# INTERNATIONAL STANDARD

# ISO 15500-10

First edition 2001-01-15

Corrected version 2003-04-01

# Road vehicles — Compressed natural gas (CNG) fuel system components —

Part 10:

Gas-flow adjuster

Véhicules routiers — Composants des systèmes de combustible gaz naturel comprimé (GNC)

Partie 10: Régulateur du débit de gaz



#### PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

STANDARDESEO.COM. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15500. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the full PDF of 150 15000. Click to view the f

#### © ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 15500 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 15500-10 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 25, Road vehicles using natural gas.

ISO 15500 consists of the following parts, under the general title Road vehicles — Compressed natural gas (CNG) Part 2: Performance and general test methods

Part 3: Check valve

Part 4: Manual valve

Part 5: Manual cylinder valve

Part 6: Act fuel system components:

- Part 6: Automatic valve
- Part 7: Gas injector
- Part 8: Pressure indicator
- Part 9: Pressure regulator
- Part 10: Gas-flow adjuster
- Part 11: Gas/air mixer
- Part 12: Pressure relief valve (PRV)
- Part 13: Pressure relief device (PRD)
- Part 14: Excess flow valve
- Part 15: Gas-tight housing and ventilation hose

iii © ISO 2001 - All rights reserved

## ISO 15500-10:2001(E)

- Part 16: Rigid fuel line
- Part 17: Flexible fuel line
- Part 18: Filter
- Part 19: Fittings

This corrected version of ISO 15500-10:2001 incorporates the following correction:

the pressure, as expressed in kilopascals, has been corrected in 6.3.

STANDARDSISO.COM. Click to view the full PDF of ISO 1.5500-10-12001

## Road vehicles — Compressed natural gas (CNG) fuel system components —

## Part 10:

## **Gas-flow adjuster**

## Scope

This part of ISO 15500 specifies tests and requirements for the gas-flow adjuster, a compressed natural gas fuel system component intended for use on the types of motor vehicles defined in ISO 3833.

This part of ISO 15500 is applicable to vehicles using natural gas in accordance with ISO 15403 (mono-fuel, bi-fuel or dual-fuel applications). It is not applicable to the following:

- a) liquefied natural gas (LNG) fuel system components located upstream of, and including, the vaporizer; ick to view the full
- fuel containers: b)
- stationary gas engines; C)
- d) container mounting hardware;
- electronic fuel management; e)
- f) refuelling receptacles.

It is recognized that miscellaneous components not specifically covered herein can be examined to meet the criteria of this part of ISO 15500 and tested according to the appropriate functional tests.

All references to pressure in this part of ISO 15500 are to be considered gauge pressures unless otherwise NOTE 2 specified.

This part of ISO 15500 is based upon a service pressure for natural gas as a fuel of 20 MPa [200 bar<sup>1</sup>)] settled at 15 °C. Other service pressures can be accommodated by adjusting the pressure by the appropriate factor (ratio). For example, a 25 MPa (250 bar) service pressure system will require pressures to be multiplied by 1,25.

#### 2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 15500. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 15500 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 3833, Road vehicles — Types — Terms and definitions.

© ISO 2001 - All rights reserved

<sup>1)</sup>  $1 \text{ bar} = 0.1 \text{ MPa} = 10^5 \text{ Pa}; 1 \text{ MPa} = 1 \text{ N/mm}^2$ 

### ISO 15500-10:2001(E)

ISO 15403, Natural gas — Designation of the quality of natural gas for use as a compressed fuel for vehicles.

ISO 15500-1, Road vehicles — Compressed natural gas (CNG) fuel system components — Part 1: General requirements and definitions.

ISO 15500-2, Road vehicles — Compressed natural gas (CNG) fuel system components — Part 2: Performance and general test methods.

#### Terms and definitions 3

For the purposes of this part of ISO 15500, the terms and definitions given in ISO 15500-1 apply.

#### Marking 4

Marking of the component shall provide sufficient information to allow the following to be traced Full PDF of 150

- the manufacturer's or agent's name, trademark or symbol;
- the model designation (part number); b)
- the service pressure or pressure and temperature range.

The following additional markings are recommended:

- the direction of flow (when necessary for correct installation) Click to view d)
- the type of fuel;
- electrical ratings (if applicable); f)
- the symbol of the certification agency; g)
- the type approval number;
- the serial number or date code; i)
- reference to this part of ISO 15500. j)

This information can be provided by a suitable identification code on at least one part of the component when it NOTE consists of more than one part.

#### 5 Construction and assembly

The gas-flow adjuster shall comply with the applicable provisions of ISO 15500-1 and ISO 15500-2, and with the tests specified in clause 6 of this part of ISO 15500.

#### **Tests**

#### **Applicability** 6.1

The tests required to be carried out are indicated in Table 1.

Table 1 — Tests applicable

| Test                                     | Applicable            | Test procedure as<br>required by<br>ISO 15500-2 | Specific test requirements of this part of ISO 15500 |
|------------------------------------------|-----------------------|-------------------------------------------------|------------------------------------------------------|
| Hydrostatic strength                     | Х                     | Х                                               | X (see 6.2)                                          |
| Leakage                                  | Х                     | Х                                               | X (see 6.3)                                          |
| Excess torque resistance                 | Х                     | X                                               |                                                      |
| Bending moment                           | Х                     | X                                               |                                                      |
| Continued operation                      | Х                     | Х                                               | X (see 6.4)                                          |
| Corrosion resistance                     | Х                     | Х                                               |                                                      |
| Oxygen ageing                            | Х                     | Х                                               | -0'                                                  |
| Electrical overvoltages                  | Xa                    | Х                                               | SO                                                   |
| Non-metallic synthetic immersion         | Х                     | x                                               | ()                                                   |
| Vibration resistance                     | Х                     | x (S                                            |                                                      |
| Brass material compatibility             | Х                     | X O                                             |                                                      |
| Insulation resistance                    | Xa                    | 00 <sup>k</sup>                                 | X (see 6.5)                                          |
| Minimum opening voltage                  | Xa                    |                                                 | X (see 6.6)                                          |
| a Applicable only if the gas-flow adjust | ter has an electrical | or electronic component.                        | ,                                                    |

## 6.2 Hydrostatic strength

Test the gas-flow adjuster according to the procedure for testing hydrostatic strength specified in ISO 15500-2, at four times the working pressure, or 0,6 MPa (6 bar), whichever is the greater.

#### 6.3 Leakage

Test the gas-flow adjuster at the temperatures of – 40 °C, 20 °C and 120 °C, at a pressure of 150 kPa (1,5 bar).

## 6.4 Continued operation

If it is intended that the gas-flow adjuster be adjusted at the time of installation or service, no continued operation test is required.

However, if the gas-flow adjuster is to be adjusted repeatedly during engine operation, then it shall undergo 100 000 cycles from minimum to maximum flow. At the completion of this test, the gas-flow adjuster shall comply with 6.3 at room temperature.

© ISO 2001 – All rights reserved

#### 6.5 Insulation resistance

This test is designed to check for a potential failure of the insulation between the two-pin coil assembly and the gas-flow adjuster casing.

Apply 1 000 V d.c. between one of the connector pins and the housing of the gas-flow adjuster for at least 2 s. The minimum allowable resistance shall be 240 k $\Omega$ .

#### **Minimum Opening Voltage** 6.6

v for a 24N of the formation of the contraction of The minimum opening voltage at room temperature shall be  $\leqslant$  6 V for a 12 V system and  $\leqslant$  16 V for a 24 V system.

4