U_~" |1

UKS_COLS_NAME.
FOREIGN_KEYS QUERY contains a row for each row in XKS_COLSwhere:

SQL/CLI routines 179

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.23 ForeignKeys

1)

2)

Let SUP be the value of Supported that is returned by the execution of GetFeaturelnfo
with FeatureType = 'FEATURE' and Featureld = 'C041' (corresponding to the feature
“Information Schema metadata constrained by privileges”).

Case:
A) Ifthe value of SUP s 1 (one), then FOREIGN_KEYS QUERY contains a row for each

1

2)

3)

4)

5)

6)

7)

8)

9

10)

iX) For each row of FOREIGN_KEYS QUERY:

oo oF Liba foraiama-lcarioaatlos o B wfiatolbla s OCo Lo fo v ot o Cal o
CUTUTTIT UT dir tric TUTTTYTT RTY S VWWILITITT A SPTLTITU AUTT TIT OO0 S5 TTTUTTTTAtIuUTT OUTTICTI a

TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS QUERY contains a row for each column of all the fgreign
keys within a specific table in SSs Information Schema TABLE_CONSTRAIN[TS
view in accordance with implementation-defined authorization critéria.

If the implementation does not support catalog names, then UK TABLE_CAT is sef to
the null value; otherwise, the value of UK_TABLE_CAT imFOREIGN_KEYS QUHRY
is the value of the U_TABLE_CATALOG column in XKS COLS

The value of UK_TABLE_SCHEM in FOREIGN, KEYS QUERY is the value of the
U_TABLE_SCHEMA column in XKS_COLS

The value of UK_TABLE_NAME in FOREIGN_KEYS QUERY is the value of the
U_TABLE_NAME column in XKS _COLS

The value of UK_COLUMN_NAMEin"FOREIGN_KEYS QUERY is the value of the
U_COLUMN_NAME column in XKS COLS

If the implementation does nat\stpport catalog names, then UK_TABLE_CAT is sef to
the null value; otherwise, the)value of FK_TABLE_CAT in FOREIGN_KEYS QUERY is
the value of the F_TABLE CATALOG column in XKS COLS

The value of FK_TABLE_SCHEM in FOREIGN_KEYS QUERY is the value of the
F_TABLE_SCHEMA column in XKS _COLS

The value of EK_TABLE_NAME in FOREIGN_KEYS QUERY is the value of the
F_TABLE_NAME column in XKS COLS

Thevalue of FK_COLUMN_NAME in FOREIGN_KEYS QUERY is the value of tie
ELCOLUMN_NAME column in XKS COLS

The value of ORDINAL_POSITION in FOREIGN_KEYS QUERY is the value of the
F_ORDINAL_POSITION column in XKS_COLS

The value of UPDATE_RULE in FOREIGN_KEYS QUERY is determined by the value
of the UPDATE_RULE column in XKS_COLSas follows:

A) Let URbe the value in the UPDATE_RULE column.

B) If URis'CASCADE/, then the value of UPDATE_RULE is the code for CASCADE
in Table 27, “Miscellaneous codes used in CLI”.

C) If URis'RESTRICT, then the value of UPDATE_RULE is the code for RESTRICT
in Table 27, “Miscellaneous codes used in CLI".

180 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

D) IfURis'SET NULL', then the value of UPDATE_RULE is the code for SET NULL
in Table 27, “Miscellaneous codes used in CLI".

E) IfURis'NO ACTION', then the value of UPDATE_RULE is the code for NO ACTION
in Table 27, “Miscellaneous codes used in CLI".

F) If URis 'SET DEFAULT', then the value of UPDATE_RULE is the code for SET

PEEALLT 0 Toll N7 N AL Lo P A P A o1 17
ULTAULT TTT TAUTC 27, TVvITSLTTIAINTCUUS CUUTOS USCTU T O .

11) The value of DELETE_RULE in FOREIGN_KEYS QUERY is determined by the value
of the DELETE_RULE column in XKS _COLSas follows:

A) Let DR be the value in the DELETE_RULE column.

B) If DRis'CASCADE/, then the value of DELETE_RULE is thexede for CASCADE
in Table 27, “Miscellaneous codes used in CLI".

C) If DRis'RESTRICT, then the value of DELETE_RULEMS the code for RESTRICT
in Table 27, “Miscellaneous codes used in CLI".

D) If DRis'SET NULL', then the value of DELETENRULE is the code for SET NJULL
in Table 27, “Miscellaneous codes used in CtA”.

E) IfDRis'NO ACTION', then the value of DELETE_RULE is the code for NO ACTION
in Table 27, “Miscellaneous codes usedin CLI".

F) If DRis'SET DEFAULT", then théavalue of DELETE_RULE is the code for SHT
DEFAULT in Table 27, “Miscellaneous codes used in CLI".

12) The value of FK_NAME in FOREIGN_KEYS QUERY is the value of the CON-
STRAINT_NAME columnin XKS COLS

13) The value of UK_NAME:-in FOREIGN_KEYS QUERY is the value of the
UNIQUE_CONSTRAINT_NAME column in XKS_COLS

14) If there are no_implementation-defined mechanisms for setting the value of DEFERABIL-
ITY in FORENGN_KEYS QUERY to the value of the code for INITIALLY DEFERRED
or to the value of the code for INITIALLY IMMEDIATE in Table 27, “Miscellaneops
codes ysed in CLI”, then the value of DEFERABILITY in FOREIGN_KEYS QUERY is
the cede for NOT DEFERRABLE in Table 27, “Miscellaneous codes used in CLI""; gther-
wise, the value of DEFERABILITY in FOREIGN_KEYS QUERY can be the code for
INITIALLY DEFERRED, the value of the code for INITIALLY IMMEDIATE, or the
code for NOT DEFERRABLE in Table 27, “Miscellaneous codes used in CLI".

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS QUERY is 'UNIQUE!'[if the
foreign key references a UNIQUE key and 'PRIMARY" if the foreign key referenceq a
primary key.

X) Let NL1, NL2, and NL3 be the values of NameLength4, NameLength5, and NameLength6,
respectively.

Xi) Let CATVAL, SCHVAL, and TBLVAL be the values of FKCatalogName, FKSchemaName, and
FKTableName, respectively.

xii) If the METADATA ID attribute of Sis TRUE, then:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 181

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

182 Call-Level Interface (SQL/CLI)

A) Case:
1) If the value of NL1 is zero, then let CATSTR be a zero-length string.
I1) Otherwise,

Case:

1) If FKCatalogName is a null pointer and the value of the CATALOG NAME information
type from Table 29, “Codes and data types for implementation information”, Y, then an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

2) If FKSchemaName is a null pointer or if FKTableName is a null pointer, then an exception
condition is raised: CLI-specific condition — invalid use of null pointer.

atarogNametSatpomtetrthefs S-setto-zetro- cRearame1so painter,
then NL2 is set to zero. If FKTableName is a null pointer, then NL3 is set to zero.
xiv) Case:

1) If NL1is not negative, then let L be NL1.

2) IfNL1indicates NULL TERMINATED, then let L be the number afipétets of FKCatalog-
Name that precede the implementation-defined null character thatterminates a C chafjacter
string.

3) Otherwise, an exception condition is raised: CLI-specificcondition — invalid string length
or buffer length.

Let CATVAL be the first L octets of FKCatalogName.

xv) Case:

1) If NL2is not negative, then let L be NL2:

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of FKSchem-
aName that precede the implementation-defined null character that terminates a C chafacter
string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string I ength
or buffer length.

Let SCHVAL be the first.L) octets of FKSchemaName.

xvi) Case:

1) If NL3is not negative, then let L be NL3.

2) IfNL3indicates NULL TERMINATED, then let L be the number of octets of FKTablelName
thatprecede the implementation-defined null character that terminates a C character sfring.

3){ Otherwise, an exception condition is raised: CLI-specific condition — invalid string | ength
or buffer length.

Let TBLVAL be the first L octets of FKTableName.

xvii) Case:
1) If the METADATA ID attribute of Sis TRUE, then:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1)

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

If SUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = """ andif
SUBSTRING(TRIM("CATVAL") FROM CHAR_LENGTH(TRIM("CAT-
VAL")) FOR 1) = =", then let TEMPSTR be the value obtained from
evaluating:

SUBSTRING(TRIM("CATVAL") FROM 2
FOR CHAR LENGTH(TRIM("CATVAL")) - 2)

B) Case:

1)

C) Case:

1)

2)

If the value of NL2 is zero, then let SCHSTRbe a zero-length string.
Otherwise,

Case:

1)

2)

If the value of NL3 is zero, then let TBLSTR be a zero-length string.
Otherwise,

Case:

and let CATSTR be the character string:
FK_TABLE_CAT = "TEMPSTR" AND
Otherwise, let CATSTR be the character string:

UPPER(FK_TABLE_CAT) = UPPER("CATVAL") AND

If SUBSTRING(TRIM("SCHVAL") FROM 1 FOR 1) = """ and if
SUBSTRING(TRIM("SEHVAL ") FROM
CHAR_LENGTH(TRMA(*SCHVAL")) FOR 1) = =" thenlet TEMPSTR
be the value obtained from evaluating:

SUBSTRING(TRIM("SCHVAL") FROM 2
FOR CHAR_LENGTH(TRIM("SCHVAL")) - 2)

and-let.SCHSTR be the character string:
FK TABLE_SCHEM = "TEMPSTR" AND
Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER("SCHVAL") AND

©ISO/IEC 2016 — All rights reserved

1)

If SUBSTRING(TRIM("TBLVAL") FROM 1 FOR 1) = """ and if
SUBSTRING(TRIM("TBLVAL") FROM
CHAR_LENGTH(TRIM("TBLVAL")) FOR 1) = ="~ thenlet TEMPSTR
be the value obtained from evaluating:

SQL/CLI routines 183

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

SUBSTRING(TRIM("TBLVAL") FROM 2
FOR CHAR_LENGTH(TRIM("TBLVAL®)) - 2)

and let TBLSTR be the character string:

FK_TABLE_NAME = "TEMPSTR" AND

)

xviii) Let PRED be the result of evaluating:

XiX)

XX)

If. CHAR_LENGTH(PKN) # 0 (zero) and CHAR_LENGTH(FKN) = 0 (zero), then the result s¢
returned contains a description of the primary key (if any) of the specified table together with t
descriptions of foreign keys in all other tables that reference that primary key.

2) Otherwise, let TBLSTR be the character string:
UPPER(FK_TABLE_NAME) = UPPER("TBLVAL") AND

2) Otherwise:

A) If the value of NL1 is zero, then let CATSTR be a zero-length sthing; otherwise,
CATSTR be the character string:

FK_TABLE_CAT = "CATVAL" AND

B) If the value of NL2 is zero, then let SCHSTR be a<zero-length string; otherwise,
SCHSTR be the character string:

FK_TABLE_SCHEM = "SCHVAL®" AND

C) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise,
TBLSTR be the character string:

FK_TABLE_NAME = "TBLVAL”“AND

CATSTR || * = || SCHSTR/Il = = |l TBLSTR || = " |l 1=1
Let STMT be the character string:

SELECT *
FROM FOREI,GN-KEYS QUERY

WHERE PRED.

ORDER ,BY -FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

ExecDirect is implicitly invoked with Sas the value of StatementHandle, STMT as the vz
of’StatementText, and the length of STMT as the value of TextLength.

let

et

let

lue

—

184 Call-Level Interface (SQL/CLI)

i)

i)

Let PKSrepresent the set of rows in SSs Information Schema TABLE_CONSTRAINTS
where the value of CONSTRAINT_TYPE is 'PRIMARY KEY".

Let X represent the set of rows formed by a natural inner join on the values in the CON-

view

STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns
between the rows in SSs Information Schema REFERENTIAL_CONSTRAINTS view and the

matching rows in SSs Information Schema TABLE_CONSTRAINTS view.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

iii) Let FKSrepresent the rows defining the foreign keys that reference an individual primary key
in PKS These rows are obtained by matching the values of CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns in a row of PKSto the values
in the UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA, and
UNIQUE_CONSTRAINT_NAME columns in X.

iv) Let FKSSrepresent the set of rows in the combination of all FKSsets.

V) Let PK_COLSrepresent the set of rows in SSs Information Schema KEY_COLUMN,UHAGE
view that define the columns within an individual primary key row in PKS

vi) Let PKS COLSrepresent the set of rows in the combination of all PK_COLS sets.

vii) Let FK_COLSrepresent the set of rows in SSs Information Schema KEY (€OLUMN_USAGE
view that define the columns within an individual foreign key in FKSS

viii) Let FKS COLSrepresent the set of rows in the combination of all\EFK_COLS sets.

iX) Let XKS_COLSrepresent the set of extended rows formed by-the‘inner equijoin of PKS COLS
and UKS_COLSmatching CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CON-
STRAINT_NAME, and ORDINAL_POSITION of PKS(COLSwith CONSTRAINT_CATA-
LOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME, and POSITION_IN_UNIQUE_CON-
STRAINT of FKS COLS respectively.

Let PKS COLS NAME be the name of each column of PKS_COLSconsidered in turn; the
names of the columns of XKS COLSoriginating from PKS COLSare respectively *P_1 |1
UKS_COLS NAME.

Let FKS COLS NAME be the namecof each column of FKS COLSconsidered in turn; the
names of the columns of XKS_COLRSoriginating from FKS_COLSare respectively *F_1 |1
FKS_COLS_NAME.

X) FOREIGN_KEYS QUERY.¢e0ntains a row for each row in XKS_COLSwhere:

1) Let SUP be thealue of Supported that is returned by the execution of GetFeaturelr{fo
with FeatureType = 'FEATURE' and Featureld = 'C041' (corresponding to the feature
“Information-Schema metadata constrained by privileges”).

2) Case;

A If the value of SUP is 1 (one), then FOREIGN_KEYS QUERY contains one or nore
rows describing the foreign keys that reference the primary key of a specific taljle in
SSs Information Schema TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS QUERY contains a row for each column of all the fgreign
keys that reference the primary key of a specific table in SSs Information Schetna
TABLE_CONSTRAINTS view in accordance with implementation-defined authgriza-
Tion criteria.

xi) For each row of FOREIGN_KEYS QUERY:

1) If the implementation does not support catalog names, then UK_TABLE_CAT is set to
the null value; otherwise, the value of UK_TABLE_CAT in FOREIGN_KEYS QUERY
is the value of the P_TABLE_CATALOG column in XKS COLS

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS QUERY is the value of the
P_TABLE_SCHEMA column in XKS COLS

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 185

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.23 ForeignKeys

he

lue

ADE

RICT

[ION

T

3) The value of UK_TABLE_NAME in FOREIGN_KEYS QUERY is the value of the
P_TABLE_NAME column in XKS_COLS
4) The value of UK_COLUMN_NAME in FOREIGN_KEYS QUERY is the value of t
P_COLUMN_NAME column in XKS_COLS
5) If the implementation does not support catalog names, then UK_TABLE_CAT is set to
LhC ﬁu” VQ:UC ULhCIVVIOC LhC VG.IUC Uf U}\ TI"\\BLE CII'\\T in FCRE:G:\‘II :\E\I/S QUERY
is the value of the F_ TABLE_CATALOG ‘column in XKS COLS
6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS QUERY is the value|of the
F_TABLE_SCHEMA column in XKS_COLS
7) The value of FK_TABLE_NAME in FOREIGN_KEYS QUERY is the value of the
F_TABLE_NAME column in XKS COLS
8) The value of FK_COLUMN_NAME in FOREIGN_KEYS QUERY is the value of the
F_COLUMN_NAME column in XKS COLS
9) The value of ORDINAL_POSITION in FOREIGN_KEYS QUERY is the value of the
F_ORDINAL_POSITION column in XKS COLS
10) The value of UPDATE_RULE in FOREIGN_KEYS QUERY is determined by the v
of the UPDATE_RULE column in XKS_CQOLSas follows.
A) Let URbe the value in the UPDATE “RULE column.
B) If URis'CASCADE/, then the value of UPDATE_RULE is the code for CASC
in Table 27, “Miscellaneous:codes used in CLI".
C) If URis'RESTRICT, then the value of UPDATE_RULE is the code for RESTH
in Table 27, “Miscellanéous codes used in CLI”.
D) If URis'SET NULL', then the value of UPDATE_RULE is the code for SET NULL
in Table 27, “Miscellaneous codes used in CLI”.
E) IfURIs'NO ACTION', then the value of UPDATE_RULE is the code for NO AC]
in Table 27, “Miscellaneous codes used in CLI".
F) HURIis'SET DEFAULT', then the value of UPDATE_RULE is the code for SH
DEFAULT in Table 27, “Miscellaneous codes used in CLI".
11))The value of DELETE_RULE in FOREIGN_KEYS QUERY is determined by the value
of the DELETE_RULE column in XKS COLS
A) Let DR be the value in the DELETE_RULE column.
B) If DRis'CASCADE/, then the value of DELETE_RULE is the code for CASCADE

186 Call-Level Interface (SQL/CLI)

In Table Z/7, “IMlIscellaneous codes used in CLI™.

C) If DRis'RESTRICT, then the value of DELETE_RULE is the code for RESTRICT

in Table 27, “Miscellaneous codes used in CLI".

D) If DRis'SET NULL', then the value of DELETE_RULE is the code for SET NULL

in Table 27, “Miscellaneous codes used in CLI".

E) IfDRis'NO ACTION', then the value of DELETE_RULE is the code for NO ACTION

in Table 27, “Miscellaneous codes used in CLI".

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

F) IfDRis'SET DEFAULT', then the value of DELETE_RULE is the code for SET
DEFAULT in Table 27, “Miscellaneous codes used in CLI".

12) The value of FK_NAME in FOREIGN_KEYS QUERY is the value of the CON-
STRAINT_NAME column in XKS_COLS

13) The value of UK_NAME in FOREIGN_KEYS QUERY is the value of the

the code for NOT DEFERRABLE in Table 27, “Miscellaneous codes.used in CLI""; ¢ther-
wise, the value of DEFERABILITY in FOREIGN_KEYS QUERY ¢an be the code for
INITIALLY DEFERRED, the value of the code for INITIALLY-HMMEDIATE, or the
code for NOT DEFERRABLE in Table 27, “Miscellaneous-codes used in CLI”.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN ‘KEYS QUERY is 'PRIMARY".

xii) Let NL1, NL2, and NL3 be the values of NameLengthl, NameLength2, and NameLength3,
respectively.

xiii) Let CATVAL, SCHVAL, and TBLVAL be the valugs of PKCatalogName, PKSchemaNamg, and
PKTableName, respectively.

xiv) If the METADATA ID attribute of Sis TRUE, then:

1) If PKCatalogName is a null painter and the value of the CATALOG NAME information
type from Table 29, “Codes and data types for implementation information”, Y, therj an
exception condition is raised: CLI-specific condition — invalid use of null pointer.

2) If PKSchemaName is.arull pointer or if PKTableName is a null pointer, then an exception
condition is raised:‘\CLI-specific condition — invalid use of null pointer.

xv) If PKCatalogNameis a null pointer, then NL1 is set to zero. If PKSchemaName is a null pdinter,
then NL2 is setto-zero. If PKTableName is a null pointer, then NL3 is set to zero.

xvi) Case:
1) IfNL1is not negative, then let L be NL1.

2) <1t NL1 indicates NULL TERMINATED, then let L be the number of octets of PKCatalog-
Name that precede the implementation-defined null character that terminates a C chafjacter
string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string | ength

or-buffar lanath
Or—PuHe—eHgth:

Let CATVAL be the first L octets of PKCatalogName.
xvii) Case:

1) If NL2is not negative, then let L be NL2.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 187

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of PKSchem-
aName that precede the implementation-defined null character that terminates a C character
string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

xviii) Case:
1) If NL3is not negative, then let L be NL3.
2) IfNL3indicates NULL TERMINATED, then let L be the number of octets of PKTablelName
that precede the implementation-defined null character that terminates-a C character sfring.
3) Otherwise, an exception condition is raised: CLI-specific condition— invalid string | ength
or buffer length.
Let TBLVAL be the first L octets of PKTableName.
xix) Case:
1) If the METADATA ID attribute of Sis TRUE{ then:
A) Case:
)i If the value of NL1 is zerg; then let CATSTR be a zero-length string.
i) Otherwise,
Case:
1) If SUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = """ and if
SUBSTRING(TRIM("CATVAL") FROM CHAR_LENGTH(TRIM(®CAT-
VAL™)) FOR 1) = """, then let TEMPSTR be the value obtained|from
evaluating:
SUBSTRING (TRIM("CATVAL") FROM 2
FOR CHAR_LENGTH (TRIM("CATVAL")) - 2)
and let CATSTR be the character string:
FK_TABLE_CAT = "TEMPSTR" AND
2) Otherwise, let CATSTR be the character string:
UPPER(FK_TABLE_CAT) = UPPER("CATVAL") AND
B) Case:
)i If the value of NL2 is zero, then let SCHSTR be a zero-length string.
i) Otherwise,
Case:

188 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1)

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

If SUBSTRING(TRIM("SCHVAL") FROM 1 FOR 1) = """ and if

SUBSTRING(TRIM(*SCHVAL") FROM

CHAR_LENGTH(TRIM("SCHVAL")) FOR 1) = """, thenlet TEMPSTR

be the value obtained from evaluating:

SUBSTRING (TRIM("SCHVAL") FROM 2
FOR CHAR LENGTH (TRIM("SCHVAL®)) - 2)

2)

2)

2) QOtherwise:

and let SCHSTR be the character string:
FK_TABLE_SCHEM = "TEMPSTR" AND
Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER(" SCHVAL ")~AND

C) Case:
1) If the value of NL3 is zero, then let TBLSTRbe a zero-length string.
I1) Otherwise,
Case:
1) If SUBSTRING(TRIM("TBLVAL") FROM 1 FOR 1) = """andi

SUBSTRING(TRIM("TBLVAL") FROM
CHAR_LENGTH(TRMA("TBLVAL")) FOR 1) = ="~ thenlet TEM
be the value obtained from evaluating:

SUBSTRING (TRIM("TBLVAL") FROM 2
FOR CHAR_LENGTH (TRIM("TBLVAL®)) - 2)

and.let-TBLSTR be the character string:
FK TABLE_NAME = "TEMPSTR" AND
Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER("TBLVAL") AND

A) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise,
CATSTR be the character string:

FK_TABLE_CAT = "CATVAL" AND

PSTR

let

B) |If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let
SCHSTR be the character string:

FK_TABLE_SCHEM = "SCHVAL®" AND

C) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let
TBLSTR be the character string:

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 189

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.23 ForeignKeys

FK_TABLE_NAME = "TBLVAL" AND
xX) Let PRED be the result of evaluating:

CATSTR Il * " |l SCHSTR |l * " |l TBLSTR || = "] 1-=1

XXT) et STMT bethe character string:

SELECT *

FROM FOREI GN_KEYS_QUERY

WHERE PRED

ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINALK ROSITION

xxii) ExecDirect is implicitly invoked with Sas the value of StatementHandle; STMT as the vlue
of StatementText, and the length of STMT as the value of TextLength:

¢) If CHAR_LENGTH(PKN) * 0 (zero) and CHAR_LENGTH(FKN) #0)(zero), then the result of the
routine is implementation-defined.

190 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.24 FreeConnect

6.24 FreeConnect

Function

Deallocate an SQL-connection.

Definition

Freefonnect (
ConnectionHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) et CH be the value of ConnectionHandle.

2) [KreeHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE and with CH as
the value of Handle.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 191

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.25 FreeEnv

6.25 FreeEnv

Function

Deallocate an SQL-environment.

Definition

Freegnv (
EnvironmentHandle IN INTEGER)
RETURNS SMALLINT

General Rules

1) lLet EH be the value of EnvironmentHandle.

2) FKreeHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE and witlh EH
3s the value of Handle.

192 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.26 FreeHandle

6.26 FreeHandle

Function

Free a resource.

Definition

FreefHandle (

HandleType IN SMALLINT,
Handle

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle;

2) If HTis not one of the code values in Table 14, “Codes used for.SQL/CLI handle types”, then an exce
gondition is raised: CLI-specific condition — invalid handle,

3) Case:

3)

If HT indicates ENVIRONMENT HANDLE, then:

IN INTEGER)

ption

)] If H does not identify an allocated SQL-environment, then an exception condition is raisgd:
CLI-specific condition — invalid.-handle.
i) Let E be the allocated SQL-eavironment identified by H.
iii) The diagnostics area assoc¢iated with E is emptied.
iv) Ifanallocated SQls-connection is associated with E, then an exception condition is raised; CLI-
specific conditien = function sequence error.
V) E is deallocated and all its resources are freed.
B) If HT indicatesCONNECTION HANDLE, then:
i) If Hdoes not identify an allocated SQL-connection, then an exception condition is raised:| CLI-
gpecific condition — invalid handle.
i) Let C be the allocated SQL-connection identified by H.
iii) The diagnostics area associated with C is emptied.
iv) If an established SQL-connection is associated with C, then an exception condition is raised:
CLI-specific condition — function sequence error.
V) C is deallocated and all its resources are freed.
¢) IfHT indicates STATEMENT HANDLE, then:

©ISO/IEC 2016 — All rights reserved

i)

If H does not identify an allocated SQL-statement, then an exception condition is raised:
specific condition — invalid handle.

CLI-

SQL/CLI routines 193

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.26 FreeHandle

i) Let She the allocated SQL-statement identified by H.
iii) The diagnostics area associated with Sis emptied.

iv) Let Cbe the allocated SQL-connection with which Sis associated and let EC be the established

SQL-connection associated with C.

V) If EC is not the current SQL -connection, then the General Rules of Subclause 5.3, “Implicit

¢

vii) If there is an open CLI cursor CR associated with S then:

X) Sis deallocated and all its resources are freed.

vi) TheXGeneral Rules of Subclause 5.16, “Deferred parameter check”, are applied to D as the

vii)\ " Let AT be the value of the ALLOC_TYPE field of D.
viii) If AT mdlcates AUTOMATIC then an exceptlon condltlon is raised: CLI-specific condit

set connection”, are applied with EC as dormant SQL-connection.

vi) Ifthere is a deferred parameter number associated with S then an exception conditionis rgised:

CLI-specific condition — function sequence error.

=

1) The General Rules of Subclause 15.4, “Effect of closing a cursor”, in [ISO9075-2] gre

applied, with CRas CURSOR and DESTROY as DISPOS TION:

2) Any fetched row associated with Sis removed from assaciation with S

viii) If there is a CLI cursor CR associated with S then the cursorinstance descriptor and curgor

declaration descriptor of CR are destroyed.

iX) The automatically allocated CLI descriptor areas associated with Sare deallocated and all their
resources are freed.

If HT indicates DESCRIPTOR HANDLE, then:

i) If H does not identify an allocated CL1 descriptor area, then an exception condition is rajsed:
CLI-specific condition — invalid handle.

i) Let D be the allocated CL{ descriptor area identified by H.
iii) The diagnostics area assoCiated with D is emptied.

iv) Let Cbe the allocated SQL-connection with which D is associated and let EC be the establjshed
SQL-connectignjassociated with C.

V) If EC is notithe current SQL-connection, then the General Rules of Subclause 5.3, “Implicit

set connection”, are applied with EC as dormant SQL-connection.

DESCRIPTOR AREA.

iX) LetL1be alist of allocated SQL-statements associated with C for which D is the current
application row descriptor. For each allocated SQL-statement Sin L1, the automatically-allocated
application row descriptor associated with Sbecomes the current application row descriptor
for S

X) Let L2 be a list of allocated SQL-statements associated with C for which D is the current
application parameter descriptor. For each allocated SQL-statement Sin L2, the automatically-

194 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.26 FreeHandle

allocated application parameter descriptor associated with Shecomes the current application
parameter descriptor for S

xi) D is deallocated and all its resources are freed.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 195

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.27 FreeStmt

6.27 FreeStmt

Function

Deallocate an SQL-statement.

Definition

Freeptmt (
StatementHandle IN INTEGER ,
Dption IN SMALLINT)

RETURNS SMALLINT

General Rules

1) et SH be the value of StatementHandle and let Sbe the allocated SQL:-statement identified by SH.
2) lLet OPT be the value of Option.

3) If OPT is not one of the codes in Table 19, “Codes used for FreeStmt options”, then an exception condglition
is raised: CLI-specific condition — invalid attribute identifier.

4) lLet ARD be the current application row descriptor for-Sand let RC be the value of the COUNT field of
ARD.

5) lLet APD be the current application parameter descriptor for Sand let PC be the value of the COUNT] field
of APD.

6) Case:
3) If OPT indicates CLOSE CGURSOR and there is an open CLI cursor associated with S then:

)] The General Rules/of Subclause 15.4, “Effect of closing a cursor”, in [ISO9075-2] are applied,
with CRas CURSOR and DESTROY as DISPOS TION.

i) Any fetchied row associated with Sis removed from association with S

) If OPT indicates FREE HANDLE, then FreeHandle is implicitly invoked with HandleType indidating
STATEMENT HANDLE and with SH as the value of Handle.

) If ©RFindicates UNBIND COLUMNS, then for each of the first RC item descriptor areas of ARD,
the'value of the DATA_POINTER field is set to zero.

APD, the value of the DATA_POINTER field is set to zero.

e) If OPT indicates REALLOCATE, then the following objects associated with Sare destroyed:
i) Any prepared statement.
i) Any CLI cursor.

iii) Any select source.

196 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.27 FreeStmt
iv) Any executed statement.

and the original automatically allocated descriptors are associated with the allocated SQL-statement
with their original default values as described in the General Rules of Subclause 6.3, “AllocHandle”.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 197

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I
6.28

EC 9075-3:2016(E)
GetConnectAttr

6.28 GetConnectAttr

Fun

ction

Get the value of an SQL-connection attribute.

Def

GetC

Gen

1)

2)

3)
q

4)

) Otherwise:

) Otherwise:

nition

bnnectAttr (

ConnectionHandle IN INTEGER,
\ttribute IN INTEGER,
Value ouT ANY,
BufferLength IN INTEGER,
StringlLength ouT INTEGER)

RETURNS SMALLINT

eral Rules

Case:

) If ConnectionHandle does not identify an allocated SQL-connection, then an exception conditi
raised: CLI-specific condition — invalid handle:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.
i) The diagnostics area associgted with C is emptied.
et A be the value of Attribute.

f A is not one of the code valugs'in Table 17, “Codes used for connection attributes”, then an excep
ondition is raised: CLI-spegific condition — invalid attribute identifier.

f A indicates POPULATE IPD, then
Case:

) If there iS1o established SQL-connection associated with C, then an exception condition is rais
connection exception — connection does not exist.

DN IS

lion

i) If POPULATE IPD for Cis True, then Value is set to 1 (one).

5) |

i) If POPULATE IPD for C is False, then Value is set to 0 (zero).
f A indicates SAVEPOINT NAME, then:

a) Let BL be the value of BufferLength.
b) Let AV be the value of the SAVEPOINT NAME connection attribute.

198

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.28 GetConnectAttr

¢) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with Value, AV, BL,
and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

6) If Aspecifies an implementation-defined connection attribute, then

Case:

[72)

3) If the data type for the connection attribute is specified in Table 20, “Data types of attributes?;3
INTEGER, then Value is set to the value of the implementation-defined connection attribute:

) Otherwise:
)] Let BL be the value of BufferLength.
i) Let AV be the value of the implementation-defined connection attribute.

iii) The General Rules of Subclause 5.14, “Character string retrievalyare applied with Valug, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH, respectively.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 199

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.29 GetCursorName

6.29 GetCursorName

Function

Get the cursor name property associated with an allocated SQL-statement.

Definition

GetCursorName (
StatementHandle IN INTEGER,

CursorName OUT CHARACTER(L),
BufferLength IN SMALLINT,
NamelLength OUT SMALLINT)

RETURNS SMALLINT

=

wherg L has a maximum value equal to the implementation-defined maximum-/length of a variable-lengt
chardcter string.

General Rules

1) Let She the allocated SQL-statement identified by StatementHandle.
2) lLet CN be the cursor name property associated with'S
3) et BL be the value of BufferLength.

4) The General Rules of Subclause 5.14, “Chardcter string retrieval”, are applied with CursorName, CN, BL,
qdnd NameLength as TARGET, VALUE-TARGET OCTET LENGTH, and RETURNED OCTET LEN{GTH,

fespectively.

200 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.30 GetData

6.30 GetData

Function

Retrieve a column value.

Definition

GetDpta (
StatementHandle IN INTEGER,
ColumnNumber IN SMALLINT,
fargetType IN SMALLINT,
fargetValue ouT ANY,
BufferLength IN INTEGER,
StriLen_or_Ind ouT INTEGER)

General Rules

1)
2)

3)
4)
5)

6)

7)
8)
9)

RETURNS SMALLINT

et She the allocated SQL-statement identified by StatementHandle.
Case:

3) If there is no fetched rowset associated with-S'then an exception condition is raised: CLI-specitic
condition — function sequence error.

) If the fetched rowset associated with Sis empty, then a completion condition is raised: no data,|Tar-
getValue and StrLen_or_Ind are setto implementation-dependent values, and no further rules of this
Subclause are applied.

¢) Otherwise, let R be the fetched rowset associated with S

et ARD be the current application row descriptor for Sand let N be the value of the TOP_LEVEL_COQUNT
field of ARD.

et AS be the value ofthe ARRAY _SIZE field in the header of ARD. Let P be the value of the attribute
CURRENT OF#POSITION of S

| et CR be the~CLI cursor associated with S

f P is_greater than AS the P-th row in R has not been fetched, or the operational scrollability propefty of
CRiS NIO SCROLL and ASis greater than 1 (one), then an exception condition is raised: CLI-specific
¢ondition — invalid cursor position.

Let FR be the P-th row of R

Let D be the degree of the table defined by the select source associated with S

If N is less than zero, then an exception condition is raised: dynamic SQL error — invalid descriptor count.

10) Let CN be the value of ColumnNumber.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 201

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.30 GetData

11) If CNis less than 1 (one) or greater than D, then an exception condition is raised: dynamic SQL error —

invalid descriptor index.

12) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of ARD for which

13)

14)

15)

16)

17)

LEVEL is 0 (zero) and the value of TYPE is neither ROW, ARRAY, nor MULTISET, then let BCN

Otherwise, let HBCN be zero.

be

the column number associated with such an item descriptor area and let HBCN be the value of MAX(BCN).

et DA be the item descriptor area of ARD specified by CN. If the value of TYPE in IDA is either’K
ARRAY, or MULTISET, or if the LEVEL of IDA is greater than 0 (zero), then an exception conditi
faised: dynamic QL error — invalid descriptor index.

NOTE 34 — GetData cannot be called to retrieve the data corresponding to a subordinate descriptor,fecord such as, f
example, from an individual field of a ROW type.

f CN is not greater than HBCN, then
Case:

q) |Ifthe DATA _POINTER field of IDA is not zero, then an exception.eondition is raised: dynamig
error — invalid descriptor index.

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an exce
condition is raised: dynamic SQL error — invalid descrigtor’index.

NOTE 35 — This implementation-defined feature determinesywhether columns before the highest bound colum
be accessed by GetData.

f there is a fetched column number associated with“'ER, then let FCN be that column number; othen
let FCN be zero.

NOTE 36 — “fetched column number” is the ColumhNumber value used with the previous invocation (if any) of the G
routine with FR. See the General Rules later in.this Subclause where this value is set.

Case:

3) If FCNis greater than zero and CN is not greater than FCN, then it is implementation-defined wh
an exception condition is«aised: dynamic SQL error — invalid descriptor index.

NOTE 37 — This implementation-defined feature determines whether GetData can only access columns in asc
column number oréer,

b) If FCN is less than zero, then:
i) Let-AECN be the absolute value of FCN.
i) Case:

1) IfCNislessthan AFCN, then it is implementation-defined whether an exception cong
is raised: dynamic SQL error — invalid descriptor index.

ow,
DN 1S

L
ption
n can
Wise,

btData

ether

nding

ition

—__________NOTE 38— Tnisimplementation-defined Teature determines whether GetData can only access co
in ascending column number order.

2) If CNis greater than AFCN, then let FCN be AFCN.
Let T be the value of TargetType.

lumns

18) Let HL be the programming language of the invoking host program. Let operative data type correspondence
table be the data type correspondence table for HL as specified in Subclause 5.20, “SQL/CLI data type

202 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.30 Get

Data

correspondences”. Refer to the two columns of the operative data type correspondence table as the SQL

data type column and the host data type column.

19) If either of the following is true, then an exception condition is raised: CLI-specific condition — invalid

20)

21)
22)

23)

24)
25)

26)

©ISO/IEC 2016 — All rights reserved

data type in application descriptor.
a) T indicates neither DEFAULT nor ARD TYPE and is not one of the code values in Table 8, “Co

.. A for ol Froan dloto 4y o - eYaY I/l L1
USTU TUT dUpMTITLAlIUIT Udld 1y JUo 1T O\JLI LT .

) Tis one of the code values in Table 8, “Codes used for application data types in SQL/CLFZ, but
row that contains the corresponding SQL data type in the SQL data type column of the gperativé
type correspondence table contains 'None' in the host data type column.

toT.
et IRD be the implementation row descriptor associated with S
f the value of the TYPE field of IDA indicates DEFAULT, then:

CN-th item descriptor area of IRD for which LEVEL is 0 (zeto).

) The data type, precision, and scale of the <target specification> described by IDA are set to CT,
and SC, respectively, for the purposes of this GetData invocation only.

f IDA is not valid as specified in Subclause 5.18, “Deseription of CLI item descriptor areas”, then 3

| et TT be the value of the TYPE field of IDA.
Case:
q4) If TT indicates CHARACTER, ther:

“Codes used for imiplementation data types in SQL/CLI".

gxception condition is raised: dynamic SQL error —using clause does not match target specificatiops.

des

the
data

f T does not indicate ARD TYPE, then the data type of the <target specification> described by IDAis set

qd) Let CT, P, and SC be the values of the TYPE, PRECISION, and-SCALE fields, respectively, fof the

i) Let UT be the code value corresponding to CHARACTER VARYING as specified in Talple 7,

i) Let CL be the implementation-defined maximum length for a CHARACTER VARYING| data
type.
) Otherwise, letUT be TT and let CL be zero.
Case:
3) If ECNis less than zero, then
Case:
)) ITTT does notindicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY

VARYING, or BINARY LARGE OBJECT, then AFCN becomes the fetched column number
associated with the fetched row associated with Sand an exception condition is raised: dynamic

QL error — invalid descriptor index.

i) Otherwise, let FL, DV, and DL be the fetched length, data value and data length, respecti
associated with FCN and let TV be the result of the <string value function>:

SUBSTRING (DV FROM (FL+1))

vely,

SQL/CLI routines 203

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.30 GetData

b) Otherwise:

i) Let FL be zero.

i) Let DT be the effective data type of the CN-th <select list> column as represented by the values
of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATE-
TIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
FER-SEF—SEHEMAECHARACTER-SETNAME-USERBEFNED—FPEECATAKOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields in the CN-th item descriptor area of A{RD} Let
SV be the value of the <select list> column, with data type SDT.

iii) IfTYPE indicates USER-DEFINED TYPE, then let the most specific type of the CN-th <gelect
list> column whose value is SV be represented by the values of the SPECIFIC_TYPE_CKATA-
LOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields'in the corresponding
item descriptor area of IRD.

iv) Let TDT be the effective data type of the CN-th <target specification> as represented by the
type UT, the length value CL, and the values of the PRECISION, SCALE, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA;-CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields of IDA.

V) Let LTDT be the data type on the last retrieval*of the CN-th <target specification>, if any} If
any of the following is true, then it is implementation-defined whether or not exception conglition
is raised: dynamic SQL error — restricted data type attribute violation.

1) IfLTDT and TDT both identify;a binary large object type and only one of LTDT and TDT
is a binary large object locator.

2) IfLTDT and TDT bothtdentify a character large object type and only one of LTDT &nd
TDT is a character {arge object locator.

3) IfLTDT and TDT both identify an array type and only one of LTDT and TDT is an grray
locator.

4) IfLTDT and TDT both identify a multiset type and only one of LTDT and TDT is a myltiset
locaten

5) . Af LTDT and TDT both identify a user-defined type and only one of LTDT and TDT |s a
user-defined type locator.

vi).\\Case:

1) If TDTis a locator type, then

204 Call-Level Interface (SQL/CLI)

Case:

A) If SVisnot the null value, then a locator L that uniquely identifies SV is generated and
the value TV of the CN-th <target specification> is set to an implementation-dependent

four-octet value that represents L.
B) Otherwise, the value TV of the CN-th <target specification> is the null value.
2) If SDT and TDT are predefined data types, then

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

Case:

ISO/IEC 9075-3:2016(E)

6.30 Get

A) If the <cast specification>

CAST (SV AS TDT)

1)

1)

Case:

1)

type T
converting SV to type TDT, and the result is the value TV of the CN-th <target'sp|

cation>.

B) Otherwise:

3) If SDTis a user-defined type and TDT is a predefined data type, then:
A) Let DT be the data typeidentified by SDT.

B) If the current SQL-Session has a group name corresponding to the user-defined
of DT, then let'GN be that group name; otherwise, let GN be the default transfo
group nameassociated with the current SQL-session.

If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specificatipn>",

Data

ecifi-

in [ISO9075-2], then an exception condition™is raised: dynamic SQL errqr —

restricted data type attribute violation,

The <cast specification>

CAST (SV AS TDT)

is effectively performed, and’the result is the value TV of the CN-th <target

specification>.

C) The Syntax Rules of Subclause 9.25, “Determination of a from-sgl function”, in
[1S09075-2], are applied with DT and GN as TYPE and GROUP, respectively.

If there is an applicable from-sgl function, then let FSF be that from-sql fur
and let FSFRT be the <returns data type> of FS-.

Case:
1) If FSFRT is compatible with TDT, then the from-sqgl function TSF i

lame
'm

ction

1)

gffectivety nMvoked withSVas TS input parameter and the <Teturm v
is the value TV of the CN-th <target specification>.

2) Otherwise, an exception condition is raised: dynamic SQL error —
restricted data type attribute violation.

Otherwise, an exception condition is raised: dynamic SQL error — data
transform function violation.

27) CN becomes the fetched column number associated with the fetched row associated with S

©ISO/IEC 2016 — All rights reserved

lue>

type

SQL/CLI routines 205

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.30 GetData

28) If TV is the null value, then

29)
30)

31)

206 Call-Level Interface (SQL/CLI)

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

) Otherwise, Strl en or Ind is set to the appropriate '‘Code' for SQL. NUL L DATA in Table 27, “Mis-

) Case:
)

i)

cellaneous codes used in CLI”, and the value of TargetValue is implementation-dependent.
et OL be the value of BufferLength.

f null termination is True for the current SQL-environment, then let NB be the length in octets of a
terminator in the character set of the i-th bound target; otherwise let NB be O (zero).

f TV is not the null value, then:

d) StrLen_or_Ind is set to O (zero).

If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BIN
VARYING, or BINARY LARGE OBJECT, then TargetValue is set to TV.

Otherwise:

1)

2)

3)
4)
5)

If TT is CHARACTER or CHARACTER'LARGE OBJECT, then:

A) If TV is a zero-length characterstring, then it is implementation-defined whethe
not an exception condition js-raised: data exception — zero-length character st

B) The General Rules of Subclause 5.14, “Character string retrieval”, are applied |

hull

ARY

ror
ing.
vith

TargetValue, TV, OL, and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH,

and RETURNED ©CTET LENGTH, respectively.

If TT is BINARY,; BINARY VARYING, or BINARY LARGE OBJECT, then the Gqg
Rules of Subclause 5.15, “Binary string retrieval”, are applied with TargetValue, TV|
and StrLen_(or) Ind as TARGET, VALUE, OCTET LENGTH, and RETURNED OCT!
LENGTH ,\réspectively.

neral
oL,
ET

If FCNbis not less than zero, then let DV be TV and let DL be the length of TV in octets.

Let'FL be (FL+OL-NB).

If FL is less than DL, then —CN becomes the fetched column number associated wit
fetched row associated with Sand FL, DV and DL become the fetched length, data \
and data length, respectively, associated with the fetched column number.

N the
alue,

©ISO/IEC 2016 — All rights re

served

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.31 GetDescField

6.31 GetDescField

Function

Get a field from a CLI descriptor area.

Definition

GetDgscField (

General Rules

1)

2)
3)

4)
5)

6)

7)

8)
9)

10)

DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Fieldldentifier IN SMALLINT,
Value ouT ANY,
BufferLength IN INTEGER,
StringlLength ouT INTEGER)

RETURNS SMALLINT

et D be the allocated CLI descriptor area identified by DeseriptorHandle and let N be the value of
COUNT field of D.

et FI be the value of Fieldldentifier.

f FI is not one of the code values in Table 21,\“Codes used for SQL/CLI descriptor fields”, then an
gxception condition is raised: CLI-specific eandition — invalid descriptor field identifier.

| et RN be the value of RecordNumber,

fields”, that contains FI.

The General Rules of Subctause 5.16, “Deferred parameter check”, are applied to D as the DESCRIA
\REA.

f TYPE is 'ITEM'ithen:

3) If RNis lgssithan 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptorindex.

b) If RNMs greater than N, then a completion condition is raised: no data.

fD.Is an implementation row descriptor, then let Sbe the allocated SQL-statement associated with

et TYPE be the value of the Type celumn in the row of Table 21, “Codes used for SQL/CLI descriptor

TOR

D.

Let MBR be the value of the May Be Retrieved column in the row of Table 23, “Ability to retrieve SQL/CLI

descriptor fields”, that contains FI and the column that contains the descriptor type D.

If MBRis 'PS' and there is no prepared or executed statement associated with S then an exception condition

is raised: CLI-specific condition — associated statement is not prepared.

11) If MBRis 'No', then an exception condition is raised: CLI-specific condition — invalid descriptor field

©ISO/IEC 2016 — All rights reserved

identifier.

SQL/CLI routines 207

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.31 GetDescField

12) If Fl indicates a descriptor field whose value is the initially undefined value created when the descriptor
was created, then an exception condition is raised: CLI-specific condition — invalid descriptor field iden-
tifier.

13) Let IDA be the item descriptor area of D specified by RN.

14) If TYPE is 'HEADER', then header information from the descriptor area D is retrieved as follows.

ase:
) If Fl indicates COUNT, then the value retrieved is N.
) If Fl indicates ALLOC_TYPE, then the value retrieved is the allocation type for D,

) If Fl indicates an implementation-defined descriptor header field, then the value'tétrieved is the yalue
of the implementation-defined descriptor header field identified by FI.

¢) Otherwise, if FI indicates a descriptor header field defined in Table 21, ¢Cetes used for SQL/CLI
descriptor fields”, then the value retrieved is the value of the descriptar header field identified by FI.

15) If TYPE is'ITEM', then item information from the descriptor area D is retrieved as follows:
Case:

3) If Fl indicates an implementation-defined descriptor itemfield, then the value retrieved is the value
of the implementation-defined descriptor item field of 1DA identified by FI.

) Otherwise, if FI indicates a descriptor item field.defined in Table 21, “Codes used for SQL/CLI
descriptor fields”, then the value retrieved is the Value of the descriptor item field of DA identified
by FI.

16) Let V be the value retrieved.

17) If Fl indicates a descriptor field whose@ow in Table 6, “Fields in SQL/CLI row and parameter desctiptor
greas”, contains a Data Type that isshot CHARACTER VARYING, then Value is set to V and no further
flules of this Subclause are applied.

18) Let BL be the value of BufférLength.

19) If Fl indicates a descriptar field whose row in Table 6, “Fields in SQL/CLI row and parameter desctiptor
dreas”, contains a DatayType that is CHARACTER VARYING, then the General Rules of Subclause|5.14,
‘ICharacter string.retrieval”, are applied with Value, V, BL, and StringLength as TARGET, VALUE, TARGET
DCTET LENGTH, and RETURNED OCTET LENGTH, respectively.

208 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.32 GetDescRec

6.32 GetDescRec

Function

Get commonly-used fields from a CLI descriptor area.

Def

nition

GetDpscRec (
DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Name ouT CHARACTER(L),
BufferLength IN SMALLINT,
NameLength ouT SMALLINT,
lype ouT SMALLINT,
SubType ouT SMALLINT,
| ength ouT INTEGER,
Precision ouT SMALLINT,
Scale ouT SMALLINT,
Nullable ouT SMALLINT)

wherg L has a maximum value equal to the implementationsdefined maximum length of a variable-lengt
chardcter string.

General Rules

1)

2)

3)
4)

5)

6)

7)
8)

©ISO/IEC 2016 — All rights reserved

RETURNS SMALLINT

et D be the allocated CLI descriptor-area identified by DescriptorHandle and let N be the value of
COUNT field of D.

The General Rules of Subclause'5.16, “Deferred parameter check”, are applied to D as the DESCRIA
AREA.

et RN be the value of RecordNumber.
Case:

3) If RNis lgss'than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor-index.

b) Otherwise, if RN is greater than N, then a completion condition is raised: no data.

=

TOR

No

fO,iS an implementation row descriptor associated with an allocated SQL-statement Sand there is

dition — associated statement is not prepared.

Teparet O EXECUted Statemment associatet with S thermarm exception condition is raised CL=specific con-

Let ITEM be the <dynamic parameter specification> or <select list> column (or part thereof, if the item

descriptor area of D is a subordinate descriptor) described by the item descriptor area of D specified
RN.

Let BL be the value of BufferLength.

Information is retrieved from D:

by

SQL/CLI routines 209

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.32 GetDescRec
a) If Type is not a null pointer, then Type is set to the value of the TYPE field of ITEM.

b) If SubType is not a null pointer, then SubType is set to the value of the DATETIME_INTER-
VAL_CODE field of ITEM.

c) If Length is not a null pointer, then Length is set to value of the OCTET_LENGTH field of ITEM.
i i EM.

) If Scale is not a null pointer, then Scale is set to the value of the SCALE field of ITEM.
) If Nullable is not a null pointer, then Nullable is set to the value of the NULLABLE field.of ITEM.

) If Name is not a null pointer, then

Case:

i) I null termination is False for the current SQL-environment and BIEs zero, then no further
rules of this Subclause are applied.

i) Otherwise:
1) The value retrieved is the value of the NAME field-of ITEM.

2) LetV be the value retrieved.

3) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with Name,
V, BL, and NameLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED

OCTET LENGTH, respectively.

210 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

6.33 GetDiagField

Function

Get information from a CLI diagnostics area.

Definition

GetDpagField (

HandleType IN SMALLINT,
Handle IN INTEGER,
RecordNumber IN SMALLINT,
Diagldentifier IN SMALLINT,
DiagInfo ouT ANY,
BufferLength IN SMALLINT,
StringlLength ouT SMALLINT)

RETURNS SMALLINT

General Rules

1) lLet HT be the value of HandleType.

2) If HTis not one of the code values in Table 14, “Codes'used for SQL/CLI handle types”, then an exception
gondition is raised: CLI-specific condition — invalid handle.

3) Case:

3) IfHTindicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-enyiron-
ment, then an exception condition:is raised: CLI-specific condition — invalid handle.

) IfHT indicates CONNECTION HANDLE and Handle does not identify an allocated SQL-connegtion,
then an exception condition'is raised: CLI-specific condition — invalid handle.

) IfHT indicates STATEMENT HANDLE and Handle does not identify an allocated SQL-statenent,
then an exception-condition is raised: CLI-specific condition — invalid handle.

¢) If HT indicates’DESCRIPTOR HANDLE and Handle does not identify an allocated CLI descriptor
area, ther_an“exception condition is raised: CLI-specific condition — invalid handle.

4) Let DI be‘the value of Diagldentifier.

5) If Dkis'not one of the code values in Table 13, “Codes used for SQL/CLI diagnostic fields”, then an
gxeeption condition is raised: CLI-specific condition — invalid attribute value.

6) Let TYPE be the value of the Type column in the row that contains DI in Table 13, “Codes used for SQL/CLI
diagnostic fields”.

7) Let RN be the value of RecordNumber.

8) Let Rbe the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or Error, for which
Handle was passed as the value of an input handle and let N be the number of status records generated by
the execution of R

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 211

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

9) If TYPEis 'STATUS', then:

a)
b)

If RN is less than 1 (one), then an exception condition is raised: invalid condition number.

NOTE 39 — The GetDiagRec, GetDiagField, and Error routines may cause exception or completion conditions to be raised,
but they do not cause diagnostic information to be generated.

If RN is greater than N, then a completion condition is raised: no data, and no further rules of this

10) If DI indicates ROW_COUNT and Riis neither Execute nor ExecDirect, then an exception conditior
aised: CLI-specific condition — invalid attribute identifier.

11) ¥f TYPE is 'HEADER', then header information from the diagnostics area associated wittythe resour
identified by Handle is retrieved.

)
)

¢)

Subclause are applied.

If DI indicates NUMBER, then the value retrieved is N.

If DI indicates DYNAMIC_FUNCTION, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is a
length string.

i) Otherwise, the value retrieved is the character identifier of the SQL-statement being pref
or executed by R. The value DYNAMIC_FUNCTION values are specified in Table 37,
statement codes”, in [1ISO9075-2].

NOTE 40 — Additional valid DYNAMICSFUNCTION values may be defined in other parts of ISO/IEG

If DI indicates DYNAMIC_FUNCTION=CODE, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is O (3

i) Otherwise, the valueretrieved is the integer identifier of the SQL-statement being prepar
executed by R. Tthe value DYNAMIC_FUNCTION_CODE values are specified in Table|
“SQL-statement/codes”, in [ISO9075-2].

NOTE41 == Additional valid DYNAMIC_FUNCTION_CODE values may be defined in other parts of IS
9075,
If DI indicates RETURNCODE, then the value retrieved is the code indicating the basic result

execution-of R. Subclause 4.2, “Return codes”, specifies the code values and their meanings.

NOTE 42 — The value retrieved will never indicate Invalid handle or Data needed, since no diagnostic inforr
is generated if this is the basic result of the execution of R

is

Ero-

ared

5QL-

9075.

rero).

ed or
37,

D/IEC
f the

hation

If DI indicates ROW_COUNT, the value retrieved is the number of rows affected as the result ¢

f

212 Call-Level Interface (SQL/CLI)

executing a <delete statement: searched>, <insert statement>, <merge statement>, or <update statement:
searched> as a direct result of the execution of the SQL-statement executed by R. Let Sbe the <delete

statement: searched>, <insert statement>, <merge statement>, or <update statement: searched>
T be the table identified by the <table name> directly contained in S

Case:

i) If Sis an <insert statement>, then the value retrieved is the number of rows inserted into

. Let

T.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

i) If Sis a <merge statement>, then let TR1 be the <target table> immediately contained in S let
TR2 be the <table reference> immediately contained in S and let SC be the <search condition>
immediately contained in S. If <merge correlation name> is specified, let MCN be “AS <merge
correlation name>"; otherwise, let MCN be a zero-length string.

LAY G _iaia. raerae-aben-maatalbad-alat el et wriala. raeLaa-valban t
1) nmouvulitariio a MICTyC vt matulicu Liau ot aru uuco it LuritaritTa Iyt vvricT 0

matched clause>, then the value retrieved is effectively derived by executing the statement:

SELECT COUNT (*)
FROM TRL MCN, TR2
WHERE SC

before the execution of S

2) If Scontains a <merge when not matched clause> and does not’ econtain a <merge when
matched clause>, then the value retrieved is effectively derived by executing the statement:

(SELECT COUNT(*)
FROM TRL MCN
RIGHT OUTER JOIN
TR2
ON SC)

(SELECT COUNT (*)
FROM TRL MCN, TR2
WHERE SC)

before the execution of S

3) If Scontains both a <merge when matched clause> and a <merge when not matched clause>,
then the value retrieved is effectively derived by executing the statement:

SELECT COUNT(*)
FROM TR1 MCN
RIGHT QUTER JOIN
TR2
oN sC

before the execution of S
i) If Sis’a <delete statement: searched> or an <update statement: searched>, then
Case:

1) If Sdoes not contain a <search condition>, then the value retrieved is the cardinality of T
before the execution of S

2) Otherwise, let SC be the <search condition> directly contained in S The value retrieved
is effectively derived by executing the statement:

SELECT COUNT(*)
FROM T
WHERE SC

before the execution of S

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 213

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

The value retrieved following the execution by Rof an SQL-statement that does not directly
result in the execution of a <delete statement: searched>, <insert statement>, <merge

statement>, or <update statement: searched> is implementation-dependent.

stics

DStics

L-

ISAC-
an

f) If DI indicates MORE, then the value retrieved is
Case:

)] If more conditions were raised during execution of R than have been stored in the diagng
area, then 1 (one).

i) If all the conditions that were raised during execution of R have been stored incthe diagn
area, then 0 (zero).

@) If DI indicates TRANSACTIONS_COMMITTED, then the value retrieved isthe’number of SQ
transactions that have been committed since the most recent time at which the diagnostics area for HT
was emptied.

NOTE 43 — See the General Rules of Subclause 13.3, “<externally-invoked procedure>", in [ISO9075-2]. TRAN
TIONS_COMMITTED indicates the number of SQL-transactions that werexcommitted during the invocation o
external routine.

) 1f DI indicates TRANSACTIONS ROLLED_BACK, then the value retrieved is the number of

transactions that have been rolled back since the most regent’'time at which the diagnostics area
HT was emptied.
NOTE 44 — See the General Rules of Subclause 13.3, “<externally-invoked procedure>”, in [ISO9075-2]. TRAN

TIONS_ROLLED_BACK indicates the number of SQL-<transactions that were rolled back during the invocatio
external routine.

If DI indicates TRANSACTION_ACTIVEdhen the value retrieved is 1 (one) if an SQL-transa
is currently active and is 0 (zero) if an SQL-transaction is not currently active.

NOTE 45 — TRANSACTION_ACTIE indicates whether an SQL-transaction is active upon return from an e
routine.

If DI indicates an implementation-defined diagnostics header field, then the value retrieved is th
value of the implementation-defined diagnostics header field.

12) If TYPE is 'STATUS', then information from the RN-th status record in the diagnostics area associat

d l)
b)

vith the resource identified by Handle is retrieved.

If DI indicatesCONDITION_NUMBER, then the value retrieved is RN.

If DI indicatés SQLSTATE, then the value retrieved is the SQLSTATE value corresponding to t
status-econdition.

If-DI indicates NATIVE_CODE, then the value retrieved is the implementation-defined native ¢
code corresponding to the status condition.

5QL-

for

ISAC-
of an

Ction
ternal

e

bd

rror

a)

214 Call-Level Interface (SQL/CLI)

IT DI Indicates MESSAGE_TEXT, then the value retrieved 1S

Case:

i) If the value of SQLSTATE corresponds to external routine invocation exception, external
routine exception, or warning, then the message text item of the SQL-invoked routine that

raised the exception condition.

i) Otherwise, an implementation-defined character string.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

NOTE 46 — An implementation may provide <space>s or a zero-length string or a character string that describes
the status condition.

e) If DI indicates MESSAGE_LENGTH, then the value retrieved is the length in characters of the char-
acter string value of MESSAGE_TEXT corresponding to the status condition.

f) IfDI |nd|cates MESSAGE_OCTET _ LENGTH then the value retrieved is the Iength in octets of the

If DI indicates CLASS_ORIGIN, then the value retrieved is the identification of the namingauthority
that defined the class code of the SQLSTATE value corresponding to the status conditionyThat yalue
shall be 'ISO 9075' if the class code is fully defined in Subclause 24.1, “SQLSTATE” ¢ in.[1SO9P75-
2] or Subclause 5.17, “CLI-specific status codes”, and shall be an implementation-defined character
string other than '1SO 9075' for any implementation-defined class code.

) If DI indicates SUBCLASS_ORIGIN, then the value retrieved is the identification of the naming
authority that defined the subclass code of the SQLSTATE value corresponding to the status condjtion.
That value shall be 'ISO 9075'" if the subclass code is fully defined in Subclause 24.1, “SQLSTATE”,
in [ISO9075-2], or Subclause 5.17, “CLI-specific status codes”, and shafl'be an implementation-defined
character string other than '1SO 9075' for any implementation-defined subclass code.

i) If DI indicates CURSOR_NAME, CONSTRAINT_CATALQG, CONSTRAINT_SCHEMA, CON-
STRAINT_NAME, CATALOG_NAME, SCHEMA NAME, TABLE _NAME, COLUMN_NAME,
PARAMETER_MODE, PARAMETER_NAME, PARAMETER_ORDINAL_POSITION, ROU
TINE_CATALOG, ROUTINE_SCHEMA, ROUTINE-NAME, SPECIFIC_NAME, TRIGGER_[CAT-
ALOG, TRIGGER_SCHEMA, or TRIGGER_NAMIE, then the values retrieved are

Case:

i) If the value of SQLSTATE correspends to warning — cursor operation conflict, then the yalue
of CURSOR_NAME is the name-of the cursor that caused the completion condition to be rgised.

i) If the value of SQLSTATE corresponds to integrity constraint violation, transaction rollback
— integrity constraint violation, or triggered data change violation, then:

1) Thevalues 0fCONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the <cgtalog
name> angrthe’<unqgualified schema name> of the <schema name> of the schema contgining
the constraint or assertion. The value of CONSTRAINT_NAME is the <qualified ident|fier>
of thezconstraint or assertion.

2) [Lase:

A) If the violated integrity constraint is a table constraint, then the value of
TABLE_NAME is the <qualified identifier> of the table TBL in which the table|con-
straint is contained.

Case:

1) If TBL is a declared local temporary table, then the values of CATA-
LOG_NAME and SCHEMA_NAME are spaces and 'MODULE', respectively.

I1) Otherwise, the values of CATALOG_NAME and SCHEMA_NAME are the
<catalog name> and the <unqualified schema name> of the <schema name>
of TBL, respectively.

B) If the violated integrity constraint is an assertion and if only one table referenced by
the assertion has been modified as a result of executing the SQL-statement, then the

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 215

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

values of CATALOG_NAME, SCHEMA NAME, and TABLE_NAME are the

<catalog name>, the <unqualified schema name> of the <schema name>, and the

<qualified identifier>, respectively, of the modified table.

C) Otherwise, the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME

are <space>s.

iii) If thC VG:UC Uf SQLST”'\\TE bUI ICO'JUI |do |49} Dyl Il.CU\ UI IUI UI ALLLCOO 1 u:C VIU: G.LIUI Iy LhCI I-

1) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the
<catalog name>, the <unqualified schema name> of the <schema name> of the schgma
that contains the table that caused the syntax error or the access rule violation and the
<qualified identifier>, respectively. If TABLE_NAME refers to a declared’local tempprary
table, then CATALOG_NAME is <space>s and SCHEMA_NAME-gontains 'MODUWLE'.

2) If the syntax error or the access rule violation was for an inaccessible column, then the
value of COLUMN_NAME is the <column name> of that colimn. Otherwise, the vialue
of COLUMN_NAME is <space>s.

iv) If the value of SQLSTATE corresponds to invalid cursor state, then the value of CUR-
SOR_NAME is the name of the CLI cursor that is in the invalid state.

V) If the value of SQLSTATE corresponds to with check-option violation, then the values of
CATALOG_NAME, SCHEMA NAME, and TABLE_NAME are the <catalog name> arjd the
<unqualified schema name> of the <schema hame> of the schema that contains the view| that
caused the violation of the WITH CHECK QPTION, and the <qualified identifier> of that view,
respectively.

vi) If the value of SQLSTATE does notcorrespond to syntax error or access rule violation, fhen:
1) If the values of CATALOG -NAME, SCHEMA_NAME, TABLE_NAME, and COL}

UMN_NAME identifya'column for which no privileges are granted to the enabled
authorization identifiers, then the value of COLUMN_NAME is replaced by a zero-lgngth
string.

2) If the valuesofF CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME identify a
table for which no privileges are granted to the enabled authorization identifiers, then the
values 0f)CATALOG_NAME, SCHEMA NAME, and TABLE_NAME are replaceq by
a zere=length string.

3) _.df the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON}
STRAINT_NAME identify a <table constraint> for some table T and if no privileges for
T are granted to the enabled authorization identifiers, then the values of CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME afe
replaced by a zero-length string.

4) I-F thn \mlu 1es n-F r‘f‘\l\ICTD I\ II\IT PATAI f\P (‘f‘\r\ICTD A II\IT CPHEII\VI!’I_\‘ and CON
STRAINT_NAME identify an assertion contalned in some schema Sand if the owner of
Sis not included in the set of enabled authorization identifiers, then the values of CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are
replaced by a zero-length string.

vii) If the value of SQLSTATE corresponds to triggered action exception, to transaction rollback

216 Call-Level Interface (SQL/CLI)

— triggered action exception, or to triggered data change viol ation that was caused by a trigger,

then:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

1) The values of TRIGGER_CATALOG and TRIGGER_SCHEMA are the <catalog hame>
and the <unqualified schema name>, respectively, of the <schema name> of the schema
containing the trigger. The value of TRIGGER_NAME is the <qualified identifier> of the
<trigger name> of the trigger.

2) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the
<catalog name>, the <unqualified schema name> of the <schema name>, and the <qualified
identifier> of the <table name>, respectively, of the table on which the trigger is defjned.

viii) If the value of SQLSTATE corresponds to external routine invocation exception, orto external
routine exception, then:

1) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are thé <catalog name>
and the <unqualified schema name>, respectively,of the <schema name> of the schgma
containing the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME aré.the <identifier> of the
<routine name> and the <identifier> of the <specific namé>)of the SQL-invoked roytine,
respectively.

3) Case:

A) If the condition is related to some parameterP; of the SQL-invoked routine, then:
)] The value of PARAMETER_MODE is the <parameter mode> of P;.

I1) The value of PARAMETER_ORDINAL_POSITION is the value of i.
1) The value of PARAMETER_NAME is a zero-length string.
B) Otherwise:
1) The value-of PARAMETER_MODE is a zero-length string.
I1) The value of PARAMETER_ORDINAL_POSITION is O (zero).
1) Thewvalue of PARAMETER_NAME is a zero-length string.

ix) Ifthe value,of SQLSTATE corresponds to data exception — numeric value out of range,|data
exception=-invalid character value for cast, data exception — string data, right truncafion,
data exception — interval field overflow, integrity constraint violation, or warning — strjng
data;.right truncation, and the condition was raised as the result of an assignment to an $QL
parameter during an SQL-invoked routine invocation, then:

1) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name>
and <unqualified schema name>, respectively, of the <schema name> of the schemg con-
taining the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name>, respectively, of the SQL-
invoked routine.

3) |If the condition is related to some parameter P; of the SQL-invoked routine, then:
A) The value of PARAMETER_MODE is the <parameter mode> of P;.

B) The value of PARAMETER_ORDINAL_POSITION is the value of i.

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 217

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

13)

C) If an <SQL parameter name> was specified for the SQL parameter when the SQL-

invoked routine was created, then the value of PARAMETER_NAME is the <SQL
parameter name> of that SQL parameter, P;; otherwise, the value of PARAME-
TER_NAME is a zero-length string.

j) If Dl indicates SERVER_NAME or CONNECTION_NAME, then the values retrieved are
Case:

)] If Ris Connect, then the name of the SQL-server explicitly or implicitly referencedby R and
the implementation-defined connection name associated with that SQL-server reference,
respectively.

i) If Ris Disconnect, then the name of the SQL-server and the associated implementation-dgfined
connection name, respectively, associated with the allocated SQL-connection referenced py R.

iii) If the status condition was caused by the application of the GenerakRules of Subclause 3.3,
“Implicit set connection”, then the name of the SQL-server and the implementation-defined
connection name, respectively, associated with the dormant.SQL-connection specified in the
application of that Subclause.

iv) If the status condition was raised in an SQL-session;then the name of the SQL-server ard the
implementation-defined connection name, respectively, associated with the SQL-session{in
which the status condition was raised.

V) Otherwise, zero-length strings.

k) If DI indicates CONDITION_IDENTIFIER, then the value retrieved is
Case:

i) If the value of SQLSTATE corresponds to unhandled user-defined exception, then the <conglition
name> of the user-defined-éxception.

i) Otherwise, a zero-length'string.

) If Fl indicates ROW_NUMBER, then the value retrieved is the number of the row in the rowsef to
which this status record corresponds. If the status record does not correspond to any particular fow,
then the value retrieved is O (zero).

m) If Fl indicateS€OLUMN_NUMBER, then the value retrieved is the number of the column to which
this status-tecord corresponds. If the status record does not correspond to any particular column| then
the valug,retrieved is O (zero).

m) If Blndicates an implementation-defined diagnostics status field, then the value retrieved is the yalue
ofithe implementation-defined diagnostics status field.

et/ be the value retrieved

14) If DI indicates a diagnostics field whose row in Table 1, “Header fields in SQL/CLI diagnostics areas” or
Table 2, “Status record fields in SQL/CLI diagnostics areas”, contains a Data Type that is neither CHAR-
ACTER nor CHARACTER VARYING, then DiaglInfo is set to V and no further rules of this Subclause

are applied.

15) Let BL be the value of BufferLength.

218 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.33 GetDiagField

16) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

17) Let L be the length in octets of V.
18) If StringLength is not a null pointer, then StringLength is set to L.

19) Case:
4) If null termination is False for the current SQL-environment, then

Case:
i) If L is not greater than BL, then the first L octets of Diaglnfo are set to V andthe values ¢f the

remaining octets of DiagInfo are implementation-dependent.
i) Otherwise, Diaglnfo is set to the first BL octets of V.

) Otherwise, let k be the number of octets in a null terminator in the character set of DiagIinfo and let
the phrase “implementation-defined null character that terminates a G-gharacter string” imply k oftets,

all of whose bits are 0 (zero).

Case:

i) If L is not greater than (BL—k), then the first (L+Kk) octets of Diaginfo are set to V concatepated
with a single implementation-defined null character that terminates a C character string. [The
values of the remaining characters of Diaglpnfo are implementation-dependent.

i) Otherwise, Diaglinfo is set to the first (BL—k) octets of V concatenated with a single implemen-
tation-defined null character that terminates a C character string.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 219

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.34 GetDiagRec

6.34 GetDiagRec

Function

Get commonly-used information from a CLI diagnostics area.

Definition

GetDpagRec (

HandleType IN SMALLINT,
Handle IN INTEGER,
RecordNumber IN SMALLINT,
5glstate ouT CHARACTER(5),
NativeError ouT INTEGER,
MessageText ouT CHARACTER(L),
BufferLength IN SMALLINT,
fextLength ouT SMALLINT)

RETURNS SMALLINT

wherg L has a maximum value equal to the implementation-definéd maximum length of a variable-lengt
chardcter string.

=

General Rules

1) Let HT be the value of HandleType.

2) If HTis not one of the code values in Table'14, “Codes used for SQL/CLI handle types”, then an exception
¢ondition is raised: CLI-specific condition — invalid handle.

3) Case:

3) IfHTindicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-enyiron-
ment, then an exception condition is raised: CLI-specific condition — invalid handle.

) IfHT indicates GONNECTION HANDLE and Handle does not identify an allocated SQL-connegtion,
then an exception condition is raised: CLI-specific condition — invalid handle.

¢) If HT indicates STATEMENT HANDLE and Handle does not identify an allocated SQL-statenent,
then an exception condition is raised: CLI-specific condition — invalid handle.

¢) IfHT indicates DESCRIPTOR HANDLE and Handle does not identify an allocated CLI descriptor
area, then an exception condition is raised: CLI-specific condition — invalid handle.

4) LetRNettevatueof RecordaiNumier:

5) Let Rbe the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or Error, for which
Handle was passed as the value of an input handle and let N be the number of status records generated by
the execution of R

NOTE 47 — The GetDiagRec, GetDiagField, and Error routines may cause exception or completion conditions to be raised,
but they do not cause diagnostic information to be generated.

6) If RN is less than 1 (one), then an exception condition is raised: invalid condition number.

220 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.34 GetDiagRec

7) If RNis greater than N, then a completion condition is raised: no data, and no further rules of this Subclause
are applied.

8) Let BL be the value of BufferLength.

9) Information from the RN-th status record in the diagnostics area associated with the resource identified by
Handle is retrieved.

cl)

)

©ISO/IEC 2016 — All rights reserved

If Sglstate is not a null pointer, then Sqlstate is set to the SQLSTATE value corresponding to the

condition.

tatus

If NativeError is not a null pointer, then NativeError is set to the implementation-defined-native|error

code corresponding to the status condition.

If MessageText is not a null pointer, then

Case:

i) If null termination is False for the current SQL-environment and)BL is zero, then no further

rules of this Subclause are applied.

i) Otherwise, an implementation-defined character stringsis retrieved. Let MT be the implemienta-
tion-defined character string that is retrieved and letC\be the length in octets of MT. If BL is
not greater than zero, then an exception condition‘is raised: CLI-specific condition — invalid
string length or buffer length. If TextLength is et a null pointer, then TextLength is set o L.

Case:

1) If null termination is False for theseurrent SQL-environment, then

Case:

A) If L is not greater than BL, then the first L octets of MessageText are set to MT @¢nd
the values of the-remaining octets of MessageText are implementation-dependeht.

B) Otherwise, MessageText is set to the first BL octets of MT.

2) Otherwise, Jet kthe number of octets in a null terminator in the character set of MessagpText
and let the.phrase “implementation-defined null character that terminates a C charagter

string”\imply Kk octets, all of whose bits are 0 (zero).

Case:

A) If Lis not greater than (BL-K), then the first (L+k) octets of MessageText are sef to
MT concatenated with a single implementation-defined null character that termipates

a C character string. The values of the remaining characters of MessageText arg
implementation-dependent.

single implementation-defined null character that terminates a C character string.

NOTE 48 — An implementation may provide <space>s or a zero-length string or a character string that describes
the status condition.

SQL/CLI routines 221

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

I1ISO/
6.35

IEC 9075-3:2016(E)
GetEnvAttr

6.35 GetEnvAttr

Function

Get the value of an SQL-environment attribute.

Def

nition

GetEpvAttr (
FnvironmentHandle IN INTEGER,
\ttribute IN INTEGER,
Value ouT ANY,
BufferLength IN INTEGER,
StringlLength ouT INTEGER)

General Rules

1)

2)
3)

4)

5)

222

3) If EnvironmentHandle does not identify an allocated*SQL-environment or if it identifies an allo

RETURNS SMALLINT

Case:

skeleton SQL-environment, then an exception condition is raised: CLI-specific condition — inv
handle.

) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.
i) The diagnostics area associated with E is emptied.

et A be the value of Attribute.

f A is not one of the codevalues in Table 16, “Codes used for environment attributes”, then an exce
ondition is raised: CL|-gpecific condition — invalid attribute identifier.

f A indicates NULL. TERMINATION, then
Case:
3) If nulltermination for E is True, then Value is set to 1 (one).

b) Ifull termination for E is False, then Value is set to 0 (zero).

Cated
blid

ption

f'Aspecifies an implementation-defined environment attribute, then

Case:

a) If the data type for the environment attribute is specified in Table 20, “Data types of attributes”,
INTEGER, then Value is set to the value of the implementation-defined environment attribute.

b) Otherwise:
i) Let BL be the value of BufferLength.

as

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.35 GetEnvAttr

i) Let AV be the value of the implementation-defined environment attribute.

iii) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with Value, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED

OCTET LENGTH, respectively.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 223

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.36 GetFeaturelnfo

6.36 GetFeaturelnfo

Function

Get information about features supported by the CLI implementation.

Definition

GetFepaturelnfo (

ConnectionHandle IN INTEGER,
FeatureType IN CHARACTER(L1),
FeatureTypelLength IN SMALLINT,
—eatureld IN CHARACTER(L2),
FeatureldLength IN SMALLINT,
SubFeatureld IN CHARACTER(L3),
SubFeatureldLength IN SMALLINT,
Supported ouT SMALLINT)

RETURNS SMALLINT

wherg L1, L2, and L3 has a maximum value equal to the implementation-defined maximum length of a var
length character string.

General Rules

1) Case:

3)

)

If ConnectionHandle does not identify~an allocated SQL-connection, then an exception conditi
raised: CLI-specific condition —.invalid handle.

Otherwise:
i) Let C be the alloeated SQL-connection identified by ConnectionHandle.

i) The diagnostics-area associated with C is emptied.

2) Case:

3)

)

3) If ECiis not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connec

are-applied with EC as dormant SQL-connection

If there iso established SQL-connection associated with C, then an exception condition is rais

connection exception — connection does not exist.

Otherwise, let EC be the established SQL-connection associated with C.

able-

DN IS

ion”,

4) Let FTL be the value of FeatureTypeLength.
5) Case:

a)
b)

224 Call-Level Interface (SQL/CLI)

If FTL is not negative, then let L be FTL.

If FTL indicates NULL TERMINATED, then let L be the number of octets of FeatureType that precede

the implementation-defined null character that terminates a C character string.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.36 GetFeaturelnfo

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer

length.
6) Case:
a) If Lis zero, then an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.
ﬂ)) Otherwise, let FTV be the first L octets of FeatureType and let FT be the value of

7)

f FT is other than 'FEATURE' or 'SUBFEATURE', then an exception condition is raisgd:y CLI-speciffi
pondition — invalid attribute value.

8) Let FIL be the value of FeatureldldLength.

TRIM (BOTH * * FROM “FTV®)

c

9) Case:
3) If FIL is not negative, then let L be FIL.
b) If FIL indicates NULL TERMINATED, then let L be the number of octets of Featureld that precede
the implementation-defined null character that terminates & C character string.
) Otherwise, an exception condition is raised: CLI-specifie condition — invalid string length or buffer
length.
10) Case:
q) If Lis zero, then an exception condition is.raised: CLI-specific condition — invalid string length or
buffer length.
) Otherwise, let FIV be the first L octets of Featureld and let FI be the value of
TRIM (BOTH " " FROM "FI Vo))
11) Case:
3) IfFTis'SUBFEATURE', then:

)] Let SFLL..be the value of SubFeatureldLength.
i) Casé:

1) " If SFIL is not negative, then let L be SFIL.

reld

that precede the implementation-defined null character that terminates a C character sfring.

2) If SFIL indicates NULL TERMINATED, then let L be the number of octets of SubFeafr

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length

or buffer length.

iii) Case:

1) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string

length or buffer length.
2) Otherwise, let SFIV be the first L octets of SubFeatureld and let SFI be the value of

©ISO/IEC 2016 — All rights reserved SQL/CLI routines

225

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.36 GetFeaturelnfo

TRIM (BOTH * * FROM "SFIV®)

b) Otherwise, let SFI be a character string consisting of a single space.

12) If there is no row in the INFORMATION_SCHEMA.SQL_FEATURES view with TYPE equal to FT,
FEATURE_ID equal to FI, and SUB_FEATURE_ID equal SFI, then an exception condition is raised:

S 4 ol H L al oot Lo 1
L 1T=SJTUTTTLC CUNUTNITUNT = 1Tivaltu atti Tdutc val uc.

13) Let SH be an allocated statement handle on C.

14) et STMT be the character string:

$ELECT IS_SUPPORTED

FROM INFORMATION_SCHEMA.SQL_FEATURES

HERE FEATURE_SUBFEATURE_PACKAGE_CODE = "FT*
AND FEATURE_ID = "FI *©

AND SUB_FEATURE_ID = "SFI *

15) ket I1Sbe the single column value returned by the implicit invocation of*ExecDirect with SH as the Jalue
of StatementHandle, STMT as the value of StatementText, and the length of STMT as the value of
TextLength.

16) If any status condition, such as connection failure, is caused-by-the implicit execution of ExecDirect, [then:
d) The status records returned by ExecDirect are returned on ConnectionHandle.

) This invocation of GetFeaturelnfo returns the same return code that was returned by the implicit
invocation of ExecDirect and no further Rules of this Subclause are applied.

17) If the value of I1Sis 'YES', then Supported is-set to 1 (one); otherwise, Supported is set to 0 (zero).

226 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

6.37 GetFunctions

6.37 GetFunctions

Function

Determine whether a CLI routine is supported.

Def

GetF

Gen

1)

2)

3)

4)
5)

6)

©ISO/IEC 2016 — All rights reserved

q

[«

(

) Otherwise:

4) If there is no established SQL<connection associated with C, then an exception condition is raig

) Otherwise, let EC be the established SQL-connection associated with C.

are applied with EG.as’dormant SQL-connection.

nition

Linctions (

ConnectionHandle IN INTEGER,
Functionld IN SMALLINT,
Supported ouT SMALLINT)

RETURNS SMALLINT

eral Rules

Case:

1) If ConnectionHandle does not identify an allocated SQL=¢onnection, then an exception conditi
raised: CLI-specific condition — invalid handle.

i) Let C be the allocated SQL-connection:identified by ConnectionHandle.
i) The diagnostics area associated with C is emptied.

Case:

connection exception — connection does not exist.

f EC is not the current SQL.-connection, then the General Rules of Subclause 5.3, “Implicit set connec

| et FI be the valugé of Functionld.

onditiennis’raised: CLI-specific condition — invalid Functionld specified.

DN IS

ion”,

f FI is not-one of the codes in Table 28, “Codes used to identify SQL/CLI routines”, then an excepfion

codes used t0|dent|fy the CLI routines deflned in thls part of ISO/IEC 9075.

f Fl |dent|f|es aCLlI routlne that is supported by the |mplementat|on then Supported is set to 1 (on);

SQL/CLI routines 227

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

I1ISO/
6.38

IEC 9075-3:2016(E)
Getlnfo

6.38 GetlInfo

This Subclause is modified by Subclause 20.3, “Getlnfo”, in | SO/IEC 9075-9.
Function
Get ipformation about the implementation.
Definition
Getlpfo (
ConnectionHandle IN INTEGER,
InfoType IN SMALLINT,
Infovalue ouT ANY,
BufferLength IN SMALLINT,
StringlLength ouT SMALLINT)

General Rules

1)

2)

3)

4)

5)
6)

228

RETURNS SMALLINT

Case:

3) If ConnectionHandle does not identify an alla¢ated SQL-connection, then an exception conditi
raised: CLI-specific condition — invalid handle.

b) Otherwise:
i) Let C be the allocated SQL~connection identified by ConnectionHandle.
i) The diagnostics area associated with C is emptied.

Case:

connection exception — connection does not exist.

) Otherwise,det EC be the established SQL-connection associated with C.

f EC is not.the-current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connec
re applied.with EC as dormant SQL-connection.

DN iS

d) If there is no estabfished SQL-connection associated with C, then an exception condition is raiged:

ion”,

everal General Rules in this Subclause cause implicit invocation of ExecDirect. If any status condi
uch as a connection failure, is caused by such implicit invocation of ExecDirect, then:

[ion,

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetInfo returns the same return code that was returned by the implicit invocation

of ExecDirect and no further Rules of this Subclause are applied.
Let IT be the value of InfoType.

If IT is not one of the codes in Table 29, “Codes and data types for implementation information”, th
exception condition is raised: CLI-specific condition — invalid information type.

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights re

en an

served

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.38 Getlinfo
7) Let SShe the SQL-server associated with EC.

8) Refer to a component of the SQL-client that is responsible for communicating with one or more SQL-
servers as a driver.

9) Let SH be an allocated statement handle on C.

10) [=ICase:

q) IfIT indicates any of the following:

— MAXIMUM COLUMN NAME LENGTH
— MAXIMUM COLUMNS IN GROUP BY
— MAXIMUM COLUMNS IN ORDER BY
— MAXIMUM COLUMNS IN SELECT

— MAXIMUM COLUMNS IN TABLE

— MAXIMUM CONCURRENT ACTIVITIES
— MAXIMUM CURSOR NAME LENGTH
— MAXIMUM DRIVER CONNECTIONS

— MAXIMUM IDENTIFIER LENGTH

— MAXIMUM SCHEMA NAME LENGTH
— MAXIMUM STATEMENT OCTET.S DATA
— MAXIMUM STATEMENT OCTETS SCHEMA
— MAXIMUM STATEMENT'OCTETS

— MAXIMUM TABLE NAME LENGTH

— MAXIMUM TABLES IN SELECT

— MAXIMUM USER NAME LENGTH

— MAXIMUYUM CATALOG NAME LENGTH
then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE SIZING_ID = IT

i) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT
as the value of TextLength.

b) If IT indicates any of the following:
— CATALOG NAME

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 229

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.38 Getlnfo

— COLLATING SEQUENCE

— CURSOR COMMIT BEHAVIOR
— DATA SOURCE NAME

— DBMS NAME

— DBMS VERSION

— NULL COLLATION

— SEARCH PATTERN ESCAPE
— SERVER NAME

— SPECIAL CHARACTERS

then:
)

If IT indicates any of the following:

— DEFAULT TRANSACTION ISOLATION
IDENTIFIER CASE

— TRANSACTION CARABLE

then:
)

Let STMT be the character string;

SELECT CHARACTER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTAT I10NS INFO
WHERE IMPLEMENTATION_INFO_ID = IT

Let V be the single column value returned by the implicit invocation of ExecDirect with
the value of StatementHandle, STMT as the:value of StatementText, and the length of ST|
as the value of TextLength.

Let STMT he the character string;

SELECT_ANTEGER_VALUE
FROMNANFORMAT ION_SCHEMA - SQL__ IMPLEMENTATION__INFO
WHERE IMPLEMENTATION_INFO_ID = IT

Let V be the single column value returned by the implicit invocation of ExecDirect with
the value of StatementHandle, STMT as the value of StatementText, and the length of ST}

BH as
MT

SH as
MT

as the value of TextLength.

d)

230 Call-Level Interface (SQL/CLI)

If 1T =21000 and IT < 24999, or if IT 2 11000 and IT < 14999, then:

i)

Let STMT be the character string;

SELECT COALESCE (CHARACTER_VALUE, INTEGER_VALUE)
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = I T

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.38 GetlInfo

i) Let V be the single column value returned by the implicit invocation of ExecDirect with SH as
the value of StatementHandle, STMT as the value of StatementText, and the length of STMT
as the value of TextLength.

e) IfIT=25000and IT <29999, or if IT =15000 and IT < 19999, then:
i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE IMPLEMENTATION_INFO_ID = IT

i) Let V be the single column value returned by the implicit invocation of ExecDirect with $H as
the value of StatementHandle, STMT as the value of StatementText, and the'length of STMT
as the value of TextLength.

11) ket BL be the value of BufferLength.
12) Case:

4) If the data type of V is character string, then the General Rules @fySubclause 5.14, “Character siring
retrieval”, are applied with InfoValue, V, BL, and StringLength as TARGET, VALUE, TARGET
LENGTH, and RETURNED LENGTH, respectively.

b) Otherwise, InfoValue is set to V.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 231

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

I1ISO/
6.39

IEC 9075-3:2016(E)
GetLength

6.39 GetLength

Function

Retrieve the length of the string value represented by a Large Object locator.

Definition

GetLength(
StatementHandle IN INTEGER,
| ocatorType IN SMALLINT,
| ocator IN INTEGER,
StringlLength ouT INTEGER,
IndicatorValue ouT INTEGER)

General Rules

1)
2)

3)
4)
5)
6)

7)

8)
9)

232

RETURNS SMALLINT

et She the allocated SQL-statement identified by StatementHandle.

f there is a prepared statement associated with S then an‘exception condition is raised: CLI-specifig
dlition — function sequence error.

f the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BIN

qn exception condition is raised: CLI-specific condition — invalid attribute value.
et LL be the Large Object locator valye'in Locator.

f LL is not a valid Large Object locator, then an exception condition is raised: locator exception — ir
$pecification.

et TL be the actual data type of the Large Object string on the server.

f the value of LocatorType is not consistent with TL (e.g., a CHARACTER LARGE OBJECT LOCA
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error -
llestricted data typeattribute violation.

et SV be the’string value that is represented by LL.
Case:

4)CAIf SV contains the null value, then

con-

ARY

L ARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”, then

valid

TOR

Case:

Case:

)] If IndicatorValue is a null pointer, then an exception condition is raised: data exception — null

value, no indicator parameter.

i) Otherwise:

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.39 GetLength

1) IndicatorValue is set to the appropriate ‘Code’ for SQL NULL DATA in Table 27, “Mis-
cellaneous codes used in CLI”.

2) The value of StringLength is implementation-dependent.

b) Otherwise:
i) IndicatorValue is set to O (zero)
i) If TL is CHARACTER LARGE OBJECT, then StringLength is set to the length in_chargcters
of SV.

iii) IfTL is BINARY LARGE OBJECT, then StringLength is set to the length in_octets of Syv.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 233

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I
6.40

EC 9075-3:2016(E)
GetParamData

6.40 GetParamData

Function

Retrieve the value of a dynamic output parameter.

Def

GetP

Gen
1)
2)

3)

q

4)

5)
6)
7|
I
8)

9)

sequence error.

TOP_LEVEL_COUNT field of ARD.

TYPE value'is-neither ROW, ARRAY, nor MULTISET, then let BPN be the parameter number assod

nition

hramData (

StatementHandle IN INTEGER,
ParameterNumber IN SMALLINT,
fargetType IN SMALLINT,
fargetValue ouT ANY,
BufferLength IN INTEGER,
StriLen_or_Ind ouT INTEGER)

RETURNS SMALLINT

eral Rules

et She the allocated SQL-statement identified by StatementHandle.

f there is no executed SQL-statement associated with S¢then an exception condition is raised: CLI-sp
tondition — function sequence error; otherwise, let P'be the SQL-statement that was prepared.

f P is not a <call statement>, then an exception‘eondition is raised: CLI-specific condition — functi

et APD be the current application parafeter descriptor for Sand let N be the value of the

f N is less than zero, then an exteption condition is raised: dynamic SQL error — invalid descriptor ¢
et PN be the value of ParameterNumber.

f PN is less than 1 (ene) or greater than N, then an exception condition is raised: dynamic SQL errg
nvalid descriptor index.

f DATA_POINTER is non-zero for at least one of the first N item descriptor areas of APD for whic

vith suchian item descriptor area and let HBPN be the value of MAX(BPN). Otherwise, let HBPN
Zero)s

et DDA be the item descriptor area of APD specified by PN. If the value of TYPE of IDA is either

cific

ount.

N the
iated
e0

ow,

raised: dynamic SQL error — invalid descriptor index.

NOTE 49 — GetParamData cannot be called to retrieve the data corresponding to a subordinate descriptor record such as,

for example, from an individual field of a ROW type.

10) Let IDAL be the item descriptor area of IPD specified by PN.
11) Let PM be the value of PARAMETER_MODE in IDAL.

234

RRAY, or MULTISET, or it LEVEL of IDA is greater than O (zero), then an exception condition is

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.40 GetParamData

12) If PM is PARAM MODE IN then an exception condition is raised: dynamic QL error — invalid
descriptor index.

13) If PN is not greater than HBPN, then

Case:

DATA_POINTER field o
error — invalid descriptor index.

QL

p) If the DATA_POINTER field of IDA is zero, then it is implementation-defined whether an-exception
condition is raised: dynamic SQL error — invalid descriptor index.

NOTE 50 — This implementation-defined feature determines whether parameters before the highest bound parameter
can be accessed by GetParamData.

14) If there is a fetched parameter number associated with S then let FPN be that parameter number; otherwise,
let FPN be zero.

NOTE 51 — “fetched parameter number” is the ParameterNumber value used with-the_previous invocation (if any) of the
GetParamData routine with S See the General Rules later in this Subclause wheré.this value is set.

15) Case:

q) If FPNis greater than zero and PN is not greater than FPN) then it is implementation-defined whether
an exception condition is raised: dynamic SQL error —invalid descriptor index.

NOTE 52 — This implementation-defined feature determines whether GetParam Data can only access parametgrs in
ascending parameter number order.

b) If FPNis less than zero, then:
i) Let AFPN be the absolute value of‘FPN.
i) Case:

1) If PNis less than AEPN, then it is implementation-defined whether an exception condition
is raised: dynamic SQL error — invalid descriptor index.

NOTE 53(— This implementation-defined feature determines whether GetParamData can only agcess
parameters in ascending parameter number order.

2) If PN-is-greater than AFPN, then let FPN be AFPN.
16) lLet T be the value Of TargetType.

17) Let HL be the programming language of the invoking host program. Let operative data type correspon
tiable be the)data type correspondence table for HL as specified in Subclause 5.20, “SQL/CLI data type
orrespondences”. Refer to the two columns of the operative data type correspondence table as the
ata‘type column and the host data type column.

18) ,
data type in application descriptor.

a) T indicates neither DEFAULT nor APD TYPE and is not one of the code values in Table 8, “Codes
used for application data types in SQL/CLI”.

b) Tis one of the code values in Table 8, “Codes used for application data types in SQL/CLI”, but the
row that contains the corresponding SQL data type in the SQL data type column of the operative data
type correspondence table contains 'None' in the host data type column.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 235

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.40 GetParamData

19) If T does not indicate APD TYPE, then the data type of the <target specification> described by IDA is set

20)
21)

22)

23)
24)

25)

236 Call-Level Interface (SQL/CLI)

toT.

Let IPD be the implementation parameter descriptor associated with S

If the value of the TYPE field of IDA indicates DEFAULT, then:

PN-th item descriptor area of IPD for which LEVEL is 0 (zero).

) The data type, precision, and scale of the <target specification> described by IDA are set{te’PT,
and SC, respectively, for the purposes of this GetParamData invocation only.

f IDA is not valid as specified in Subclause 5.18, “Description of CLI item descriptor areas”, then 3
gxception condition is raised: dynamic SQL error — using clause does not match target specificatio

et TT be the value of the TYPE field of IDA.
Case:

qd) If TT indicates CHARACTER, then:

“Codes used for implementation data types in SQL/CLI".

i) Let CL be the implementation-defined maximum length for a CHARACTER VARYING
type.

) Otherwise, let UT be TT and let CL be zero.
Case:

3) If FPNis less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BIN
VARYING, or BINARY LARGE OBJECT, then AFPN becomes the fetched parameter nu
associated withh Sand an exception condition is raised: dynamic SQL error — invalid desc
index.

i) Otherwise, let FL, DV, and DL be the fetched length, data value and data length, respect
associated with FPN and let TV be the result of the <string value function>:

SUBSTRING (DV FROM (FL+1))

b) Otherwise:

r the

P,

i) Let UT be the code value corresponding to CHARACTER VARYING as specified in Talple 7,

data

ARY
mber
iptor

vely,

1) Let FL be zero

i) Let SDT be the effective data type of the PCN-th <select list> column as represented by the
values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,

DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-

TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME fields in the PN-th

item descriptor area of IPD. Let SV be the value of the parameter, with data type SDT.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.40 GetParamData

iii) Let TDT be the effective data type of the PN-th <target specification> as represented by the
type UT, the length value CL, and the values of the PRECISION, SCALE, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME fields of IDA.

iv) Case:

1) If TDT is a locator type, then

2)

Case:

A)

B)

If SDT and TDT are predefined data types, then
Case:

A) If the <cast specification>

B)

If SV is not the null value, then a locator L that uniquely identifies SWS generatefl and
the value of TV of the i-th bound target is set to an implementation-dependent fpur-
octet value that represents L.

Otherwise, the value TV of the PN-th <target specification>-1s the null value.

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>’|, in
[1ISO9075-2], and there is an implementation-defined conversion from type SDT to
type TDT, then that implementation-defined conversion is effectively performed
converting SV to type TDT,and the result is the value TV of the PN-th <target specifi-
cation>.

Otherwise:

)i If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specificatipn>",
in [ISO9075-2], then an exception condition is raised: dynamic SQL errqr —
restricted data type attribute violation.

I1) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and is the value TV of the PN-th <target specificaTon>.

A) Let DT be the data type identified by SDT.

B)

C)

If the current SQL-session has a group name corresponding to the user-defined name
of DT, then let GN be that group name; otherwise, let GN be the default transform
group name associated with the current SQL-session.

The Syntax Rules of Subclause 9.25, “Determination of a from-sql function”, in
[1ISO9075-2], are applied with DT and GN as TYPE and GROUP, respectively.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 237

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.40 GetParamData

Case:

1) If there is an applicable from-sql function, then let FSF be that from-sql function
and let FSFRT be the <returns data type> of FSF.

Case:
1) If FSFPT is compatible with TDT, then the from-sql function TSF ig

26) PN becomes the fetched parameter number associated with S
27) If TV is the null value, then

Case:

28) lLet OL be the value of BufferLength.

effectively invoked with SV as its input parameter and the <returnvalue>
is the value TV of the CN-th <target specification>.

2) Otherwise, an exception condition is raised: dynamic QL error —
restricted data type attribute violation.

I1) Otherwise, an exception condition is raised: dynamic SQL-error — data fype
transform function violation.

q) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

) Otherwise, StrLen_or_Ind is set to the appropriateCode’ for SQL NULL DATA in Table 27, “Mis-
cellaneous codes used in CLI”, and the value ofTargetValue is implementation-dependent.

29) If null termination is True for the current SQL-environment, then let NB be the length in octets of a hull

30) If TV is not the null value, then:

b) Case:
i)

i)

terminator in the character set of the i-thjbound target; otherwise let NB be 0 (zero).

qd) StrLen_or_Ind is set to 0(zero).

If TT doesnot indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY

VARYING, or BINARY LARGE OBJECT, then TargetValue is set to TV.

Otherwise:

1)

If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined whethgr or
not an exception condition is raised: data exception — zero-length character stfing.

2)

B) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with
TargetValue, TV, OL, and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH,
and RETURNED OCTET LENGTH, respectively.

If TT is BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the General
Rules of Subclause 5.15, “Binary string retrieval”, are applied with TargetValue, TV, OL,
and StrLen_or_Ind as TARGET, VALUE, OCTET LENGTH, and RETURNED OCTET
LENGTH, respectively.

238 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.40 GetParamData

3) If FCNis not less than zero, then let DV be TV and let DL be the length of TV in octets.

4) Let FL be (FL+OL-NB).

5) If FL is less than DL, then —PN becomes the fetched parameter number associated with
the fetched parameter associated with Sand FL, DV and DL become the fetched length,
data value, and data length, respectively, associated with the fetched parameter number.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 239

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.41 GetPosition

6.41 GetPosition

Function

Retrieve the starting position of a string value within another string value, where the second string value is

represented by a | arge Object locator

Definition

GetPpsition(
StatementHandle IN INTEGER,
| ocatorType IN SMALLINT,
SourcelLocator IN INTEGER,
SearchlLocator IN INTEGER,
SearchLiteral IN ANY,
SearchLiteralLength IN INTEGER,
FromPosition IN INTEGER,
| ocatedAt ouT INTEGER,
IndicatorValue ouT INTEGER)

General Rules

1)
2)

3)
4)
5)
6)

7)

8)

240 Call-Level Interface (SQL/CLI)

RETURNS SMALLINT

et Sbe the allocated SQL-statement identified by StatementHandle.

f there is a prepared statement associated with S, then an exception condition is raised: CLI-specific
glition — function sequence error.

f the value of LocatorType is not thatof either CHARACTER LARGE OBJECT LOCATOR or BIN

qn exception condition is raisedy CLI-specific condition — invalid attribute identifier.
et SRCL be the Large Object locator value in SourceLocator.

f SRCL is not a valid-:arge Object locator, then an exception condition is raised: locator exception
iinvalid specification;

et SRCT be the-actual data type of the Large Object string on the server.

f the value,of LocatorType is not consistent with SRCT (e.g., a CHARACTER LARGE OBJECT
L OCATOR for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamig
grror— restricted data type attribute violation.

con-

ARY

L ARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”, then

0L

Case:
a) If SRCL represents the null value, then

Case:

)] If IndicatorValue is a null pointer, then an exception condition is raised: data exception — null

value, no indicator parameter.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.41 GetPosition

i) Otherwise, IndicatorValue is set to the appropriate ‘Code’ for SQL NULL DATA in Table 27,
“Miscellaneous codes used in CLI", the value of all other output arguments is implementation-
dependent, and no further rules of this Subclause are applied.

b) Otherwise:

i) IndicatorValue is set to O (zero).

i) Let SRCV be the actual value that is represented by SRCL.
9) et 9L be the value of SearchLiteralLength.

10) Case:

3) If 9L isequal to zero, then:
)] Let SCHL be the Large Object locator value in SearchLocator.

i) If SCHL is not a valid Large Object locator, then an exception condition is raised: locator
exception — invalid specification.

iii) Let SCHT be the actual data type of the Large Object string on the server.

iv) If the value of LocatorType is not consistent with SCHT, then an exception condition is raised:
dynamic SQL error — restricted data type attribute violation.

V) If SCHL represents the null value, then an exception condition is raised: CLI-specific condlition
— invalid attribute value.

vi) Let SCHV be the actual value that is represented by SCHL.

) Otherwise,
Case:
i) If SearchLiteral is a null.pointer, then an exception condition is raised: CLI-specific condition

— invalid attribute value.
i) Otherwise, let SCHV be the value of that literal.

11) Let FP be the value of EromPosition. Let SRCVL be the length of SRCV (in characters if SRCV is a phar-
gcter string and in octets if SRCV is a binary string).

12) If FPis less than'1one) or greater than SRCVL, then an exception condition is raised: CLI-specific conglition
1 invalid atteibute value.

13) If FP issgreater than 1 (one), then let SRCV be the value of

$UBSTRING (SRCV FROM FP)

14) Case:

a) If SRCV contains a string MV of contiguous characters (if SRCV is a character string) or contiguous
octets (if SRCV is a binary string) that is the same as the string of characters or octets (as appropriate)
in SCHV then LocatedAt is set to the starting position (in characters or octets, as appropriate) of the
first occurrence of MV within SRCV.

b) Otherwise, LocatedAt is set to 0 (zero).

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 241

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.42 GetSessionlnfo

6.42 GetSessionlnfo

Function

Get information about <general value specification>s supported by the implementation.

Definition

GetSessionlinfo(

General Rules

1)

2)

3)

4)
5)

6)

7)
8)

242 Call-Level Interface (SQL/CLI)

ConnectionHandle IN INTEGER,
InfoType IN SMALLINT,
Infovalue ouT ANY,
BufferLength IN SMALLINT,
StringlLength ouT SMALLINT)

RETURNS SMALLINT

Case:

3) If ConnectionHandle does not identify an allocated SQL-connection, then an exception conditi
raised: CLI-specific condition — invalid handle:

) Otherwise:
i) Let C be the allocated SQL-connection identified by ConnectionHandle.
i) The diagnostics area associgted with C is emptied.

Case:

q) If there is no established SQL -connection associated with C, then an exception condition is rais
connection exception—.connection does not exist.

) Otherwise, let ECbe the established SQL-connection associated with C.

f EC is not the current SQL-connection, then the General Rules of Subclause 5.3, “Implicit set connec
qre applied withhEC as dormant SQL-connection.

et IT be thetvalue of InfoType.

1hen an exception condition is raised: CLI-specific condition — invalid information type.

DN IS

ion”,

f I'T is;not one of the codes in Table 30, “Codes and data types for session implementation information”,

Let GVSbe the value of <general value specification> in the same row as IT in Table 30, “Codes and data

types for session implementation information”.
Let SH be an allocated statement handle on C.

Let STMT be the character string:

SELECT UNIQUE GVS

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

9

10)

11)
12)

ISO/IEC 9075-3:2016(E)
6.42 GetSessionlInfo

FROM INFORMATION_SCHEMA_TABLES — Any table would do
WHERE 1 = 1 — Any predicate that is TRUE would do

V is set to the single column value returned by the implicit invocation of ExecDirect with SH as the value
of StatementHandle, STMT as the value of StatementText, and the length of STMT as the value of
TextLength.

£ ot it I e £oul H o +lo H Lot s i £ I D + th .
ity otdiUs CUTTUTLIUTT, sutlT as LUTTTITLLIUTT TATTUTT, 1o LAUSTU Uy LT TITTPTICIUITIVULAUIUTT UT LATULLUTITUL, en:

3) The status records returned by ExecDirect on SH are returned on ConnectionHandle.

—

) This invocation of GetSessionInfo returns the same return code that was returned by the implic
invocation of ExecDirect and no further Rules of this Subclause are applied.

et BL be the value of BufferLength.

The General Rules of Subclause 5.14, “Character string retrieval”, are applied/with InfoValue, V, BL, and
$tringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED OCTET LENGTH,
fespectively.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 243

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.43 GetStmtAttr

6.43 GetStmtAttr

Function

Get the value of an SQL-statement attribute.

Definition

GetSEmtAttr (
StatementHandle IN INTEGER,
\ttribute IN INTEGER,
Value ouT ANY,
BufferLength IN INTEGER,
StringlLength ouT INTEGER)

RETURNS SMALLINT

ter

iptor

Gernjeral Rules
1) lLet Shbe the allocated SQL-statement identified by StatementHandle.
2) lLet Abe the value of Attribute.
3) If Aiis not one of the code values in Table 18, “Codés:used for statement attributes”, then an excepti
ondition is raised: CLI-specific condition — invalid attribute identifier.
4) Case:
3) If Aindicates APD_HANDLE, thenValue is set to the handle of the current application parame
descriptor for S
) If Aindicates ARD_HANDLE; then Value is set to the handle of the current application row desc
for S
) If Alindicates IPD _HANDLE, then Value is set to the handle of the implementation parameter
descriptor associated with S
¢) If Aindicates,JRD_HANDLE, then Value is set to the handle of the implementation row descriptor
associatedwith S
¢) If Aindicates CURSOR SCROLLABLE, then
Case:
i) If the imlnlnmpnmfinn supports CL 1 scrollable cursors then
Case:

1) If the value of the CURSOR SCROLLABLE attribute of Sis NONSCROLLABLE,

then

Value is set to the code value for NONSCROLLABLE from Table 27, “Miscellaneous

codes used in CLI".

244 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights re

served

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

i)

ISO/IEC 9075-3:2016(E)
6.43 GetStmtAttr

2) If the value of the CURSOR SCROLLABLE attribute of Sis SCROLLABLE, then Value
is set to the code value for SCROLLABLE from Table 27, “Miscellaneous codes used in
CLI".

Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

4

i)

Case:

i)

i)

Case:

i)

@) If Aindicates METADATA ID, then

) If Aindicates CURSOR HOLDABLE, then

TN, thaon
rTvIT T, uich

If the implementation supports CLI cursor sensitivity, then
Case:

1) If the value of the CURSOR SENSITIVITY attribute of Sis ASENSITIVE, then Vajue is
set to the code value for ASENSITIVE from Table 27, “Miscelfaneous codes used in CLI".

2) If the value of the CURSOR SENSITIVITY attribute of Sis)INSENSITIVE, then Value
is set to the code value for INSENSITIVE from Table 27;/‘Miscellaneous codes usgd in
CLI”.

3) If the value of the CURSOR SENSITIVITY attribute of Sis SENSITIVE, then Value is
set to the code value for SENSITIVE from Table 27, “Miscellaneous codes used in CLI”.

Otherwise, an exception condition is raised: CLI-specific condition — optional feature npt
implemented.

If the METADATA ID attribute for Shas been set by the SetStmtAttr routine, then Valug|is

set to the code value of thatiattribute from Table 20, “Data types of attributes”.

Otherwise, Value is set to the code value for FALSE from Table 27, “Miscellaneous codeq used
in CLI”.

If the implementation supports CLI cursor sensitivity, then
Case:

1) If the value of the CURSOR HOLDABLE attribute of Sis NONHOLDABLE, then the
Value is set to the code value for NONHOLDABLE from Table 27, “Miscellaneous ¢odes
used in CLI”.

2) If the value of the CURSOR HOLDABLE attribute of Sis HOLDABLE, then the Value
is set to the code value for HOLDABLE from Table 27, “Miscellaneous codes used in
CLI".

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
value.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 245

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.43 GetStmtAttr

i) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

i) If Aindicates CURRENT OF POSITION, then
Case:

) If there is no fetched rowset associated with S then an exception condition is raised: CL 1-specific
condition — invalid cursor state.

|90}

i) Otherwise, Value is set to the current position within the fetched rowset associated with
J) If Aindicates NEST DESCRIPTOR, then

Case:

)] If the NEST DESCRIPTOR attribute for Shas been set by the SetStmtAttr routine, then Value
is set to the code value of that attribute from Table 20, “Data types.of attributes™.

i) Otherwise, VALUE is set to the code value for FALSE from@able 27, “Miscellaneous c¢des
used in CLI".

5) If A specifies an implementation-defined statement attribute, then
Case:

4) If the data type for the statement attribute is specified-in Table 20, “Data types of attributes”, as
INTEGER, then Value is set to the value of the implementation-defined statement attribute.

) Otherwise:
i) Let BL be the value of BufferLength.
i) Let AV be the value of the implementation-defined statement attribute.

iii) The General Rules of Subclause 5.14, “Character string retrieval”, are applied with Valug, AV,
BL, and StringLength as TARGET, VALUE, TARGET OCTET LENGTH, and RETURNED
OCTET LENGTH;respectively.

246 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20

16(E)

6.44 GetSubString

6.44 GetSubString

Function

Either retrieve a portion of a string value that is represented by a Large Object locator or create a Large Object

value at the server and retrieve a Large Object locator for that value

Definition

GetSpbString(
StatementHandle IN INTEGER,
| ocatorType IN SMALLINT,
SourcelLocator IN INTEGER,
FromPosition IN INTEGER,
ForLength IN INTEGER,
fargetType IN SMALLINT,
fargetvValue ouT ANY,
BufferLength IN INTEGER,
StringlLength ouT INTEGER,
IndicatorValue ouT INTEGER)

General Rules

1)
2)

3)
4)
5)
6)

7)

8)
9)

10)

©ISO/IEC 2016 — All rights reserved

RETURNS SMALLINT

et She the allocated SQL-statement identified by StatementHandle.

f there is a prepared statement associated with S, then an exception condition is raised: CLI-specific
glition — function sequence error.

f the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BIN

qn exception condition is raised: CLI-specific condition — invalid attribute value.
et SRCL be the Large(Opject locator value in SourceLocator.

f SRCL is not a valid Large Object locator, then an exception condition is raised: locator exception
iinvalid specification.

et SRCT becthe actual data type of the Large Object string on the server.

f the value of LocatorType is not consistent with SRCT (e.g., a CHARACTER LARGE OBJECT
L OCATOR for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamig

con-

ARY

L ARGE OBJECT LOCATOR-.frem Table 8, “Codes used for application data types in SQL/CLI”, then

0L

grror — restricted data type attribute violation.

Let TT be the value of TargetType.

If TT is not equal to one of the values for CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, BINARY LARGE OBJECT, CHARACTER LARGE OBJECT LOCATOR, or
BINARY LARGE OBJECT LOCATOR from Table 8, “Codes used for application data types in SQL/CLI”,

then an exception condition is raised: CLI-specific condition — invalid attribute value.
If SRCL is the null value, then

SQL/CLI routines 247

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.44 GetSubString

Case:

a) If IndicatorValue is a null pointer, then an exception condition is raised: data exception — null value,
no indicator parameter.

b) Otherwise, IndicatorValue is set to the value of the 'Code’ for SQL NULL DATA from Table 27,
“Miscellaneous codes used in CLI”, the values of all other output arguments are implementation-

11) Let OL be the value of BufferLength.
12) If SRCL is not the null value, then:

i)
i)
i)

i)

A el el £t +l £ 4+l Jaal
UC}JCI IUCIIL, aRt o THtRer e S oTthsS \)UU\:IGUOC are GP}JIICU

3) IndicatorValue is set to O (zero).
) Let SRCV be the large object value that is represented by SRCL.

) 1f SRCV is a character string, then let SRCVL be the length of SRCV in characters; if SRCV is a Qlinary
string, then let SRCVL be the length of SRCV in octets.

¢) Let FP be the value of FromPosition and let FL be the value of FerL.ength.

I) Let RVL be the number of octets'in RV.
) Case:

¢) Ifany of the following is true, then an exception condition js-raised: CLI-specific condition — irvalid
attribute value.

FP is less than 1 (one).
FL is less than 1 (one).
FP+FL-1 is greater than SRCVL.

1) Let RV be the value of the string that starts at position FP and ends at position FP+FL-1 in SRCV
(where the positions are in characters or octets, as appropriate).

If TT indicatess CHARACTER or CHARACTER LARGE OBJECT, then:

1) If TV.isazero-length character string, then it is implementation-defined whether or rfot an
exception condition is raised: data exception — zero-length character string.

2) ~ The General Rules of Subclause 5.14, “Character string retrieval”’, are applied with Target-
Value, RV, OL, and RVL as TARGET, VALUE, OCTET LENGTH and RETURNED OCTET
LENGTH, respectively.

If TT indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the
General Rules of Subclause 5.15, “Binary string retrieval”, are applied with TargetValue| RV,

i)

OL, and RVLCas TARGET, VACUE, OCTET LENGTH and RETURNED OCTET LENGTH,
respectively.

Otherwise, set TargetValue to the value of a Large Object locator that represents the value RV
at the server.

248 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.45 GetTypelnfo

6.45 GetTypelnfo

Function

Get information about one or all of the predefined data types supported by the implementation.

Definition

GetTypelnfo (

General Rules

1)
2)
3)
4)

5)
6)

7)

©ISO/IEC 2016 — All rights reserved

StatementHandle IN INTEGER,
DataType IN SMALLINT)
RETURNS SMALLINT

et She the allocated SQL-statement identified by StatementHandle;
f an open CLI cursor is associated with S then an exception condition is raised: invalid cursor stats
et D be the value of DataType.

f D is not the code value corresponding to ALL TYPES;in Table 27, “Miscellaneous codes used in
gnd is not one of the code values in Table 33, “Codes.used for concise data types”, then an exceptio
ondition is raised: CLI-specific condition — invalid data type.

et C be the allocated SQL-connection with.which Sis associated.

| et EC be the established SQL-connection associated with C and let SShe the SQL-server associated
EC.

et TYPE_INFO be a table, with a-definition and description as specified below, that contains a row,

yne name is supported, it iS implementation-defined whether TYPE_INFO contains a single row or :
or each supported name:

REATE TABLE TYPEINFO (

M4

CLI”,
!

with

for

gach predefined data type supported by SS For all supported predefined data types for which more than

L Fow

TYPE_NAME CHARACTER VARYING(128) NOT NULL
PRIMARY-KEY,

DATA-TYPE SMALLINT NOT NULL,

COLUMN_SI1ZE INTEGER,

LTERAL_PREFIX CHARACTER VARYING(128),

LITERAL_SUFFIX CHARACTER VARYING(128),

CREATE_PARAMS CHARACTER VARYING(128)
CHARACTER SET SQL_TEXT,

NULLABLE SMALLINT NOT NULL
CHECK (NULLABLE IN (0, 1, 2)),

CASE_SENSITIVE SMALLINT NOT NULL
CHECK (CASE_SENSITIVE IN (0, 1)),

SEARCHABLE SMALLINT NOT NULL

CHECK (SEARCHABLE IN (0, 1, 2, 3)),
UNSIGNED_ATTRIBUTE SMALLINT
CHECK (UNSIGNED_ATTRIBUTE IN (O, 1)

SQL/CLI routines 249

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.45 GetTypelnfo

OR UNSIGNED_ATTRIBUTE IS NULL),

FIXED_PREC_SCALE SMALLINT NOT NULL
CHECK (FIXED_PREC_SCALE IN (0, 1)),

AUTO_UNIQUE_VALUE SMALLINT NOT NULL
CHECK (AUTO_UNIQUE_VALUE IN (0, 1)),

LOCAL_TYPE_NAME CHARACTER VARYING(128)
CHARACTER SET SQL_TEXT,

MNIMUM SCALE INTEGER

MAXIMUM_SCALE INTEGER,

SQL_DATA_TYPE SMALLINT NOT NULL,

SQL_DATETIME_SUB SMALLINT
CHECK (SQL_DATETIME_SUB IN
(1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13)
OR SQL_DATETIME_SUB IS NULL),
NUM_PREC_RADIX INTEGER,
INTERVAL_PRECISION SMALLINT)

8) The description of the table TYPE_INFO is:

qd) The value of TYPE_NAME is the name of the data type. If multiple\names are supported for thi$ data
type and TYPE_INFO contains only a single row for this data type, then it is implementation-degfined
which of the names is in TYPE_NAME.

) The value of DATA_TYPE is the code value for the predefined data type as defined in Table 33
“Codes used for concise data types”.

) The value of COLUMN_SIZE is:
)] The null value if the data type has neither a length nor a precision.
i) The maximum length in charactersfor a character string type.
iii) The maximum or fixed precision, as appropriate, for a numeric data type.
iv) The maximum or fixed length in positions, as appropriate, for a datetime or interval data|type.

V) An implementation-defined value for an implementation-defined data type that has a length or
a precision.

¢) The value of LITERAL_PREFIX is the character string that shall precede the data type value when a
<literal> of this.data type is specified. The value of LITERAL_PREFIX is the null value if no such
string is required.

¢) The value‘of LITERAL_SUFFIX is the character string that shall follow the data type value when a
<literal> of this data type is specified. The value of LITERAL_SUFFIX is the null value if no such
string'is required.

1) C~The value of CREATE_PARAMS is a comma-separated list of specifiable attributes for the datd type
i theorderimwhich theattributes may be-specifiedTheattributes <tength><precision><scale>,
and <time fractional seconds precision> appear in the list as LENGTH, PRECISION, SCALE, and
PRECISION, respectively. The appearance of attributes in implementation-defined data types is
implementation-defined.

g) The value of NULLABLE is 1 (one).

h) The value of CASE_SENSITIVE is 1 (one) if the data type is a character string type and the default
collation for its implementation-defined implicit character set would result in a case sensitive compar-

250 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.45 GetTypelnfo

ison when two values with this data type are compared. Otherwise, the value of CASE_SENSITIVE
is 0 (zero).

i) Refer to the <comparison predicate>, <between predicate>, <in predicate>, <null predicate>, <quan-
tified comparison predicate>, and <match predicate> as the basic predicates. If the data type can be

the data type of an operand in the <like predicate>, then let V1 be 1 (one); otherwise let V1 be 0 (zero).
If the data type can be the data type of a column of a <row value constructor predicand> immediately
contained in a basic predicate, then Tet V2 be 2; otherwise Tet V2 be 0 (zero). The value of SEARCH-
ABLE is (V1+V2).

) The value of UNSIGNED_ATTRIBUTE is

Case:

i) If the data type is unsigned, then 1 (one).

i) If the data type is signed, then O (zero).

iii) Ifasign is not applicable to the data type, then the null value:

k) The value of FIXED _PREC_SCALE is

Case:

i) If the data type is an exact numeric with a fixed-precision and scale, then 1 (one).
i) Otherwise, 0 (zero).

) The value of AUTO_UNIQUE_VALUE is

Case:

i) If a column of this data type.is Set to a value unique among all rows of that column when a row
is inserted, then 1 (one).

i) Otherwise, 0 (zero).

m) The value of LOCAL_TFY,PE_NAME is an implementation-defined localized representation of the
name of the data type(intended primarily for display purposes. The value of LOCAL_TYPE_NAME
is the null value if@‘localized representation is not supported.

m) The value of MINIMUM_SCALE is:
i) Thenull value if the data type has neither a scale nor a fractional seconds precision.
i) & Jhe minimum value of the scale for a data type that has a scale.

iify~ The minimum value of the fractional seconds precision for a data type that has a fractional
seconds precision.

0) The value of MAXIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.
i) The maximum value of the scale for a data type that has a scale.

iii) The maximum value of the fractional seconds precision for a data type that has a fractional
seconds precision.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 251

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.45 GetTypelnfo

P)

Q)

The value of SQL_DATA_TYPE is the code value for the predefined data type as defined in Table 7,

“Codes used for implementation data types in SQL/CLI".
The value of SQL_DATETIME_SUB is
Case:

i) If the data type is a datetime type, then the code value for the datetime type as defined in Ta

le9,

“Codes associated with datetime data types in SQL/CLI”.

i) If the data type is an interval type, then the code value for the interval type as definechin'Tab
“Codes associated with <interval qualifier> in SQL/CLI".

iii) Otherwise, the null value.

The value of NUM_PREC_RADIX is

Case:

i) If the value of PRECISION is the value of a precision, then the radix of that precision.
i) Otherwise, the null value.

The value of SQL_INTERVAL_PRECISION is

Case:

i) If the data type is an interval type, then <interval leading field precision>.

i) Otherwise, the null value.

9) Case:

3)

)

10) ExecDirect is implicitly invoked with Sas the value of StatementHandle, P as the value of Statement
gnd’the length of P as the value of TextLength.

If D is the code value correspondingito ALL TYPES in Table 27, “Miscellaneous codes used in
then let P be the character string

SELECT *
FROM TYPE_INFO
ORDER BY DATA_TYPE

Otherwise, let P/e-the character string

SELECT *
FROM TYRE=INFO
WHERE-DATA_TYPE = d

e 10,

CLI”,

Text,

252 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.46 MoreResults

6.46 MoreResults

Function

Determine whether there are more result sets available on a statement handle and, if there are, initialize processing
for thaose result sets

Def

MoreResults (

General Rules

1)
2)

3)

4)

5)
6)

©ISO

nition

StatementHandle IN INTEGER)
RETURNS SMALLINT

| et Sbe the allocated SQL-statement identified by StatementHandleC

mo additional result sets returned.
Case:

q) Ifthere is no CLI cursor associated with Sand there exists an implementation-defined capabilit
support that situation, then implementation-defined rules are evaluated and no further General R
of this Subclause are evaluated.

— function sequence error.
) Otherwise, let CR be the CLI cursor associated with S
f CRis currently open, then:

qd) The General Rules-of Subclause 15.4, “Effect of closing a cursor”, in [ISO9075-2] are applied,
CRas CURSORand' DESTROY as DISPOSTION.

b) Any fetchedrow associated with Sis removed from association with S
et RSShe theresult set sequence that was returned by the executed statement associated with S

Case:

f there is no executed SQL-statement associated with S then a‘completion condition is raised: no data —

y to
Rules

i) Ifthereisno CLI cursor associated with-S then an exception condition is raised: CLI-specific conglition

with

3).If RSSis not empty, then:

)] The General Rules of Subclause 5.7, “Implicit CLI procedural result cursor”, are applied
Sas ALLOCATED STATEMENT, and RSSas RESULT SET SEQUENCE.

i) A completion condition is raised: successful completion.

b) Otherwise, a completion condition is raised: no data— no additional result sets returned.

, With

/IEC 2016 — All rights reserved SQL/CLI routines 253

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.47 NextResult

6.47 NextResult

Function

Determine whether there are more result sets available on a statement handle and, if there are, initialize processing
for the_next result set on a separate statement handle

Definition

NextResult (

StatementHandlel IN INTEGER,
StatementHandle2 IN INTEGER)
RETURNS SMALLINT

General Rules

1) Let Sl be the allocated SQL-statement identified by StatementHandlel.

2) If there is no executed SQL-statement associated with S1, ther.a completion condition is raised: no fata
1+ no additional result sets returned.

3) Let KX be the allocated SQL-statement identified by StatementHandle2.

4) [If there is a prepared statement associated with S2;then an exception condition is raised: CLI-specific
fondition — function sequence error.

5) et RSShe the result set sequence that was-returned by the executed statement associated with S1.
6) Case:
3) If RSSis not empty, then:

)] The General Rules/of Subclause 5.7, “Implicit CLI procedural result cursor”, are applied| with
R as ALLOCATED STATEMENT, and RSSas RESULT SET SEQUENCE.

i) A completion condition is raised: successful completion.

) Otherwisg;a completion condition is raised: no data— no additional result sets returned.

254 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.48 NumResultCols

6.48 NumResultCols

Function

Get the number of result columns.

Def

NumR

Gen
1)
2)

3)

nition

esultCols (

StatementHandle IN INTEGER,
ColumnCount ouT SMALLINT)

RETURNS SMALLINT

eral Rules

et She the allocated SQL-statement identified by StatementHandle;
Case:

) If there is no prepared or executed statement associatedhwith S then an exception condition is rgised:
CLI-specific condition — function sequence error.

) Otherwise, let D be the implementation row deseriptor associated with Sand let N be the value ¢f the

TOP_LEVEL_COUNT field of D.

ColumnCount is set to N.

©ISO/

IEC 2016 — All rights reserved SQL/CLI routines 255

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

I1ISO/
6.49

IEC 9075-3:2016(E)
ParamData

6.49 ParamData

Function

Process a deferred parameter value.

Def

nition

ParapmData (
StatementHandle IN INTEGER,
Value OUT ANY)

General Rules

1)
2)

3)

4)

5)

256

RETURNS SMALLINT

et She the allocated SQL-statement identified by StatementHandle;
Case:

3) Ifthere is no deferred parameter number associated with.S, then an exception condition is raised:
specific condition — function sequence error.

i) Otherwise, let DPN be the deferred parameter mumber associated with S

et APD be the current application parameter déscriptor for Sand let N be the value of the
TOP_LEVEL_COUNT field of APD.

fFor each of the first N item descriptor areas NIDA in APD:

qd) Ifthe OCTET _LENGTH_POINTER field of NIDA has the same non-zero value as the INDICA
TOR_POINTER field of IDA,then SHARE is true for NIDA; otherwise, SHARE is false for NI}
Case:

i) If SHARE is-true for NIDA and the value of the commonly addressed host variable is the
appropriate:‘Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in CL
then NUYLLis true for NIDA.

variable addressed by INDICATOR_POINTER is the appropriate 'Code’ for SQL NULL [
ih Table 27, “Miscellaneous codes used in CLI”, then NULL is true for NIDA.

i) Otherwise, NULL is false for NIDA.

CLI-

A

i) If SHARE is false for NIDA, INDICATOR_POINTER is not zero, and the value of the hgst

DATA

Dy— Nt s false for MDA OCTET LENGTH POINTER IsTot O«(Zer0);, andthe vatue of the

ost

variable addressed by OCTET _LENGTH_POINTER is the appropriate 'Code' for SQL NULL DATA

in Table 27, “Miscellaneous codes used in CLI”, then DEFERRED is true for NIDA; otherwise,
DEFERRED is false for NIDA.

For each item descriptor area for which DEFERRED is true in the first N item descriptor areas of AP

D for

which LEVEL is 0 (zero), refer to the corresponding <dynamic parameter specification> value as a deferred

parameter value.

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.49 ParamData

6) Let IDA be the DPN-th item descriptor area of APD and let PT and DP be the values of the TYPE and
DATA_POINTER fields, respectively, of IDA.

7) If there is no parameter value associated with DPN, then
Case:

. CLI-

) Otherwise:

i) Value is set to DP.
i) DP becomes the DATA_POINTER value associated with DPN.
iii) An exception condition is raised: CLI-specific condition — dynamic'parameter value negded.
8) Let IPD be the implementation parameter descriptor associated with S
9) et C be the allocated SQL-connection with which Sis associated.
10) LLet V be the parameter value associated with DPN.
11) Case:
q) If Vis not the null value, then:
i) Case:

1) If PT indicates CHARACTER, then:

A) Let LO be the parameten length associated with DPN and let L be the number of
characters of V whelly contained in the first LO octets of V.

B) If L exceeds thé implementation-defined maximum length value for the CHARAGQTER
data type, then an exception condition is raised: CLI-specific condition — invalid
string length or buffer length.

2) If PT indicates CHARACTER LARGE OBJECT, then:

A) ket LO be the parameter length associated with DPN and let L be the number of
characters of V wholly contained in the first LO octets of V.

B) IfL exceeds the implementation-defined maximum length value for the CHARAQTER
LARGE OBJECT data type, then an exception condition is raised: CLI-specifigcon-
dition — invalid string length or buffer length.

3) If PT indicates BINARY, then:

A) Let LO be the parameter length associated with DPN and let L be the minimum of LO
and the length of V in octets.

B) If L exceeds the implementation-defined maximum length value for the BINARY data
type, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

4) If PT indicates BINARY VARYING, then:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 257

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.49 ParamData

A) Let LO be the parameter length associated with DPN and let L be the minimum of LO
and the length of V in octets.

B) If L exceeds the implementation-defined maximum length value for the BINARY
VARYING data type, then an exception condition is raised: CLI-specific condition
— invalid string length or buffer length.

ORI CT thaon:
J

i)

) Otherwise, let SV be the null value.

(Y DT .
LI |

el LADDN\L
J) LLRLY]

+ Im LN LA o=
TUCALCS DIINATNT TAAINUL DJLC T, TICTT.

A) Let LO be the parameter length associated with DPN and let L be the minimum ¢f LO
and the length of V in octets.

B) If L exceeds the implementation-defined maximum length value fof-the BINARY
LARGE OBJECT data type, then an exception condition is raised:\CLI-specifigcon-
dition — invalid string length or buffer length.

6) Otherwise, let L be zero.

Let SV be V with effective data type SDT as represented by the-length value L and by the Values
of the TYPE, PRECISION, and SCALE fields of IDA.

12)

13)

14)

258 Call-Level Interface (SQL/CLI)

CHARACTER_SET_NAME, USER_DEFINED_TYPRE-CATALOG, USER_DEFINED_TYPE_SCHE

et TDT be the effective data type of the DPN-th <dynamic parameter specification> as represented by
the values of the TYPE, LENGTH, PRECISION, SCALE,\DATETIME_INTERVAL_CODE, DATH
TIME_INTERVAL_PRECISION, CHARACTER_SET. CATALOG, CHARACTER_SET_SCHEM

Al
EMA,

USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
of the DPN-th item descriptor area of IPD.

USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,

in the corresponding item deseriptor area of APD.

Case:

q) If DTis a locator'type, then let TV be the value SV.
b) If SDT and TDT are predefined types, then

i) Case:

1) If the <cast specification>

CAST (S\L AS TDT
AN 7

ields

et SDT be the effective data type of the DPN-th parameter as represented by the values of the TYPE,
| ENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECI-
$ION, CHARACTER_SET_CATALQG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,

USER_DEFINED_TYPE_NAME,; SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME f{ields

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in

[1ISO9075-2], and there is an implementation-defined conversion from type SDT to type
TDT, then that implementation-defined conversion is effectively performed, converting

SV to type TDT, and the result is the value TV of the i-th bound target.
2) Otherwise:

A) If the <cast specification>

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.49 ParamData

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>", in
[1ISO9075-2], then an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

Let TV he the value obtained with data type TDT h\j/ pffnr\ti\ml\j/ pnrfnrming the <cast

1)

2)

iii) Case:
If the <cast specification>

CAST (TV AS UDT)

does not conform to the SyntaxRules of Subclause 6.13, “<cast specification>", in

specification>

CAST (SV AS TDT)

NOTE 54 — It is implementation-dependent whether the establishment of T¥ occUrs at this|time
or during the preceding invocation of PutData.

i) Let UDT be the effective data type of the actual DPN-th <dynamic parameter specificatipn>,
defined to be the data type represented by the values of the TYPE LENGTH, PRECISIQN,
SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, SCOPE_CATALOG, SCOPE_SCHEMA-and SCOPE_NAME field that
would automatically be set in the DPN-th item descriptor-area of |PD if POPULATE IPI) was
True for C.

[1SO9075-2], and there is an.implementation-defined conversion from type SDT to type
UDT, then that implementation-defined conversion is effectively performed, conver{ing

SV to type UDT, and.theresult is the value TV of the i-th bound target.
Otherwise:

A) If the <cast specification>

CAST, «(TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>’|, in
[1ISO9075-2], then an exception condition is raised: dynamic SQL error — restrficted
data type attribute violation.

B) If the <cast specification>
CAST (TV AS UDT)
does not conform to the General Rules of Subclause 6.13, "<cast specification>", in
[1ISO9075-2], then an exception condition is raised in accordance with the General
Rules of Subclause 6.13, “<cast specification>", in [ISO9075-2].

C) The <cast specification>

CAST (TV AS UDT)

is effectively performed and is the value of the DPN-th dynamic parameter.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 259

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.49 ParamData

15) Let PN be the parameter number associated with a deferred parameter value and let HPN be the value of
MAX(PN).

16) If DPN is not equal to HPN, then:
a) Let NPN be the lowest value of PN for which DPN < NPN < HPN.

) 1 et DP be the value of the DATA_POINTER field of the NPN-th item descriptor area of APD for
which LEVEL is 0 (zero).

¢) NPN becomes the deferred parameter number associated with Sand DP becomes the DATA,"POINTER
value associated with the deferred parameter number.

¢) An exception condition is raised: CLI-specific condition — dynamic parameter value needed.
17) If DPNis equal to HPN, then:
3) DPN is removed from association with S
) Case:
)] If there is a select source associated with S, then let SSbé_the select source associated with S.
i) Otherwise:
1) Let SSbe the statement source associated with S
2) SSis removed from association with S

) The General Rules of Subclause 5.5, “Executing a statement”, are applied, with Sas ALLOCATED
STATEMENT, P as PREPARED STATEMENT, and “ParamData” as INVOKER.

260 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.50 Prepare

6.50 Prepare

Function

Prepare a statement.

Definition

Preppre (
StatementHandle IN INTEGER,
StatementText IN CHARACTER(L),
fextlLength IN INTEGER)

RETURNS SMALLINT

=

wherg L has a maximum value equal to the implementation-defined maximum'‘length of a variable-lengt
chardcter string.

General Rules

1) Let She the allocated SQL-statement identified by StatementHandle.
2) et TL be the value of TextLength.
3) lLet ST be the value of StatementText.

4) The General Rules of Subclause 5.4, “Preparing a statement”, are applied, with Sas ALLOCATED
$TATEMENT, ST as STATEMENT TEXT, Tk'as TEXT LENGTH, and “Prepare” as INVOKER, resulfing
in P.

5) P is prepared and the prepared statement is associated with S

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 261

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.51 PrimaryKeys

6.51 PrimaryKeys

Function

Return a result set that contains a list of the column names that comprise the primary key for a single specified
table stored in the information schemas of the connected data source

Definition

PrimparyKeys (

StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
amelLengthl IN SMALLINT,
SchemaName IN CHARACTER(L2),
amelLength2 IN SMALLINT,
FableName IN CHARACTER(L3),
amelLength3 IN SMALLINT)

RETURNS SMALLINT

wherp each of L1, L2, and L3 has a maximum value equal to the imaplementation-defined maximum length of

a var|able-length character string.

General Rules

1)
2)
3)
4)
5)

6)

7)

8)

| et She the allocated SQL-statement identified\by StatementHandle.

174

f an open CLI cursor is associated with S'then an exception condition is raised: invalid cursor stat¢.
et C be the allocated SQL-connection with which Sis associated.
et EC be the established SQL-cennection associated with C and let SSbhe the SQL-server on that conneftion.
et PRIMARY_KEYS QUERY be a table, with the definition:

REATE TABLE PRIMARYZKEYS_QUERY (

TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAWE CHARACTER VARYING(128) NOT NULL,
COLUMNUNAME CHARACTER VARYING(128) NOT NULL,
ORDINAL_POSITION SMALLINT NOT NULL,

PK NAME CHARACTER VARYING(128))

| et PKSrepresent the set of rows in SSs Information Schema TABLE_CONSTRAINTS view wherg the
value of CONSTRAINT_TYPE is PRIMARY KEY".

Let PK_COLSrepresent the set of rows that define the columns within an individual primary key row in
PKS These rows are formed by a natural inner join on the values in the CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns between a row in PKSand the matching
row or rows in SSs Information Schema KEY_COLUMN_USAGE view.

Let PKS COLSrepresent the set of rows in the combination of all PK_COLS sets.

262 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.51 Primary

9) PRIMARY_KEYS QUERY contains a row for each row in PKS_COLSwhere:

a)

b)

Keys

Let SUP be the value of Supported that is returned by the execution of GetFeaturelnfo with FeatureType
= 'FEATURE' and Featureld = 'C041' (corresponding to the feature “Information Schema metadata

constrained by privileges”).

Case:

10) fror each row of PRIMARY_KEYS QUERY:
cl)

11)
12)

13)

)

)

et NL1, NL2, and NL3 b€ the values of NameLengthl, NameLength2, and NameLength3, respecti

| et CATVAL, SCHVAL.-and TBLVAL be the values of CatalogName, SchemaName, and TableName
fespectively.

f the METABRATA ID attribute of Sis TRUE, then:

)] If the value of SUP is 1 (one), then PRIMARY_KEYS QUERY contains a row for each column
of the primary key for a specific table in SSs Information Schema TABLE_CONSFRAINTS

view.

i) Otherwise, PRIMARY_KEYS QUERY contains a row for each column of thé-grimary key for

a specific table in SSs Information Schema TABLE_CONSTRAINTS view, in accordancs
implementation-defined authorization criteria.

If the implementation does not support catalog names, then TABLE-CAT is set to the null valu
otherwise, the value of TABLE_CAT in PRIMARY_KEYS QUERYAis the value of the
TABLE_CATALOG column in PKS

1%

with

The value of TABLE_SCHEM in PRIMARY_KEYS QUERYis the value of the TABLE_SCHEMA

column in PKS

The value of TABLE_NAME in PRIMARY_KEYS QUERY is the value of the TABLE_NAME cq
in PKS

lumn

The value of COLUMN_NAME in PRIMARY: ' KEYS QUERY is the value of the COLUMN_NAME

column in PKS COLS

The value of ORDINAL_POSITION inPRIMARY_KEYS QUERY is the value of the ORDINAL _F
TION column in PKS COLS

Osl-

The value of PK_NAME in PRIMARY_KEYS QUERY is the value of the CONSTRAINT_NAME

column in PKS

If CatalogName is a null pointer and the value of the CATALOG NAME information type from

ely.

Table 29, “Codes and data types for implementation information”, Y, then an exception conditign is

raised: CLI-specific condition — invalid use of null pointer.

IT SChemalName IS a null pointer, then an exception condition IS raised. CLI-SpecITic condition —

invalid use of null pointer.

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition — invalid use
of null pointer.

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2 is set
to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines

263

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.51 PrimaryKeys
a) If NL1is not negative, then let L be NL1.

b) IfNL1lindicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

et CATVAL be the first L octets of CatalogName.

17) Case:
3) If NL2 is not negative, then let L be NL2.

) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName tha
precede the implementation-defined null character that terminates a C charaeter’string.

—

) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

| et SCHVAL be the first L octets of SchemaName.
18) Case:
3) If NL3is not negative, then let L be NL3.

b) If NL3indicates NULL TERMINATED, then let L be'the number of octets of TableName that pr¢cede
the implementation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised.-ELI-specific condition — invalid string length or buffer
length.

| et TBLVAL be the first L octets of TableName.

19) Case:
q) If the METADATA ID attribute of Sis TRUE, then:
i) Case:
1) If the-value of NL1 is zero, then let CATSTR be a zero-length string.
2) Otherwise,
Case:

A) If SUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = """~ andif SUB-
STRING(TRIM("CATVAL") FROM CHAR_LENGTH(TRIM("CATVAL")) FOR| 1)
= """, then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("CATVAL") FROM 2
FOR CHAR_LENGTH(TRIM("CATVAL")) - 2)

and let CATSTR be the character string:
TABLE_CAT = "TEMPSTR" AND

B) Otherwise, let CATSTR be the character string:

264 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.51 PrimaryKeys

UPPER(TABLE_CAT) = UPPER("CATVAL") AND
i) Case:
1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.
2) Otherwise

Case:

A) [If SUBSTRING(TRIM(*SCHVAL") FROM 1 FOR 1) = *"~ and if SUB<
STRING(TRIM("SCHVAL") FROM CHAR_LENGTH(TRIM("SCHVAL)) FOR| 1)
= """, then let TEMPSTR be the value obtained from evaluating

SUBSTRING(TRIM("SCHVAL") FROM 2
FOR CHAR_LENGTH(TRIM("SCHVAL")) - 2)

and let SCHSTR be the character string:
TABLE_SCHEM = "TEMPSTR" AND
B) Otherwise, let SCHSTR be the character stfing:
UPPER(TABLE_SCHEM) = UPPER("SCHVAL") AND
iii) Case:
1) If the value of NL3 is zero, then et TBLSTR be a zero-length string.
2) Otherwise,

Case:

A) If SUBSTRINGCFRIM(*TBLVAL®") FROM 1 FOR 1) = """~ andif SUB-
STRING(TRIM("TBLVAL") FROM CHAR_LENGTH(TRIM("TBLVAL")) FOR| 1)
= """ hen let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("TBLVAL") FROM 2
FOR CHAR_LENGTH(TRIM("TBLVAL")) - 2)

and let TBLSTR be the character string:
TABLE_NAME = "TEMPSTR" AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE NAME) = UPPERC"TBI VAL ") AND

b) Otherwise,

i) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = "CATVAL" AND

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 265

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.51 PrimaryKeys

i) If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be

the character string:

TABLE_SCHEM = "SCHVAL" AND

iii) Ifthe value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be

the character string:

20) I

TABLE_NAME = "TBLVAL" AND

et PRED be the result of evaluating:

CATSTR || ° " || SCHSTR || = * || TBLSTR || * * || 1=1

21) Let STMT be the character string:

[«

F

$ELECT *

ROM PRIMARY_KEYS_QUERY
HERE PRED
RDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSDTION

22) ExecDirect is implicitly invoked with Sas the value of StatemefntHandle, STMT as the value of Statefnent-

Text, and the length of STMT as the value of TextLength.

266

Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.52 PutData

6.52 PutData

Function

Provide a deferred parameter value.

Def(nition

PutDpta (
StatementHandle IN INTEGER,
Data IN ANY,
StrLen_or_Ind IN INTEGER)

Gen
1)
2)

[«

3)

4)
5)

6)
7)

l
8)

i) Otherwise, let DPN be the deferred parameter:humber associated with S

$pecific condition — function sequence error.

RETURNS SMALLINT

eral Rules

et She the allocated SQL-statement identified by StatementHandle.
Case:

1) If there is no deferred parameter number associated with S, then an exception condition is raised:
specific condition — function sequence error.

f there is no DATA_POINTER value associated with DPN, then an exception condition is raised: G

et APD be the current application parameter descriptor for S

et PT be the value of the TYPE field of the DPN-th item descriptor area of APD for which LEVEL
Zero).

et IV be the value of Strlen_or_Ind.

f there is a parametervalue associated with DPN and PT does not indicate CHARACTER, CHARAC
L ARGE OBJECT; BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then an excepti
aised: CLI-specific condition — non-string data cannot be sent in pieces.

Case:

) AfIVis the appropriate 'Code’ for SQL NULL DATA in Table 27, “Miscellaneous codes used in
then let V be the null value.

CLI-

LI-

is0

TER
DN IS

CLI”,

b) If PT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

©ISO/

)] Case:

1) If IVis not negative, then let L be IV.

2) IfIVindicates NULL TERMINATED, then let L be the number of octets in the characters
of Data that precede the implementation-defined null character that terminates a C character

string.

IEC 2016 — All rights reserved

SQL/CLI routines 267

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.52 PutData

9

10)

11)

268 Call-Level Interface (SQL/CLI)

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length
or buffer length.

i) Let V be the first L octets of Data.

c) If PTindicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then:

i) Case:

1) If IVis not negative, then let L be IV.

2) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribjfite
value.

i) Let V be the first L octets of Data.
¢) Otherwise, let V be the value of Data.

f \V is not a valid value of the data type indicated by PT, then an exceptioncondition is raised: dyngmic
BQL error — using clause does not match dynamic parameter specifications.

f there is no parameter value associated with DPN, then:
3) V becomes the parameter value associated with DPN.

B) If Vis not the null value and PT indicates CHARACTER,CHARACTER LARGE OBJECT, BINARY,
BINARY VARYING, or BINARY LARGE OBJECT then L becomes the parameter length assogiated
with DPN.

f there is a parameter value associated with DPN;then
Case:
q) If Visthe null value, then:
i) DPN is removed from association with S
i) Any statement source associated with Sis removed from association with S
iii) Anexception condition is raised: CLI-specific condition — attempt to concatenate a null alue.
b) Otherwise:
i) Let PVibe the parameter value associated with DPN.
i) Case:

1) If PVis the null value, then:

A) DPN is removed from association with S

B) Any statement source associated with Sis removed from association with S

C) An exception condition is raised: CLI-specific condition — attempt to concatenate a

null value.
2) Otherwise:
A) Let PL be the parameter length associated with DPN.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.52 PutData

B) Let NV be the result of the <string value function>
PV |l V

C) NV becomes the parameter value associated with DPN and (PL+L) becomes the
parameter length associated with DPN.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 269

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I
6.53

EC 9075-3:2016(E)
RowCount

6.53 RowCount

Fun

ction

Get the row count.

Def

RowC

Gen
1)
2)

3) |

nition

bunt (
StatementHandle
RowCount

RETURNS SMALLINT

eral Rules

270 Call-Level Interface (SQL/CLI)

IN
ouT

INTEGER,
INTEGER)

et She the allocated SQL-statement identified by StatementHandle;

f there is no executed statement associated with S then an exception condition is raised: CLI-specific
rondition — function sequence error.

RowCount is set to the value of the row count associated with S

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.54 SetConnectAttr

6.54 SetConnectAttr

Function

Set the value of an SQL-connection attribute.

Definition

SetCpnnectAttr(
ConnectionHandle IN INTEGER,
\ttribute IN INTEGER,
Value IN ANY,
StringlLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

i)
i)

3) If ConnectionHandle does not identify an allocated SQL-connection, then an exception conditi
raised: CLI-specific condition — invalid handle.

) Otherwise:

Let C be the allocated SQL-connection identified by ConnectionHandle.

The diagnostics area associated.with C is emptied.

2) lLet Abe the value of Attribute.

3) If Aiis not one of the code values in Table 17, “Codes used for connection attributes”, or if A is one

iidentifier.

¢ode values in Table 17, “Codes:used for connection attributes”, but the row that contains A contain
in the 'May be set' columnthen an exception condition is raised: CLI-specific condition — invalid attr

4) If Alindicates SAVEPOINT NAME, then:

3) Let S bethe/value of StringLength.

DN IS

pf the
5 'No'
ibute

pcede

) Case:
i) If SL is not negative, then let L be SL.
i) If 9 indicates NULL TERMINATED, then let L be the number of octets of Value that pr
the implementation-defined null character that terminates a C character string.
iii) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or

buffer length.

c) The SAVEPOINT NAME attribute of C is set to the first L octets of Value.

5) If A specifies an implementation-defined connection attribute, then

Case:

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 271

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.54 SetConnectAttr

a) If the data type for the connection attribute is specified as INTEGER in Table 20, “Data types of
attributes”, then the connection attribute is set to the value of Value.

b) Otherwise:
i) Let S be the value of StringLength.

ii) Case:

1) If SLis not negative, then let L be S_.

2) If SLindicates NULL TERMINATED, then let L be the number of octets of Value t:l:at
precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition =-invalid string |ength
or buffer length.

iii) The connection attribute is set to the first L octets of Value.

272 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.55 SetCursorName

6.55 SetCursorName

Function

Set the cursor name property associated with an allocated SQL-statement.

Definition

SetCursorName (
StatementHandle IN INTEGER,
CursorName IN CHARACTER(L),
NamelLength IN SMALLINT)

RETURNS SMALLINT

wherg L has a maximum value equal to the implementation-defined maximum'‘length of a variable-length

chardcter string.

Gerjeral Rules

1) Let She the allocated SQL-statement identified by StatementHandle.

2) It an open CLI cursor is associated with S then an exegption condition is raised: invalid cursor staté.

3) et NL be the value of NameLength.

4) Case:

q) If NL is not negative, then let L be NL.

) If NL indicates NULL TERMINATED, then let L be the number of octets of CursorName that pr¢cede
the implementation-defined null character that terminates a C character string.

) Otherwise, an exception_condition is raised: CLI-specific condition — invalid string length or buffer
length.

5) Case:

d) If L is zeroythen an exception condition is raised: CLI-specific condition — invalid string length or
buffer length.

) Otherwise, let N be the number of whole characters in the first L octets of CursorName and let NO be
the'number of octets occupied by those N characters. If NO # L, then an exception condition is rgised:
invalid cursor name; otherwise, let CV be the first L octets of CursorName and let TCN be the value
of

TRIM (BOTH * * FROM "CV*)

6) Let ML be the maximum length in characters allowed for an <identifier> as specified in the Syntax Rules
of Subclause 5.4, “Names and identifiers”, in [ISO9075-2], and let TCNL be the length in characters of
TCN.

7) Case:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 273

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.55 SetCursorName

a) If TCNL is greater than ML, then CN is set to the first ML characters of TCN and a completion condition
is raised: warning — string data, right truncation.

b) Otherwise, CN is set to TCN.

8) If CN does not conform to the Format and Syntax Rules of an <identifier>, then an exception condition is
raised: invalid cursor name.

9) Let C be the allocated SQL-connection with which Sis associated and let SC be the <search conditipn>:

N LIKE *"SQL_CUR%" ESCAPE “* OR CN LIKE "SQLCUR%"

f X is Trueor if CN is identical to the value of any cursor name associated with an allocated’SQL-statdment
dssociated with C, then an exception condition is raised: invalid cursor name.

10) CN becomes the value of the cursor name property associated with S

274 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.56 SetDescField

6.56 SetDescField

Function

Set a field in a CLI descriptor area.

Definition

SetDgscField (

General Rules

1)

2)

3)
4)

5)

6)

7)

8)
9)

10)

DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
Fieldldentifier IN SMALLINT,
Value IN ANY,
BufferLength IN INTEGER)

RETURNS SMALLINT

et D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of
COUNT field of D.

The General Rules of Subclause 5.16, “Deferred paraméter check”, are applied to D as the DESCRIA
\REA.

et FI be the value of Fieldldentifier.

f FI is not one of the code values in Table'21, “Codes used for SQL/CLI descriptor fields”, then an
gxception condition is raised: CLI-spegific condition — invalid descriptor field identifier.

Case:

3) Ifthe ALLOC_TYPE fieldhof descriptor D is USER and D is not being used as the current ARL
current APD of any statement handle, then let DT be ARD.

) Otherwise, let DT be the type of the descriptor D.

et MBSbe the yalte of the May Be Set column in the row of Table 22, “Ability to set SQL/CLI desc
fields”, that cantains FI and in the column that contains the descriptor type DT.

f MBSis¢N0', then an exception condition is raised: CLI-specific condition — invalid descriptor fie
identifiéx;

| ef-RN be the value of RecordNumber.

TOR

or

riptor

d

Let TYPE be the value of the Type column in the row of Table 21, “Codes used for SQL/CLI descriptor

fields”, that contains FI.

If TYPE is 'ITEM' and RN is less than 1 (one), then an exception condition is raised: dynamic SQL error

— invalid descriptor index.

11) Let IDA be the item descriptor area of D specified by RN.

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 275

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.56 SetDescField

12) If an exception condition is raised in any of the following General Rules, then all fields of IDA for which
specific values were provided in the invocation of SetDescField are set to implementation-dependent values
and the value of COUNT for D is unchanged.

13) Information is set in D:

Case:

cl)

¢

)

)

If FI indicates COUNT, then
Case:

i) If the memory requirements to manage the CLI descriptor area cannot be satisfied, then
exception condition is raised: CLI-specific condition — memory allocation'error.

i) Otherwise, the count of the number of item descriptor areas is set to the value of Value.

If FI indicates ARRAY _SIZE, then the value of the ARRAY _SIZE headerfield of descriptor D
to Value.

If FI indicates ARRAY_STATUS _POINTER, then the value of the ARRAY_STATUS POINTE
header field of descriptor D is set to the address of Value. If \alue is a null pointer, then the add
is set to O (zero).

If FI indicates ROWS_PROCESSED_POINTER, thenthe value of the ROWS_PRO-

CESSED_POINTER header field of descriptor D is‘'set'to the address of Value. If Value is a nulf

pointer, then the address is set to 0 (zero).

If Fl indicates OCTET_LENGTH_POINTER;then the value of the OCTET_LENGTH_POIN]
field of IDA is set to the address of Value.

AN

is set

FR
Fess

[ER

If FI indicates DATA POINTER, thenthe value of the DATA_POINTER field of IDA is set to the

address of Value. If Value is a null pointer, then the address is set to 0 (zero).

If Fl indicates INDICATOR_POINTER, then the value of the INDICATOR_POINTER field of
is set to the address of Value.

If FI indicates RETURNED_ CARDINALITY_POINTER, then the value fo the RETURNED ¢
DINALITY_POINTER field of IDA is set to the address of Value.

If FI indicates. CFARACTER_SET CATALOG, CHARACTER_SET_SCHEMA, or CHARA(
TER_SET .NAME, then:

i) Lset'BL be the value of BufferLength.
i) Case:
1) If BL is not negative, then let L be BL.

DA

CAR-

276 Call-Level Interface (SQL/CLI)

2) If BL indicates NULL TERMINATED, then let L be the number of octets of Value that
precedes the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length

or buffer length.

i) Case:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

14)

ISO/IEC 9075-3:2016(E)
6.56 SetDescField

1) If L is zero, then an exception condition is raised: CLI-specific condition — invalid string
length or buffer length.

2) Otherwise, let FV be the first | octets of Value and let TFV be the value of

TRIM (BOTH * * FROM "FV*®)

J

3)

)

V)

vi)

vii)

Otherwise, the value of the field"of IDA identified by FI is set to the value of Value.
f Fl indicates LEVEL, then:

et ethemeximomfengtir i characters attowedforamr<rdentifrer>"as specifredmihe
Syntax Rules of Subclause 5.4, “Names and identifiers”, in [ISO9075-2], and let TFVI{ e the
length in characters of TFV.

Case:

1) [If TFVL s greater than ML, then FV is set to the first ML characters of TEY and a completion
condition is raised: warning — string data, right truncation.

2) Otherwise, FVissetto TFV.
Case:

1) If Fl indicates CHARACTER_SET_CATALOG and YV does not conform to the Foymat
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid catalog
name.

2) If Fl indicates CHARACTER_SET_SCHEMA and FV does not conform to the Forat
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid schema
name.

3) If Fl indicates CHARACTER.SET NAME and FV does not conform to the Formaf and
Syntax Rules of an <identifier>, then an exception condition is raised: invalid character
set name.

The value of the field of IDAidentified by FI is set to the value of FV.

If Rl is 1 (one) and-valUe is not O (zero), then an exception condition is raised: dynamic SQL erfjor —

invalid LEVEL value.

If Rl is greaterthan 1 (one), then let PIDA be IDA's immediately preceding item descriptor ared and

let K be its*tEVEL value.

i)

If Value is K+1 and TYPE in PIDA does not indicate ROW, ARRAY, ARRAY LOCATAR,
MULTISET, or MULTISET LOCATOR, then an exception condition is raised: dynamic|SQL
error — invalid LEVEL value.

)]

i)

ITValue is greater than K+1, then an exception condition is raised: dynamic SQL error — invalid
LEVEL value.

If value is less than K+1, then let OIDA; be the i-th item descriptor area to which PIDA is sub-
ordinate and whose TYPE field indicates ROW. Let NS be the number of immediately subor-
dinate descriptor areas of OIDA; between OIDA; and IDA, and let D; be the value of DEGREE
of OIDA.

©ISO/IEC 2016 — Al rights reserved SQL/CLI routines 277

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.56 SetDescField

1)

2)

For each OIDA; whose LEVEL value is greater than V, if D; is not equal to NS, then an
exception condition is raised: dynamic SQL error — invalid LEVEL value.

If K'is not 0 (zero), then let OIDA; be the OIDA; whose LEVEL value is K. If there exists
no such OIDA or Dj is not greater than NS, then an exception condition is raised: dynamic
QL error —invalid LEVEL value.

) The value of LEVEL in IDAis set to Value.
15) If TYPE is'ITEM'and RN is greater than N, then the COUNT field of D is set to RN.

16) If Fl indicates TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME, INTER-
/AL_CODE, DATETIME_INTERVAL_PRECISON, PARAMETER_MODE, PARAMETER_ORD
AL_POSITION, PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA,

ARAMETER_SPECIFIC_NAME, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
HARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
SER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, or SCOPE_NAME, then

he DATA_POINTER field of IDA is set to zero.

17) If Fl indicates DATA_POINTER, and Value is not a null pointer, andIDA is not consistent as specifled
in Subclause 5.18, “Description of CLI item descriptor areas”, théri an exception condition is raised:(CLI-
$pecific condition — inconsistent descriptor information.
18) lLetV be the value of Value.
19) If Fl indicates TYPE, then:
3) All the other fields of IDA are set to implemehtation-dependent values.
) Case:
i) If Vindicates CHARACTER-CHARACTER VARYING or CHARACTER LARGE OBJECT
then the CHARACTER SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-

TER_SET _NAME fields-of IDA are set to the values for the default character set name for the

SQL-session and the'. ENGTH field of IDA is set to the maximum possible length in chare
of the indicated data type.

If V indicates\BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the
LENGTH-field of IDA is set to the maximum possible length in octets of the indicated d

type.
If Vindicates a <datetime type>, then the PRECISION field of IDA is set to O (zero).

If Vindicates INTERVAL, then the DATETIME_INTERVAL_PRECISION field of IDA
set to 2.

cters

ita

S

If Vindicates NUMERIC or DECIMAL, then the SCALE field of IDA is set to 0 (zero)

vi)

vii)

278 Call-Level Interface (SQL/CLI)

nd

the PRECISION field of IDA s set to the implementation-defined default value for the precision

of the NUMERIC or DECIMAL data types, respectively.

If Vindicates SMALLINT, INTEGER, or BIGINT, then the SCALE field of IDAis setto 0
(zero) and the PRECISION field of IDA is set to the implementation-defined value for the

precision of the SMALLINT, INTEGER, or BIGINT data types, respectively.

If V indicates FLOAT, then the PRECISION field of IDA is set to the implementation-defined

default value for the precision of the FLOAT data type.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

20)

21)

ISO/IEC 9075-3:2016(E)
6.56 SetDescField

viii) If Vindicates REAL or DOUBLE PRECISION, then the PRECISION field of IDA is set to the
implementation-defined value for the precision of the REAL or DOUBLE PRECISION data
types, respectively.

ix) If Vindicates DECFLOAT, then the PRECISION field of IDA is set to the implementation-
defined default value for the precision of the DECFLOAT data type.

X) H-\Andieatesan implcmcntatiun defined-data t‘y’pc, theran implcmcv‘ltatlur defined-setofficlds
of IDA are set to implementation-defined default values.

xi) Otherwise, an exception condition is raised: CLI-specific condition — invalid dafa type.

then:

) Case:
i)

i)

f Fl indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a<datetime type>,

3) Allthe fields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to implementation-
dependent values.

If Vindicates DATE, TIME, or TIME WITH TIME ZONE;,then the PRECISION field of IDA
is set to O (zero).

If Vindicates TIMESTAMP or TIMESTAMP WITH TIME ZONE, then the PRECISION field
of IDA is set to 6.

f Fl indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates INTERVAL, then
the DATETIME_INTERVAL_PRECISION field of DA is set to 2 and

3) If Vindicates DAY TO SECOND, HOURTO SECOND, MINUTE TO SECOND, or SECOND]| then
the PRECISION field of IDA is set to 6:

) Otherwise, the PRECISION field ofdDA is set to 0 (zero).

22) Restrictions on the differences allowed between implementation and application parameter descriptofs are
implementation-defined, exceptias specified in the General Rules of Subclause 5.10, “Implicit EXEQUTE

JSING and OPEN USING clauses”, in the General Rules of Subclause 5.11, “Implicit CALL USING
lause”, and in the General Rules of Subclause 6.49, “ParamData”. Restrictions on the differences befween
the implementation and application row descriptors are implementation-defined, except as specified in the
Seneral Rules of Subclause 5.13, “Implicit FETCH USING clause”, and the General Rules of
$ubclause 6.30, “GetData”.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 279

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

6.57

SetDescRec

6.57 SetDescRec

Function

Set commonly-used fields in a CLI descriptor area.

Def

SetD

General Rules

1)

2)

3)

4)
5)

6)

The General Rules of Subclause 5.16, “Deferred parameter check”, are applied to D as the DESCRIA

iindex.

3) Af'the memory requirements to manage the larger CLI descriptor area cannot be satisfied, then 3

nition

bscRec (

DescriptorHandle IN INTEGER,
RecordNumber IN SMALLINT,
ype IN SMALLINT,
SubType IN SMALLINT,
| ength IN INTEGER,
Precision IN SMALLINT,
Scale IN SMALLINT,
Data DEF ANY,
StringlLength DEF INTEGER,
Indicator DEF INTEGER)

RETURNS SMALLINT

et D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of
COUNT field of D.

\REA.

f D is an implementation row descriptor, then an exception condition is raised: CLI-specific conditi
annot modify an implementation row descriptor.

et RN be the value of RecordNumber.

f RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid descr

f RN is greatérthan N, then

Case:

TOR

 ptor

>

exception condition is raised: CLI-specific condition — memory allocation error.

b) Otherwise, the COUNT field of D is set to RN.

7)
8)

Let IDA be the item descriptor area of D specified by RN.

Information is set in D as follows:

a) The data type, precision, scale, and datetime data type of the item described by IDA are set to the

280

values of Type, Precision, Scale, and SubType, respectively.

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

9)

10)

11)

©ISO/IEC 2016 — All rights reserved

ISO/IEC 9075-3:20

16(E)

6.57 SetDescRec

b) Case:

i) If D is an implementation parameter descriptor, then the length (in characters or positions, as

appropriate) of the item described by IDA is set to the value of Length.
i) Otherwise, the length in octets of the item described by IDA is set to the value of Length

) |If Stringl ength is not a null pointer, then the address of the host variable that is to provide the |

ength

of the item described by IDA, or that is to receive the returned length in octets of the item deset
by IDA, is set to the address of StringLength.

¢) The address of the host variable that is to provide a value for the item described by IDA, -or that

then the address is set to 0 (zero).

¢) If Indicator is not a null pointer, then the address of the <indicator variable>associated with thg
described by IDA is set to the address of Indicator.

f Data is not a null pointer and IDA is not consistent as specified in Suhclause 5.18, “Description of
item descriptor areas”, then an exception condition is raised: CLI-specific’condition — inconsistent
lescriptor information.

f an exception condition is raised, then all fields of IDA for which specific values were provided in
invocation of SetDescRec are set to implementation-dependerit values and the value of the COUNT
f D is unchanged.

RRestrictions on the differences allowed between implenientation and application parameter descripto
implementation-defined, except as specified in the.General Rules of Subclause 5.10, “Implicit EXEG
JSING and OPEN USING clauses”, in the General Rules of Subclause 5.11, “Implicit CALL USIN
lause”, and in the General Rules of Subclause-6.49, “ParamData”. Restrictions on the differences be
the implementation and application row desgeriptors are implementation-defined, except as specified
Seneral Rules of Subclause 5.13, “Implicit FETCH USING clause”, and the General Rules of
$ubclause 6.30, “GetData”.

bed

is to

receive a value for the item described by IDA, is set to the address of Data. If Datadsya null pointer,

item

CLI

the
field

s are
UTE
G
een
n the

SQL/CLI routines 281

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.58 SetEnvAttr

6.58 SetEnvAttr

Function

Set the value of an SQL-environment attribute.

Definition

SetEpvAttr (

FnvironmentHandle IN INTEGER,
\ttribute IN INTEGER,
Value IN ANY,
StringlLength IN INTEGER)

RETURNS SMALLINT

General Rules

1)

2)

3)
4)

5)

6)

282 Call-Level Interface (SQL/CLI)

Case:

3) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies an allo
skeleton SQL-environment, then an exception condition is raised: CLI-specific condition — inv
handle.

) Otherwise:
i) Let E be the allocated SQL-environment identified by EnvironmentHandle.
i) The diagnostics area associated with E is emptied.

f there are any allocated SQL-connections associated with E, then an exception condition is raised:
$pecific condition — attribute cannot be set now.

| et A be the value of Attribute.

f A is not one of the code values in Table 16, “Codes used for environment attributes”, then an exce
ondition is raised:- € -specific condition — invalid attribute identifier.

f A indicates NULL TERMINATION, then
Case:

q) Ifi\value indicates TRUE, then null termination for E is set to True.

) -If Value indicates FALSE, then null termination for E is set to False.

Cated
blid

CLI-

ption

¢) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.
If A specifies an implementation-defined environment attribute, then
Case:

a) If the data type for the environment attribute is specified as INTEGER in Table 20, “Data types
attributes”, then the environment attribute is set to the value of Value.

of

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.58 SetEnvAttr

b) Otherwise:
i) Let S be the value of StringLength.
i) Case:
1) If SLis not negative, then let L be S_.

2) It 3L indicates NULL TERMINATED, then let L be the number ot octets ot Valuge. tiat
precede the implementation-defined null character that terminates a C character’string.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid string | ength
or buffer length.

iii) The environment attribute is set to the first L octets of Value.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 283

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I
6.59

EC 9075-3:2016(E)
SetStmtAttr

6.59 SetStmtAttr

Fun

ction

Set the value of an SQL-statement attribute.

Def

SetS

Ger
1)
2)
3)
i
4)
5)

nition

EmtAttr (

StatementHandle IN INTEGER,
\ttribute IN INTEGER,
Value IN ANY,
StringlLength IN INTEGER)

RETURNS SMALLINT

eral Rules

et She the allocated SQL-statement identified by StatementHandle.
et A be the value of Attribute.

f A is not one of the code values in Table 18, “Codes-Used for statement attributes”, or if A is one of
ode values in Table 18, “Codes used for statement attributes”, but the row that contains A contains
n the 'May be set' column, then an exception condition is raised: CLI-specific condition — invalid attn
entifier.

et V be the value of Value.

Case:

) If Aindicates APD_HANDLE, then:
i) Case:

1) If V doesnot identify an allocated CLI descriptor area, then an exception condition
rajsed:’CLI-specific condition — invalid attribute value.

ALLOC_TYPE field for DA.
i) Case:
1) If AT indicates AUTOMATIC but DA is not the application parameter descriptor assoq

the
No'
ibute

w

2) ~Otherwise, let DA be the CLI descriptor area identified by V and let AT be the value ¢f the

iated

with S thon an aveantinn canditian ic ratcad- Cl 1_cnecific caondition mvalid rica
WS- tHeRaH-exEe pHoR-CoRGHHE RIS S a—or-SPecHE-CeRaH0R HvaHaeHSe

f

automatically-allocated descriptor handle.

2) Otherwise, DA becomes the current application parameter descriptor for S

b) If Aindicates ARD_HANDLE, then:

284

i) Case:

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.59 SetStmtAttr

1) If Vdoes not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition — invalid attribute value.
2) Otherwise, let DA be the CLI descriptor area identified by V and let AT be the value of the
ALLOC_TYPE field for DA.
i) Case:
1) If AT indicates AUTOMATIC but DA is not the application row descriptor associated with
S then an exception condition is raised: CLI-specific condition — invalid use of-automati-
cally-allocated descriptor handle.
2) Otherwise, DA becomes the current application row descriptor for S
) If Alindicates CURSOR SCROLLABLE, then
Case:
i) If the implementation supports scrollable cursors, then:
1) Ifanopen CLI cursor is associated with S then an exception condition is raised: CLI-specific
condition — attribute cannot be set now.
2) Case:

i) Otherwise, an exception condition is raised: CLI-specific condition — optional feature npt
implemented.

¢) If Aindicates CURSOR SENSITIVITY, then

A) If Vindicates NONSCROLLABLE cthien the CURSOR SCROLLABLE attribufe of
Sis set to NONSCROLLABLE.

B) If Vindicates SCROLLABLEthen the CURSOR SCROLLABLE attribute of Sis set
to SCROLLABLE.

C) Otherwise, an exceptiormrcondition is raised: CLI-specific condition — invalid attifibute
value.

Case:
i) If the implementation supports cursor sensitivity, then
Case:
1) Ifanopen CLI cursor is associated with S then an exception condition is raised: CLI-specific
condition — attribute cannot be set now.
2) Case:

A) If Vindicates ASENSITIVE, then the CURSOR SENSITIVITY attribute of Sis set
to ASENSITIVE.

B) If Vindicates INSENSITIVE, then the CURSOR SENSITIVITY attribute of Sis set
to INSENSITIVE.

C) If Vindicates SENSITIVE, then the CURSOR SENSITIVITY attribute of Sis set to
SENSITIVE.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 285

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.59 SetStmtAttr

D) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute
value.

i) Otherwise, an exception condition is raised: CLI-specific condition — optional feature not
implemented.

If A indicates METADATA ID, then

1)

h)

Case:

i) If V indicates FALSE, then the METADATA ID attribute of Sis set to FALSE.

i) If Vindicates TRUE, then the METADATA ID attribute of Sis set to TRUE,

iii) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute value.

If A indicates CURSOR HOLDABLE, then

Case:

i) If the implementation supports cursor holdability, then
Case:

1) Ifanopen CLI cursor is associated with S then‘an exception condition is raised: CLI-specific
condition — attribute cannot be set now,

2) Case:

A) If Vindicates NONHOLDABLE, then the CURSOR HOLDABLE attribute of Bis
set to NONHOLDABLE.

B) If Vindicates HOLDABLE, then the CURSOR HOLDABLE attribute of Sis sdt to
HOLDABLE.

C) Otherwise, an exéeption condition is raised: CLI-specific condition— invalid attifibute
value.

i) Otherwise, an exeeption condition is raised: CLI-specific condition — optional feature npt
implementegd

If A indicates, CURRENT OF POSITION, then
Case:

i) Ifithere is no open CLI cursor CRassociated with S then an exception condition is raised:|CLI-
Specific condition — Invalid cursor state.

) If Vis greater than the ARRAY _SIZE field of the application row descriptor associated with

h

iii) If the operational scrollability property of CRis not SCROLL, then an exception condition is
raised: CLI-specific condition — invalid cursor position.

iv) Otherwise, the current row within the fetched rowset associated with Sis set to V.
If Alindicates NEST DESCRIPTOR, then

Case:

286 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.59 SetStmtAttr

)] If there is a prepared statement associated with StatementHandle, then an exception condition
is raised: CLI-specific condition — function sequence error.

i) Otherwise,
Case:
1) If Vindicates FAI SE, then the NEST DESCRIPTOR attribute of Sis set to FAL SE
2) If Vindicates TRUE, then the NEST DESCRIPTOR attribute of Sis set to TRUE.

3) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribjfite
value.

6) If Aspecifies an implementation-defined statement attribute, then
Case:

q) If the data type for the statement attribute is specified as INTEGER in Table 20, “Data types of
attributes”, then the statement attribute is set to the value of Value.

) Otherwise:
i) Let S be the value of StringLength.
i) Case:

1) If SLis not negative, then let L be S,

2) If SLindicates NULL TERMINATED, then let L be the number of octets of Value t:l:at
precede the implementation-defined null character that terminates a C character string.

3) Otherwise, an exception cendition is raised: CLI-specific condition — invalid string | ength
or buffer length.

iii) The statement attribute is.set to the first L octets of Value.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 287

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

6.60 SpecialColumns

Function

Return a result set that contains a list of columns the combined values of which can uniquely identify any row
withip a single specified table described by the Information Schemas of the connected data source

Definition

SpecjalColumns (

StatementHandle IN INTEGER,
IdentifierType IN SMALLINT,
CatalogName IN CHARACTER(L1),
amelLengthl IN SMALLINT,
SchemaName IN CHARACTER(L2),
amelLength2 IN SMALLINT,
fableName IN CHARACTER(L3),
amelLength3 IN SMALLINT,
Scope IN SMALLINT,
ullable IN SMALLINT)

RETURNS SMALLINT

wherp each of L1, L2, and L3 has a maximum value equal t@’the implementation-defined maximum length of
a var|able-length character string.

General Rules

1) lLet She the allocated SQL-statement identified by StatementHandle.

174

2) If an open CLI cursor is associated With S then an exception condition is raised: invalid cursor statg.
3) lLet C be the allocated SQL-connection with which Sis associated.
4) lLet EC be the established-SQL-connection associated with C and let SShe the SQL-server on that conneftion.
5) ILet SPECIAL_COLUMNS QUERY be a table, with the definition:

REATE TABLE/ASPECIAL_COLUMNS_QUERY (

SCOPE SMALLINT,

COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
DATA_TYPE SMALLINT NOT NULL,

JYPE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_SIZE INTEGER,

BUFFER_LENGTH INTEGER,

DECIMAL_DIGITS SMALLINT,

PSEUDO_COLUMN SMALLINT)

6) SPECIAL_COLUMNS QUERY contains a row for each column that is part of a set of columns that can
be used to best uniquely identify a row within the tables listed in SSs Information Schema TABLES view.
Some tables may not have such a set of columns. Some tables may have more than one such set, in which
case it is implementation-dependent as to which set of columns is chosen. It is implementation-dependent
as to whether a column identified for a given table is a pseudo-column.

288 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — Al rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

7)

8)

9)

10) Kor each row of SPECIAL_COLUMNS QUERY:

©ISO/IEC 2016 — All rights reserved

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

a) Let SUP be the value of Supported that is returned by the execution of GetFeaturelnfo with FeatureType
='FEATURE' and Featureld ='C041' (corresponding to the feature “Information Schema metadata

constrained by privileges™).
b) Case:

i) If th_e vall_Je of UP is 1 (one), then Table 29, “Codes and _data types for imp_leme_ntgtion i

in SSs Iﬁform,ation Schema COLUMNS view and each implementation-dependent pseu
column.

Information Schema COLUMNS view and each implementation-dependent pseudo-colu
accordance with implementation-defined authorization criteria.

f the value of IdentifierType is other than the code for BEST ROWID in Tablg 39} “Column types 3
gcopes used with Special Columns”, or an implementation-defined extension to-that table, then an exce
¢ondition is raised: CLI-specific condition — column type out of range.

$COPE SESSION in Table 39, “Column types and scopes used with SpecialColumns”, or an implen
tion-defined extension to that table, then an exception condition(is raised: CLI-specific condition — §
put of range.

f the value of Nullable is other than the code for NO NULLES or NULLABLE in Table 39, “Column
dnd scopes used with SpecialColumns”, then an exception condition is raised: CLI-specific conditio
nullable type out of range.

q4) Thevalue of SCOPE in SPECIAL_COEUMNS QUERY is either the code for one of SCOPE CURR

used with SpecialColumns”, or-it\is an implementation-defined value, determined as follows:
Case:

i) If the value that uniquely identifies a row is only guaranteed to be valid while positioned
that row, then, the code is that for SCOPE CURRENT ROW.

i) If the value-that uniquely identifies a row is only guaranteed to be valid for the current tra
tionthen the code is that for SCOPE TRANSACTION.

iii) _Ifthe value that uniquely identifies a row is only guaranteed to be valid for the current S
session, then the code is that for SCOPE SESSION.

ivY ~ Otherwise, the value is implementation-defined.

f the value of Scope is other than the code SCOPE CURRENT ROW;, SCOPE TRANSACTION, of

nfor-

i) Otherwise, SPECIAL_COLUMNS_QUERY contains a row for each identifying Column i SSs

mn in

nd
ption

enta-
cope

types
’] J—

ENT

ROW, SCOPE TRANSACTION, pr:SCOPE SESSION from Table 39, “Column types and scopes

on

nsac-

RL-

UMN_NAME column in the COLUMNS view.

¢) The value of DATA_TYPE in SPECIAL_COLUMNS QUERY is derived from the values of the
DATA _TYPE and INTERVAL_TYPE columns in the COLUMNS view as follows:
Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of

DATA_TYPE in SPECIAL_COLUMNS QUERY is the appropriate Code from Table 33, “Codes

SQL/CLI routines 289

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

Case:

i)

vi)

that is the character_string by which the data type is known at the data source.

@) The value of COLUMN_SIZE in SPECIAL_COLUMNS QUERY is

used for concise data types”, that matches the interval specified in the INTERVAL_TYPE

column in the COLUMNS view.

Otherwise, the value of DATA_TYPE in SPECIAL_COLUMNS _QUERY is the appropriate
Code from Table 33, “Codes used for concise data types”, that matches the data type specified

in the DATA_TYPE column in the COLUMNS view.

If the value of DATA_TYPE in the COLUMNS view is 'CHARACTER')'éHARACTER
VARYING', 'CHARACTER LARGE OBJECT', 'BINARY", 'BINARY/'VARYING', or 'BIN
LARGE OBJECT!, then the value is that of the CHARACTER_MAXIMUM_LENGTH
same row of the COLUMNS view.

If the value of DATA_TYPE in the COLUMNS view is 'DECIMAL' or 'NUMERIC', the
value is that of the NUMERIC_PRECISION column in the same row of the COLUMNS

If the value of DATA_TYPE in the COLUMNS vieinv is 'SMALLINT', 'INTEGER', 'BIG
'FLOAT', 'DECFLOAT",'REAL"', or'DOUBLE PRECISION', then the value is implementz
defined.

If the value of DATA_TYPE in the COLUMNS view is'DATE', TIME', TIMESTAMP', "1
WITH TIME ZONE', or TIMESTAMPWITH TIME ZONE!', then the value of COLUMN
is that derived from SR 39), in Subglause 6.1, “<data type>", of [ISO9075-2], where the

value

ARY
n the

h the
View.

INT',
ition-

[IME
SIZE
value

of <time fractional seconds precision> is the value of the NUMERIC_PRECISION column in

the same row of the COLUMNS-view.

If the value of DATA_TYPE’in the COLUMNS view is 'INTERVAL', then the value of
COLUMN_SIZE is that derived from the General Rules of Subclause 10.1, “<interval qualif
of [1ISO9075-2], where:

1) The valueof-<interval qualifier> is the value of the INTERVAL_TYPE column in th
same row of the COLUMNS view.

2) Thevalue of <interval leading field precision> is the value of the INTERVAL_PRECI
column in the same row of the COLUMNS view.

3)~ The value of <interval fractional seconds precision> is the value of the NUMERIC |
CISION column in the same row of the COLUMNS view.

If the value of DATA_TYPE in the COLUMNS view is 'REF', then the value is the lengt

er>n,

bION

PRE-

hin

octets of the reference type.

vii)

Otherwise, the value is implementation-dependent.

f) The value of BUFFER_LENGTH in SPECIAL_COLUMNS QUERY is implementation-defined.

NOTE 55 — The purpose of BUFFER_LENGTH is to record the number of octets transferred for the column with a
Fetch routine, a FetchScroll routine, or a GetData routine when the TYPE field in the application row descriptor indicates
DEFAULT. This length excludes any null terminator.

g) The value of DECIMAL_DIGITS in SPECIAL_COLUMNS QUERY is:

290 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

11)
12)

13)

14)

15)

16)

©ISO/IEC 2016 — All rights reserved

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

Case:

i) If the value of DATA_TYPE in the COLUMNS view is one of 'DATE', TIME', TIMESTAMP',
‘TIME WITH TIME ZONE', or TIMESTAMP WITH TIME ZONE', then the value of DECI-
MAL_DIGITS in SPECIAL_COLUMNS QUERY is the value of the DATETIME_PRECISION

column in the COLUMNS view.

LEth 1 £INATA _TN/DC o COLLIMNMMG 3

)

cl)

)

d l)
b)

et NL1, NL2, and NL3 be the values of NameLengthl, NameLength2, and NameLength3, respecti

et CATVAL, SCHVAL, TBLVAL, SCPVAL, and NULVAL be the-values of CatalogName, SchemaNg
qnd TableName, Scope, and Nullable respectively.

f the METADATA ID attribute of Sis TRUE, then:

f TableName is a null pointer, then(an*exception condition is raised: CLI-specific condition — invali
of null pointer.

f CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
tio zero. If TableName is a\null pointer, then NL3 is set to zero.

Case:

) o A o
LLYJ IMTUIT VATuT UT AT T TT L TTUIC OCULUIVITNOD VICVY 1o UTTC UT TNYUIVIETINTGC , L UTIVIAL]

'SMALLINT', INTEGER', or 'BIGINT, then the value of DECIMAL_DIGITS in SPE=
CIAL_COLUMNS _QUERY is the value of the NUMERIC_SCALE column in the COLU
view.

iii) Otherwise, the value of DECIMAL_DIGITS in SPECIAL_COLUMNS QUERY is the ny
value.

The value of PSEUDO_COLUMN in SPECIAL_COLUMNS QUERY is the'\cade for one of PSE
UNKNOWN, NOT PSEUDO, or PSEUDO from Table 39, “Column types-and scopes used wit|
SpecialColumns”. The algorithm used to set this value is implementation-dependent.

If CatalogName is a null pointer and the value of the CATALOG NAME information type from

£ INILINACDIAO! 'INCAINAALY

MINS

UDO

ely.
me,

Table 29, “Codes and data types for implementation information”, is "Y', then an exception condlition

is raised: CLI-specific condition — invalid use of null pointer.

If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condition -
invalid use of null pointer.

If NL1 is not negative, then let L be NL1.

If NL -indicates NULL TERMINATED, then let L be the number of octets of CatalogName that pr
the_implementation-defined null character that terminates a C character string.

Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or b

d use

is set

pcede

Liffer

length.

Let CATVAL be the first L octets of CatalogName.
17) Case:

a)
b)

If NL2 is not negative, then let L be NL2.

If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that

precede the implementation-defined null character that terminates a C character string.

SQL/CLI routines 291

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.
Let SCHVAL be the first L octets of SchemaName.
18) Case:

.) 3
I) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that.pr¢cede

the implementation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

et TBLVAL be the first L octets of TableName.
19) Case:
3) Ifthe METADATA ID attribute of Sis TRUE, then:
)] Case:
1) If the value of NL1 is zero, then let CATSTR be‘azero-length string.
2) Otherwise,
Case:

A) If SUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = "'~ and if SUB-
STRING(TRIM("CATVALY) FROM CHAR_LENGTH(TRIM("CATVAL")) FOR| 1)
= """ then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("CGATVAL") FROM 2
FOR CHAR_LENGTH(TRIM("CATVAL")) - 2)

and let CATSTR be the character string:
TABLE_CAT = "TEMPSTR" AND
B) . Otherwise, let CATSTR be the character string:
UPPER(TABLE_CAT) = UPPER("CATVAL") AND
i) Case:
1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM("SCHVAL®) FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("SCHVAL") FROM CHAR_LENGTH(TRIM("SCHVAL")) FOR 1)
= """, then let TEMPSTR be the value obtained from evaluating:

292 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

SUBSTRING(TRIM("SCHVAL") FROM 2
FOR CHAR_LENGTH(TRIM("SCHVAL®)) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = "TEMPSTR® AND

B) Otherwise, let SCHSTR be the character string:
UPPER(TABLE_SCHEM) = UPPER("SCHVAL") AND
iii) Case:
1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.
2) Otherwise,

Case:

A) If SUBSTRING(TRIM("TBLVAL") FROM 1 FOR. 1) = "'~ and if SUB-
STRING(TRIM(*TBLVAL®) FROM CHAR_IENGTH(TRIM(*TBLVAL™)) FOR| 1)
= """, then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("TBLVAL") FROM,2
FOR CHAR_LENGTH(TRIM("TBLVAL®)) - 2)

and let TBLSTR be the characterstring:
TABLE_NAME = “TEMPSTRI“AND

B) Otherwise, let TBLSTR be the character string:
UPPER(TABLE_(NAME) = UPPER("TBLVAL") AND

) Otherwise:

i) If the value of NIL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSIR be
the charactér string:

TABLE.CAT = "CATVAL" AND

i) Ifithe value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCH$TR
be the character string:

TABLE_SCHEM = "SCHVAL®" AND

1) It the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

TABLE_NAME = "TBLVAL" AND
20) Let the value of SCPSTR be the character string:

SCOPE >= SCPVAL

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 293

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.60 SpecialColumns

21) Let PRED be the result of evaluating:
CATSTR || * = Il SCHSTR || = = || TBLSTR || = = || SCPSTR

22) Case:
a) If NULVAL is equal to the code for NO NULLS in Table 27, “Miscellaneous codes used in CLI”,

dIIU ally UI lllﬂ TOWS bBIBle‘U Uy I.IIU dUUVB query VVUUIU UEbblIUU d LUIUIIIII IUI VVIIILII lIIE leue LI

IS NULLABLE column in the COLUMNS view is 'YES', then let STMT be the character string:

SELECT *

FROM SPECI AL_COLUWNS QUERY
WHERE 1 = 2 - select no rows
ORDER BY SCOPE

) Otherwise, let STMT be the character string:

SELECT *

FROM SPECI AL_COLUWMNS_QUERY
WHERE PRED

ORDER BY SCOPE

23) [ExecDirect is implicitly invoked with Sas the value of StatementHandle, STMT as the value of Stateent-
Text, and the length of STMT as the value of TextLength,

294 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.61 StartTran

6.61 StartTran

Function

Explicitly start an SQL-transaction and set its characteristics.

Definition

StargTran (
HandleType IN SMALLINT,
Handle IN INTEGER,
\ccessMode IN INTEGER,
I solationLevel IN INTEGER)

Gen

1)
2)

3)

(

3)

RETURNS SMALLINT

eral Rules

et HT be the value of HandleType and let H be the value of Handle.

Case:

If HT indicates STATEMENT HANDLE, then

Case:

i)

f HT is not one of the code values in Table 14, “Codes used-for SQL/CLI handle types”, then an exception
ondition is raised: CLI-specific condition — invalid handie.

If H does not identify an.allecated SQL-statement, then an exception condition is raised:|CLI-
specific condition — invalid handle.

i)

i) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute identifier.
b) If HT indicates DESCRIPTOR HANDLE, then

Case:

i) If Hoés not identify an allocated CLI descriptor area, then an exception condition is rajsed:

CLI=specific condition — invalid handle.
i) Otherwise, an exception condition is raised: CLI-specific condition — invalid attribute idenfifier.
) ¥ HT indicates CONNECTION HANDLE, then
Case:
i) If H does not identify an allocated SQL-connection, then an exception condition is raised: CLI-

specific condition — invalid handle.
Otherwise:
1) Let Cbe the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 295

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.61 StartTran

4)

5)

6)

7)
8)

9)

10) B

296 Call-Level Interface (SQL/CLI)

3) Case:

A) Ifthere is no established SQL-connection associated with C, then an exception condi-

tion is raised: connection exception — connection does not exist.
B) Otherwise, let EC be the established SQL-connection associated with C.

4) If Chas an associated established SQI -connection that is active, then let .1 be a lis

con-

taining EC; otherwise, let L1 be an empty list.
@) If HT indicates ENVIRONMENT HANDLE, then
Case:

i) If H does not identify an allocated SQL-environment or if it identifies an‘allocated SQL-
ronment that is a skeleton SQL-environment, then an exception conditionis raised: CLI-sp)
condition — invalid handle.

i) Otherwise:
1) Let E be the allocated SQL-environment identified by<H:
2) The diagnostics area associated with E is emptied:s

3) LetL be alist of the allocated SQL-connections associated with E. Let L1 be a list
allocated SQL-connections in L that have-amnassociated established SQL-connectior
is active.

f an SQL-transaction is currently active on any of the'SQL-connections contained in L1, then an exce
ondition is raised: invalid transaction state — active SQL-transaction.

et AM be the value for AccessMode. If ANDis not one of the codes in Table 32, “Values for TRAN

iinvalid attribute identifier.

et IL be the value for Isolationl.evel. If IL is not one of the codes in Table 31, “Values for TRANSAC]

invalid attribute identifier,
et TXN be the SQL-transaction that is started by this invocation of the StartTran routine.

f READ ONLY .is-specified by AM, then the access mode of TXN is set to read-only. If READ WR
is specified by-AM, then the access mode of TXN is set to read-write.

The isolation level of TXN is set to an implementation-defined isolation level that will not exhibit an
ﬂhe phenoniena that the isolation level indicated by TIL would not exhibit, as specified in Table 9, “§
ransaction isolation levels and the three phenomena”, in [ISO9075-2].

envi-
Ecific

f the
that

ption

bAC-

TION ACCESS MODE with StartTran®,[then an exception condition is raised: CLI-specific conditign —

[ION

SOLATION OPTION with StattTran”, then an exception condition is raised: CLI-specific condition —

TE

y of
bQL-

Nc ctartad in aach SOl _cannaction cantaitnad in 1 1
HNHSSeHReaHR-eatho'gi=-60RRecHOR-CoRtaReaH==

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:20
6.62 TablePriv

6.62 TablePrivileges

Function

16(E)
ileges

Return a result set that contains a list of the privileges held on the tables whose names adhere to the requested

patte

Def

Tabl

wher
avar

Ger
1)
2)
3)
4)
5)

rn(s) within tables described by the Information Schemas of the connected data source
nition

bPrivileges (

StatementHandle IN INTEGER,

CatalogName IN CHARACTER(L1),

amelLengthl IN SMALLINT,

SchemaName IN CHARACTER(L2),

amelLength2 IN SMALLINT,

FableName IN CHARACTER(L3),

amelLength3 IN SMALLINT)

RETURNS SMALLINT

b each of L1, L2, and L3 has a maximum value equal to the implementation-defined maximum leng
able-length character string.

eral Rules

| et She the allocated SQL-statement identified\by StatementHandle.

et C be the allocated SQL-connection with which Sis associated.
et EC be the established SQL-cennection associated with C and let SShe the SQL-server on that conne

| et TABLE_PRIVILEGES-QUERY be a table, with the definition:

REATE TABLE TABLE_PRIVILEGES_QUERY (

TABLE_CAT CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
TABLE_NAME CHARACTER VARYING(128) NOT NULL,
GRANTOR CHARACTER VARYING(128) NOT NULL,
GRANTEE CHARACTER VARYING(128) NOT NULL,
PRINVILEGE CHARACTER VARYING(128) NOT NULL,
1S_GRANTABLE CHARACTER VARYING(3) NOT NULL,

f an open CLI cursor is associated with S'then an exception condition is raised: invalid cursor stat¢.

th of

174

ction.

WITH_HIERARCHY CHARACTER VARYING(254) NOT NULL)

6) TABLE_PRIVILEGES QUERY contains a row for each privilege in SSs Information Schema
TABLE_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeaturelnfo with FeatureType
= 'FEATURE' and Featureld = 'C041' (corresponding to the feature “Information Schema metadata
constrained by privileges”).

b) Case:

©ISO/IEC 2016 — All rights reserved

SQL/CLI routines 297

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.62 TablePrivileges

)] If the value of SUP is 1 (one), then TABLE PRIVILEGES QUERY contains a row for each

privilege in SSs Information Schema TABLE_PRIVILEGES view.

i) Otherwise, TABLE_PRIVILEGES QUERY contains a row for each privilege in SSs Information

Schema TABLE_PRIVILEGES view that meets implementation-defined authorization cri

7) For each row of TABLE_PRIVILEGES QUERY:

teria.

cl)

)

1)

)

8) Let NL1, NL2, and NL3 be the values:of NameLengthl, NameLength2, and NamelLength3, respecti

9) lLet CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and TableName]
flespectively.

10) If the METADATA 1D attribute of Sis TRUE, then:

3)

)

11) IfCatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2

If the implementation does not support catalog names, then TABLE_CAT is the null value; othen
the value of TABLE_CAT in TABLE_PRIVILEGES QUERY is the value of the TABLE_CATA
column in the TABLE_PRIVILEGES view in the Information Schema.

The value of TABLE_SCHEM in TABLE_PRIVILEGES QUERY is the value of the TABLE_SCH
column in the TABLE_PRIVILEGES view.

The value of TABLE_NAME in TABLE_PRIVILEGES QUERY is the valug of the TABLE_NA
column in the TABLE_PRIVILEGES view.

Wise,
| OG

EMA

ME

The value of GRANTOR in TABLE_PRIVILEGES QUERY is the value of the GRANTOR colémn

in the TABLE_PRIVILEGES view.

The value of GRANTEE in TABLE_PRIVILEGES QUERY isthe value of the GRANTEE column in

the TABLE_PRIVILEGES view.

The value of PRIVILEGE in TABLE_PRIVILEGES, QUERY is the value of the PRIVILEGE_T
column in the TABLE_PRIVILEGES view.

The value of IS_GRANTABLE in TABLE_PRIVILEGES QUERY is the value of the IS_ GRANTA
column in the TABLE_PRIVILEGES view,

The value of WITH_HIERARCHY in FABLE PRIVILEGES QUERY is the value of the
WITH_HIERARCHY column in the TABLE_PRIVILEGES veiw.

If CatalogName.is’a null pointer and the value of the CATALOG NAME information type from

YPE

BLE

ely.

Table 29, “Codes and data types for implementation information”, is "Y', then an exception condlition

is raised:<CLI-specific condition — invalid use of null pointer.

If SehemaName is a null pointer or if TableName is a null pointer, then an exception condition
raised: CLI-specific condition — invalid use of null pointer.

is set

0 Zero. IT TableName is a nullpointer, then NC31S Set 10 Zero.
12) Case:

a)
b)

298 Call-Level Interface (SQL/CLI)

If NL1 is not negative, then let L be NL1.

If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that precede

the implementation-defined null character that terminates a C character string.

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.62 TablePrivileges

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

Let CATVAL be the first L octets of CatalogName.
13) Case:

.) 5
I) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName.thg

precede the implementation-defined null character that terminates a C character string.

—t

) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

| et SCHVAL be the first L octets of SchemaName.
14) Case:
q) If NL3is not negative, then let L be NL3.

b) If NL3indicates NULL TERMINATED, then let L be the numbet of octets of TableName that pr¢cede
the implementation-defined null character that terminates a-C<{character string.

) Otherwise, an exception condition is raised: CLI-specific‘condition — invalid string length or buffer
length.

et TBLVAL be the first L octets of TableName.
15) Case:
q) If the METADATA ID attribute of Sis TRUE, then:
i) Case:
1) If the value of NL1\is/'zero, then let CATSTR be a zero-length string.
2) Otherwise:
Case:

A) JHSUBSTRING(TRIM("CATVAL") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("CATVAL") FROM CHAR_LENGTH(TRIM("CATVAL")) FOR| 1)
= """ then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("CATVAL") FROM 2
FOR CHAR_LENGTH(TRIM("CATVAL®)) - 2)

and let CATSTR be the character string:

TABLE_CAT = "TEMPSTR" AND
B) Otherwise, let CATSTR be the character string:
UPPER(TABLE_CAT) = UPPER("CATVAL") AND
i) Case:
1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 299

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.62 TablePrivileges

2) Otherwise:

Case:

A) If SUBSTRING(TRIM("SCHVAL®") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("SCHVAL") FROM CHAR_LENGTH(TRIM(*SCHVAL")) FOR 1)
= """, then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM("SCHVAL") FROM 2
FOR CHAR_LENGTH(TRIM("SCHVAL®)) - 2)

and let SCHSTR be the character string:
TABLE_SCHEM = "TEMPSTR" AND
B) Otherwise, let SCHSTR be the character string:
UPPER(TABLE_SCHEM) = UPPER("SCHVAL") AND
iii) Case:
1) If the value of NL3 is zero, then let TBLSTR be a-zero-length string.
2) Otherwise:

Case:

A) If SUBSTRING(TRIM("TBLVAL®) FROM 1 FOR 1) = "'~ and if SUB-
STRING(TRIM("TBLVAL ")~FROM CHAR_LENGTH(TRIM("TBLVAL")) FOR| 1)
= """, then let TEMPSTRbe the value obtained from evaluating:

SUBSTRING(TRIM(=TBLVAL") FROM 2
FOR CHAR_LENGTH(TRIM("TBLVAL®)) - 2)

and let TBLSTRbe the character string:
TABLE_NAME = "TEMPSTR® AND

B) Otherwise, let TBLSTR be the character string:
UPPER(TABLE_NAME) = UPPER("TBLVAL") AND

b) Otherwise:

i) Let SPC be the Code value from Table 29, “Codes and data types for implementation infgrma-
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that sgme
table.

i) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with the value
of InfoType set to SPC.

iii) If the value of NL1 is zero, then let CATSTR be a zero-length string; otherwise, let CATSTR be
the character string:

TABLE_CAT = "CATVAL" AND

300 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.62 TablePrivileges

If the value of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHSTR be
the character string:
TABLE_SCHEM LIKE "SCHVAL®" ESCAPE "ESC" AND

If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLSTR be
the character string:

16) et PRED be the result of evaluating:

17) lLet STMT be the character string:

CATSTR |1

$ELECT *

FROM TABLE_PRIVILEGES_QUERY

HERE PRED

RDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, PRIVILEGE

TABLE_NAME LIKE "TBLVAL®" ESCAPE "ESC" AND

=" J] SCHSTR || * " |l TBLSTR || = *] 1=1

18) ExecDirect is implicitly invoked with Sas the value of StatementHandle, STMT as the value of Statefent-

Text, and the length of STMT as the value of TextLength.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 301

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

1SO/I
6.63

EC 9075-3:2016(E)
Tables

6.63 Tables

Function

Based on the specified selection criteria, return a result set that contains information about tables described by
the Information Schema of the connected data source

Def

Tabl

wher
of a

Ger
1)
2)
3)
4)
5)

nition

bs (

StatementHandle IN INTEGER,
CatalogName IN CHARACTER(L1),
amelLengthl IN SMALLINT,
SchemaName IN CHARACTER(L2),
amelLength2 IN SMALLINT,
FableName IN CHARACTER(L3),
amelLength3 IN SMALLINT,
rableType IN CHARACTER(L4),
amelLength4 IN SMALLINT)

RETURNS SMALLINT

b each of L1, L2, L3, and L4 has a maximum value equalto’the implementation-defined maximum |
ariable-length character string.

eral Rules

| et She the allocated SQL-statement identified by StatementHandle.

f an open CLI cursor is associated@with S then an exception condition is raised: invalid cursor stats
et C be the allocated SQL-connection with which Sis associated.

et EC be the established SQL<connection associated with C and let SShe the SQL-server on that conne
| et TABLES QUERY-be-a table with the definition:

REATE TABLE TABLES_QUERY (

TABLE_CAF CHARACTER VARYING(128),
TABLE_SCHEM CHARACTER VARYING(128),
TABLE_NAME CHARACTER VARYING(128),
TABLE_TYPE CHARACTER VARYING(254),
REMARKS CHARACTER VARYING(254),

SELF_REF_COLUMN CHARACTER VARYING(128),

bngth

\174

ction.

REF_GENERATTON CHARACTER VARYING(Z54),

UDT_CAT CHARACTER VARYING(128),
UDT_SCHEM CHARACTER VARYING(128),
UDT_NAME CHARACTER VARYING(128),

UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME))

6) TABLES QUERY contains a row for each table described by SSs Information Schema TABLES view
where:

302

Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

7)

b)

The description of the table TABLES QUERY is:
3)

b)

¢)

ISO/IEC 9075-3:2016(E)
6.63 Tables

Let SUP be the value of Supported that is returned by the execution of GetFeaturelnfo with FeatureType
='FEATURE' and Featureld ='C041' (corresponding to the feature “Information Schema metadata
constrained by privileges™).

Case:
i) If the value of SUP is 1 (one), then TABLES QUERY contains a row for e

o
)

ach row describing

selection privileges.
i) Otherwise, TABLES QUERY contains a row for each row describing a table in SSs Information
Schema TABLES view that meets implementation-defined authorization criteria

The value of TABLE_CAT in TABLES QUERY is the value of the TABLE(CATALOG columrfin
the TABLES view. If SSdoes not support catalog names, then TABLE_CAT is set to the null vglue.

The value of TABLE_SCHEM in TABLES QUERY is the value of the-TABLE_SCHEMA column
in the TABLES view. The value of TABLE_NAME in TABLES QUERY is the value of the
TABLE_NAME column in the TABLES view.

The value of TABLE_TYPE in TABLES QUERY is determiped by the values of the TABLE_T|YPE
column in the TABLES view.

Case:
i) If the value of TABLE_TYPE in the TABLES view is 'VIEW', then
Case:

1) Ifthe defined view is withinthe Information Schema itself, then the value of TABLE_TYPE
in TABLES QUERY issetto 'SYSTEM TABLE".

2) Otherwise, the value-of TABLE_TYPE in TABLES QUERY is set to '"VIEW'.

i) If the value of TABLE _TYPE in the TABLES view is 'BASE TABLE', then the value of
TABLE_TYPE-IR-TABLES QUERY is set to 'TABLE'.

iii) If the value'of TABLE_TYPE in the TABLES view is 'GLOBAL TEMPORARY" or 'LOCAL
TEMPORARY', then the value of TABLE_TYPE in TABLES QUERY is set to that valug.

iv) Otherwise, the value of TABLE_TYPE in TABLES QUERY is an implementation-defingd
valte.

The:value of REMARKS in TABLES QUERY is an implementation-defined description of the {able.
The value of SELF_REF_COLUMN in TABLES QUERY is the value of the SELF_REFEREN[-

ING COL LIMMN _NAME calumn intha TABIL ES viawy
Hro—o oot AE- GO R e A B =E-HEW:

f)

9)

h)

The value of REF_GENERATION in TABLES QUERY is the value of the REFERENCE_GENERA-
TION column in the TABLES view.

The value of UDT_CAT in TABLES QUERY is the value of the USER_DEFINED_TYPE_CATALOG
column in the TABLES view.

The value of UDT_SCHEMA in TABLES QUERY is the value of the
USER_DEFINED_TYPE_SCHEMA column in the TABLES view.

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 303

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.63 Tables

i) The value of UDT_NAME in TABLES QUERY is the value of the USER_DEFINED_TYPE_NAME

column in the TABLES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLengthl, NameLength2, NameLength3, and Name-

Length4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and TYPVAL be the values of CatalogName, SchemaName, TableName,

10)

11)

12)

13)

14)

15)

304 Call-Level Interface (SQL/CLI)

frel To.blcT‘y'pc, rcopCbtiVC:y.
f the METADATA ID attribute of Sis TRUE, then:
3) If CatalogName is a null pointer and the value of the CATALOG NAME informationctype from

is raised: CLI-specific condition — invalid use of null pointer.

) If SchemaName is a null pointer or if TableName is a null pointer, then an €xeeption condition
raised: CLI-specific condition — invalid use of null pointer.

f CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is-a null pointer, then NL2
to zero. If TableName is a null pointer, then NL3 is set to zero. If TableType is a null pointer, then N
get to zero.

Case:
d) If NL1is not negative, then let L be NL1.

) If NL1indicates NULL TERMINATED, then let L beithe number of octets of CatalogName that pr
the implementation-defined null character that terminates a C character string.

) Otherwise, an exception condition is raised:“CLI-specific condition — invalid string length or b
length.

| et CATVAL be the first L octets of CatalogName.
Case:
4) If NL2 is not negative, thénlet L be NL2.

B) If NL2 indicates NULLTERMINATED, then let L be the number of octets of SchemaName thg
precede the implementation-defined null character that terminates a C character string.

¢) Otherwise, an-exception condition is raised: CLI-specific condition — invalid string length or b
length.

et SCHVAL be the first L octets of SchemaName.

Case.

Table 29, “Codes and data types for implementation information”, is "Y', then an exeeption condlition

is set
| 4 is

bcede

Liffer

L d

Liffer

4) 2If NL3 is not negative, then let L be NL3.

b) IfNL3indicates NULL TERMINATED, then let L be the number of octets of TableName that precede

the implementation-defined null character that terminates a C character string.

¢) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer

length.
Let TBLVAL be the first L octets of TableName.

Case:

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.63 Tables

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of TableType that precede
the implementation-defined null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition — invalid string length or buffer
length.

et TYPVAL be the first L octets of ColumnName.
16) Case:
3) If the METADATA ID attribute of Sis TRUE, then:

i) Case:
1) If the value of NL1 is zero, then let CATSTR be a zero-length string.
2) Otherwise,
Case:

A) If SUBSTRING(TRIM("CATVAL") FROM 1{FOR 1) = """~ andif SUB-
STRING(TRIM("CATVAL") FROM CHARSLENGTH(TRIM("CATVAL®)) FOR| 1)
= """ then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM("CATVAL") FROM 2
FOR CHAR_LENGTH (TRIM(TGATVAL®)) - 2)

and let CATSTR be the character string:
TABLE_CAT = "TEMPSTR" AND
B) Otherwise, let CATSTR be the character string:
UPPER(TABLE_.CAT) = UPPER("CATVAL") AND
i) Case:
1) If thevalue of NL2 is zero, then let SCHSTR be a zero-length string.
2) Otherwise,
Case:

A) If SUBSTRING(TRIM(*SCHVAL") FROM 1 FOR 1) = """ and if SUB-
STRING(TRIM("SCHVAL") FROM CHAR_LENGTH(TRIM("SCHVAL")) FOR| 1)
= """, then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM("SCHVAL") FROM 2
FOR CHAR_LENGTH (TRIM("SCHVAL")) - 2)

and let SCHSTR be the character string:
TABLE_SCHEM = "TEMPSTR" AND

B) Otherwise, let SCHSTR be the character string:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 305

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

D

rma-
me

value

'R be

'R be

'R be

6.63 Tables
UPPER(TABLE_SCHEM) = UPPER("SCHVAL") AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.
2) Otherwise

Case:

A) [If SUBSTRING(TRIM(*TBLVAL") FROM 1 FOR 1) = *"~ and if SUB<
STRING(TRIM(*TBLVAL") FROM CHAR_LENGTH(TRIM(*TBLVAL*)) FOR
= """, then let TEMPSTR be the value obtained from evaluating
SUBSTRING (TRIM("TBLVAL®") FROM 2

FOR CHAR_LENGTH (TRIM("TBLVAL"))<#.2)
and let TBLSTR be the character string:
TABLE_NAME = "TEMPSTR" AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER("TBLVAL™) AND
) Otherwise:

)] Let SPC be the Code value from Table-29, “Codes and data types for implementation infq
tion”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in that sg
table.

i) Let ESC be the value of InfaValue that is returned by the execution of GetInfo() with the
of InfoType set to SPC.

iii) Ifthe value of NLL.iszero, then let CATSTR be a zero-length string; otherwise, let CATS]
the character string:

TABLE_CAT =) *CATVAL" AND

iv) Ifthevalue of NL2 is zero, then let SCHSTR be a zero-length string; otherwise, let SCHS]
the tharacter string:

JABLE_SCHEM LIKE "SCHVAL®™ ESCAPE "ESC" AND

V) If the value of NL3 is zero, then let TBLSTR be a zero-length string; otherwise, let TBLS]
the character string:

TABLE_NAME LIKE "TBLVAL® ESCAPE "ESC" AND
17) Case:

a) Ifthe value of NL4 is zero, then let TYPSTR be a zero-length string.

b) Otherwise,

306 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.63 Tables

)] TableType is a comma-separated list of one or more types of tables that are to be returned in
the result set. Each value may optionally be enclosed within <quote> characters. The types are
‘TABLE', VIEW','GLOBAL TEMPORARY','LOCAL TEMPORARY", and 'SYSTEM TABLE".

NOTE 56 — These types are mutually exclusive; for instance, TABLE' includes only user-created base tables
and 'SYSTEM TABLE' includes only views from the Information Schema. Implementation-defined types may
also be specified.

1) Let N be the number of comma-separated values specitied within fable Type.

iii) Let TT be the set of comma-separated values TT;, 1 (one) <i < N, specified within Tableype.

iv) TYPSTRis a string that is the predicate required to select the requested types of-tables frpm
TABLES QUERY:

TABLE_TYPE = === || TRIM(TT) || """ OR
TABLE_TYPE = === || TRIM(TT2) || """ OR
TABLE_TYPE = """ || TRIMCTTY) I ="

18) lLet PRED be the result of evaluating:
CATSTR || " " || SCHSTR || = = || TBLSTR || = = |KJTYPSTR || = = || 1=1
19) Case:

3) If the value of CATVAL is the value in the "Valug“column for ALL CATALOGS in Table 38, “Special
parameter values”, and both SCHVAL and TBLVAL are zero-length strings, then let STMT be thg
character string:

D

SELECT DISTINCT TABLE_CAT,
CAST (NULL AS:VARCHAR(128)),
CAST (NULL“AS VARCHAR(128)),
CAST (NULL’AS VARCHAR(254)),
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY

ORDER BY TABLE_CAT

NOTE 57 — All tables qualify for selection and no privileges are required for access to the underlying TABLE$ view.

i) If the value of SCHVAL is the value in the "Value' column for ALL SCHEMAS in Table 38, “Sgecial
parameter.yalues”, and both CATVAL and TBLVAL are zero-length strings, then let STMT be the
character string:

SEEEGT DISTINCT CAST (NULL AS VARCHAR(128)),
TABLE_SCHEM,
CAST (NULL AS VARCHAR(128)),
CAST—(NULLAS VARGHARE254))
CAST (NULL AS VARCHAR(254))

FROM TABLES_QUERY

ORDER BY TABLE_SCHEM

NOTE 58 — All tables qualify for selection and no privileges are required for access to the underlying TABLES view.
c) If the value of TYPVAL is the value in the 'Value' column for ALL TYPES in Table 38, “Special

parameter values”, and CATVAL, SCHVAL, and TBLVAL are zero-length strings, then let STMT be
the character string:

©ISO/IEC 2016 — All rights reserved SQL/CLI routines 307

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
6.63 Tables

SELECT DISTINCT CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
CAST (NULL AS VARCHAR(128)),
TABLE_TYPE,
CAST (NULL AS VARCHAR(254))
FROM TABLES_QUERY

ORDER _BY TABIE TVDLE

NOTE 59 — All tables qualify for selection and no privileges are required for access to the underlying TABLES view.

@) Otherwise, let STMT be the character string:

SELECT *

FROM TABLES_QUERY

WHERE PRED

ORDER BY TABLE_TYPE, TABLE_CAT, TABLE_SCHEM, TABLE_NAME

20) ExecDirect is implicitly invoked with Sas the value of StatementHandle, STMT as the value of Statefnent-
Text, and the length of STMT as the value of TextLength.

308 Call-Level Interface (SQL/CLI) ©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)
7.1 Effect of opening a cursor

7 Additional data manipulation rules

This [Clause modifies Clause 15, - Additional data manipulation rutes ~, in ISO/TEC 9075-Z.

7.1| Effect of opening a cursor

This Bubclause maodifies Subclause 15.1, ““Effect of opening a cursor™, in ISO/IEC 9075-2.

Function

Spec|fy the effect of opening a cursor that is not a received cursor or CLLprocedural result cursor.

Synttax Rules

INo additional Syntax Rules.

Access Rules

[No additional Access Rules.

General Rules

1) [Insertafter GR 4)a)] If CRis&CLI prepared cursor, then let Sbe the prepared statement that is the cufsor's
origin in CDD.

2) [Insert after GR 4)a) Mf.CR is a CLI prepared cursor, then the operational properties of RSD are the $ame
3s the corresponding.declared properties of CDD.

Conformance-Rules

[No additional Conformance Rules.

©ISO/IEC 2016 — All rights reserved Additional data manipulation rules 309

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

ISO/IEC 9075-3:2016(E)

(Blank page)

310 Call-Level Interface (SQL/CLI)

©ISO/IEC 2016 — All rights reserved

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

8 Dynamic SQL

ISO/IEC 9075-3:2016(E)
8.1 <preparable dynamic cursor name>

This

8.1| <preparable dynamic cursor name>
This

Function

Spec

statefment: positioned>.

For

No a

mat

fidi ti onal Format itens.

Synitax Rules

1) |

)

Case:

to CN.

_lause modities Clause ZU, "Dynamic SJL, 1N TSOMEC YU75-2.

Qubclause modifies Subclause 20.26, ““<preparable dynamic cursor name>"’, in SO/IEC 9075-2.

Replace SR 1)b)i)| The potentially referenced cursors of PDCN include

fy the cursor of a <preparable dynamic delete statement: positioned=>‘or a <preparable dynamic upglate

) 1T PDCN s contained in a<preparable dynamic delete statement: positioned> or <preparable dyramic
update statement: positioned> that is being prepared by a <prepare statement> that is contained|in an
<SQL-client module definition>, then every declared dynamic cursor whose <cursor name> is
equivalent to CN.and whose scope is the containing SQL-client module (minus any <SQL schema

statement>s contaihed in the SQL-client module) and every extended dynamic cursor having a fcon-
ventional dynamic cursor name> that has a scope of the containing SQL-client module (minus gny

<SQL schema statement>s contained in the SQL-client module) and whose <cursor name> is equiyalent

Otherwise, every CLI cursor in the current SQL-session whose <cursor name> is equivalent to [CN.

AccessRutes

No additional Access Rules.

General Rules

No additional General Rules.

©ISO/

IEC 2016 — All rights reserved

Dynamic SQL 311

https://standardsiso.com/api/?name=93ce0bf945e5ed154554ad70bd82970b

