INTERNATIONAL ISO
STANDARD 13209-3

Second edition
2022-06

Road vehicles — Open Test'sequence
eXchange format (OTX) <

Part 3:

Standard extensions and
requirements

Véhicules routiers —kormat public d'échange de séquencettests
(0TX) —

Partie 3: Exigences et spécifications des extensions du stanglard

Reference number
1SO 13209-3:2022(E)

© IS0 2022

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

COPYRIGHT PROTECTED DOCUMENT

© 1S0 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © 1S0 2022 - All rights reserved

https://www.iso.org
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

Contents
FOT@WOT. ... oo e oottt
| T 0 X6 L1t () ¢ OSSOSO
1 SCOPIC ...
2 VL0 1 0T U0 AT = =) Q=) (oL <L S
3 Terms, definitions and abbreviated terms ...
3.1 Terms and definitions
3.2 JiN 0] 0 1A = L=Ye I <) @ 0 01N
4 Requirements and recommendations ..., Qq’
4.1 Basic principles for requirements and recommendations definition....(si]./..
4.2 ENEIies PriOTITIES ..o
4.3 Requirement listing
5 EXEENSION OVEIVICW..........oooioooooiooeeeeesesssessese e
5.1
5.2
5.3
6 OTX DateTime extensSion...............ccooooeoeeeecceee,
6.1
6.2
6.2.1 OVEIrVIEW oo S
6.2.2 SYyNtaX.cmicsesieseseeeni (7 N—
6.2.3 SemanticCS ... \,\Q ..
7 OTX DiagCom extension................... @$...
71 GeneralA\ ...
7.2 General considerations............\Q ..
7.2.1 Communication ¢ nels .,
7.2.2 Diagnostic serl'g}rge ..
7.2.3 Diagnostic communication patterns......
7.2.4 Special-purpose diagnostic data types...
7.3 Data tyPes (i)
7.3 OVEIVAEW oo]
73,2 SYEAK e
7.3.3 antics
7.4 Ex %}ns

IS0 13209-3:2022(E)

Overview......

7.%.
&h Syntax..........
é 4.3 Semantics
{V AT =1 o) (<3 ol oYy

% 28T T O 11 7<Y 027 101
7802 Qynfqv
728 T0S T Y=Y 01 = 01 (O
7.6 (o (0)0
7.6 1 OVEIVIEW ..o
7.6.2 ComChannel related actions....................
7.6.3 ComParameter related actions
7.6.4 DiagService related actions................
7.7 B =) 0 0
5 S O =Y T4 =) 320000000
7.7.2 ComChannel related tEITNS. ...

7.7.3 DiagService related terms
7.74 Requestrelated terms
7.7.5 Resultrelated terms...........coc

7.7.6 Response related tEITNS ...

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10

iv

7.7.7 Parameter related terms.............
7.7.8 ComParam related terms
ATAS TR DA V7<) 0o <Y F= (Y6 I <) 0 0.6 1S

OTX DiagDataBrowsing @XT@IISION.... ...

8.1
8.2

8.3

0T 11 = U O
DIATA LY POS it
8.2.1 Overview
8.2.2 Syntax....
8.2.3 Semantics
Variable access..........

8.4

OTX EventHandling eXtenSion ...,

9.1
9.2

9.3

9.4

9.5

8.3.1 Overview q/
8132 SYIIEAK i Q(l, .67

8.3.3 Semantics

8.4.1 Overview
8.4.2 Syntax...... .
ST ST =) 0 =1 6 16 (o3-S p\‘:b X

General
Data LY POS e
O.2.1 OVEIVIBW oo
9.2.2 SyntaX....

9.2.3 Semantics
Variable access.....
9.3.1 Overview
9.3.2 Syntax... 5\ i
9.3.3 S@MANTICS e
ACTIONS ..o R
9.4.1 Overview
9.4.2 Syntax.....
9.4.3 Semantics

9.5.1 Overview... ; .
Lo TR T DA V<Y S Ll =) 6 6 C oo X
9.5.3 Eventsou qg

9.54 Eventp TEY EOTTIYS e .
LTS YRS TN 5 o1<] ¢ 17 1o} 0T <) @ 0 0 1= 00000000 X

OTX Flash ext 4 OSSO .84

10.1
10.?

%@ 02 SYTIEAX e

ﬂ 2.3 Semantics

10.3

10.4

10.5

B C@PTIOTIS e
10.3.1 Overview
10.3.2 Syntax......
10.3.3 Semantics
BT 220 T2 o) <R Lol of Y3
10.4.1 Overview
10.4.2 Syntax.....
10.4.3 Semantics
Actions......ccccccone.
10.5.1 Overview
10.5.2 Syntax.....
10.5.3 Semantics
T0.5:4 EXAIMNPLE oo

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6 Terms......cocccciiiee.
10.6.1 Overview
10.6.2 Flash job related terms
10.6.3 Flash session relat@d tEIINS ... eoeeese e
10.6.4 Flash BIoCK related tOITINS ... sssesssseeseeeee s sssssssssseeeeesse s
10.6.5 Flash block segment related terms
10.6.6 SeCUTity Felated TEITIIS ..o
10.6.7 OWN IdeNt Felated OIS ...oooooooo e
10.6.8 Enumeration relate@d tEITIIS ...

11 OTX HMI extension
11.1 General

11.1.2 Dlalogs(l/
11.1.3 CuStom SCIeeNS........ooomrosioriresieesie
11.1.4 Custom screen usage example
11.2 Datatypes........
11.2.1 Overview..

11.3

11.4

11.4.2 SYNtAX.eeeee e
11.4.3 SemanticCS.....ccooviveevvivenii.
11.5

11.6
11.6.1 Overview.....
11.6.2 Syntax...e.\
11.6.3 Seman@%
11,7 SIGNATUTES ..o
11.71 O iew
11.7.2 tax
11.7 emantics

12 0TX i18n extension
12. 12 =Y o=)
12: DALA EY DS e

%& 12.2.1 Overview..

L2.2.2 SYTIEAX ittt
0 S X35 0 F2 W 0 3R
12.3 Exceptions...........
12.3.1 Overview..
12.3.2 SyntaX......
12.3.3 Semantics......
12.4 Variable access............
B R O =Y 74 <)L
L2402 SYTIEAK oottt
12.4.3 Semantics
12.5 Terms....

12.5.2 Locale settings related terms
12.5.3 Translation relate@d tEITIIS ...

© IS0 2022 - All rights reserved v

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13

14

15

16

Vi

12.5.4 Quantity related terms

OTX LOZGING @XT@IISTIONooocooioee etttk
1S 0 N €71 4T - Y SO
13.2 Datatypes

L3201 OVEIVIBW ootk

L3202 SYIIEAX ittt

13.2.3 Semantics
13.3 Variable access......
13.3.1 Overview
13.3.2 Syntax...
13.3.3 Semantics
1304 ACTIOIIS oo q‘.j{ISO

G T I O 11 2Y 74 1L 2 (19
13.4.2 Syntax.....
13.4.3 Semantics
13.4.4 Example...

13.%

OT]
14.1
14.7

OT]
15.]
15.2

Data types.............
15.2.1 Overview
15.2.2 SyntaX....
15.2.3 Semantics

15.3
154
15.% Si
%s I 7Y T =) V0000
132 SYIIEAX e
5. 53 Semantics
ST T Xod (o) o 100000
15.6.1 Overview
15.6.2 Syntax....
15.6.3 Semantics
T 1 =Y o 5 1=
OTX UANTITIES @XTEIISTON ...t 169
BT T €13 1<) - U 169
L16.2 DAtA Y PO itttk 172

B ST/ R 0 1Y 74 1) YA 172

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

16.3

16.4

Ha
»
gn

IS0 13209-3:2022(E)

16.2.2 SyntaX......
16.2.3 Semantics
Exceptions.........c.....
00 700 S 0)<Y 74 <112
16,32 SYIIEAK oo
16.3.3 Semantics
2T =1 o) (<3 Vol oYy
B O 1Y 74 <L
16.4.2 Syntax....

16.4.3 Semantics

Tornac

17 OTX StringUtil extension

171
17.2

17.3

17.4

17.5

T L T T T ruurnnrnnrrnrannsnnrnmrnnnnnartnannanrasteannansasteannassasneasnasn et eateannnareatnnrnnartnnnrnra TR nnatrettetiattetTeTeetteTTeeTeatTesTreTeeteresreseessrestessessrestesreenee]

LR T8 S 1773 T 1=
16.5.2 Quantity and unit related terms
16.5.3 Overloading SEMANEICS. ... e

General..............
Data types............
17.2.1 Overview..
B) 4 11 - - OSSR st OO
B0 TN Y=Y 11 B 1 1o (o0 . S S
Exceptions
B0 T80 R 0)<Y a7 1<) 12 N
17.3.2 SYITAX it Mttt et
17.3.3 Semantics
Variable access.........

B T 0 1Y a7 1<)
17.4.2 SYTIEAX oottt N e
17.4.3 Semantics

17.5.2 Syntax......
17.5.3 Semantics

Annex A (normative) Comprehensive checker rule listing.............cccfo, 193

Annex B (normative) OTX DiagCom extension data type mappings ... 197

Annex C (normative) OTX DiagMetaData auxiliary for the OTX DiagCom extension....... ... 201

Annex D (informative)OTX DiagComRaw extension for resource-restrained systems....{.......... 206

Annex E (info

Bibjliography

rmative) OTX JOb eXEeNSION ... e 217

©1S0 2022 - All

rights reserved vii

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The proce@lures used to develop this document and those intended for its further maintenanee
described In the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed fof]
different types of ISO documents should be noted. This document was drafted in accordance 'with
editorial ryles of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention i
patent righ
any patent
on the ISO

Any trade
constitute

For an ex]
expression
the World

WWW.iS0.0

5 drawn to the possibility that some of the elements of this document may,be the subjec
ts. ISO shall not be held responsible for identifying any or all such patént'rights. Detail
rights identified during the development of the document will be in the Introduction ang
ist of patent declarations received (see www.iso.org/patents).

hame used in this document is information given for the convenience of users and does
an endorsement.

blanation of the voluntary nature of standards, the.meaning of ISO specific terms
s related to conformity assessment, as well as information about ISO's adherence
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT),
g /iso/foreword.html.

This docuy
Data comm

This secor
technically

The main d
DiagM

EventH
IsEver]

DiagC¢
added

Alist of all

hent was prepared by Technical CommitteeZlSO/TC 22, Road vehicles, Subcommittee SC
unication.

)d edition cancels and replaces thé-first edition (ISO 13209-3:2012), which has b
revised.

hanges are as follows:
ptaData: introduced comehannelGroup and EcuVariantGroup;

landling: introduced

tHasException,

CompositeEventSource, GetEventSourceFromEv|

m: introduced textIdTarget, GetParameterValueTextId,
new chetker rules.

partsdn the ISO 13209 series can be found on the ISO website.

are
the
the

t of
s of
| /or

not

and
to
see

31,

een

ent,

Any feedb

| 43 rlic d ol l1d o ds fad o 1 43 l | dala
CIN UL HUCDLIUIID UIl LIS UUCTUIIITTIU STTUUTU UUT UITUTULULUU LU UIIC USTT O 1Idlivullidl SstdlItudli us Uu

complete listing of these bodies can be found at www.iso.org/members.html.

viil

© IS0 2022 - All rights rese

y. A

rved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/foreword.html
http://www.iso.org/members.html
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Introduction

Diagnostic test sequences are utilized whenever automotive components or functions with

diagnostic

abilities are being diagnosed, tested, reprogrammed or initialized by off-board test equipment. Test
sequences define the succession of interactions between the user (i.e. workshop or assembly line staff),

the diagnostic application (the test equipment) and the vehicle communication interface

as well as

any calculations and decisions that have to be carried out. Test sequences provide a means to define

interactive, guided diagnostics or similar test logic.

Today, the automotive industry mainly relies on paper documentation and/or proprietary authoring

envlironments to document and to implement such test sequences for a specific test application. An

author who is setting up engineering, assembly line or service diagnostic test applicat
to Jmplement the required test sequences manually, supported by non-uniform-tesf
documentation, most likely using different authoring applications and formats fér each s
application. This redundant effort can be greatly reduced if processes and_ tools suppo
congept.

Thg ISO 13209 series proposes an open and standardized format for the human- and machin
desfription of diagnostic test sequences. The format supports the requirements of ti
diagnostic test sequence logic uniformly between electronic system'suppliers, vehicle mar
and| service dealerships/repair shops.

[SO|13209-2 represents the requirements and technical spegification for the fundament
format, namely the "OTX Core". The core describes the basic structure underlying every OTX
This comprises detailed data model definitions of allkrequired control structures by
seqpence logic is described, but also definitions of the’outer, enveloping document structu;

ons needs

sequence
becific test
't the OTX

e-readable
ansferring
ufacturers

bf the OTX
document.
which test
e in which
| extension

test sequence logic is embedded. To achieve extensibility the core also contains well-defineq
points that allow a separate definition of additional OTX features—without the need to chanjge the core
dath model.

Thi
des
con
med
con

5 document extends the core by a set 0f-additional features, using the extension mecha
Cribed in ISO 13209-2. The extensions defined herein comprise features which allow
munication to a vehicle's diagnostic interface, flashing, executing diagnostic jobs,
lsurement equipment, internationalisation, working with physical units, accessing the en
munication via a human magchine interface (HMI) and other utility extensions.

nism rules
diagnostic
controlling
vironment,

© IS0 2022 - All rights reserved

ix

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

INTERNATIONAL STANDARD

ISO 13209-3:2022(E)

Road vehicles — Open Test sequence eXchange format
(0TX) —

Part 3:
Standard extensions and requirements

1 (Scope

Thif document defines the Open Test sequence eXchange (OTX) extension requirements and data model
spefifications.

Theg requirements are derived from the use cases described in ISO 13209-1xThey are listed ih Clause 4.
The data model specification aims at an exhaustive definition of allfgatures of the OTX |extensions
which have been implemented to satisfy the requirements. This document establishes ryles for the
synkactical entities of each extension. Each of these syntactical entities is accompanied by semantic
rulgs which determine how OTX documents containing extension features are to be intergreted. The
syntax rules are provided by UML class diagrams and XML<schemas, whereas the semanticys are given
by UML activity diagrams and prose definitions.

2 |Normative references

The following documents are referred to in_the text in such a way that some or all of thgir content
conktitutes requirements of this documenty For dated references, only the edition cited gpplies. For
undated references, the latest edition of.the'referenced document (including any amendmengs) applies.
1SO|639-1, Codes for the representation’of names of languages — Part 1: Alpha-2 code

ISO|3166-1, Codes for the representation of names of countries and their subdivisions — Part] 1: Country
codg

[SO|8601, Data elements(and interchange formats — Information interchange — Representation of dates
and|times

[SO[13209-1, Road-vehicles — Open Test sequence eXchange format (OTX) — Part 1: General information
and|use cases

[SO|13209=2y"Road vehicles — Open Test sequence eXchange format (OTX) — Part 2: Core flata model
spetification and requirements

W3 : XL;II}\ 'VAV,:;,C RCLUIIllllClldutl.Ull. Xl"VfL Ll'lll’\l'lly Lullyuugc (XL[’I[I’\) ‘/’CI Jl.UIl 1.1

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13209-1, ISO 13209-2 and the
following apply.

ISO and [EC maintain terminology databases for use in standardization at the following addresses:

©IS

ISO Online browsing platform: available at https://www.iso.org/obp

02022 - All rights reserved

https://www.iso.org/obp
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

3.11

[EC Electropedia: available at https://www.electropedia.org/

custom screen
screen with attributes and fields defined by a test sequence author

3.1.2
dialog

screen with predefined attributes and fields which can be set or read from an OTX sequence

3.1.3

ECOS mea
widely-use

3.14
modal dia
dialog (3.1

3.1.5

non-modall screen

asynchron

3.1.6
tester
computer
application

3.1.7
textID
string refe

3.2 Abb

API
DTC
ECOS
ECU
GUI
HMI
IFD

Furement device
d embedded system for testing electrical consumer's current and voltage curves

Jog
2) which is blocking the flow execution until the user dismisses it

bus, non-blocking screen which is still displayed while the test seqtiehce execution contin

bystem attached to a vehicle via a vehicle communication’ interface, running a diagng

rence to a thesaurus data base entry containihg localized string translations
reviated terms

Application Programming Interface
Diagnostic Trouble Code

Electric Check-Out System
Electronic Control Unit

Graphical UsenrJInterface

Human Machine Interface

Intérface Definition (OTX extension)

NOP
OEM
0TX
PDU
Ul
UML
VCI

No Operatiom Performed

Original Equipment Manufacturer
Open Test sequence eXchange
Protocol Data Unit

User Interface

Unified Modeling Language

Vehicle Communication Interface

ues

stic

© IS0 2022 - All rights reserved

https://www.electropedia.org/
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

XML Extensible Markup Language

XSD XML Schema Definition

4 Requirements and recommendations

4.1 Basic principles for requirements and recommendations definition

Basic principles have been established as a guideline to define the OTX requirements or

1 e
reC@rImreIraatIonns.

a) |OTXrequirements or recommendations specify the conditions that the OTX data modél pnd format
shall satisfy;

b) |all stakeholders (system suppliers, OEMs, tool suppliers), which offer diagnostic test procedures
are expected to implement and follow the requirements of this document!

The content of OTX documents and the quality of the information is the responsibility of the|originator.

4.2| Entries priorities

Each of the following requirements and recommendations carries a priority-attribute whiclf can be set
to SHALL or SHOULD.

— |SHALL:

The requirement represents stakeholder-definéd characteristics the absence of which wjill result in
a deficiency that cannot be compensated by ether means.

— |SHOULD:

If the recommendations-defined characteristic is not or not fully implemented in the dafa model, it
does not result in a deficiency, because other features in the data model can be used to ¢ircumvent
this.

4.3| Requirement listing

Extensions_R01 - Read-current date and time

Priprity: SHALL

Ratjionale: It shall be possible to retrieve the current date and time.

Deqcription: The current date and time shall be accessible in a way appropriate for falculating
durptions between two dates but also for generating a human readable form of a date.

Extemsions_RO2—=Supportbutmotrequire 0bX
Priority: SHALL
Rationale: For communication with vehicle ECUs, the usage of ODX shall be supported but not forced.

Description: Any vehicle communication related extension data model shall match to a useful subset of
the functionality of ODX.

Extensions_R03 - Handle flash sessions
Priority: SHALL

Rationale: A functionality shall be provided to browse and select flash sessions.

©1S0 2022 - All rights reserved 3

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Description: A extension for flashing shall provide the possibility to select by direction and name.

Extensions_R04 - Low-level flash-data access

Priority: S

HALL

Rationale: A functionality shall be provided for browsing and selecting data from the flash environment

(download

container).

Description: The data shall be clustered in blocks and segments. Security functions, used by modern
data formats like ODX Flash, shall be supported.

Extensionls _RO5 - Flash-data storage

Priority: S
Rationale

Descriptid
in a selectgq

Extensions _R06 - Enable developer to use OTX in place of ODX Java jobs

Priority: SHALL

Rationale] A functionality shall be provided to emulate ODX Java jebs'by OTX sequences.
Descriptign: A job extension shall enable developers to rfun' OTX sequences as ODX Java j
SingelEcu]pb, SecurityAccessJob and Flash]ob shall be supported.

Extensions _R07 - Provide means for diagnostic communication with vehicle ECUs

Priority: SHALL

Rationale] A functionality shall be provided-for diagnostic communication with a vehicle's
systems.

Descriptign: There shall be an OTX extension which allows configuring and executing diagno
services of|vehicle ECUs. It shall be possible to establish a communication channel to a particular H
to request|parameters of a diagno@stic service which is sent to the ECU and to analyse the respd
parameterf of the ECU. The description of communication channels, diagnostic services and parame
shall happen in a human-r¢adable and symbolic way; any existing diagnostic symbolic-to-biy
mapping (¢.g. ODX) shall be"supported. The actual functionality for sending a diagnostic service
receiving ghall be provided through an interface between test sequence and vehicle (e.g. MCD 3D
and MVCI)

Extensions _R08=Provide means to browse diagnostic data

Priority: SHALL

HALL
Uploaded flash data shall be stored in local storage.

n: For flash-data upload, an OTX extension for flashing shall provide a functionality to s
d format.

ore

bbs.

ECU

stic
CU,
nse
fers
ary
and
API

Rationale: A functionality shall be provided to read information from the static diagnostic data base of
a diagnostic application.

Description: An OTX extension shall be provided which allows reading static information from a
diagnostic data base, e.g. available communication channels, diagnostic services for a communication

channel or

parameters for a diagnostic service.

Extensions _R09 - Enable developer to handle events

Priority: SHALL

Rationale: A functionality shall be provided which allows for an OTX test sequence to react on a well-
defined set of events.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Description: An OTX extension shall enable developers to configure a test sequence so that it can
wait for certain events to happen (e.g. when a timer expires, a variable value changes or user input is
received from the UI). There shall be a way to get further information about an event, for example, what
kind of event it is, and additional information about a particular event.

Extensions _R10 - Provide means for human machine interface functionality
Priority: SHALL

Rationale: A functionality shall be provided which allows OTX test sequences to communicate with a
user in a bidirectional way.

Deifription: An OTX extension is required which allows sending and receiving informagion to and
from a user interface (e.g. a GUI window with input controls). The extension shall nof proyide means
for |explicitly configuring the graphical layout of the information; instead it shall”only| provide a
bidirectional interface for the communicated data itself.

Extensions _R11 - Enable developer to configure localized test sequences
Priprity: SHALL

Ratiionale: A test sequence developer shall be supported in configuring OTX test sequenceg which are
prepared for translation to different languages.

Deqcription: An OTX extension is required which allows the developer to access a thesaurup data base
via p text ID concept. The developer shall be supported by functionality which translates tgxt IDs into
the[language configured for the runtime system or to other languages (as far as known by the runtime
system). The thesaurus data base itself shall not be(part of the standard. A generic appfoach shall
ort different kinds of thesaurus data bases.

Extensions _R12 - Provide means for logging
Priprity: SHALL
Ratjionale: It shall be possible to writelog messages to a logging resource.

Degcription: An OTX extensiontis required which allows writing log messages to a logging resource;
megsages shall be filterable aceprding to severity.

Extensions _R13 - Suppertmeasurement equipment
Priprity: SHALL

Ratjionale: Measurément equipment in manufacturing and after sales workshops shall be acg¢essible via
appropriate functionality.

Deqcription: An OTX extension is required which allows receiving measurement values from
megsufement equipment. There shall be an abstraction layer which allows using amy kind of
megsurement equipment. T

Extensions _R14 - Support physical units
Priority: SHALL
Rationale: A functionality is required which allows the handling of physical values with units.

Description: An OTX extension is required which allows describing physical quantities. The extension
shall facilitate common calculations done on such physical quantities, for example, the transformation
of a physical value from one unit-system to another (e.g. representing a distance by kilometres or
miles). It shall also allow basic mathematical operations on quantities without requiring the developer
to explicitly care for the unit (e.g. it shall be possible to calculate 10 m + 2 km directly).

Extensions _R15 - Support for enhanced string operations

© IS0 2022 - All rights reserved 5

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Priority: S

HALL

Rationale: The OTX core string operations shall be extended by additional commonly used string

operations

Description: An OTX extension is required which describes additional string operations which shall
facilitate calculations on string values.

Extensions _R16 - Support of basic mathematical functions

Priority: SHALL

Rationale
functions.

Descriptid
which are

5 Exten

5.1 Gen

The arithmetic operations of the OTX core shall be extended by additional mathemat

n: An OTX extension is required which describes a set of additional mathematical funct
needed in some diagnostic applications (e.g. trigonometric and logarithmic functions).

sion overview

bral

This document represents the specification of the OTX standard eXtensions for data model ver

"1.0.0". h

tps://standards.iso.org/iso/13209/-3/ed-2/en/ includes‘code on the OTX extensions.

Annex A cq
are needed
alone. Thej

5.2 Dep

Figure 1 sh
OTX core)

in the OTX
model, as {
OTX quant
OTX exten

ntains a comprehensive listing of all checker rules turles which shall be followed. The r

e constraints need to be checked by additional checker applications.

pndencies

ows a UML package diagraml2] des¢tibing the full set of OTX extensions (together with

core. Therefore, all of the extensions are (directly or indirectly) based on the OTX core ¢
pecified by ISO 13209-2. Aside of the OTX core, the OTX EventHandling, OTX DiagCom
ities extensions also play(a)central role; types defined there are used or extended by ot
fions.

because some constraints existing on OTX documiénts cannot be ensured by XSD validag

ical

ons

bion

1les
on

—n

the

hnd the import dependencies in between them. OTX extensions use or extend types defined

lata
and
her

© IS0 2022 - All rights reserved

https://standards.iso.org/iso/13209/-3/ed-2/en/
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

«XSDschema» «XSDschema» «XSDschema»
OTX Core OTX HMI OTX EventHandling
e m e o] ~ \«import»
«import» S~ R
SN
«import»
e e e
«XSDschema»
> . «XSDscheman» _ 2
_ OTX DiagDataBrowsing OTX DiagCom . A
«import» «import» L -~ «import» X
- 1
RN !
)= - - — — - — — — . «import»- — — — — — — — — — :
«XSDschema» 1
OTX Flash «import» !
1
«import» 1
«XSDschemia»)
OTX DiagComRaw |
«import» < — - |
«XSDschemay L7 «import :
OTX Job -7 : !
<—~— - - X :
«import» N : «import» 1
S 1
S «import» \'/ 1
AN «XSDschema» !
«XSDschemay "Y\| O™ Quantities ;
OTX I118n ,.’
<"‘ - «import» s
«import» o _> ',,
'/
<- - - - - - - —«importy— - = = = = = = = - - - ,", "t
i * «impo
«XSDschema» «importy L porb
OTX Measure _ - -2 e
< - - - -7 e
. |— e
«import» a
«XSDschema»
OTX DateTime r-——--- -~ F------ 1
<_ - | Auxiliary Pagkages |
i t: I |
«import» «XSDschema» 1 «XSDscheman !
OTX StringUtil ! Di !
- | iagMetaDat4 |
<= - - - — = — «import» - - - - - — X |
«XSBschiema» ! !
OTX ' Math : :
<"' - I I
«import» 1 «XSDschema) !
«XSDSChe-ma» | Appinfo |
OTX Logging ! !
T 1 |
«import» 1 1
1 |
1 |
Figure 1 — Overview: OTX schema dependencies

ORTANT — The OTX core is a prerequisite for any OTX application and shall alw
su . " icati i xtensions
specified in this document. The set of supported extensions may vary depending on the field
of application. However, an OTX application supporting an extension which imports other
extensions shall support these, too. This guarantees that the set of supported extensions is
consistent with regard to the dependencies.

Figure 1 also shows the auxiliary packages OTX DiagMetaData as well as OTX Applnfo. These
packages are not OTX extensions; they support OTX authoring systems with additional data used
only at authoring time. The information is not required at runtime of an OTX test sequence. For the
DiagMetaData auxiliary please see Annex C, which shall be followed. For the AppInfo auxiliary, please
refer to ISO 13209-2.

Annex E describes how Java jobs of the MVCI system can be used in OTX test sequences.

©1S0 2022 - All rights reserved 7

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

5.3 Basic characteristics of the OTX extensions

Table 1 provides an overview about all O0TX extensions and their basic characteristics.

Table 1 — OTX extension characteristics

Extension (schema file)

Summary

Dependencies

DateTime
(otxIFD_DateTime.xsd)

provides access to system time

Core

DiagCom

raating and oot

arnkactinata DO
5

(otxIFD_DiggCom.xsd) services, analysing communication data Quantities, Core
DiagComRpw direct diagnostic communication on a non-symbolic DiagCom
(otxIFD_DiggComRaw.xsd) | (binary) level
DiagDataBrowsing

)) browsing functionality for reading data from the diag- DiagCom. Core
(otdx)IFD_Dl gDataBrosing. nostic data base g)
XS

EventHandling
(otxIFD_Evpnt.xsd)

support for the OTX event handling mechanism

Core

(otxIFD_StfingUtil.xsd)

Flash functionality for downloading and uploadingflash data .
DiagCom, Core

(otxIFD_Fl4sh.xsd) to and from ECUs
HMI i i icati i i .

functionality for. communicating with:the Ul (user inter EventHandling, Core
(otxIFD_HMI.xsd) face), through dialogs and screens
i18n internationalisation features, multi-language support Quantities, Core
(otxIFD_I18n.xsd) and translation mechanismg ’
Job functionality for emulating ODX Java jobs by OTX test DiagCom, Quantitjes,
(otxIFD_]oly.xsd) sequences Core
Logging for (Log4]-style) loggi C

support for (Log4]-style) loggin ore
(otxIFD_Logging.xsd) PP 8 Y 8618
Math

extended-mathematical functions Core
(otxIFD_M4th.xsd)
Measure éxecuting measurement device services, measuring phys- | EventHandling Qan-
(otxIFD_Mdasure.xsd) ical values, analysing measurements tities, Core
Quantities| handling of quantity data, wrt. S unit system, transfor- |
(otxIFD_Quiantities.xSd) mations between units, etc.
StringUtil

extended functionality for string handling Core

Table 2 shows the XSD namespace associations of all OTX extensions based on References [11] and [12].
Each namespace has a prefix assigned to it. This applies also to the OTX core namespace which has
the otx: prefix (not shown in the table). In the remainder of this document, the prefixes defined here
are used to mark types which belong to extensions other than the one which is currently described. In
contrast, the types defined by the currently described extension are not prefixed.

Table 2 — OTX extension namespace associations

Extension Namespace Prefix
DateTime http://iso.org/0TX/1.0.0/DateTime time:
DiagCom http://iso.org/0TX/1.0.0/DiagCom diag:

© IS0 2022 - All rights reserved

http://iso.org/OTX/1.0.0/DateTime
http://iso.org/OTX/1.0.0/DiagCom
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

Table 2 (continued)

IS0 13209-3:2022(E)

Pled
extq
the
Boo
wit

Extension Namespace Prefix
DiagComRaw http://iso.org/0TX/1.0.0/DiagComRaw raw:
DiagDataBrowsing http://iso.org/0TX/1.0.0/DiaghataBrowsing data:
EventHandling http://iso.org/0TX/1.0.0/Event event:
Flash http://iso.0rg/0TX/1.0.0/Flash flash:
HMI http://iso.org/0TX/1.0.0/HMI hmi :
i18n http://is0.0org/0TX/1.0.0/118n i18n:
Job http://iso.org/0TX/1.0.0/Job job:
Logging http://iso.org/0TX/1.0.0/Logging log:
Math http://iso.0rg/0TX/1.0.0/Math mathi
Measure http://iso.org/0TX/1.0.0/Measure measure:
Quantities http://iso.org/0TX/1.0.0/Quantities quant:
StringUtil http://iso.org/0TX/1.0.0/StringUtil string:

meinber of the currently described OTX DiagCom extension:

6.1

The
pro

6.2

General

Terms

«XSDcomplexType»
IsDiagServiceEvent

otx:BooleanTerm

<<XSDeI<_an]:3r%t»
+ event”event:EventValue

OTX DateTime extension

Figure 2.—Example: Usage of extension prefixes

ise consider the example in Figure 2. It shows the IsDiagserviceE¥ent term from the OT
bnsion. The term accepts a parameter which is defined in the OTX‘EventHandling extension, therefore
type of the element is marked with the event: prefix (event;Eventvalue). The same ap
lean return type defined for the figure, which is defined inthe OTX core and is marked
h the otx: prefix (otx:BooleanTerm). The type IsDiagSérviceEvent itself is not prefixe

purpose ofthe OTX DateTime extension is to retrieve information about the current dat
vided by the diagnostic application.

X DiagCom
blies to the

ccordingly
| since is a

e and time

6.2.

1 Overview

The terms in the OTX DateTime extension shall be used to retrieve information about the current
system time.

6.2.

2 Syntax

Figure 3 shows the syntax of all terms in the OTX DateTime extension.

© IS0 2022 - All rights reserved

http://iso.org/OTX/1.0.0/DiagComRaw
http://iso.org/OTX/1.0.0/DiagDataBrowsing
http://iso.org/OTX/1.0.0/Event
http://iso.org/OTX/1.0.0/Flash
http://iso.org/OTX/1.0.0/HMI
http://iso.org/OTX/1.0.0/i18n
http://iso.org/OTX/1.0.0/Job
http://iso.org/OTX/1.0.0/Logging
http://iso.org/OTX/1.0.0/Math
http://iso.org/OTX/1.0.0/Measure
http://iso.org/OTX/1.0.0/Quantities
http://iso.org/OTX/1.0.0/StringUtil
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:IntegerTerm

otx:StringTerm

otx:StringTerm

timestamp: otx:NumericTerm
format: otx:StringTerm [0..1]

«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetTimestamp FormatDate FormatDuration
«XSDelement» «XSDelement»

+ duration: otx:NumericTerm
+ format: otx:StringTerm [0..1]

Figure 3 — Data model view: DateTime terms

6.2.3 Semantics

6.2.3.1 (etTimestamp

GetTimestamp shall return a timestamp, expressed in milliseconds elapsed since 1970<01-01 00:0¢:00
UTC.

The semantics of GetTimestamp shall be according to the java.util.DatergetTime() method as
specified bly the Java™1 2 Platform Standard Ed. 6.

GetTimestamp iS an otx:Integer term. It has no members.

6.2.3.2 HormatDate

Results from Formatbate should be used for user representations’only. These values should not be ysed
inside the fest logic. The reason for this is that the exchangeability is not guaranteed across diffefent

run time sy

The Formjt:D
representation which shall be formatted as follows-

a) Incasdg there is no custom format specified;,the returned string shall be formatted according to

rules

b) Ifacuqtom formatis given (by the.<format> element), the string shall be formatted according to
cusom|format rules as specified(below.

The custorp format pattern can be configured by the OTX author; it controls the text presentatio

the date.

Table 3) as|well as user-defined string sequences. Non-numeric outputs (e.g. the name of a month) s
be translated automatieally to the currently set locale (see Clause 12, 0TX i18n extension).

rstems (e.g. era, time zone).

ate term shall transform a timestamp®(see GetTimestamp term above) into a date

diven by ISO 8601.

A format pattern comsists of one or more predefined date and time format specifiers

Table 3 — Date format pattern specifiers

the

the

h of
see
hall

Specifier(s) Meaning Presentation Example
G Era Text (localized}|AD
YYr YYVY Year (two digits / four digits) Number 11, 2011
M, MM Month in year (without / with leading zero) | Number 9, 09
MMM, MMMM Month in year (short form / long form) Text (localized) |Jan, January
d, dd Day in month (without / with leading zero) |Number 3, 09
D Day in year Number 304
F Day of week of month Number 3
E, EEEE Day of week (short form / long form) Text (localized) |Wed, Wednesday

1) Java is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not

constitute an en

10

dorsement by ISO of this product.

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Table 3 (continued)

Specifier(s) Meaning Presentation Example
h, hh Hours, 1-12 count (without / with leading zero) [Number 7, 07
H, HH Hours, 0-23 count (without / with leading zero) | Number 7, 07
m, mm Minutes (without / with leading zero) Number 2, 02
S, ss Seconds (without / with leading zero) Number 4, 04
S, 85, 855 |Milliseconds (without / with leading zeros) |Number 357, 04, 002
w, W Week in year / Week in month Number 34, 3
a AM/PM designator Text (localized) |AM
z, |zz22 Time zone (short form / long form) Text (localized) |CET, Central Bufeppan Time
Z RFC 822 timezone (timeshift to GMT) Text +0100
The format pattern rules are analogous to the rules given for the class java.text.SimpleDatleFormat as
spefified by the Java™ 2 Platform Standard Ed. 6. The overall semantics of Formatbate shall b¢ according
to the semantics of the method simpleDateFormat.format (Date date).
EXAMPLE1 At a given date and time of 2011-03-10 11:23:56 in the Central"European Time zonp (CET) and

with the current locale set to en-US, a pattern like, e.g. "hh 'o' 'clock' &, “zzzz" would produce t

forn

If n
cus
sep
loc3

EXA
follg

ForfratDate iS an otx:StringTerm. [ts members have the following semantics:

Thn

hatted output: "11 o'clock AM, Central European Time."

b custom format is given, the ISO 8601 conform date oufput shall be formatted equiva

hrator for the following millisecond portion. This pattern is language independent; the cy
le does not influence the output.

MPLE 2 At a given date and time of 2011-03-10,11:23:56 in the Central European Time zon
wing standard-format output will be produced:("2011-03-10T11:23:56.123+0100".

<timestamp> : otx:NumericTerm \[1]

This element represents a date given as timestamp which shall be interpreted as t
of milliseconds elapsed sinee January 1, 1970 00:00:00 UTC. The corresponding da

<format> : otx:StringTerm [0..1]

This optional.element represents the custom format pattern which shall be applied
produce a cdstem date output string.

OWS:

otx:0utOfBoundsException

he following

lent to the

fom pattern "yyyy-MM-dd'T'HH:mm:ss'.'SSSz", where "T" is the time designator and "." is a

rrently set

b (CET), the

he amount
te shall be

formatted to a string output according to the rules given above. Float values shall be tryincated.

n order to

6.2.

h el], s b= 1 - - ol dnde L, -
TUIS LHITOUWITN I LT LITITS LA P vVAIUT IS TITSdLIVE UL LT PAtLlTHIT TUTIIIAU IS WIUILS.

3.3 FormatDuration

The FormatDuration term shall return a given millisecond duration in a string representation.
Formatting shall be done in analogy to the Formatpate term, with the difference that the milliseconds
passed to the term are to be interpreted as duration, not as date.

Since some of the format specifiers given in Table 3 are meaningless with respect to durations (e.g. time
zone, week day name, era), only the specifiers defined in Table 4 should be used.

Accordingly, the values expressed shall not exceed the "carry-over-points" of 12 months, 30 days,
24 hours, 60 min and 60 s.

©IS

02022 - All rights reserved

11

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Table 4 — Duration format pattern specifiers

Specifier(s) Meaning Example

v Years portion of duration 11, 124

M, MM Months portion of duration, 0-11 count (without / with leading zero) 2, 02

d, dd Days portion of duration, 0-29 count (without / with leading zero) 3, 09

H, HH Hours portion of duration, 0-23 count (without / with leading zero) 7, 07

m, mm Minutes portion of duration, 0-59 count (without / with leading zero) 2, 02

s, ss Seconds portion of duration, 0-59 count (without / with leading zero) 4, 04

S, Ss, SSp Milliseconds of duration, 0-999 count (without / with leading zeros) 357, 03, 00z
EXAMPLE 1] Foragiven duration of 203 443 ms (this is 3 min, 23 s and 443 ms), a pattern like, e.g. }This fook
about 'm'|minutes and 's' seconds." would produce the following formatted output: "This+took aHout

3 min and

If no custom format is given, the ISO 8601 conform date output shall be formatted equivalent to

custom pa
time desig

EXAMPLE 2
output will

FormatDurg

<durat

This element represents a duration in milliseconds whichshall be transformed to a string whid

23 s."

[tern "'P'y-MM-dd'T'HH:mm:ss'.'SSS", where "p" is the duration designator and "T"is
nator.

For a given duration of 203 443 ms (this is 3 min, 23 s and 443 ms)jthe following standard-foy
be produced: "P0-00-00T00:03:23.443",

ftion iS an otx:StringTerm. Its members have the following.semantics:

ion> : otx:NumericTerm [1]

the
the

mat

his

Ce a

formatted according to the rules given above. Float values shall be truncated.
— <formgt> : otx:StringTerm [0..1]
This optional element represents the custom format pattern which shall be applied to produ
custom duration output string.
Throws:
— otx:0ytOfBoundsException
It is thfown if the duration value is negative or the pattern format is wrong.
7 OTX DiagCom extension
7.1 General
The purpope-ofithe OTX DiagCom extension is to provide the necessary OTX elements for perfor
diagnostic kekicle communication. Specifica he following diagnosticuse casesha conside

execut

12

handling of ECU communication channels;

ion of a diagnostic service;

setting of service request parameters and evaluation of service response parameters;
dealing with positive or various negative responses of a diagnostic service;

handling of communication channel protocol parameters;

performing variant identification of an ECU;

functionally addressed diagnostic services: more than one ECU will respond to a request;

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— repeated/cyclic execution of diagnostic services: a single request will result in multiple responses
from the same ECU;

— a potential combination of functional addressing and cyclic service execution: multiple ECUs
responding multiple times to one request

— complex data structures within the requests and responses of diagnostic services: structures of
parameters, lists of parameters, lists containing structures of parameters.

The considerations below introduce the problem domain that is addressed by the design of the DiagCom
extension. Although it is unlikely that these features will all be supported by all runtime environments

tha
con

execute UTX sequences, the UTX DiagCom extension has to provide the means to deal
cepts, as it aims to be a universally usable way for defining vehicle diagnostics.

IMFPORTANT — It is an explicit design goal of the DiagCom extension to be:usable

dia
and

bnostic communication kernel. As a design guideline, an ODX/MVCI (see the IS¢
ISO 22900I[7] series) based system has been considered - as ODX/MVCI is s

vehlicle communication problem domain on a highly generic level, the design conceptg

bee
imy

n adopted for the DiagCom extension should be usable abstractions for any syst
lementing a solution to the vehicle communication problem domain.

IMBPORTANT — It is an explicit design goal of the DiagCom exténsion to only provide

intd
dat
use
cre

In d
woll

NOT

7.2

7.2

The
the
call
con
con
are
leve
cap
con
tos

brface for diagnostic vehicle communication. The browsing of diagnostic data basg¢
abase parts of the ASAM MCD3 API) is not a design goal of the DiagCom extension]
cases, a separate OTX extension specifically providing data access functionality
pted.

ontrast to working at a symbolic level, the Diag€omRaw extension (see Annex D) can
k at a raw data (binary) level for diagnostic caommunication.

E An additional functionality is specified.in the DiagComPlus extension.

General considerations

1 Communication channels

prerequisite for performing any diagnostic communication is a communication chann
diagnostic application and the electronic control unit(s) of a vehicle. In the OTX this

munication target.A comChannel is not concerned with any details about the protoco
hectors or pinning required for communication with the desired endpoint; rather, thg
to be handled-by the underlying vehicle communication layer. A comChannel works on
1 in thatity$ supposed to address ECUs through their name and be aware about an ECUs
hbility<through the specific variant of an ECU that is present at runtime. As such, in OTX
rept of ECU variant identification on a comChannel, and the capability of creating chann

with these

with any
D 22901181
plving the
that have
em that is

a runtime
s (e.g. the
. For such
should be

be used to

b] between
instance is

ed a comChannel, designating a logical connection between the test sequence and the intended

Is, cabling,
se aspects
2 symbolic
diagnostic
here is the
bls to point

pécific ECU variants or retrieve the currently active ECU variant name of a ComChannel.

NOTE

It is an explicit design goal of the OTX DiagCom extension to be useable with any diagnostic

communication kernel. However, the concepts of ComChannels and ECU variants are based on the MVCI
definitions for logical links and ECU variant identification as they represent a generic, high-level approach to a
widely applicable design problem.

7.2.2 Diagnostic services

Figure 4 gives a high-level overview of a diagnostic service’s request and result data structure. The
service contains one request. The request comprises one or more parameters. A diagnostic service can
have an arbitrary number of results. In the example, one result is shown. A service result can contain
an arbitrary number of ECU responses. A response contains one or more parameters. A parameter can
either be a simple data type or a complex type containing lists or structures of parameters.

©1S0 2022 - All rights reserved 13

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

vice

ﬂ Result

ﬂ Response (Positive/Negative, ECU-A) ‘
N

Sen

Parameter [1..7]

i]

The reques
inferior pa

= At
rarameter T

]
a‘ Response (Positive/Negative, ECU-B) ‘

)

Figure 4 — Diagnostic service request - result structure

! |

Parameter [1..%] ‘

tillustrated in Figure 5 consists of a simple parameter, a struct parameter containing
Fameters and a list parameter containing two items which in turn¢ontain three simple ¢

two
lata

type parameters each. It is also shown how the different parameters, can be accessed by terms pand
actions within the DiagCom extension, using the <stepByIndex> and <gtepByName> method defined by
the <path>{ element (please refer to the remainder of this subclausg,“as well as ISO 13209-2 for more
informatiop). The way the parameters are accessed by path asishown in the example request flso
applies to ECU responses, which can comprise complex parameter structures as well.
To deal with repeated service execution patterns (pleasé&.refer to 7.2.3), a diag service features|the
concept of ja result queue. Every time a request is sent tdg'an ECU, a new result element is added to|the
queue whig¢h contains the ECUs response(s) to that request. The OTX DiagCom extension provides three
methods of interacting with the result queue:
a) the first result of the queue can be accessed,by using the GetFirstResult term;
b) all restilts currently in the queue can.betetrieved as an OTX list by using the Getal1Results tefm;
c) theGetallResultsandClear actionretrieves all results in the queue and clears the queue.
The lifecydle of the results in a diagnostic service's queue is delimited by service execution requests: a
diagnostic|service's queue is Cleared each time ExecuteDiagService Or StartRepetition is invoked on
that piagservice object.
Service

i “ReqparamT® ‘ ‘/</:i::€::1::x:e xsi:type="Stringliteral" value="RegParaml"/>

\

| ["RegParam_Struct"]

|

Ny o » "StructParami” | ___<diag:path> _ _

| L——»{ "StructParam2" | € Zit:iiiﬂx iii zﬁ:: ' eral” :Zﬁ:;",”r'/\/; ”

|

| ["ReqParam_Array"] </diag:path>

! > "Parami”__|

i o) ——>__"Param2"__]

1 B["Param3” |

! o Paramt”] iR e xsi:eype- s

| [ﬂm &— <stepByIndex xsi:type='

| D _Param3T] Tl e

‘:,N: Result %

>
Figure 5 — Complex request structure with <stepByName> and <stepByIndex>

14 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.2.3 Diagnostic communication patterns

7.2.3.1 General

Besides diagnostic service requests and responses being of arbitrary structural complexity, the
interaction model between a diagnostic application and the ECUs within a vehicle is also providing
challenges to a diagnostic application. One diagnostic service request sent to a vehicle can result in
multiple ECUs answering that request, or in multiple request and response frames in case of a diagnostic
service being executed repeatedly by the communication backend. Further complications arise when
an ECU's answer is sent in multiple parts. The conceivable permutations of physical and functional

adwmhmmkwmmmmﬁe resulting
restilt structures are illustrated below.

7.2{3.2 One-shot service, physical addressing, single-part response

Figlire 6 shows a communication flow between a tester and one ECU.

Tester ECU
R Ix
o>
ww
N

Figure 6 — One-shot service, physical addressing, single-part response

Theg ECU receives a physically addressed service request which results in the ECU sending a single-part
response to the tester system. The request sent to the ECU leads to the creation of a corfesponding
restilt object (Result_1). The ECU's respense is contained within that result object (Respons¢_1).

7.2{3.3 One-shot service, physical addressing, multi-part responses

Figlire 7 shows a communic€ation flow between a tester and one ECU.

Tester ECU

Service

Figure 7 — One-shot service, physical addressing, multi-part responses

The ECU receives a physically addressed service request which results in the ECU sending a multi-part
response to the tester system. The request sent to the ECU leads to the creation of a corresponding
result object (Result_1). The ECU's responses are contained within that result object (Response_1 and
Response_2).

7.2.3.4 One-shot service, functional addressing, single-part response

Figure 8 shows a communication flow between a diagnostic application and a set of ECUs.

© IS0 2022 - All rights reserved 15

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Tester | [Ecu_1]| |ECU_2

h T Tx ;

TX_1

N ”/,:
g }0\3/
b=

- ec’{/‘
Response_1 @ A E
Response_2 |

The ECUs j

Figure 8 — One-shot service, functional addressing, single-part response

eceive a functionally addressed service request which results in the ECUs sending a si

le-

part respopse to the application. The request sent to the ECUs leads to the creation of aledérresponding
result object (Result_1). The ECU's response is contained within that result object+(Response_1 and

Response_P). Please note that the OTX DiagCom term GetComChannelIldentifierFromResponse Ca
used to identify the ECU (comChannel) that a response is associated with.

7.2.3.5 One-shot service, functional addressing, multi-part responses

Figure 9 sh

The ECUs 1
partrespo
result obje
through Re

7.2.3.6 K

ows a communication flow between a diagnostic applicatien‘and a set of ECUs.

Tester | [Ecur1||ECU_2

Service

T>_1 t

R"/e)

Résponse_4

Figure 9 — One-shot service, functional addressing, multi-part responses

eceive a functionally.addressed service request which results in the ECUs sending a m
1se to the tester systém. The request sent to the ECUs leads to the creation of a correspong
ct (Result_1)./The ECU's responses are contained within that result object (Respon;
sponse_4).

tepeated-Service, physical addressing, single-part response

Figure 10 5

be

h1ti-
ling
e_1

hows a communication flow between a diagnostic application and one ECU.

16

Tester ECU

‘ ‘\"*??;(‘\1 t

R% 1;@9},,:::;

e X2

RA 2.—.?:9\,3_,::::
4,,,,,,,,,,,

Figure 10 — Repeated service, physical addressing, single-part response

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The ECU receives a repeated physically addressed service request which results in the ECU sending a
single-part response to the diagnostic application for each request. The requests sent to the ECU lead
to the creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the
repeated requests are contained within the result object corresponding to the execution cycle that
provoked the response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

7.2.3.7 Repeated service, functional addressing, single-part response

Figure 11 shows a communication flow between a diagnostic application and a set of ECUs.

Toack ! L ‘
restet ‘ ECU_1 ‘ ‘ ECU_2 ‘
Service
e XA
Y EC'U’«// = t
RA-
I{;‘Z‘ 1.2
X 2 20,9—/ ’)
RS

Figure 11 — Repeated service, functional addressing, single-part response

Theg ECUs receive a repeated functionally addressed-service request which results in the E(Us sending
a single-part response to the diagnostic application for each request. The requests sent tp the ECUs
lead to the creation of corresponding result.objects (Result_1 and Result_2). The ECU's responses to
the|repeated requests are contained withinthe result object corresponding to the execution cycle that
proyoked the response (Result_1 for the.first cycle, Result_2 for the second cycle, and so on)

7.213.8 Repeated service, physical addressing, multi-part responses

Figlire 12 shows a communication flow between a diagnostic application and one ECU.

Tester ECU
X
% \5."9\)’?’%\!9 t
e
IX2
Result_2 L@g_&g@‘éﬁ
:«A’zeo”“l

Figure 12 — Repeated service, physical addressing, multi-part responses

The ECU receives a repeated physically addressed service request which results in the ECU sending a
multi-part response to the diagnostic application for each request. The requests sent to the ECU lead
to the creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the
repeated requests are contained within the result object corresponding to the execution cycle that
provoked the response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

©1S0 2022 - All rights reserved 17

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.2.3.9 Repeated service, functional addressing, multi-part responses

Figure 13 shows a communication flow between a diagnostic application and a set of ECUs.

The ECUs 1
a multi-pat
to the crese
repeated 11
provoked t

7.2.3.10 (

Please not|
executing
sending re
be mappec

Tester | [Ecu_1| ECU_2
X
| ECY- | T t
—Response_2 . ”%«}_Qy i |
T X2
2 o -
A
/i,,;.@m@
g

Figure 13 — Repeated service, functional addressing; multi-part responses

eceive a repeated functionally addressed service-tequest which results in the ECUs seng
t response to the diagnostic application for each'request. The requests sent to the ECUs
tion of corresponding result objects (Result*l and Result_2). The ECU's responses to
equests are contained within the result-object corresponding to the execution cycle
he response (Result_1 for the first cyclej.Result_2 for the second cycle, and so on).

)ther patterns

e that the OTX DiagCom extension does not explicitly support the feature of cycliqg
Hiagnostic services, i.e. seryices where one request to an ECU leads to the ECU cycliq
sponses to the tester system without corresponding requests. If such behaviour ha

by an OTX DiagCofruntime system, the basic rule is that an OTX result object alw

correspon

s to one request.sent out by the tester system.

Figure 14 illustrates theytheoretical case of a group of ECUs cyclically sending multi-part response
a diagnost|c application:In OTX, the initial request send by the application will cause a correspong
result object to belcpeated, which subsumes any responses that were subsequently received. Ple
note that PTX does not support any convenience functionality for the stopping of cyclic diagng
services. An OFX author that needs an ECU to stop its sending of cyclic responses has to manually se
and execute thie appropriate diagnostic service for telling the ECU to stop.

ling
ead
the
that

ally
ally
5 to
ays

s to
ling
ase
stic
lect

18

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Tester |ECU_1| ECU_2|

Service

Result_1

)

™1

7.2

As
the
at a
oth
whyd

fieldls can be accesed through using the DiagCoin term GetParameterByPath on the DTC

pas

For
infd

Sample of DTC

[Response_7 |
)

Figure 14 — One-shot service, functional addressing, cyclicalmulti-part respon

4 Special-purpose diagnostic data types

DTX does not support the explicit definition of structuredydata types, it needs to be men
DiagCom extension treats ubiquitious diagnostic datatypes like DTCs or freeze frame da
DTC, it is a structured data type, with a set of striacture parameters defined by SAE]
brs that are OEM-specific. As such, a DTC in OTXGs treated like any other structured
bn a parameter that represents a DTC is retrieved from a diagnostic service's response

5ing the name of the required sub-parameterin the <path> element.

instance, if in a diagnostic system, aDTC's PID value is named "TroubleCode" to {
rmation the OTX sequence would lgok as shown in the OTX sample below.

action id="al">
<specification>Get (trouble code parameter from DTC</specification>
<realisation xsigtype="Assignment">
<result xsi:type="diag:ParameterVariable" name="TroubleCodeParameter"/>
<term xsi:tyre="diag:GetParameterByPath">
<diag:parameterContainer xsi:type="diag:ParameterValue" valueOf="dtc"/>
<diaggpath>
<gtépByName xsi:type="StringLiteral" value="TroubleCode"/>
</Aiadg:path>
</earm>
</Aealisation>
</agtion>

ses

fioned how
Fa. Looking
[979(2] and
barameter:
the DTC's
parameter,

iccess that

<action i1d="a2">

<specification>Get trouble code quantity from parameter</specification>
<realisation xsi:type="Assignment">
<result xsi:type="IntegerVariable" name="TroubleCodeValue"/>
<term xsi:type="diag:GetParameterValueAsInteger">
<diag:parameter xsi:type="diag:ParameterValue" valueOf="dtc"/>
</term>
</realisation>

</action>

©IS

02022 - All rights reserved

19

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.3 Data types

7.3.1 Overview

All datatypes introduced by the OTX DiagCom extension are derived from the OTX core complexType
which means they define complex data types as defined by ISO 13209-2. The elements described here
are handles to the corresponding objects of the underlying communication system.

7.3.2 Syntax

The syntayof altOTX DiagComexception type dectarations {5 STowIT I FIgure 15,

otx:Extensfoninterface «XSDcomplexType»
«XSDcomglexType» ComChannel
otx:DataType
A I «XSDcomplexType»
DiagService

- «XSDcomplexType» :]
otx:ComplexType

«XSDcomplexType»

«XSDcomplexType»

«XSDcomplexType»

Result Parameter Request
«XSDcomplexType» <} «XSDcompIexTypé\ «XSDcomplexType»
ParameterContainer Messag(/ Response

«XSDcomplexType»
ResponseState
«XSDelement»

+ init: ResponseStatelLiteral [0..1]

Ll «XSDcomplexType» j
otx:SimpleType

«XSDcomplexType»
ResultState

«XSDelement»
+ init: ResultStatebiteral [0..1]

Figure 15 — Datamodel view: DiagCom data types

7.3.3 Semantics

7.3.3.1 (eneral

The OTX [DiagCom data types have no initialization parts (except for the enumeration types
ResponseState and Resultstate); therefore, these cannot be declared constant.

7.3.3.2 (omChannel

A comChanrleLis a handle to a communication channel. It represents the concept of linking to one speg¢ific
communication endpoint, e.g. an ECU module (physical addressing) or a set of ECU modules (functional
addressing).

NOTE In case of an MVCI/ODX based system, a ComChannel handle points to a MCDDLogicalLink object.

7.3.3.3 DiagService

A piagsService is a handle to an object representing a diagnostic service, e.g. a service for reading
error codes. A DiagService handle can be used for performing a diagnostic service execution using the
ExecuteDiagService action (see 7.6.4.3.1).

NOTE In case of an MVCI/ODX based system, a DiagService handle represents a MCDDiagComPrimitive
object.

20 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.3.3.4 Result

A Result is a handle to the result of a diagnostic service object. See Figure 4 for an explanation of the
structure of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE In case of an MVCI/ODX based system, a Result handle represents an MCDResult object.

7.3.3.5 ParameterContainer

The ParameterContainer is an abstract data type which subsumes all data types that contain
parameters, i.e. Parameter and Message handles.

7.3]13.6 Parameter

A pPhrameter is a handle to a parameter object of a diagnostic service request’or response. It can
represent a simple or a complex type parameter, i.e. a Parameter handle might peint to a simple Integer
or §tring parameter, or it might correspond to a parameter structure or a list'ofparameters,|depending
on the definitions of the underlying communication system. See Figure 14 for an explanaftion of the
strycture of Request, Result, Response and Parameter instances of a diagnpstic service.

NOTE In case of an MVCI/ODX based system, a Parameter handle reptesents an MCDParameter ¢bject (or its
speg¢ializations MCDRequestParameter and MCDResponseParameter, respectively).

7.3{3.7 Message

The Message element is an abstract data type that encapsitlates actual ECU messages.

7.3{3.8 Response

ARgsponseisahandle toaresponse object of adiagnostic service’s result. See Figure 4 for an gxplanation
of the structure of Request, Result, Respénse and Parameter instances of a diagnostic seryice.

NOTE In case of an MVCI/ODX based.syStem, a Response handle represents an MCDResponse object.

7.3{13.9 Request

A Request is ahandle to a requeést of a diagnostic service. See Figure 4 for an explanation of the structure
of Request, Result, Reéppnse and Parameter instances of a diagnostic service.

NOTE In case of an-MVCI/ODX based system, a Request handle represents an MCDRequest objedt.

7.3{3.10 ResultState
Respiltstate'ls an enumeration type describing the state of a Result.

Thdq list of allowed enumeration values is defined as follows:

— aiL_rAILED: all ECUs in a functional group (listening to the same functional address) failed to
answer, in case of physical addressing: the one requested ECU failed to answer;

— anL_1InvaLiD: all ECUs in a functional group (listening to the same functional address) returned an
invalid answer, in case of physical addressing: the one requested ECU returned an invalid response;

— aLL_NEGATIVE: all ECUs in a functional group (listening to the same functional address) returned
a negative response, in case of physical addressing: the one requested ECU returned a negative
response;

— anL_posITIVE: all ECUs in a functional group (listening to the same functional address) returned
a positive response, in case of physical addressing: the one requested ECU returned a positive
response;

©1S0 2022 - All rights reserved 21

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

answer;

an invalid response;

a negative response;

a positive response.

FAILED: some of the ECUs in a functional group (listening to the same functional address) failed to

1nvaLID: some of the ECUs in a functional group (listening to the same functional address) returned

NEGATIVE: some of the ECUs in a functional group (listening to the same functional address) returned

posITIVE: some of the ECUs in a functional group (listening to the same functional address) returned

The mapplng from an MVCIServer is shown in Table 5 — Relation between OTXResultState fnd
MCDEXecutionState.
Table 5 — Relation between OTXResultState and MCDEXecutionState

OTX ResultState MCDExecutationState

ALL FAILED eALL_FAILED

ALL INVALID eALL_INVALID_RESPONSE

ALL NEGATIVE eALL_NEGATIVE

ALL_ POSITIVE eALL_POSITIVE

FAILED eCANCELED_DURING_EXECUTION

eCANCELED_FROM_QUEVE
eFAILED

INVALID eINVALID_RESRONSE

NEGATIVE eNEGATIVE

POSITIVE |eeee-
Please not¢ that the value positive will never e¢cur.
IMPORTANT — ResultState values‘“~may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:
ALL FAILED < ALL INVALID < ALL(NEGATIVE < ALL POSITIVE < FAILED < INVALID < NEGATIVE <
POSITIVE.
IMPORTANT — When applying otx:ToString on a ResultState value, the resulting string shall
be the name of the enumeration value, e.g. otx:ToString (POSITIVE)="POSITIVE". Furthermore,
applying ¢tx:ToIntegez shall return the index of the value in the Resultstates enumeration
(smallest Index is 0)The behaviour is undefined for other conversion terms (see ISO 13209-2).
ResultState iS an.otx:SimpleType. [ts members have the following semantics:
— <init}Y + ResultStateLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration

time.

value

: ResultStates={ALL FAILED|ALL INVALID|ALL NEGATIVE|ALL POSITIVE| FAILED |INVA

LID|NEGATIVE |POSITIVE} [1]
This attribute shall contain one of the values defined in the Resultstates enumeration.

IMPORTANT — If the Resultstate declaration is not explicitly initialized (omitted <init>
element), the default value shall be aL1. FarLED.

22 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

7.3

Res

IS0 13209-3:2022(E)

.3.11 ResponseState

ponseState iS an enumeration type describing the state of a Response.

The list of allowed enumeration values is defined as follows:

— FAILED: the ECU failed to answer;

— INVALID: the ECUs returned an invalid response;

— NEGATIVE: the ECUs returned a negative response;

— | posiTIVE: the ECUs returned a positive response.

IMPORTANT — ResponseState values may occur as operands of comparisons (see

ISO

FAI

IMRORTANT — When applying otx:Tostring on a ResponseState valué;the resulting s

be

[LED < INVALID < NEGATIVE < POSITIVE.

13209-2, relational operations). For this case, the following order relation shall apgply:

fring shall

the name of the enumeration value, e.g. otx:ToString (POSITIVE)="PoSITIVE". Furthermore,
applying otx:ToInteger shall return the index of the value in th€)Responsestates en

Iimeration

(snlallest index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

Res

bonseState iS an otx:SimpleType. [ts members have the folowing semantics:
<init> : ResponseStateLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at
time.

— wvalue : ResponseStates={FAILED|INVALID |NEGATIVE|POSITIVE} [1]

leclaration

This attribute shall contain one of:the values defined in the Responsestates enumerfation.

IMPORTANT — If the Responsestate’ declaration is not explicitly initialized (omitf{ed <init>
element), the default value shall be’Fa1LED.

7.4 Exceptions

7.411 Overview

All plements referénced in this subclause are derived from the OTX core Exception type as|defined by
[SO[13209-2. THeyrepresent the full set of exceptions added by the OTX DiagCom extension.

7.4)2 Syntax

The syntax of all 0TX DiagCom exception type declarations is shown in Figure 16.

©1S0 2022 - All rights reserved 23

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

«XSDcomplexType»
otx:DataType

otx:Extensioninterface

2

«XSDcomplexType»
otx:ComplexType

7

«XSDcomplexType»
AmbiguousSemanticException

«XSDcomplexType»
Unknow nTargetException

«XSDcomplexType»
LossOfComException

«XSDcomplexType»

1 «XSDcomplexType»

«XSDcomplexType»
Unknow nResponseException

otx:Exception

DiagComException

7.4.3 Semantics

7.4.3.1 (eneral

Since all OTX DiagCom exception types are implicit exceptions without initialization parts, they car

be declaregl constant.

«XSDcomplexType»
UnknownComChannelException

«XSDcomplexTypex
Inv alidStateExcéption

«XSDcomplexType»
IncompleteParameterizationException

Figure 16 — Data model view: DiagCom exceptions

7.4.3.2 IDiagComException

The piagcdmException is the super class forall exceptions in the DiagCom extension. A biagComExcept
shall be usgd in case the more specific éxcéption types described in the remainder of this subclaus

not apply tp the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw

exception

7.4.3.3 AmbiguousSemanticException

The AmbigyousSemanticException is thrown if there is more than one object with the same sema
attribute nmpatching a DiagCom activity. This exception can be thrown by the following actions/termfs:

— CreatgDiagServiceBySemantic,

not

ion

b do

this

Intic

— GetParameterBySemantic,;

— SetParameterValueBySemantic.

7.4.3.4 UnknownTargetException

The UnknownTargetException is thrown if a DiagCom action or term references an object in the
underlying communication system that is not available or not defined.

24

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

7.4.

IS0 13209-3:2022(E)

3.5 LossOfComException

The LossOfComException is thrown if there is a communication breakdown during a service execution,

e.g.

7.4.

in case the cable to the vehicle gets unplugged.

3.6 UnknownResponseException

This exception is thrown in case execution of a diagnostic service returned a response that was not
mapped by the ExecuteDiagService action (see 7.6.4.3.1). If no <responseParameters> are defined, no
UnknownResponseException will be thrown.

7.4
Thi

usinmg the GetComChannelNameFromResponse term (see 7.7.2.3.4).

7.4
Thi

alrd
isn
tha
7.4

Thi
bee

7.5

7.5

As 4§
defi
extq

7.5

Figlire 17 shows the syntax of the DiagCom extension's variable access types.

3.7 UnknownComChannelException

5 exception is thrown in case a Response handle cannot be linked to a communication ch{

3.8 InvalidStateException

5 exception is thrown in case the startRepeatedExecution action‘used on a biagServ
ady executing repeatedly, in case the stopRepeatedExecution action is used on a Diagsd
bt currently executing repeatedly or in case the setRepetitionTime action is used on ab
is currently executing repeatedly.

3.9 IncompleteParameterizationException

5 exception is thrown in case a piagservice was executed where not all request paran
h set that did not have a default value.

Variable access

1 Overview

pecified in ISO 13209-2, OTX extensions shall define a variable access type for each dat
ne (exception types inclusively). All variable access types are derived from the OTX corx
bnsion interface. The following specifies all variable access types defined for the DiagCom

2 Syntax

A : i
otx:Extensioninterface «XSDcomplexType»

D «XSDcomplexType»
otx:Variable

ComChannelVariable

«XSDattribute»
+ name: otx:OtxLink

«XSDcomplexType»
ResultVariable

«XSDcomplexType»
DiagServiceVariable

«XSDcomplexType»

innel when

ice that is
b rvice that
lagService

eters have

atype they
e Variable
extension.

«XSDelement»
+ path: otx:Path [0..1]

«XSDcomplexType»
ResponseVariable

ResultStateVariable

«XSDcomplexType»
RequestVariable

«XSDcomplexType»
ResponseStateVariable

«XSDcomplexType»
otx:ExceptionVariable

«XSDcomplexType»
ParameterVariable

Figure 17 — Data model view: DiagCom variable access types

© IS0 2022 - All rights reserved

25

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.5.3 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for details.
7.6 Actions

7.6.1 Overview

All of the elements shown in Figure 18 extend the otx:ActionRealisation extension interface as
defined by ISO 13209-2.

Communication channel functionality

I
I

: «XSDcomplexType»
1 IdentifyAndSelectVariant
I

T

I

I

«XSDcompléxType»
CloseComcChannel

otx:Node Communication parameter/handling

«XSDcpmplexType»

XSD: lexT
ofx:Action «XSDcomplexType»

I
I
I
1
I SetComParameter
I
T
I
I

«XSDcomplexType»
SetComplexComParameter

realisatign | *

K
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
)
I
1
1
1
1
1
1
1
1
1
1
1
1

U B U '

otxJExtensioninterface

SAEE s T T Diagnostic'service setup and execution

otx:ActlonRealisation <|

«XSDattribjite »
+ validFol otx:OtxLink[0..1]

«XSDcomptexType»
ExecuteHexPiagService

«XSDcomplexType»
diag:ExecuteDiagService

«XSDcomplexType»
StartRepeatedExecution

«XSDcomplexType»
SetRepetitionTime

StopRepeatedExecution

«XSDcomplexType»
SetParameterValue

«XSDcomplexType»
GetAllResultsAndClear

«XSDcomplexType»
SetParameterValueBySemantic

«XSDcomplexType»
SetPdu

1
1
1
1
1
1
1
1
]
1
1
i «XSDcomplexType»
]
1
1
1
]
1
1
[
1
1
1

e - - e e o e e e e e e e e e e en En e em em e e e e e

h .1 410 DPad Aol a P Val o a
riguic 10 Ddia IIIUUCT VITW. UldgLUIII dALUIVIIS UVET VICW

7.6.2 ComChannel related actions

7.6.2.1 Description

All actions described in this subclause effect changes on a comChannel handle.

7.6.2.2 Syntax

Figure 19 shows the syntax of all comChannel related ActionRealisation types of the DiagCom
extension.

26 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

7.6

7.6

Thd
ECU
be i

Thi
by

conj

the

The

ope
cha

terin (see 7.7.2.3.3) which tells the runtime system to create a new communication channel, i

per
dat

NO1T
spe

The

ISO 13209-

ActionRealisation ActionRealisation

«XSDcomplexType»
IdentifyAndSelectVariant

«XSDcomplexType»
CloseComChannel

«XSDelement»
+ comChannel: ComChannelValue

«XSDelement»
+ comChannel: ComChannelVariable

Figure 19 — Data model view: conchannel related actions

.2.3 Semantics

3:2022(E)

2.3.1 IdentifyAndSelectVariant

dentified, the communication channel is switched to point to that specific vahiant.

5 document cannot make assumptions about whether the vehicle communication comp

following assumptions.

A communication channel to an ECU is associated with a data'set describing diagnostic b
a specific variant of that ECU.

operation on a communication channel to an ECU.

The required logic and data for performingithe variant identification is intrinsic to

communication component to performthe ECU variant identification.

associate the communication channel to that ECU with the specific data set for that E
effectively switching the communication channel from the old variant data set to a new

hnel to the one fittingthe newly identified variant (if any). Please refer also to the et

form the variantidentification operation on the new communication channel and then
h set associated with that channel to the one fitting the newly identified variant (if any).

E Inease an ODX/MVCI system is used, the exact semantics of variant identification and s
ified by the ISO ODX and MVCI standards.

members of the IdentifyAndSelectvariant action the following semantics:

IdentifyAndSelectVariant action shall be used to tell the communication backend to i
variant that is present at runtime at a specific communication channel. In casean ECU j

in OTX runtime supports the concept of ECU variant identification or about the behav
munication component in case it does. The relevant parts of the.BiagCom extension ar

The vehicle communication component can explicitly perform an ECU variant ide

communication component, i.e. there is\\o additional external information requir

After an ECU variant has been idenfified, the vehicle communication component is able 4

IdentifyAndSelectVariant action tells the runtime system to perform the variant idg
ration on the provided ‘eemmunication channel and then switch the data set associatedl with that

dentify the
bariant can

bnent used
iour of the
e based on

bhaviour of

ntification

the vehicle
ed for the

p explicitly
CU variant,
pne.

ntification
ComChannel

hmediately
switch the

election are

<comChannel> : ComChannelValue [1]

This element comprises the communication channel which shall be used for identifying the actual

variant of the ECU the communication channel is connected to.

Throws:

LossOfComException

Itis thrown if communication to the ECU was interrupted during the variant identification process.

IMPORTANT — Ifavariantidentification returns withoutidentifying a variant, apiagComException

sha

©IS

11 be thrown.

02022 - All rights reserved

27

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.6.2.3.2 CloseComChannel

The action closecomChannel tells the OTX runtime system that the communication channel to an ECU
can be closed and associated resources can be freed. Please note that the use of the closecomChannel
action by an OTX sequence only indicates that the channel is not needed any more, it is up to the
implementation of a specific runtime system whether it frees all resources and closes the channel at this
point. If a diagnostic sequence uses a comChannel handle after it has been freed by a closecomChannel
action, the runtime system shall throw an otx: InvalidReferenceException.

Closing an uninitialized or already closed ComChannel shall perform no operation and report no errors.
It shall be for all effects a NOP.

The members of the closeComChannel action have the following semantics:
— <comCHannel>: ComChannelVariable [1]

This element comprises communication channel which shall be closed.
7.6.3 ComParameter related actions

7.6.3.1 Description

All actiong described in this subclause change communication parameter settings of a ComCharnel
handle. For example, CAN timeouts or baudrate settings usually) are modelled as communicafion
parameterf.

7.6.3.2 Syntax

Figure 20 shows the syntax of all parameters handling related actionRealisation types of the DiagCom
extension.

otx:ActionRealisation otx:ActionRealisation
«XSDcomplexType» «XSDcomplexType»
SetComParameter SetComplexComParameter
«XSDelement» «XSDelement»
+ comChannel: ComChannelValue + comChannel: ComChannelValue
+ name: otx:StringTerm + parameter: ParameterTerm
+ value: otx:Term

Figure 20.—<Data model view: Communication parameter handling

7.6.3.3 Semantics

7.6.3.3.1 | SetComParameter

The setComParameter action shall be used to change the value of a communication parameter used by the
communication backend. For example, bus timeouts or baud rates can be set using the setComParameter
node.

NOTE In case an ODX/MVCI system is used for vehicle communication, the communication parameter names
and data types that can be set are defined by the D-PDU API/ODX communication parameter specification.

IMPORTANT — In case an ODX/MVCI system is used for vehicle communication, this action
should implicitly control the LogicalLink state. The state should be adjusted for setting of COM
Parameters. This requires state eONLINE.

28 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The members of the setcomParameter action have the following semantics:
— <comChannel> : ComChannelValue [1]

This element comprises the communication channel where the communication parameter shall be
modified.

— <name> : otx:StringTerm [1]
This element specifies the name of the communication parameter which shall be changed.

— Zvalune> - otx-Term [1]

This element specifies the new communication parameter value that shall be set.
Throws:

— |UnknownTargetException

It is thrown if no communication parameter with the specified name eXists.

— |otx:TypeMismatchException

It is thrown if the specified quantity type does not match the data type of the communication
parameter to be set.

7.6)3.3.2 SetComplexComParameter

The setComplexComParameter action is an enhanced variant of setComParameter. The differenfe between
thesge actions is that in this case complex data types can be used.

NOTE For instance, in an ODX/MVCI based systém, complex communication parameter data types are used
to dpfine response ID lists for the functional addyessing use case.

Thg members of the setComplexComParameter action have the following semantics:
— |<comChannel> : ComChannelValue [1]

This element comprises the*communication channel where the communication parameter shall be
modified.

— |<parameter> : ParameterTerm [1]

This element €omprises the parameter structure which shall be set.
Throws:

— |otx:TypeMismatchException

[t3s thrown if the specified <parameter> element does not match the communication parameter to
be set.

7.6.4 DiagService related actions

7.6.4.1 Description

Actions described in this subclause are used for setting up and performing actual ECU communication.

7.6.4.2 Syntax

Figure 21 shows the syntax of all ActionRealisation types of the DiagCom extension which relate to
diagnostic service configuration and execution.

©1S0 2022 - All rights reserved 29

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:ActionRealisation

«XSDcomplexType»
ExecuteDiagService

«XSDattribute»
+ executeAsync: xsd:boolean [0..1]
+ suppressPositiveResponse: xsd:boolean [0..1]

«XSDelement»

+ diagService: DiagServiceTerm

+ result: ResultVariable [0..1]

+ resultState: ResultStateVariable [0..1]

requestParameters «XSDcomplexType» requestParam «XSDcomplexType»
o1 RequestParameters 1.% RequestParameter
«XSDelement»
+ value: otx:Term
«XSDcomplexType» + path: otx:Path
responseParameters ResponseParameters
0% responseParam «XSDcomplexType»
: «XSDelement» o ResponseParameter
+ name: StringTerm "

«XSDelement»

+ target: otx:Variable [0..1]

+ path: otx:Path

+ textldTarget: otx:StringVariable

otx:ActionRealisation

«XSDcomplexType»
xecuteHexDiagService

«XSDelement»
+ comChannef|: ComChannelTerm
+ hexRequest] otx:ByteFieldTerm
+ hexResponsg: otx:ByteFieldVariable [0..1]

otx:ActionRealisation

«

XSDcomplexType»
StartRepeatedExecution

otx:ActionRealisation

«XSDcomplexType»
StopRepeatedExecution

«XSDelement>
+ diagService:| DiagServiceValue

«XSDelement»
+ diagService: DiagServiceValue

otx:ActionRealisation

«XSDcomplexType»
SetRepetitionTime

«XSDelement»
+ diagService: DiagServiceValue
+ repetitionTime: otx:NumericTerm

otx:ActionRealisation

«XSDcomplexType»
SetParameterValue

«XSDcomplexType»
SetParameterValueBySemantic

otx:ActionRealisation

«XSDelement
+ parameter: ParameterTerm
+ value: otx:Term

«XSDelementy

+ semantic*otx:StringTerm
+ value:) otx:Term

+ parameterCofitainer: ParameterContainerTerm

otx:ActionRealisation

«XSDcomplexType»
GetAllResultsAndClear

«XSDcomplexType»
SetPdu

otx:ActionRealisation

«XSDelement
+ diagService:| DiagServiceValue
+ resultList: ofx:ListVariable

«XSDelement»
+ request: RequestTerm
+ pdu: otx:ByteFieldTerm

Figure 21 — Data model view: piagservice related actions

7.6.4.3 Senramtics

7.6.4.3.1 ExecuteDiagService

The ExecuteDiagService action shall be used for performing diagnostic vehicle communication. An
ExecuteDiagService node in an OTX sequence indicates to the runtime system that at this point, a
service request shall be transmitted to one or more ECUs, and that any associated responses might
have to be provided to the OTX sequence. To be able to do this, the ExecutebDiagService action requires

two sets of information:

a) theDbiagService to use;

b) the definition for mapping OTX values to the service’s request parameters as well as the values of
the service’s response parameters back to OTX variables.

30

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The writing/reading of values to/from service parameters can be done in two ways, depending on
whether a service’s parameter structure is known at OTX authoring time or will have to be dynamically

eva

luated at run time.

Inline mapping: In case a service’s parameter structure is known at authoring time, the
ExecuteDiagService action can be used to define request and response parameter mappings inline
through its <RequestParameters>and <ResponseParameters> members. A detailed explanation will
be given in the remainder of this subclause. Please note that the inline mapping approach is only
meant to be used in cases where there is one response from one ECU to a diagnostic service. In case
more than one ECU respond to a service request and/or ECUs respond more than once, the inline
mapping will only relate to the first response within the first result

Dynamic response: In case a service’s parameter structure is dynamic at runtime€ (not known at
authoring time), it is possible to use terms defined by the DiagCom extension te gvalujite request
and response parameter structures by explicit OTX statements. This way, it is‘pessible {o, e.g. loop
through a service response that contains a list of structures. An example forya diagnogtic service
where the response parameter structure varies in such a way at runtime i3 the read DT(as defined
by the UDS protocoll®l.

Thg mapping of the data types between ODX/MVCI and OTX is described in detail for inlie mapping

and dynamic response in Annex B which shall be followed.

Martual evaluation of results is also needed in case a diagnoStic service produces a co
strycture. This can happen in two cases, the first one being\a diagnostic service where

exe

have multiple results associated with it, one for each @fthe ECUs responses along the ti

ind
cas
fun
in g
ind
int

plex result
¢ne service
Cution results in multiple, cyclic responses from an ECU. In this case, the diagnostic dervice will

whilch uses functional addressing, praducing multiple results including multiple responses gach. Please

refdr to 7.6.4.4 for more details.

The

Response mapping_ ‘and exception behaviour of ExecuteDiagService: gen

determine the nature of the problem, in this case itis possible to retrieve the piagservic
was ‘executed from the UnknownResponseException using the term GetDiagServiceFrofiException

the regponse (see

©IS

(see'7.7.3.3.7), and then to analyse its response structure by looking at the PDU of

PiagEem terms.

Defining which service responses are of interest to the diagnostic sequence: as has been elaborated
in the previous paragraph, an ExecuteDiagService node can freely define which of the responses
of a service it is interested in by providing a <responseParameters> element with the appropriate
response name. Please note that a <responseParameters> element is allowed to be empty;, it is not
required that any mappings of actual response parameters are defined. This allows a diagnostic
sequence author fine-grained control over the behaviour of the ExecuteDiagService action:
whether the ExecutebiagService action is supposed to throw an exception in case an unexpected/
unwanted response is encountered is simply a matter of providing a potenitally empty response
parameter mapping for the response in question. For example, if a diagnostic sequence author is
only interested in a positive response and considers the occurence of a negative response to be an
error, the author should only provide a mapping for the positive response's name. If the occurence of
the negative response is not considered an error and shall not cause an UnknownResponseException,

02022 - All rights reserved 31

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

the author can simply provide a mapping for the negative response as well, which can be empty
if the author does not care about the acutal response parameters. The princple applies for any
combination of responses (positive, negative, global negative, etc.); simply by providing an
appropriate <responseParameters> element, the author can control whether the occurence of the
response shall be treated as an UnknownResponseException (N0 mapping) or not (mapping present).

NOTE In case the OTX DiagCom extension functionality is used with an ODX/MVCI system, the name of the
<responseParameters> element is the SHORT-NAME of the response (positive, local negative, global negative)
in the corresponding ODX data. In case of the DiagCom extension being used with a different communications
backend that has no concept of multiple responses for a service/no names for responses, a similar internal
naming convention could be used to map OTX response parameters to positive or negative responses.

The Execu
addressed

teDiagService action can also be configured to tell the communication backend that

the

ECU shall suppress the sending of a positive response, in case that concept is supported by

the commynication backend and by the specific diagnostic service that is to be executed: This shall

happen if t
from Execy

The memb

— execut

This o
blockil
move

a cons
ignore
Execut
respor
requir

he value of the attribute suppressPositiveResponse iS set to true. If the attribute is omi
teDiagService, the default value shall be faise.

br's of ExecuteDiagService action have the following semantics:

eAsync : xsd:boolean={false|true} [0..1]

ted

ption tells the communication backend to make this diagnestic service execution non-
1g. This means that if executeasync is set to true, the OTX €xecution flow will immediaftely

bn to the next Action, without waiting for the result of{th€ ExecuteDiagservice action| As

bquence, any response parameter mappings defined by this ExecuteDiagService action

bs the OTX sequence to perform dynamic pesponse interpretation. An OTX sequence

are

d: as the diagnostic service execution has not necessarily finished with the execution of{the
eDiagService node, the OTX variables that arecstdtically mapped to contain the service's
ses cannot contain a value at this point. The use of the executeasync capability always

can

make fise of the DiagServiceEventSource term (refer to 7.7.9.3.1) to be notified when a new regult

for an

hsynchronously executed diagnostic ser'vice has arrived.

— suppregssPositiveResponse : xsd:boolean={false|true} [0..1]

This o
respor
protod
protoq

— <diag§

The el

— <requ

In this

ption tells the ECU(s) addressed by the diagnostic service to suppress sending of a posi

ol and specific diagnostic,sérvice (compare to suppressPosRspMsgIndicationBit of the
pl[6]).

ervice> : DiagSexViceTerm [1]

ement specifies’the service which shall be executed. Syntax and semantics of expres

DiagS]rviceTerm are specified in 7.7.3.

stParameters> : RequestParameters [0..1]

pabt OTX values are mapped to service request parameters.

tive

se. This feature has to be-supported by the underlying communication system, diagngstic

JDS

bion

— <requestParam> : RequestParameter [1..*]

This element shall be used to assign OTX values to request parameters of the diagnostic service.

32

<value> : otx:Term [1]

This element specifies the value which shall be assigned to a service’s request parameter.
At runtime, the value is yieled by evaluation of the term given by the <value> member

element. It is only allowed to map from OTX simple data types, OTX bytefields, lists

and

maps as well as OTX quantities as defined in the OTX quantities extension. The specific
data type to be used in a mapping depends on the type expected by the diagnostic service’s

request parameter.

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <path> : otx:Path [1]

This element is described in the OTX core language specification. Here it shall be used to
locate the request parameter to which the value shall be assigned to.

The full path shall be used, that is all short names shall be contained, starting from the
table row. In case of dynamic elements (e.g. eEND_OF_PDU, eFIELD, eSTRUCT_FIELD) an
index as number can be inserted, instead of a short name.

The usage of the following elements depends on the elements necessary stepping through
the parameter hierarchy. If more steps like <stepByIndex> / <stepByName> are necessary

— |<responseParameters> : ResponseParameters™\[0..*]

In this part service response parameters aré’assigned to OTX variables.

these elements get combined.
— <stepByIndex> : otx:NumericTerm [1]

The element shall be used locate a parameter inside a list of request parameters.
For example, in case a diagnostic service request contains aclist of three|parameter
structures, the <stepByIndex> element can be set to 0 to indicate a mapping|to the first
of these three list entries. Float values shall be truncated!

— <stepByName> : otx:StringTerm [1]

The element shall be used to locate a namedparameter of a request. Fgr example,
in case a diagnostic service request contains thtee parameters "RequestPatametera",
"RequestParameterB" and "RequestParameterC",the <stepByName> element can be
set t0 "RequestParameterB" to indicatena mapping to the second of thgse request
parameters.

<name> : otx:StringTerm [1]

This element shall contain-the name of the response that shall be used for thjs mapping
definition.

IMPORTANT — In case'an ODX/MVCI based communication backend is used, thiis element
shall contain the §gorRT-NaME of the RESPONSE element that shall be mapped. In dase a non-
ODX based system is used, this element should contain an equivalent responsq identifier
to denote a positive, negative etc. response.

<responseParam> : ResponseParameter [0..*]

This-element shall be used to assign response parameter values of a diagnostic seryice to OTX
variables.

<target> : otx:Variable [0..1]

This element specifies the OTX variable the response value shall be assigned to. It is only
allowed to assign to OTX simple data types, OTX bytefields, parameters, lists and maps and
OTX quantities.

<path> : otx:Path [1]

This element is described in the OTX core language definition. Here it shall be used to define
which response parameter shall be mapped to an OTX variable.

The full path shall be used, that is all short names shall be contained, starting from the table
row. In case of dynamic elements (e.g. eEND_OF_PDU, eFIELD, eSTRUCT_FIELD) an index as
number can be inserted, instead of a short name.

©1S0 2022 - All rights reserved 33

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <resullt> : otx:ResultVariable [0..1]

The member elements <stepByIndex> and <stepByName> are not further specified here since
they have identical semantics as specified for the <requestParameters> mapping explained
above.

<textIdTarget> : otx:StringVariable [0..1]

This element specifies the OTX string variable the text identifier of the response parameter
value shall be assigned to. If the value returned by the ResponseParameter does not have a text
identifier an otx: TypeMismatchException shall be thrown.

NOTE In case an ODX/MVCI based system is used, the text identifier shall return the LongNamelD of
theTetateddatabase object:

After gxecution of the diagnostic service, the first result shall be assigned to the variable givel by

this

Ino

used (3ee 7.7.5.3.4).

— <resulltState> : otx:ResultStateVariable [0..1]

oftional element.

rder to get further results (e.g. in case of cyclic execution), the GetallrResults term shal| be

After execution of the diagnostic service, the state of its first ®esult (i.e. whether the EC[(s)
answefed at all, correctly, positively or negatively) shall be assigned to the variable given by fthis

opti

in 7.3.3.10.

onpl element. Allowed result state values are specified by:the Resultstate data type as defined

In ordér to get the result state of further results (e.g. inicase of cyclic execution), the GetResultstate

term shall be used (see 7.7.5.3.8).

Throws:

— IncomgleteParameterizationException

Itis
ade

— LossOflIComException

Itis

— UnknowWnTargetException

Itis

mappipgs existl

— UnknownReSponseException

Itis

thfown if one or more request parameters of the diag service have not been set and do not Have
fault value.

thrown if communication to the ECU was interrupted during diagnostic service execution.

thirown if now€quest or response parameter with the specified name in any of the paramgter

la.cr-aatl PaP-t ol 22 ratiixa

th i f axvzaciition e o
UVVIIIT CACUCULIVUIT Ul LIIU \Al(«lslludtlb LI vVICCU T UOUluUuriIic

D

<responseParameters> element.

— otx:0utOfBoundsException

Itis

thrown if a conversion cannot be made because an OTX value exceeds the limits of the target

data type of a parameter of the vehicle communication component.

— otx:TypeMismatchException

Itis

thrown if an invalid OTX data type is mapped to a request parameter or a response parameter

is mapped to an invalid OTX data type. For instance, it is thrown if a string variable gets mapped
onto a request parameter that is of type integer.

34

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

If an OTX element is mapped to <textIdTarget> Of a ResponseParameter, but the value returned by the
ResponseParameter does not have a text identifier.

Associated checker rules:

— DiagCom_Chk001 - no Path in ExecuteDiagService response parameter arguments (see A.2.1);

— DiagCom_Chk003 - target definition for ResponseParameter (see A.2.3).

An example for the ExecuteDiagService action is given in 7.6.4.4.

7.6[4.3.2— EXecuteHexDiagService

The ExecuteHexDiagSevice action allows the sending of diagnostic services by direétly”entering the
reqliest byte stream, bypassing the symbolic level that is utilized by the normal Executepjagservice
action. By using this action, ECUs can be directly addressed with hex requests.defined by the OTX
seqpence author. Possible use cases for this functionality are errors in the didgnostic database which
sha|l be bypassed to achieve a temporary workaround. The response to an'ExécuteHexDiagService is
proyided as a ByteField containing the raw, uninterpreted ECU response*message. Pleas¢ note that
the [ExecuteHexDiagSevice action is only meant to be used in cases where there is one response from
one| ECU to a diagnostic service. In case more than one ECU respond\te’a service request afpd/or ECUs
respond more than once, the <hexResponse> assignment will only contain the first Response|of the first
Resplt.

A PDU as understood by the DiagCom extension comprises.thie complete payload of a message including
the|service identifier and any other request parameters.It'‘does not include header or checksum bytes
from underlying protocol layers.

Thg members of the ExecuteHexDiagService action have the following semantics:
— |<comChannel> : ComChannelTerm [1]

This element shall comprise the handle of the communication channel which shall He used for
communication with the ECU.

— |<hexRequest> : otx:ByteFieldTerm [1]
This element shall contain the service request as a set of raw bytes.
— |<hexResponse> : otx:ByteFieldVariable [0..1]

This element spevifies the OTX ByteField variable to which the raw response bytes of the service
shall be assjgned.

Thrjows:

— |LossOQfComException

Ithisthrownif communication to the EClLwzas infnrrnpfnd H11ring Hiagnncfir‘ service exefution.

7.6.4.3.3 StartRepeatedExecution

This action causes a DiagService to be executed repeatedly by the underlying communication
backend. The repetition time shall be set through the setRepetitionTime action and queried by the
GetRepetitionTime term. The behaviour depends onthe underplaying system. Especially if the repetition
time value is 0 or lower than the physical possible repetition time. The startRepeatedExecution action
will return immediately, the results of the piagservice created by the repeeated service execution can
be queried through the GetFirstResult Or GetAllResults terms or the GetAllResultsAndClear action.
Each new result (each execution cycle) will cause a DiagServiceEvent to be raised by the piagservice
object. To stop a repeated service execution, the stopRepeatedExecution action is to be used.

© IS0 2022 - All rights reserved 35

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The members of the startRepeatedExecution action have the following semantics:

<diagService> :

DiagServiceValue [1]

The element specifies the service which shall be executed repeatedly.

Throws:

InvalidStateException

The diag service is already being executed repeatedly.

Incomg

One o
value.

7.6.4.3.4

This actio
DiagServid

GetAllResylts terms or the GetAllResultsAndClear action. To start a repeated service execution,

StartReped

The memb

<diag§
The el

Throws:

Invali

The di

7.6.4.3.5

This action
in millisec
executed r
StopRepea
The memb

<diag§

The el

leteParameterizationException

more request parameters of the diag service have not been set and do not have'a)def

StopRepeatedExecution

h causes the repeated execution of a DiagService to be stopped. The results of
te created by the repeated service execution can be queried through-the GetFirstResult

) tedExecution action is to be used.
br's of the StopRepeatedExecution action have the following.semantics:
ervice> :

DiagServiceValue [1]

bment specifies the service which shall not be executed repeatedly anymore.

dStateException

hg service is currently not being exeécuted repeatedly.

SetRepetitionTime

sets the repetition cycle time of a diagnostic service. The repetition time is always provi

bnd (ms) granularity It is not allowed to set the repetition time of a service while itis b
epeatedly. To startCer’stop a repeated service execution, the StartRepeatedExecution
fedExecution actiens are to be used ().

brs of the setRepetitionTime action have the following semantics:
ervice>\ v

DiagServiceValue [1]

bmeént'specifies the service where the repetition time should be set.

Qult

the
or
the

ded
Ping
and

<repetitionTime> :

otx:NumericTerm [1]

This element specifies the repetition cycle time in milliseconds (ms). Float values shall be

trunca

Throws:

ted.

InvalidStateException

The diag service is currently being executed repeatedly.

otx:0utOfBoundsException

The repetition time value is negative.

36

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

7.6.

IS0 13209-3:2022(E)

4.3.6 GetAllResultsAndClear

This action retrieves all available result entries from a diagnostic service and then clears the diagnostic
communication system’s result buffer. The results are provided as a list of Result elements. In
comparison to the term GetallResults defined in 7.7.5.3.4, GetAllResultsAndClear is modelled as an
ActionRealisation because it changes the piagservice object it is invoked on by clearing its result
buffer.

This action is designed based on the assumption that a diagnostic communication component as used
by an OTX runtime has the capability to buffer results it receives from ECUs. Especially for dealing
with system behaviour as illustrated in Figure 6 (one ECU returning multiple results for one diagnostic

req
ass

The

Ass

lest) a communication system requires a buffering concept for ECU results. The
imptions are made in the context of the DiagCom extension regarding the result buffer

The result buffer is owned and managed by the vehicle communication component anc
the scope of an OTX runtime.

Every piagservice object has an associated result buffer which contains any results
received as a reaction to an ExecuteDiagService action.

This result buffer is of finite size, i.e. a loop buffer that will wrap.around after a numbe
have been received by the vehicle communication component.

The DiagCom term GetFirstResult (see 7.7.5.3.3) only fetches the first (in time) resul
communication component's result buffer but does not modify that buffer.

The DiagCom term GetallResults (see 7.7.5.3.4) fetches all results present at the time of
of the communication component's result buffer/btit does not modify that buffer. The lig
that is returned to OTX will be in ascending order from first (oldest) to last (most recent

The DiagCom action GetAllResultsAndClear (see 7.6.4.3.6) fetches all results present at
the call out of the communication component's result buffer and tells the communication
to clear the buffer afterwards. The list 6f results that is returned to OTX will be in ascer]
from first (oldest) to last (most recent) result.

members of the GetallResultsAndClear action have the following semantics:
<diagService> : DiagServiceValue [1]

This element specifies ‘the diagnostic service to retrieve results from. Syntax and se
expression DiagServiceVariable are specified in 7.5.

<resultList>\y otx:ListVariable [1]
This element specifies the List to which the list of Result items shall be assigned.

pciated checker rules:

following

| is outside

that were

r of results

out of the

the call out
t of results
) result.

the time of
component
ding order

mantics of

7.6.

niagr‘nm Chlk0Q?2 _fypn safo Get AllResultsAndClear (con A2 7)

4.3.7 SetParameterValue

This action sets a specific value to a Parameter element. The value to be set is to be provided as an 0TX
simple type, an OTX bytefield, an OTX list an OTX map or an OTX Quantity as defined in Clause 16.

The members of the setParametervalue action have the following semantics:

<parameter> : ParameterTerm [1]

This element specifies the parameter which will be set. Syntax and semantics of the ParameterTerm

type are specified in 7.7.6.3.9.

© IS0 2022 - All rights reserved

37

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<value> :

otx:Term [1]

This element specifies the value that shall be set on the parameter. Allowed input types are OTX

simple
Throws:

types, OTX bytefields, OTX lists and OTX maps.

otx:0utOfBoundsException

Itis thrown if the conversion cannot be made because the OTX value exceeds the limits of the target
data type of a parameter of the vehicle communication component.

If the 1|1nderlying system cannot set the parameter value, for example, because the parametér

Respol

It is th
comm
param

7.6.4.3.8

This action
backend cq
of diagnost
Or map or 3

NOTE1
working wi
specific nan
required to
what the a¢
of a diagno
conform to

NOTE2
to the para
functionalit]
position of §

The memb

The oh

ParamdterContainerTerm are specified in 7.7.6.3.9.

<semar

otx:TypeMismatchException

<parameterContainer> :

nseParameter or ConstantParameter.

rown if the data type of the OTX value to be set does not match the parameter vel
nication component. For instance, it is thrown if a string variable ,getS mapped on
ter that is of type Integer.

SetParameterValueBySemantic

sets a value to a <parameter> element with a specific semantic. This action is used in case
mmunication system provides the means to associate seimantic metadata with parame
ic services. The value to be set is to be provided as an QTX simple type, an OTX bytefield
In OTX Quantity as defined in Clause 16.

'he ability to assign a semantic value to a diagnostic'service or service parameter allows applicat
th diagnostic data to access functionality in a-inanner more abstract than directly pointin
hes of services/parameters. For example, the didgnostic service to be used for DTC reading coul
carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no ma3
tual name of the service in a specific datasset is. While using semantic attributes, certain elem
tic data set can become universally .identifiable, even though the names of these elements hay
iser-specific conventions and therefore, differ between or even within companies.

meters used by diagnostic services for implementing DDLID (dynamically defined local identi
y, like the DDLID-POS semaiitic attribute that is used for indicating the parameter that defineg
value in a dynamicallycreated response.

brs of the setParametervalueBySemantic action have the following semantics:

ParameterContainerTerm [1]

ject thaf'\contains the parameter that shall be changed. Syntax and semantics of expres

tic> : otx:StringTerm [1]

isa

icle
0 a

the
fers
list

jons
b to
H be
tter
Ents
e to

Vhen using an ODX/MVCI base@\system it is mandatory to assign specific semantic attribute vallues

fier)
the

bion

This el

<value> :

ement specifies the semantic of the parameter that shall be modified.

otx:Term [1]

This element specifies the value that shall be set to the parameter. Allowed input types are OTX

simple
Throws:

types, OTX bytefields, lists and maps and OTX quantities.

AmbiguousSemanticException

It is thrown if there are none or more than one parameters present in the ParameterContainerTerm
with the semantic value specified by the <semantic> element.

38

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:0utOfBoundsException

[tis thrown if the conversion cannot be made because the OTX value exceeds the limits of the target

data type of a parameter of the vehicle communication component.
otx:TypeMismatchException

It is thrown if the data type of the OTX value to be set does not match the parame

ter vehicle

communication component. For instance, it is thrown if a string variable is mapped onto an

Integer-type parameter.

7.6

Thi
leve
Dia
rep
bec

AP

including the service identifier and any other request parameters.-It does not include

che

Thd

Thi
sen

The

7.6

The
the
exa
var
is
Res

OT]

q

Figlire 22.shows the usage of the <stepByName> element. The first XML example defines a r

par

4.3.9 SetPdu

5 action is used to directly set a specific ByteField to a Request instance, without using th
| provided by the parameter mapping mechanism of the ExecutebiagService action or
bCom terms. In addition to setPduy, there exists a term Getpdu which is used toretrieve th
Fesentation from a Response instance (see 7.7.4.3.4). setPdu is modelled @s-an ActionRs
huse it modifies the object it is invoked on.

DU as understood by the OTX DiagCom extension comprises the-complete payload of

rksum bytes from underlying protocol layers.
members of the setpdu action have the following semantigs:
<request> RequestTerm [1]

5 element specifies the Request to which the value given by <pdu> shall be assigned. !
antics of expression RequestTerm are specified iiv7.7.3.3.8.
<pdu> otx:ByteFieldTerm [1]

ByteField which shall be written to the Request.

4.4 Example

e symbolic
the related
e raw byte
palisation

a message
header or

byntax and

prefix "opx_" to indicate-identifiers that link to the ODX/MVCI communication com

able "comChannelHandle". The request parameter with the name "opX RequestParameter
et to the string-value "ExampleParametervalue", and the response parameter na
bonseParametérShortName" of the response named "ODX_PositiveResponseName" iS may
{ variable called "outputParamHandle".

hmeter"ReqParam2". In the second example a reference over two levels to "structParam2

parameter over

example below illustrates-the inline mapping usage of the ExecuteDiagService action%o

de, using
nent. The

mple executes a diagnostic service called "opx_DiagServiceName" on a ComChannel defined by the

bhortName"
med "obx_
ped to the

bference to
" is shown.

the third

three levels,

brence to a
path steps

are <stepByName> references. The second is a <stepByIndex> reference to indicate the desired list entry.

Sample of ExecuteDiagService

<action id="al">
<specification>Execute a diagservice and map a response to an OTX variable</
specification>

©IS

<realisation xsi:type="diag:ExecuteDiagService">
<diag:diagService xsi:type="diag:CreateDiagServiceByName">
<diag:comChannel xsi:type="diag:ComChannelValue"
<diag:name xsi:type="StringLiteral" value="ODX DiagServiceName"/>
</diag:diagService>
<diag:requestParameters>
<diag:requestParam>

02022 - All rights reserved

valueOf="comChannelHandle" />

39

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<diag:value xsi:type="StringLiteral" value="ExampleParameterValue"/>
<diag:path>
<stepByName xsi:type="StringLiteral" value="ODX RequestParameterShortName"/>
</diag:path>
</diag:requestParam>
</diag:requestParameters>
<diag:responseParameters>
<diag:name xsi:type="StringLiteral" value="ODX PositiveResponseName"/>
<diag:responseParam>
<diag:target xsi:type="diag:ParameterVariable" name="outputParamHandle"/>
<diag:path>
<stepByName xsi:type="StringLiteral" value="ODX ResponseParameterShortName"/>
</diag:path>

/diag:responseParam>
</diag:responseParameters>
</reglisation>
</acti¢n>
<action id="a2">
<spe¢ification>Deselect the communication channel</specification>
<realisation xsi:type="diag:CloseComChannel">
<djag:comChannel xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>
</reglisation>
</actign>
Reqpest
*)‘ "Req Param1" ‘ <diag:path>
/ <stepByName xsi:type="StringlLMeral" value="RegParam2"/>
["ReqParam2" | </diag:path>
| "RegParam_Struct" |
———————— » "StructParam1" | <diag:path>
- - <stepByName xsi’type="StringLiteral" value="ReqParam Struct"/p
H StructParam2 ‘ < <stepByName x5i:type="ctringliteral" value="StructParam?2"/>
</diag:path>
Figure 22 — Referencing parameters via <stepByName>
Request
"ReqParam1" |
| "ReqParam_Struct" |
ffffffff » "StructParam1" |
L—» "StructParam2" |
| "ReqParamiArray" |
S a "Param1" |
[0} » "Param2" |
Lpl "Param3" |
W W <diag:path>
")‘ Param1 ‘ <stepByName xsi:type="StringlLiteral" value="RegParam Array"/3
T ;i Paramz i <€—— JStepBylndex Xsi.type- 1l cocililcral. valge- 17>
b 0 0 <stepByName xsi:type="StringlLiteral" value="Param2"/>
)1 Param3 ‘ </diag:path>

Figure 23 — Referencing parameters via <stepByName> and <stepByIndex>

7.7 Terms

7.7.1 Overview

All of the DiagCom terms shown in Figure 24 extend the otx:Term extension interface as defined in
ISO 13209-2. Information about the specific super class of a term is provided in the individual term
description clauses below.

40 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

«XSDcomplexType»
ComChannelTerm

«XSDcomplexType»
DiagServiceTerm

otx:Extensioninterface
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
«XSDcomplexTy... <l ResultTerm ParameterTerm RequestTerm
otx:Term
A || «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ParameterContainerTerm MessageTerm ResponseTerm

«XSDcomplexType»
event:EventSourceTerm

«XSDcomplexType»

«

ResponseStateTerm

KSDcomplexTy...
btx:SimpleTerm

The

«XSDcomplexType»
ResultStateTerm

Figure 24 — Data model view: Abstract DiagCom term hierarchy

abstract types ComChannelTerm, DiagServiceTermand RestiltTermare the base types for 3

termns returning a ComChannel, DiagService Or Result object, respectively.

Par.
abs
par
Sery

Sin
eve

Fur
for

7.7

7.7
All

7.7

bmeterContainerTerms return handles to any kindof object that can contain paramete
fract type which is the super class of the ParameterTerm (Parameter objects can cd
hmeters in case of complex parameter structures) and the MessageTerm which subsumes
Fice requests and responses (Request and.Response objects) which also contain parametg

e there are DiagCom terms which.yeturn event:Eventsource objects, the Event exte

ht:EventSourceTerm is also listed.-héré. See Clause 8 for details about the Event extension.

thermore, the otx:SimpleTerm types ResultStateTerm and ResponseStateTerm are the
h1]l DiagCom terms returning-a'ResultState Or ResponseState enumeration value.

2 ComChannel related terms

2.1 Description

erms specified in the following subclauses relate to the handling of comchannel objects.

2.2 «Syntax

1l DiagCom

rs. It is an
ntain sub-
diagnostic
rs.

hsion term

base types

Fighre 25 shows the syntax of all comchannel related terms of the DiagCom extension.

© IS0 2022 - All rights reserved

41

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ComChannelTerm ComChannelTerm
«XSDcomplexType» «XSDcomplexType»
ComChannelValue GetComChannel
«XSDattribute» «XSDelement»
+ valueOf: otx:OtxLink + identifier: otx:StringTerm
«XSDelement» + ecuVariantName: otx:StringTerm [0..1]
+ path: otx:Path [0..1] + performVarantSelection: otxBooleanTerm [0..1]
otx:StringTerm otx:StringTerm otx:BooleanTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetComChannelldentifierFromResponse GetComChannelEcuVariantName IsVariant
«XSDelemgnt» «XSDelement» «XSDelement»
+ response: ResponseTerm + comChannel: ComChannelTerm + comChannel: ComChannelTerm
+ ecuVariantName: otx:StringTérm

Figure 25 — Data model view: ComChannel related terms

7.7.2.3 Semantics

7.7.2.3.1 | ComChannelTerm

The abstraft type ComChannelTermis an otx: Term. It serves as a basefor’all concrete terms which return
a ComChanngl. It has no special members.

7.7.2.3.2 | ComChannelValue

This term ffeturns the comChannel stored in a comChannel-variable. For more information on value-tefms
and the syntax and semantics of the valueof attribute'and <path> element, please refer to ISO 1320p-2.

Associated| checker rules:

— Core_(Jhk053 - no dangling OtxLink assogiations (see ISO 13209-2).
Throws:
— otx:0ytOfBoundsException

It is thirown only if a <path>-is set: the <path> points to a location which does not exist (like allist
index ¢xceeding list lenigth, or a map key which is not part of the map).

— otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

7.7.2.3.3 | GetComChannel

This term shall create a communication channel to an ECU. It depends on the implementation of the
OTX runtime system when the channel is created by the communications layer. There are three possible
scenarios.

— The channel is created at the time this term is executed.
— The channel already exists; no additional action is carried out by the execution of this term.
— The channel is created when it is first needed for actual diagnostic communication.

No matter which approach is chosen, the term cetcomChannel shall always return a handle to the same
comChannel for a given ECU. It is possible to manually control the lifecycle of a comChannel object by
closing a comchannel handle using the closecomChannel action (refer to 7.6.2.3.2). This is up to the

42 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

author of a diagnostic sequence, an OTX runtime system is expected to clean up open ComChannel
handles at the end of a diagnostic session.

The OTX runtime shall perform an ECU variant selection after opening of the channel if the term
given by the optional element <performvariantSelection> yields true. This implies that when the
next action on a communication channel is performed, the runtime system has identified the variant
of the ECU actually present at runtime and configured the comchannel accordingly. In case both an
<ecuVariantName> is provided and <performvariantSelection> yields true, the channel is created to
point at the desired ECU variant and variant selection is performed on the link afterwards. The variant
identification functionality also exists as a separate action, see 7.6.2.3.1.

GetfomChannel iS @ ComChannelTerm. [ts members have the following semantics:
— |<identifier> : otx:StringTerm [1]
Thip element represents a string identifying the communication channel which shallbe creaged.

NOTE In case an MVCI/ODX system is used, the identifier specifies the SHORT-NAME of the MCDL¢gicalLink
to bp used for communication.

— |<ecuVariantName> : otx:StringTerm [0..1]

This optional element allows an OTX sequence to explicitly)specify a particular ELU variant
that the comchannel shall be associated with. It is provided(in addition to the identifidr attribute
based on the assumption that the comchannel identifieD specifies a connection to a base variant
of an ECU, the precise variant of which then can be implicitly or explicitly identified by the
diagnostic application (compare the <performvariantsSelection> element in this subclause and
the IdentifyAndSelectvariant action in 7.6.2.3.19) The <ecuvariantName> element can|be used to
directly create a comChannel to a specific ECU ,variant without needing to perform the HCU variant
identification step.

NOTE In case an MVCI/ODX system isaused, the <ecuvariantName> element specifies the $HORT-NAME
of the MCDDbEcuVariant to be associated with the logical link.

— |<performVariantSelection> : 6tx:BooleanTerm [0..1]

This optional element can be used by the OTX author for controlling whether an impljcit variant
selection shall be done. If <performvariantSelection> yields true at runtime, the variant selection
is done automatically after the comchannel is created. If the element is not set, the ddfault value
false applies.

This document canfot make assumptions about whether the vehicle communication comppnent used
by an OTX runtime’/supports the concept of ECU variant identification or about the behavliour of the
conimunication,component in case it does. The relevant parts of the OTX DiagCom standard are based
on the following assumptions.

— |A eommunication channel to an ECU is associated with a data set describing diagnostic bghaviour of
d-specific variant of that ECU.

— The vehicle communication component is able to explicitly perform an ECU variant identification
operation on a communication channel to an ECU.

— The required logic and data for performing the variant identification is intrinsic to the vehicle
communication component, i.e. there is no additional external information required for the
communication component to perform the ECU variant identification.

— After an ECU variant has been identified, the vehicle communication component is able to explicitly
associate the communication channel to that ECU with the specific data set for that ECU variant,
effectively switching the communication channel from the old variant data set to a new one.

©1S0 2022 - All rights reserved 43

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— The IdentifyAndSelectVariant action (see 7.6.2.3.1) tells the runtime system to perform the
variant identification operation on the provided communication channel and then switch the data
set associated with that channel to the one fitting the newly identified variant (if any).

— The GetComChannel term (see 7.7.2.3.3) tells the runtime system to create a new communication
channel, immediately perform the variant identification operation on the new communication
channel and then switch the data set associated with that channel to the one fitting the newly
identified variant (if any).

NOTE In case an ODX/MVCI system is used, the exact semantics of Variant Identification and Selection are
specified by the ISO ODX and MVCI standards.

Throws:
— UnknownTargetException

It is thirown if the comChannel identifier provided by the <identifer> element does’hot exist gr is
invalid, or if the variant provided by the <ecuVariantName> element is unknowu.

— LossOf|ComException
It is thfown if communication to the ECU was interrupted during the variant identification prodess.

IMPORTANT — Ifavariantidentification returns withoutidentifyinga variant, apiagComException
shall be thrown.

7.7.2.3.4 | GetComChannelldentifierFromResponse

This term ficcepts a response and returns the identifier of'the communication channel associated with
the ECU tHat sent the response. This term is especiallytuseful for results containing responses ffom
different ECUs (functional addressing, refer to the example in Figure 7).

GetComChannelIdentifierFromResponse IS an , otx:StringTerm. Its members have the following
semantics:

— <respdnse> : ResponseTerm [1]

This element specifies the respanse of which the originating ECU shall be returned.
Throws:
— UnknownComChannelExcéption

It is thirown if no comchannel can be found that is associated with the Response referenced by|the
<respdnse> element.

to be used for.Communication. Based on the logical link table the SHORT-NAME of responding ECU's is in $uch
cases the ngmie.of an ECUBaseVariant. This SHORT-NAME is the result of MCDResponse : getAccessKeyOfLodati
on ().getECUBaseVariant().

NOTE I case-an MVCI/ODX system is used, the identifier specifies the SHORT-NAME of the MCDLogicalLink

7.7.2.3.5 GetComChannelEcuVariantName

The GetComChannelEcuvVariantName term accepts a handle of a communication channel and returns the
name of the ECU variant associated with that channel. For instance, this term can be used to determine
the identified ECU variant after having used the Identifyandselectvariant action (please refer to
7.6.2.3.1). In case the base variant is selected, an empty string shall be returned.

IMPORTANT — In case an MVCI/ODX system is used the term shall return the suorT-nNaME of the
MCDDbEcuVariant associated with the logical link represented by the comChannel.

44 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetComChannelIdentifier iS an otx:StringTerm. Its members have the following semantics:

— <comChannel> : ComChannelTerm [1]

The comChannelTerm yields the handle of the communication channel of which the identifier shall

be returned.

7.7.2.3.6 IsVariant

The 1svariant term is used to compare the name of the ECU variant associated with the communication
channel with the given variant name. It accepts a communication channel handle as well as the name

of the ECU variant in question. The result is true or false depending on whether the ECU mafiant name

equials the comChannel identifier or not.

IsVhriant iS an otx:BooleanTerm. [ts members have the following semantics:

— |<comChannel> : ComChannelTerm [1]

The comChannelTerm represents the communication channel which shall.be evaluated.

— |<ecuVariantName> : otx:StringTerm [1]

with the communication channel.

The stringTerm specifies the ECU variant name to be compated with the ECU variant|associated

NOTE In case an MVCI/ODX system is used, the variant ‘attribute specifies the SHORT-NAME of the

MCDpbEcuVariant to be queried.
7.7)]3 DiagService related terms

7.7{3.1 Description

All terms specified in the following sub¢lauses relate to the handling of piagservice objects

7.7{3.2 Syntax

Figlire 26 shows the syntax of all piagservice related terms of the DiagCom extension.

DiagS€énice Term| DiagService Term| DiagService Term|
«XSDcomplexType «XSDcomplexType» «XSDcomplexTypg»
DiagServiceValue CreateDiagServiceByName CreateDiagServiceByS¢mantic
«XPDattribute» «XSDelement» «XSDelement»
+ |valueOf: otx:OtxLink + comChannel: ComChannelTerm + comChannel: ComChannellerm
«XEDelement» + name: otx:StringTerm + semantic: otx:StringTerm
+ |path: otx:Path\0..1]
DiagServiceTerm| DiagService Term|
«XSDcomplexType» «XSDcomplexType»
——GetDitagSTTrvicerfromResult GetDtagServicer romeExcepton
«XSDelement» «XSDelement»
+ result: ResultTerm + unknownResponseException: otx:ExceptionValue
otx:ListTerm otx:StringTerm otx:IntegerTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetDiagServiceListBySemantic GetDiagServiceName GetRepetitionTime
«XSDelement» «XSDelement» «XSDelement»
+ comChannel: ComChannelTerm + diagService: DiagServiceTerm + diagService: DiagServiceTerm
+ semantic: otx:StringTerm

Figure 26 — Data model view: DiagService related terms

© IS0 2022 - All rights reserved

45

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.3.3 Semantics

7.7.3.3.1 DiagServiceTerm

The abstract type piagServiceTerm is an otx:Term. It serves as a base for all concrete terms which
return a biagService. It has no special members.

7.7.3.3.2 DiagServiceValue

This term returns the piagsService stored in a biagService variable. For more information on value-

terms andrthesymtaxamndsemmantics of the varueor attribute—and<pati>etement, please Tefer to
ISO 1320942.

Associated| checker rules:

— Core_(hk053 - no dangling OtxLink associations (see ISO 13209-2).
Throws:
— otx:0YtOfBoundsException

It is thirown only if a <path> is set: the <path> points to a location which does not exist (like a|list
index ¢xceeding list length, or a map key which is not part of the map).

— otx:InvalidReferenceException

It is thfown if the variable value is not valid (no value was assigned to the variable before).

7.7.3.3.3 | CreateDiagServiceByName

The createDiagServiceByName term creates a handleto a diagnostic service that can subsequently be
used for pdrameterizing or executing that service.The diagnostic service to be created is identifiedl by
its name. The createDiagServiceByName term-accepts a ComChannelTerm and the name of the desjred
diagnostic|service as an otx:StringTerm. As-aresult the term returns a DiagService handle.

IMPORTANT — In case an MVCEI/ODX system is used, the name passed into [the
CreateDiagServiceByName term shall*be the suorT-naME of the associated McDDiagComPrimitlive
object.

CreateDiagServiceByName iS dbiagServiceTerm. Its members have the following semantics:
— <comCHannel> : ComChannelTerm [1]

The comChannelTerm to which the to-be-created diagnostic service belongs to and will be execyted
on when the ExecutebiagService action is used.

— <name} ;- otx:StringTerm [1]

The name of the to-be-created diagnostic service.
Throws:
— UnknownTargetException

It is thrown if no piagservice with the name provided by the <name> element exists.

7.7.3.3.4 CreateDiagServiceBySemantic

The createDiagServiceBySemantic term creates a handle to a diagnostic service that can subsequently
be used for configuring or executing that service. The diagnostic service to be created is identified by its
semantic attribute. The term accepts a ComChannelTerm and the semantic value as an otx:StringTerm.
As a result, the term returns a piagservice handle. Please note that using this term can result in an

46 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

AmbiguousSemanticException in case more than one diagnostic service with the desired semantic
attribute value exists within this communication channel.

NOTE1 The ability to assign a semantic value to a diagnostic service or service parameter allows
working with diagnostic data to access functionality in a manner more abstract than directly pointing to
specific names of services/parameters. For example, the diagnostic service to be used for DTC reading could be
required to carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter
what the actual name of the service in a specific data set is. While using semantic attributes, certain elements
of a diagnostic data set can become universally identifiable, even though the names of these elements have to
conform to user-specific conventions and therefore, differ between or even within companies.

NO

E2 Tha camantic attributa cancant ic dafinad hy tha ODY /MVCI ctandarde for mmmpln th
+Hr—r 1+ = - tS—aeHiedaByY—tt AT —0+ +

applications

Sery

...................... o 2ot sttt

ice used for clearing an ECU's fault memory has the semantic attribute "FAULTCLEAR".

CrepteDiagServiceBySemantic iS a DiagServiceTerm. [ts members have the followingSeman

Thn

7.7

Thd
the

<comChannel> : ComChannelTerm [1]

on when the ExecuteDiagService action is used.
<semantic> : otx:StringTerm [1]

The semantic value of the to-be-created diagnostic service.
ows:

AmbiguousSemanticException

the semantic value specified by the <semantié> element.

3.3.5 GetDiagServiceListBySemantic

term GetDiagServiceListBySemantiic returns a complete list of all DiagService handles

valuie exists within the data set associated with the comChanne1l.

NO1T
wor]
spe

E The ability to assign'a.semantic value to a diagnostic service or service parameter allows
king with diagnostic data-to access functionality in a manner more abstract than directly
ific names of services/parameters. For example, the diagnostic service to be used for DTC read

reqiiired to carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wid

wha
of a
con

Get!

t the actual name™of the service in a specific data set is. While using semantic attributes, certd
diagnostic data‘set can become universally identifiable, even though the names of these elem¢
orm to usersspecific conventions and therefore, differ between or even within companies.

DiagSe¥viceListBySemantic is an otx:ListTerm.

Its 1|nembers have the following semantics:

e diagnostic

ics:

The comChannelTerm to which the to-be-created diagnostic service belofigs'to and will He executed

[t is thrown in case there are none or more thah one piagservice present at the comChpnnel with

Wwhich have

same semantic. This is required in case more than one service with the same semantic attribute

hpplications
pointing to
ng could be
P, no matter
in elements
bnts have to

7.7.

<comChannel> : ComChannelTerm [1]
The comchannelTerm that shall be queried for all the services with the given semantic.
<semantic> : otx:StringTerm [1]

The semantic value of the piagServices to be returned.

3.3.6 GetDiagServiceFromResult

The GetDiagServiceFromResult termaccepts a ResultTermand will return the handle of the piagservice
the rResult belongs to.

© IS0 2022 - All rights reserved

47

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetDiagServiceFromResult is an otx:DiagServiceTerm. Its members have the following semantics:
— <result> : ResultTerm [1]

This specifies the Result for which the containing piagservice name shall be retrieved.
Throws:
— otx:InvalidReferenceException

It is thrown if the piagservice to which the Result belongs to cannot be determined.

7.7.3.3.7 | GetDiagServiceFromException

The GetDidgServiceFromException term accepts an ExceptionReference and shall return thelhand
the piagsefvice that caused the exception to be thrown. It shall only be used together with’except
of type UnKnownResponseException that shall be thrown by the ExecutebiagService action in case
static response mapping does not map a response that has been returned fromthe vehicle. In

case, it allgws the OTX sequence to analyse the result that caused the exception by making it access
through the piagservice object.

GetDiagSefviceFromException iS a DiagServiceTerm. Its members have thefollowing semantics:
— <unkndwnResponseException> : otx:ExceptionValue [1]

This specifies the Exception for which the piagservice shall be retrieved that caused the excep
when ¢xecuted. It is only allowed to reference exceptions of type unknownResponseException.

Throws:
— UnknownTargetException

It is thfown if the piagservice belonging to theexception cannot be determined.
— otx:TypeMismatchException

It is thfown if the specified exceptien'is not of type UnknownResponseException.

7.7.3.3.8 | GetDiagServiceName

The GetDidgServiceName term-accepts a DiagService handle and returns the name of the piagsery
as a string

NOTE In casean MVCl/ODX systemisused, thistermwill return the SHORT-NAME of the MCDDiagComPrimi {
object reprdsented by-thé DiagService handle.

GetDiagSefviceName iS an otx:StringTerm. Its members have the following semantics:

e of
ons
the
rhat
ible

[ion

ice

ive

— <diagSerwvice> : DiagServiceTerm [1]

This is the piagservice of which the name shall be returned.

7.7.3.3.9 GetRepetitionTime

The GetRepetitionTime term accepts a DiagService and returns the currently set repetition cycle t
of that diag service in milliseconds (ms).

GetRepetitionTime iS an otx:IntegerTerm. Its members have the following semantics:
— <diagService> : DiagServiceTerm [1]

This is the biagservice of which the current repetition cycle time shall be returned.

ime

48 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.4 Requestrelated terms

7.7.4.1 Description

All terms specified in the following subclauses relate to the handling of Request objects.

7.7.4.2 Syntax

Figure 27 shows the syntax of all Request related terms of the DiagCom extension.

RequestTenm RequestTenm atx:ByteFie/dTerm|
«XSDcomplexType» «XSDcomplexType» «XSDcomplexTiype»
RequestValue GetRequest GetPdu
«NSDattribute» «XSDelement» «XSDelement
+ |valueOf: otx:OtxLink + diagService: DiagServiceTerm + message;, MessageTerm
«XSDelement»
+ | path: otx:Path [0..1]

Figure 27 — Data model view: Request related terms

7.714.3 Semantics

7.7}4.3.1 RequestTerm

The abstract type RequestTerm is a MessageTerm. [t $€rVes as a base for all concrete terms which return
a Rdquest. It has no special members.

7.74.3.2 RequestValue

Thip term returns the Request stored in a Request variable. For more information on valuefterms and
the[syntax and semantics of the valgeof attribute and <path> element, refer to ISO 13209-2.

Asspciated checker rules:

— |Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).
Throws:

— |otx:0utofBoundsException

It is throwmronly if a <path> is set: the <path> points to a location which does not exist| (like a list
index exeeeding list length, or a map key which is not part of the map).

— |otxyInvalidReferenceException

[tis thrown if the variable value is not valid (no value was assigned to the variable before).

7.7.4.3.3 GetRequest

The GetRequest term shall return the request belonging to a diagnostic service. It accepts a diagnostic
service handle.

GetRequest iS a RequestTerm. [ts members have the following semantics:
— <diagService> : DiagServiceTerm [1]

The term shall yield a handle to the piagservice that the Request belongs to.

©1S0 2022 - All rights reserved 49

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.4.3.4

GetPdu

The GetPdu term shall return the raw byte stream data represented by a Request Or a Response as seen
on the physical layer. The GetPdu term is derived from ByteFieldTerm A possible use case for retrieving
raw communication data could be to implement bus tracing functionality. The corresponding opposite
operation to the Getpdu term is provided by the setpdu action (see 7.6.4.3.8).

A PDU as understood by the DiagCom extension comprises the complete payload of a message including
the service identifier and any other request parameters. It does not include header or checksum bytes
from underlying protocol layers.

IMPORTA
thrown. P

Reque

the Sel

GetPdu iS a

This is
7.7.5 Re

7.7.5.1 1

All terms s

The result
component
Especially
results forn
results. Th

The re
the scq

Every
receivg

This r¢
have b

The Di

<messgge> :

T — If no complete PDU can be generated for any reason, a biagComExceptio
bssible reasons include:

5t parameters are not set, or

vice does not represent a bus message (for example, a Java job).
N otx:ByteFieldTerm. Its members have the following semantics:
MessageTerm [1]

the Message (€.g. Request Or Response) Which is to be returneddn'ByteField form.
sult related terms

Jescription
pecified in the following subclauses relate to the‘handling of Result objects.

related terms are designed based on the assumption that a diagnostic communica
as used by an OTX runtime has the (Capability to buffer results it receives from E
for dealing with system behaviour-ds illustrated in Figure 6 (one ECU returning mult
one diagnostic request) a communication system requires a buffering concept for
e following assumptions are made’in the OTX DiagCom context regarding the result buffi

sult buffer is owned and managed by the vehicle communication component and is out
pe of an OTX runtime.

DiagService object has an associated result buffer which contains any results that w
bd as a reaction to.all ExecuteDiagService action.

sult buffer i§/ef finite size, i.e. a loop buffer that will wrap around after a number of res
pen received by the vehicle communication component.

agCom term GetFirstResult (See 7.7.5.3.3) only fetches the first (in time) result out of

is

fion
[Us.
iple
ECU
BT

side

fere

ults

the

comm]mication component's result buffer, but does not modify that buffer.

The DiagCom term GetallResults (see 7.7.5.3.4) fetches all results present at the time of the call out

of the communication component's result buffer, but does not modify that buffer. The list of results
thatis returned to OTX will be in ascending order from first (oldest) to last (most recent) result.

The DiagCom action GetAllResultsAndClear (See 7.6.4.3.6) fetches all results present at the time of

the call out of the communication component's result buffer and tells the communication component
to clear the buffer afterwards. The list of results that is returned to OTX will be in ascending order
from first (oldest) to last (most recent) result.

7.7.5.2 Syntax

Figure 28 shows the syntax of all Result related terms of the DiagCom extension.

50

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ResuitTerm

«XSDcomplexType»
ResultValue

ResuitTerm

«XSDcomplexType»
GetFirstResult

otx:ListTerm

«XSDcomplexType»
GetAllResults

«XSDattribute»
+ valueOf: otx:OtxLink

«XSDelement»
+ path: otx:Path [0..1]

«XSDelement»
+ diagService: DiagServiceTerm

«XSDelement»
+ diagService: DiagServiceTerm

xsd:string

«enumeration»

ResultStates

ResultState Term ResulitState Term ResultState Term
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» ALL_INVALID
L .] ALL_NEGATIVE
—ResultStateaiue GetResultState ResuitStatetiterat
ALL_PROS$ITIVE
«qSDattribute» «XSDelement» «XSDattribute» llg\k:-l_—EFs' -ED
+ | valueOf: otx:OtxLink + result: ResultTerm + value: ResultStates
INVALID
«X{SDelement» NEGATIYE
+ | path: otx:Path [0..1] POSITIVE

7.7

7.7

The

Res

7.7
Thi

syn

Ass

Figure 28 — Data model view: Result related termSs

5.3 Semantics

5.3.1 ResultTerm

abstract type ResultTerm is an otx:Term. It serves asa base for all concrete terms whi
h1t. It has no special members.

5.3.2 ResultValue

5 term returns the rResult stored in a Result variable. For more information on value-ter
fax and semantics of the valueof attribute and <path> element, please refer to ISO 13209

pciated checker rules:

Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

Thrjows:

7.7

otx:0utOfBoundsException

It is thrown only’if a <path> is set: the <path> points to a location which does not exist
index exceeding list length, or a map key which is not part of the map).

otx:InvalidReferenceException

Itissthrown if the variable value is not valid (no value was assigned to the variable befor

th return a

ms and the
2.

(like a list

.5.3.3 GetFirstResult

The GetFirstResult term returns the first result of a service execution, irrespective of whether there
exists more than one result. The term accepts a DiagServiceTermargument and returns a Result object.

GetFirstResult iS a ResultTerm. Its members have the following semantics:

<diagService> DiagServiceReference [1]

This represents the piagservice object of which the first Result shall be returned.

© IS0 2022 - All rights reserved

51

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:
— otx:0utOfBoundsException

It is thrown if there exists no Result object in the biagservice object.

7.7.5.3.4 GetAllResults

The GetallRresults returns all available results of a diagnostic service as a ListTerm. The list contains
Result objects. In comparison to the action GetAallResultsAndClear referenced in DiagCom actions
specified in 7.6, this term only reads Result entries and does not delete the buffer containing the
results. Pofsible use case is the monitoring of results without changing the state of the piagsezrvfice.
GetAllResylts is derived from ListTerm.

GetAllResylts iS an otx:ListTerm. [ts members have the following semantics:
— <diagService> : DiagServiceTerm [1]

This r¢presents the piagservice of which the Results shall be returned.

7.7.5.3.5 | ResultStateTerm

The abstrdct type ResultStateTerm iS an otx:SimpleTerm. It serves ds a base for all concrete tefms
which retufrn a Resultstate value (see 7.3.3.10). It has no special members.

7.7.5.3.6 |ResultStateValue

This term feturns the ResultState stored in a ResultState variable. For more information on vajue-
terms and fhe syntax and semantics of the valueof attribute and <path> element, refer to ISO 13209-2.

Associated| checker rules:

— Core_(hk053 - no dangling OtxLink assocjations (see ISO 13209-2).
Throws:
— otx:0YtOfBoundsException

It is thirown only if a <path>.is'set: the <path> points to a location which does not exist (like aflist
index ¢xceeding list length,'er a map key which is not part of the map).

7.7.5.3.7 | ResultStateLiteral
This term $hall return‘a Resultstate value (see 7.3.3.10) from a hard-coded literal.

ResultStateLiteral iS a ResultStateTerm. Its members have the following semantics:

— wvalue |: ResultStates={ALL FATLED|ALL INVALID|ALL NEGATIVE|ALL POSITIVE| FATLED|INVALID |
NEGATIVE | POSITIVE} [1]

This attribute shall contain one of the values defined in the Resultstates enumeration.

7.7.5.3.8 GetResultState

This term shall retrieve the state of a Result (i.e. whether the ECU(s) answered at all, correctly,
positively or negatively). Allowed result state values are specified by the Resultstate data type as
defined in 7.3.3.10. This also corresponds to the <resultstate> element of the ExecuteDiagService
action, see 7.6.4.3.2.

52 ©1S0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetResultState iS @ ResultStateTerm. [ts members have the following semantics:

7.7.6 Response related terms

<result> ResultTerm [1]

This is the result whose state shall be returned.

7.7.6.1 Description

All

terms cppr‘ifind inthe Fnl]nmrihg subclausesrelate tothe handling of Response nhjnr‘fc
(=]

7.7

Figlire 29 shows the syntax of all Response related terms of the DiagCom extension,

6.2 Syntax

ResponseTerm ResponseTerm otk:ListTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ResponseValue GetFirstResponse GetAllResponses
«XSDattribute» «XSDelement» AXSDelement»
+ valueOf: otx:OtxLink + result: ResultTerm + result: ResultTerm
«XSDelement»
+ path: otx:Path [0..1]
otx:StringTerm ResponseState Term otx:Bodq/eanTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetResponseName GetResporseState IsPositive
«XSDelement» «XSDelemeniy «XSDelement»
+ response: ResponseTerm + responseN\ResponseTerm + response: ResponseTerm

ResponseStateTerm ResponseStateTerm xsd:string
«XSDcomplexType» «XSDcomplexType» «enumeration»
ResponseStateValue ResponseStateLiteral ResponseStates

«XSDattribute» «XSDattribute» FAILED

+ valueOf: otx:OtxLink + value: ResponseStates INVALID
POSITIVE

«XSDelement» NEGATIVE

+ path: otx:Path [0..1]

Figure 29 — Data model view: Response related terms

7.716.3 Semantics

7.716.3;1 ResponseTerm

The abstract type ResponseTerm is a MessageTerm. [t serves as a base for all concrete terms which return
a Response. [t has no special members.

7.7.6.3.2 ResponseValue

This term returns the Response stored in a Response variable. For more information on value-terms and
the syntax and semantics of the valueof attribute and <path> element, refer to ISO 13209-2.

Associated checker rules:

Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

© IS0 2022 - All rights reserved 53

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:

otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.6.3.3

The GetFij

more than

GetFirstRd

This is

7.7.6.3.4

The Getall
ResultTermh. For example, in case of a functionally addressed diaghostic service, this term can be use

retrieve all
there will
the term Gg

GetAllResty
— <resul
This is
7.7.6.3.5

This term
Response i
the vehicle

NOTE
associated

GetRespong

<respd

<resul

|
rPCDResponse object.

Getrirsthesponse

-stResponse term is used to retrieve the first Response of a Result handle. In case ther
one Response available in a Result, only the first Response will be returned.

tsponse iS a2 ResponseTerm. [ts members have the following semantics:
t> : ResultTerm [1]

the Result whose first response shall be returned.

GetAllResponses

Responses term returns a list of all responses that are available for that Result. It accep

ECU responses that were received in response to thé.functional service execution. Norm|
bnly be one response per diagnostic service (stanidard physical addressing), in which ¢
btFirstResponse shall be used.

bonses iS an otx:ListTerm. Its members have the following semantics:
t> : ResultTerm [1]

the Result whose responses shallbe returned.

GetResponseName

Khall retrieve the name'of a Response. For example, it can be used to determine wheth
positive or negative'by comparing the response name with preset response names valid
communicationcoiiponent.

case an MVCI/ODX system is used, the GetResponseName term returns the SHORT-NAME of]

eName IS an otx:StringTerm. [ts members have the following semantics:

nsé> : ResponseTerm [1]

eis

ts a
d to
ally
ase

br a
for

the

This is

7.7.6.3.6

the Response whose name shall be returned.

ResponseStateTerm

The abstract type ResponseStateTerm iS an otx:SimpleTerm. It serves as a base for all concrete terms

which retu

7.7.6.3.7

I'n a ResponseState value (see 7.3.3.11). It has no special members.

ResponseStateValue

This term returns the Responsestate stored in a ResponseState variable. For more information on
value-terms and the syntax and semantics of the valueof attribute and <path> element, please refer to

ISO 13209-

54

2.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Associated checker rules:

Core_Chk053 - no dangling OtxLink associations (see [SO 13209-2).

Throws:

otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist
index exceeding list length, or a map key which is not part of the map).

7.7[6.3.8 ResponsestateLiteral
Thip term shall return a Responsestate value (see 7.3.3.11) from a hard-coded literal.

ResponseStateLiteral iS a ResponseStateTerm. [ts members have the following semantics:

7.7

Thip term shall retrieve the state of a Response. Allowed response state values are speci
ResponseState data type as defined in 7.3.3.11.

GetResponseState iS a ResponseStateTerm. [ts members‘have the following semantics:

7.7

The
on

IsP

7.7

7.7

value : ResponseStates={FAILED|INVALID|NEGATIVE |POSITIVE} [1]

This attribute shall contain one of the values defined in the ResponseStates enumeratio

6.3.9 GetResponseState

<response> : ResponseTerm [1]

This is the Response whose state shall be returned.

6.3.10 IsPositive

IsPositive term shall check whether a response is positive. It accepts a ResponseTerm.
esponse states, please refer to'the Responsestate data type (see 7.3.3.11).

bsitive iS an otx:BooleanTerm. Its members have the following semantics:
<response> : RespénséTerm [1]

This is the Response which shall be checked for being positive.
7 Paranieter related terms

7.1, \(Description

(like a list

fied by the

For details

All

ified in the followi bel] he handling of bi

7.7.7.2 Syntax

Figure 30 shows the syntax of all parameter related terms of the DiagCom extension.

©IS

02022 - All rights reserved

55

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ParameterTerm

«XSDcom plexType»
ParameterValue

ParameterTerm

«XSDcomplexType»
GetParameterBySemantic

ParameterTerm

«XSDcom plexType»
GetParameterByPath

«XSDattribute»
+ valueOf: otx:OtxLink

«XSDelement»
+ path: otx:Path [0..1]

+
+

«XSDelement»

parameterContainer: ParameterContainerTerm
semantic: otx:StringTem

«XSDelement»
+ parameterContainer: ParameterContainerTerm
+ path: otx:Path

otx:StringTerm

otx:ListTerm

«XSDcomplexType»
GetParameterName

otx:StringTerm otx:StringTerm
«XSDcom plexType» «XSDcomplexType»
GetParameterSemantic GetParameterTextld

«XSDcom plexType»
GetParameterAsList

«XSDelement

«XSDelement»

«XSDelement»

«XSDelement»

+

parametef: ParameterTemm| | +

parameter: ParameterTemrm| | +

parameter: ParameterTem| | +

parameterContainer: ParameterContainerT¢m

otx:BooleanTerm

«SDcomplexType»
GetPardmeterValueAsBoolean

otx:FloatTerm

«XSDcomplexType»
GetParameterValueAsFloat

otx:ByteFieldllerm

«XSDcomrplexType»
GetParameténVelu eAsByteField

+

«XSDelement

paramete: ParameterTemm

«XSDelement»
+ parameter: ParameterTerm

«XSDelement’
+ paraméter. ParameterTerm

otx:StringTerm

otx:StringTerm

otx:IntegerTerm

quant:Quantity

«XSDgom plexType»
GetParam gterValu eAsString

«XSDcomplexType»
GetParameterValueTextld

«XSDcomplexType»
GetParameterValueAslateger

«XSDcomplexType»
GetParameterValueAsQuanti

+

«XSDelement

paramete: ParameterTemm

+

«XSDelement»

parameter: ParameterTemrm

+

«XSDelement»

parameter:,ParameterTerm

«XSDelement»
+ parameter: ParameterTemrm

7.7.7.3 Semantics

7.7.7.3.1

The abstra

ParameterTerm

Figure 30 — Data model view: Parameter related terms

which retufrn a Parameter. It has no special members.

7.7.7.3.2

This term
and the syntax and semantics of the valueof attribute and <path> element, please refer to ISO 1320

Associated

Throws:

56

ParameterValue

checker<rules:

Core_(Jhk@58 - no dangling OtxLink associations (see ISO 13209-2).

Ct type ParameterTerm iS a PatrameterContainerTerm. It serves as a base for all concrete tefms

Feturns the Parameter stored in a Parameter variable. For more information on value-tefms

D-2.

otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.7.3.3 GetParameterBySemantic

The GetParameterBySemantic term accepts a ParameterContainerTerm and the semantic value of the
parameter to be retrieved. It can return simple type or complex type parameters, depending on the
parameter structure of the diagnostic service definition of the underlying communication system
and the specific parameter that is being retrieved. Only the first level of child parameters shall be
investigated.

NOTE 1

The ability to assign a semantic value to a diagnostic service or service parameter allows applications

working with diagnostic data to access functionality in a manner more abstract than directly pointing to
specific names of services/parameters. For example, the diagnostic service to be used for DTC reading could be

requured to carry the semantic value "DEFAULT-FAULTREAD" company wide or even imdustry wid

whd
of a
con

NOT
cory

Get

Thn

7.7

The
rety
defi
of t
tha
one
sho

Get

t the actual name of the service in a specific data set is. While using semantic attributes, ¢ertd
diagnostic data set can become universally identifiable, even though the names of these\eléms¢
orm to user-specific conventions and therefore, differ between or even within companies.

E2 Incasean MVCI/ODX system is used, the semantic value is equivalent to the-semantic att
esponding MCDParameter object.

ParameterBySemantic iS @ ParameterTerm. [ts members have the following semantics:
<parameterContainer> : ParameterContainerTerm [1]

This is the container from which the parameter shall be retrieved.

<name> : otx:StringTerm [1]

This is the semantic attribute of the parameter which'shall be returned.

ows:

AmbiguousSemanticException

It is thrown if there are none or more‘than one parameter present in the ParameterCon
with the semantic value specified hy,the <semantic> element.

7.3.4 GetParameterByPath

GetParameterByPath term/accepts a ParameterContainerTerm and a Path to the paran
ieved. It returns the-parameter that is pointed to within the parameter container b
nition. It can returpsimple type or complex type parameters, depending on the paramete]
e diagnostic sepvice definition of the underlying communication system and the specific

is being retri€ved. This term operates on the assumption that parameter names are uni

hierarchy lével of the parameter structure. An example for retrieving a Parameter by q

wvn in Figure 22.

ParaneterByPath iS a ParameterTerm. [ts members have the following semantics:

b, no matter
in elements
bnts have to

rfibute of the

FfainerTerm

heter to be
y the path
I structure
parameter
que within
btx : Path iS

Thr

©IS

<parameterContainer> : ParameterContainerTerm [1]

This is the container from which the parameter shall be retrieved.

<path> : otx:Path [1]

This is the path element specifies the path to the desired parameter. If the path contains

<stepByIndex> elements, Float values shall be truncated.
ows:

UnknownTargetException

It is thrown if the Parameter object referenced by the <path> element doesn ot exist or is invalid.

02022 - All rights reserved

57

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.7.3.5

GetParameterName

The GetParameterName term accepts a ParameterTerm and returns the name of the parameter.

NOTE
object.

GetParameterName iS an otx:StringTerm. [ts members have the following semantics:

This is
7.7.7.3.6

The GetPaj
the Parame

NOTE
MCDParamef

GetParamef

This i
7.7.7.3.7

The Getpay

The actual
backend th

NOTE
MCDDbObjed
MCDDbDiagT

GetParamef

This is
7.7.7.3.8

The GetPan
handles, cd

<parameter> :

In case an MVCI/ODX system is used, it returns the semantic attributepof’the correspon

<parameter> :

In case an MVCI/ODX system is used,-it returns the LongNameId attribute of the correspon

<parameter> :

ParameterTerm [1]

the Parameter whose name shall be returned

In case an MVCI/ODX system is used, it returns the SHORT-NAME of the corresponding MCDParameter

GetParameterSemantic

fer.

ter object.
terSemantic iS an otx:StringTerm. [ts members have the following:sémantics:
ParameterTerm [1]

the parameterTerm whose semantic attribute shall be retGrned.

GetParameterTextld

ameterTextId term accepts a ParameterTerm and returns the text id of the Parameter.
functionality of this term and format of returned information depends on the communica
at is used by the OTX runtime and is net-defined by this document.
bt object. In case the parameter represents a DTC, the DiagTroubleCodeTextID of
'roubleCode is returned.
terTextId iS an otx: StringTerm. [ts members have the following semantics:
ParameterTerm [1]

the parameter-whose text id attribute shall be returned.

GetParameterAsList

amet&rAsList term accepts a ParameterContainerTermand returns an otx:List Of Paramg

in case a pa

of parameters. Please refer to Figure 5

ameterSemantic term accepts a ParameterTerm and returns the semantic attribute value of

ling

Fion

ing
the

ter
sed

rresponding to the contents of the passed in parameter container object. This term is u

list

hic shows n exape o a complex list—type paraeter. If

the ParametercContainer supports child parameters, all child parameters should be returned. This list
can be empty. If the ParameterContainer does not support child parameters, a TypeMismatchException
shall be thrown.

GetParameterAsList iS an otx:ListTerm. [ts members have the following semantics:

This is

58

<parameterContainer> :

ParameterContainerTerm [1]

the parameterContainer whose child parameters shall be returned.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:
— otx:TypeMismatchException

It is thrown if the specified ParameterContainer supports no child parameters.

7.7.7.3.9 GetParameterValueAsBoolean

The GetParametervValueAsBoolean term accepts a ParameterTerm and returns the actual value of the
parameter as a Boolean.

GetParameterValueAsBoolean IS all otx:BooleanTerm. Its members have the following semantics:
— |<parameter> : ParameterTerm [1]

This is the parameter whose value shall be returned as a Boolean.
Throws:

— |otx:TypeMismatchException

It is thrown if the specified Parameter is not of Boolean type.

7.7{7.3.10 GetParameterValueAsString

The GetParameterValueAsString term accepts a ParameterTerm and returns the actual vhlue of the
parpmeter as a string.

4

GetParameterValueAsString iS an otx:StringTerm. lts' members have the following semantid
— |<parameter> : ParameterTerm [1]

This is the parameter whose value shallbe returned as a string.
Throws:

— |otx:TypeMismatchException

It is thrown if the specified' Parameter is not of string type.

7.7{7.3.11 GetParameéterValueAsInteger

The GetParametefValueAsInteger term accepts a ParameterTerm and returns the actual vplue of the
parpmeter as andnteger.

GetParameterValueAsInteger iS an otx:IntegerTerm. [ts members have the following semantics:

— |<pakrameter> : ParameterTerm [1]

This is the Parameter whose value shall be returned as an integer.
Throws:
— otx:TypeMismatchException

It is thrown if the specified Parameter is not of integer type.

7.7.7.3.12 GetParameterValueAsFloat

The GetParameterValueAsFloat term accepts a ParameterTerm and returns the actual value of the
parameter as a float.

© IS0 2022 - All rights reserved 59

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetParameterValueAsFloat iS an otx:FloatTerm. Its members have the following semantics:

<param
This is
Throws:

eter> : ParameterTerm [1]

the parameter whose value shall be returned as a float.

otx:TypeMismatchException

It is thrown if the specified Parameter is not of float type.

7.7.7.3.13

The GetPay
parameter

GetParamef

<par

Throws:

Itis th

7.7.7.3.14

The GetPaj
parameter

GetParamef

This is
Throws:

Itis th

7.7.7.3.15

The Getpa

eter>
The ::Ixameter whose value shall be returned as a bytefield.

otx:TypeMismatchException

<parameter> :

otx:TypeMismatchException

GetParameterValueAsByteField

ameterValueAsByteField term accepts a ParameterTerm and returns the actual value of]
as a bytefield.

lerValueAsByteField iS an otx:ByteFieldTerm with the following member semantics:

: ParameterTerm [1]

Fown if the specified Parameter is not of bytefield type:

GetParameterValueAsQuantity

fameterValueAsQuantity term accepts a ParameterTerm and returns the actual value off
as a quantity.

terValueAsQuantity iS a quant:QuantityTerm. [ts members have the following semantics:
ParameterTerm [1]

the parameter whose value/shall be returned as a quantity:.

Fown if theispecified parameter is not of quantity type.

GetParameterValueTextld

FaméterValueTextId term accepts a ParameterTerm and returns the text identifier of

the

the

the

Parameter value as a string. In case an ODX/MVCI based system is used, the text identifier shall return
the LongNamelD of the related database object.

GetParameterValueTextId iS an otx:StringTerm. Its members have the following semantics:

This is
Throws:

<parameter> :

ParameterTerm [1]

the parameter whose text identifier value shall be returned as a string.

otx:TypeMismatchException

It is thrown if the specified Parameter does not have a text identifier value.

60

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

7.7.8 ComParam related terms

7.7.8.1 Description

IS0 13209-3:2022(E)

All terms specified in the following subclauses relate to the handling of communication parameters.

7.7.8.2 Syntax

Figure 31 shows the syntax of all ComParam related terms of the DiagCom extension.

ParameterTemm

«XSDcomplexType»
GetComplexComParameter

otx:BooleanTerm

ParameterTerm

«XSDcomplexType»
GetDefaultComplexComParameter

«XSDcomplexType»
GetComParameterValueAsBoolean

otx:StringTerm

otx:BooleanTerm

«XSDcomplexType»
GetDefaultComParameterValueAsBoolean

«XSDy

N
grouptef»

rbv «XSDgroug»

ChannelAndParamgeterName

«XSDcomplexType»
GetComParameterValueAsString

otx:IntegerTerm

otx:StringTerm

«XSDcomplexType»
GetDefaultComParameterValueAsString

«XSDcomplexType»
GetComParameterValueAsinteger

otx:FloatTerm

otx:IntegerTerm

«XSDcomplexType»
GetDefaultComParameterValueAsinteger

«XSDcomplexType»
GetComParameterValueAsFloat

otx:ByteFie/dTerm

«XSDcomplexType»
GetComParameterValueAsByteField

otx:FloatTerm

-

«XSDcomplexType»
GetDefaultComParameterValueAsFloat

quant:QuantityTerm

«XSDcomplexType»

otx:ByteFieldTerm|

«XSDcomplexType»
GetDefaultComParameterValueAsByteField

GetComParameterValueAsQuantity

7.718.3 Semantics

quant:QuantityTerm

«XSDcomplexType»
GetDefaultComParameterValue AsQuantity

7.7{8,3.1" ChannelAndParameterName group

Figure 31 — Data model view: ComParam related terms

«XSDelement»
+ comChannel: ComGhannelTerm

+ comParameterName] otx:StringTerm

The following properties are part of all of the following terms and are therefore, defined as a separate

group.

The members of the channelandParameterName group have the following semantics:

<comChannel>

ComChannelTerm [1]

The comChannelTerm specifies the comChannel which shall be queried.

<comParameterName>

The otx:stringTerm specifies the name of a communication parameter.

© IS0 2022 - All rights reserved

otx:StringTerm [1]

61

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:

Unknow:

nTargetException

It is thrown if there exists no communication parameter with the name provided by

<comPa

rameterName>.

otx:TypeMismatchException

It is thrown if the specified parameter is not of the correct type.

7.7.8.3.2 [GetDefaultComplexComParameter

The GetDefaultComplexComParameter term comprises the ChannelAndParameterName attribiite”grioup
and shall return the default value of a complex communication parameter (e.g. list and struet paramgter
types).

GetDefaul{ComplexComParameter iS a ParameterTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.3 | GetComplexComParameter

The GetConiplexComParameter term comprises the ChannelandParametérName attribute group and shall
return the|current value of a complex communication parameter (e-g:list and struct parameter types).
If the communication parameter has not been previously modifiéd by the setComplexComParamdter
action (defjned in 7.6.3.3.2), the default parameter value shall be seturned.

GetComple¥ComParameter IS a ParameterTerm. Its meémbers are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.4 | GetComParameterValueAsBoolean

The GetComParameterAsBoolean term compriseés the channelandParameterName attribute group pnd
shall returp the current value of a Boolean Communication parameter. If the communication paramgter
has not bden previously modified by the SetComParameter action (defined in 7.6.3.3.1), the defpult
parameter(value shall be returned.

GetComPargmeterValueAsBoolean 1S/an otx:BooleanTerm. Its members are described by the grnoup
ChannelAndParameterName, as specified above.

7.7.8.3.5 | GetComParamieterValueAsString

The GetConParametexAsString term comprises the ChannelandParameterName attribute group and shall
return the|current\walue of a string type communication parameter. If the communication paramgter
has not bden pteviously modified by the setComParameter action (defined in 7.6.3.3.1), the defpult
parameter(value shall be returned.

GetComParameterValueAsString iS an otx:StringTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.6

GetComParameterValueAsInteger

The GetComParameterAsInteger term comprises the ChannelAndParameterName attribute group and
shall return the current value of an integer type communication parameter. If the communication
parameter has not been previously modified by the setComParameter action (defined in 7.6.3.3.1), the
default parameter value shall be returned.

GetComParameterAsInteger iS an otx:IntegerTerm. [ts members are described by the group
ChannelAndParameterName, as specified above.

62 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.8.3.7 GetComParameterValueAsFloat

The GetComParameterAsFloat term comprises the ChannelandParameterName attribute group and shall
return the current value of a float type communication parameter. If the communication parameter
has not been previously modified by the setComParameter action (defined in 7.6.3.3.1), the default
parameter value shall be returned.

GetComParameterAsFloat IS an otx:FloatTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.83.8 pr(‘nmParamptprValllpAcRypripld

The GetComParameterAsByteField term comprises the ChannelAndParameterName attribute(group and
sha|l return the current value of a bytefield type communication parameter. If tHe comnunication
parpmeter has not been previously modified by the setComParameter action (defined in 7.4.3.3.1), the
default parameter value shall be returned.

GetfomParameterAsByteField iS an otx:ByteFieldTerm. Its members are_described by |the group
ChapnelAndParameterName, as specified above.

7.718.3.9 GetComParameterValueAsQuantity

The GetComParameterasQuantity term comprises the channelfndParameterName attribute|group and
sha|l return the current value of a quantity type commuhication parameter. If the comnunication
parpmeter has not been previously modified by the setComParameter action (defined in 7.4.3.3.1), the
default parameter value shall be returned.

GetfomParameterAsQuantity iS a quant:QuantityTerm [ts members are described by [the group
ChahnelAndParameterName, as specified above.

7.718.3.10 GetDefaultComParameterValueAsBoolean

The GetDefaultComParameterAsBooledn-term comprises the ChannelandParameterName attripute group
and shall return the default value of\a’Boolean type communication parameter.

GetpefaultComParameterAsBooléan iS an otx:BooleanTerm. Its members are described by|the group
ChahnelAndParameterName, dSspecified above.

7.718.3.11 GetDefaultComParameterValueAsString

The GetDefaultComParameterAsString term comprises the ChannelaAndParameterName attripute group
and| shall return'the default value of a string type communication parameter.

GetpefaultComParameterAsString iS an otx:StringTerm. Its members are described by|the group
ChahnelAndParameterName, as specified above.

7.7.8.3.12 GetDefaultComParameterValueAsInteger

The GetDefaultComParameterAsInteger term comprises the ChannelandParameterName attribute group
and shall return the default value of an integer type communication parameter.

GetDefaultComParameterAsInteger iS an otx:IntegerTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.13 GetDefaultComParameterValueAsFloat

The GetDefaultComParameterAsFloat term comprises the ChannelandParameterName attribute group
and shall return the default value of a float type communication parameter.

©1S0 2022 - All rights reserved 63

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetDefaultComParameterAsFloat iS an otx:FloatTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.14 GetDefaultComParameterValueAsByteField

The GetDefaultComParameterAsByteField term comprises the ChannelAndParameterName attribute
group and shall return the default value of a bytefield type communication parameter.

GetDefaultComParameterValueAsByteField iS an otx:ByteFieldTerm. Its members are described by the
group ChannelAndParameterName, as specified above.

7.7.8.3.15| GetDefaultComParameterValueAsQuantity

The GetDdfaultComParameterAsQuantity term comprises the ChannelaAndParameterName |attrifpute
group and ghall return the default value of a communication parameter.

GetDefaul{ComParameterAsQuantity iS an quant:QuantityTerm. [ts members are described by the grioup
ChannelAndlParameterName, as specified above.

7.7.9 Eventrelated terms

7.7.9.1 Description

All terms dpecified in the following subclauses relate to event handling. For further details about{the
OTX EventHandling extension please refer to Clause 8.

7.7.9.2 Syntax

Figure 32 dhows the syntax of all event related termsofthe DiagCom extension.

event:EventSource Term DiagService Term| otx:BooleanTenn
4XSDcomplexType» «XSDecomplexType» «XSDcomplexType»
DiapServiceEventSource GetDiagServiceFromEvent IsDiagServiceEvent
«XSDelement» «XQDelkement» «XSDelement»
+ diagSevice: DiagServiceTerm + \event: event:EventValue + event: event:EventValue

Figure 32 — Data model view: Event related terms

7.7.9.3 Semantics

7.7.9.3.1 | DiagServiceEventSource

The DiagS¢rviceEventSource term accepts a DiagService object that is to be made an event source.
This term enables an OTX sequence to use a DiagService as a source for events in the context of the
OTX EventHandling extension (please refer to Clause 8). A piagService shall trigger an event every
time a new Result has arrived (please compare Figure 6). The piagServiceEventSource term is the
complementary functionality to the asynchronous execution feature of the ExecuteDiagService
action: when ExecuteDiagService is used with <executeasync> set to true, the only way to be notified
of available results for the executed diagnostic service is to use it as an event source through the
DiagServiceEventSource term. The type of event can then be retrieved by using the 1sbiagServiceEvent
term as specified below.

DiagServiceEventSource iS an event:EventSource. [ts members have the following semantics:
— <diagService> : DiagServiceTerm [1]

This represents the piagservice that shall be connected to the event source.

64 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

7.7.9.3.2 IsDiagServiceEvent

The 1sbDiagServiceEvent term accepts an EventValue term yielding an Event object that has been
raised by the OTX runtime, as a result of declaring a biagservice object as an event source by using
the term DiagServiceEventSource. The term shall return true if and only if the Event originates from a
DiagServiceEventSource term.

IsDiagServiceEvent iS an otx:BooleanTerm. [ts members have the following semantics:

— <event> : event:EventValue [1]

. 1 4= 1 111 4= FRpA |
l lllS lE[)l ESElltS tlle Evernrtwitose Ly Pt Slidll DT LTSLTU.

7.719.3.3 GetDiagServiceFromEvent

The GetDiagServiceFromEvent term accepts an Eventvalue term yielding an Event-object that has been
raiged by the OTX runtime, as a result of declaring a biagservice object as anevefit source by using the
term DiagServiceEventSource. It returns a handle to the piagservice objectithat caused th¢ event (i.e.
bechuse a new ECU rResult has been received after the piagservice has beén executed, plegse refer to
7.6.4.3.1 and 7.7.9.3.1). By using this term, an OTX sequence can wait foryanEvent raised by a pjagservice
rec¢iving a new Result and then evaluate the Result/Response structure of that piagservick.

GetpiagServiceFromEvent iS a DiagServiceTerm. Its members hdye the following semantics:
— |<event> : event:EventValue [1]

This represents the event that was raised by the piagservice that shall be retrieved.
Thrjows:

— |otx:TypeMismatchException

It is thrown if the specified event has not been raised by a DiagServiceEventSource.

8 |OTX DiagDataBrowsing extension

8.1 General

Theg OTX DiagDataBrowsing extension provides a set of terms for reading static information|associated
with communication_channels, diagnostic services and request- or response-parameters. The data is
staflic insofar that(ityoriginates from a diagnostic vehicle information database; this is unlilke dynamic
data which is, eg-read from an ECU.

Theg extension is designed for supporting cases where diagnostic information is require¢l by a test
seqpencé;>but the information is not known at authoring time and therefore, needs to be retrieved at
iriants of a
nunication

The terms provided in this extension are based on the assumption that the diagnostic data associated
to the specific to-be-diagnosed vehicle (model) is provided implicitly by the runtime system. The
identification and retrieval of the data is the task of the initialization process of diagnostic application;
it is not intended to provide the ability to specify the diagnostic data to load by means of this extension.

NOTE1 For an ODX-MVCI based system, the information provided by the OTX DiagDataBrowsing terms is
dependent on the pre-loaded ODX data and especially on the selected vehicle information table (VIT).

© IS0 2022 - All rights reserved 65

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The OTX DiagDataBrowsing extension is based on the OTX DiagCom extension, as specified in Clause 7.
It uses the diag:ComChannel, diag:DiagService and diag:Parameter oObjects from which diverse static
information can be queried.

NOTE 2 In case an ODX/MVCI system is used, the targeted data is contained in the VEHICLE- INFORMATION
section of the ODX data which can be queried via the ASAM MCD-3D-API.

NOTE3 An additional functionality is specified in the DiagDataBrowsingPlus extension.

8.2 Data types

8.2.1 OvLerview

The OTX DiagDataBrowsing extension introduces a single data type named ComChannelCategorsy, as
described in the following.

8.2.2 Syntax

The syntay of the comChannelcategory datatype declaration of the OTX DiagDataBrowsing extensidn is
shown in Higure 33.

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

«XSDcomplexType»
4& ComChannelCategory

«XSDcomplexType» «XSDelementd
otx:SimpleType <’7 + init: Com€hannelCategoryLiteral [0..1]

Figure 33 — Data model view: DiagDataBrowsing data types

8.2.3 Semantics

8.2.3.1 (eneral

The comChgnnelcategory enumeration type in the OTX DiagDataBrowsing extension is derived ffom
otx:Simpl¢Type.

8.2.3.2 (omChannelCGategory
ComChannelCategor§ iS an enumeration type describing the category of a ComChannel.

The list of allowed enumeration values is defined as follows.

— BASE_VARIANT: 2 ComChannelof this category references a bhase variant that is the cominon
denominator of a set of ECU variants.

— FUNCTIONAL GROUP: a comchannel of this category references a functional group of ECUs, i.e. a
set of ECUs that share the same functional address.

— PROTOCOL: a ComChannel of this category references a protocol-level communication link, i.e. it
contains a set of diagnostic services that are common to all ECUs implementing a specific procotol.

Communication channel categories are used by GetComChannelList for filtering available communication
channels by category (see 8.4.3.1). Since filtering by the fourth category—Eecu_variant—would in many
cases produce a large and rather unmanageable list of ECU variants, this category is intentionally not
part of the comChannelCategory enumeration. Instead, the term GetEcuvariantList shall be used for
getting only those ECU variants associated to a single ECU base variant at a time (see 8.4.3.2).

66 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

IMPORTANT — comChannelCategory values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:
BASE_VARIANT < FUNCTIONAL GROUP < PROTOCOL.

IMPORTANT — When applying otx:ToString On a ComChannelCategory value, the resulting
string shall be the name of the enumeration value, e.g. otx:ToString (PROTOCOL)="PROTOCOL"
. Furthermore, applying otx:ToInteger shall return the index of the value in the enumeration
ComChannelCategories (smallest index is 0). The behaviour is undefined for other conversion
terms (see ISO 13209-2).

ComChannelCategory iS an otx:SimpleType. [ts members have the following semantics:

IM
ele

8.3

8.3

As s
defi
extq
extq

8.3

Figlire 34 shows the syntax of the'DiagDataBrowsing extension's variable access types.

<init> : ComChannelCategoryLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at
time.

— value : ComChannelCategories={BASE_VARIANT | FUNCTIONAL GROUP/PROTOCOL} [1]

ORTANT — If the comChannelCategory declaration is not explicitly initialized (omit
ent), the default value shall be Base_varianT.

Variable access

1 Overview

pecified in ISO 13209-2, OTX extensions shall\define a variable access type for each dat
ne (exception types inclusively). All variable’access types are derived from the OTX cor
bnsion interface. The following specifies.all'variable access types defined for the DiagDat
Pnision.

2 Syntax

otx:Extensioninterface

«XSDcomplexType»
otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement» ﬂ «XSDcomplexType»

+ path: otx:Path [0..1] ComChannelCategoryVariable

8.3.

leclaration

This attribute shall contain one of the values defined in the comchannelcategories enumeration.

ted <init>

atype they
€ Variable
aBrowsing

Fi 341 el view: DingDataR . iahl

3 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for further
details.

©IS

02022 - All rights reserved

67

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

8.4 Terms

8.4.1 Overview

The terms in the OTX DiagDataBrowsing extension shall be used to retrieve static information from the
diagnostic vehicle information database, at runtime.

8.4.2 Syntax

Figure 35 shows the syntax of all terms in the OTX DiagDataBrowsing extension.

otx:ListTerm otx:ListTerm otx{Listferm
4XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetComChannelList GetEcuVariantList GetDiagServicelist
«XSDelement «XSDelement» «XSDelement»
+ category: omChannelCategoryTerm [0..1] + comChannel: ComChannelTerm + comChannel: ComCharielTerm
otx:ListTerm otx:ListTerm otx:Listferm
4XSDcomplexType» «XSDcomplexType» «XSBcomplexType»
GetRequestParameterList GetResponseParameterList GetAllowedParameterValueList
«XSDelement «XSDelement» «XSDeldmeft»
+ diagServicg: DiagServiceTerm + diagService: DiagServiceTerm + parameter. ParameterTerm
otx:BooleanTerm otx:BooleanTerm otx:Boolean[erm
4XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
sStringParameter IsBooleanParameter IsNumericParameter
«XSDelement «XSDelement» «XSDelement»
+ parameter:| ParameterTerm + parameter: ParameterTerm + parameter: ParameterTerm
otx:BooleanTerm oix:BooleanTerm
4XSDcomplexType» «XSDcomplexType»
I§ComplexParameter IsByteFieldParameter
«XSDelement «XSDelement»
+ parameter:| ParameterTerm + parametef, RarameterTerm
ComChanneiCategoryTerm ComChanneiCategoryTerm xsd:string
¢XSDcomplexType» «XSDcomplexType» «enumeration»
Com[hannelCategoryValue ComChannelCategoryLiteral ComChannelCategories
«XSDattribute «XSDattribute» BASE_VARIANT
+ valueOf: ofx:OtxLink + value: ComChannelCategories FUNCTIONAL_GROUP
PROTOCOL
«XSDelement
+ path: otx:Hath [0..1]
Figure 35 — Data model view: DiagDataBrowsing terms
8.4.3 Semantics

8.4.3.1 GetComChannelList

GetComChannellList shall return alist of strings containing the identifiers of all communication channels
described in the diagnostic vehicle information data base.

If the optional attribute category is set, only those communication channel identifiers shall be returned
which belong to the given category.

IMPORTANT — In the case of an MVCI/ODX based system, the equivalent of a communication
channel identifier shall be the seorT-NAME of a LOGICAL-LINK.

68 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetComChannelList iS an otx:ListTerm. [ts members have the following semantics:
— <category> : ComChannelCategoryTerm [0..1]

This optional element specifies the category according to which the com channels shall be filtered.

8.4.3.2 GetEcuVariantList

GetEcuvariantList shall return a list of strings which represents the names of all ECU variants for a
given communication channel (see 7.7.2, communication channel related terms of the OTX DiagCom
extension). The channel shall either point to a base variant or an ECU variant—in both cases, the
nanpes of the ECU variants of the base variant shall be returned. If a base variant has no assdciated ECU
varjants, an empty list shall be returned. Furthermore, in case the communication channel|points to a
profocol or functional group, an exception shall be thrown.

IMFPORTANT — In the case of an MVCI/ODX based system, the equivalent of a Variant pame shall
be the sHORT-NAME Of an ECU-VARIANT.

GetEcuVariantList iS an otx:ListTerm. [ts members have the following semantics:
— |<comChannel> : diag:ComChannelTerm [1]

This element represents the communication channel which provides the data.
Throws:

— |otx:TypeMismatchException

It is thrown if the communication channel belehgs to the category PROTOCOL or FUNCTIQNAL GROUP
(see 8.2.3.2).

8.4{3.3 GetDiagServiceList

GetpiagServiceList shall return a Ji§b of strings containing the names of all diagnostiic services
avajlable for a given communication channel (see 7.7.2, communication channel related tefms of OTX
DiagCom).

IMPORTANT — In the case'of an MVCI/ODX based system, the equivalent of a diagnostic service
narpe shall be the sEorT-NAME of a DIAG-COMM.

GetpiagServiceList.iS ah otx:ListTerm. Its members have the following semantics:
— |<comChannel>"“: diag:ComChannelTerm [1]

This elefnent represents the communication channel whose diagnostic services shall be|listed.

8.4{3.4"\ ‘GetRequestParameterList

GetRequestParameterList shall return a list of strings containing the names of all request parameters
of a given diagnostic service (see 7.7.3, diagnostic service related terms of the OTX DiagCom extension).

IMPORTANT — In the case of an MVCI/ODX based system, the returned list shall contain the
sHORT-NAMEs of all param objects (enclosed in a paraMs object of the rReEQuEST). In case a request
parameter is a complex parameter (e.g. a sTruct) there shall be no deep recursion into that
parameter.

GetRequestParameterList iS an otx:ListTerm. [ts members have the following semantics:
— <diagService> : diag:DiagServiceTerm [1]

This element represents the diagnostic service whose request parameters shall be listed.

©1S0 2022 - All rights reserved 69

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

8.4.3.5 GetResponseParameterList

GetResponseParameterList shall return alist of strings containing the names of all response parameters
of a given diagnostic service (see 7.7.3, diagnostic service related terms of the OTX DiagCom extension).

IMPORTANT — In the case of an MVCI/ODX based system, the returned list shall contain the
sHORT-NAMEs Of all param objects (enclosed in a paramMs object of the first pos-rEspoNsE). In case a
response parameter is a complex parameter (e.g. a struct) there is no deep recursion into that
parameter.

GetResponseParameterList iS an otx:ListTerm. Its members have the following semantics:

— <diagS§ervice> : diag:DiagServiceTerm [1]

This element represents the diagnostic service whose response parameters shall be listedx

8.4.3.6 (etAllowedParameterValueList

GetAllowedParameterValueList shall return a list of strings containing the allowed values fgr a
parameter]If there is no enumeration of allowed values associated to the parameter, the empty list shall
be returnef.

NOTE In the case of an MVCI/ODX based system, this applies only to parameters which have a TEXTTABLE
as COMPU-METHOD or to parameters which are of type TABLE-KEY. For those{parameters the list contains all yalid
entries of a FEXTTABLE or all entries which are valid for the TABLE-KEY. For other parameters the returned list is
empty.
GetParametferValuelist iS an otx:ListTerm. [ts members haye’the following semantics:

— <paraneter> : diag:ParameterTerm [1]

The el¢ment addresses the name of the request 6r' response parameter.

8.4.3.7 IsStringParameter

IsStringParameter shall return true if and only if the given parameter represents a string value
according fo its definition in the diagnoestic data base.

IsStringPgrameter iS an otx:BooleanTerm. Its members have the following semantics:
— <paranjeter> : diag:PaxameterTerm [1]
The el¢ment addresses'the name of the request or response parameter to be type-tested.

NOTE IIn the case~ef an MVCI/ODX based system, it returns True whether the value of this parameter |s of
one of the fqllowing.ME€DDataType: eA_ASCIISTRING, eA_UNICODE2STRING, eKEY, eTEXTTABLE.

8.4.3.8 IsBooleanParameter

IsBooleanParameter shall return true if and only if the given parameter represents a Boolean value
according to its definition in the diagnostic data base.

IsBooleanParameter iS an otx:BooleanTerm. [ts members have the following semantics:
— <parameter> : diag:ParameterTerm [1]
The element addresses the name of the request or response parameter to be type-tested.

NOTE In the case of an MVCI/ODX based system, it returns True whether the value of this parameter is of
one of the following MCDDataType: eA_BOOLEAN.

70 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

8.4.3.9 IsNumericParameter

IsNumericParameter shall return true if and only if the given parameter represents a numeric value
according to its definition in the diagnostic data base.

IsNumericParameter iS an otx:BooleanTerm. [ts members have the following semantics:
— <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

NOTE In the case of an MV(‘I/(\DY based system it returns True whether the value of this parameter is

of one of the following MCDDataType: eA_FLOAT32, eA_FLOAT64, eA_INT16, eA_INT32, eA_INT6H, eA_INTS,
eA_PINT16, eA_UINT32, eA_UINT64, eA_UINTS8, eDTC, eEND_OF_PDU, eENVDATA, eENVDATADHSC, eFIELD,

eMULTIPLEXER, eSTRUCTURE, eLENGTHKEY, eTABLE_ROW.

8.4]3.10 IsByteFieldParameter

IsBjteFieldParameter shall return true if and only if the given parameteritepresents a bytefield value
according to its definition in the diagnostic data base.

IsBjteFieldParameter iS an otx:BooleanTerm. Its members have the following semantics:
— |<parameter> : diag:ParameterTerm [1]
The element addresses the name of the request or respohse parameter to be type-tested.

NOTE In the case of an MVCI/ODX based system, it returns True whether the value of this parpmeter is of
one of the following MCDDataType: eA_BITFIELD, eA_BYTEFIELD.

8.413.11 IsComplexParameter

IsCpmplexParameter shall return true if and only if the given parameter neither represents a string,
Bodlean, numeric nor bytefield value aceording to its definition in the diagnostic data base.

IsCpmplexParameter iS an otx:BooleanTerm. [ts members have the following semantics:
— |<parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.
NOTE In the case-of-an MVCI/ODX based system, it returns True whether the value of this parameter is

of one of the following MCDDataType: eEND_OF_PDU, eENVDATA, eENVDATADESC, eFIELD, eMULTIPLEXER,
eSTRUCTURE, eTABIYE_ROW.

8.4]3.12 ComChannelCategoryTerm

The abstract type ComChannelCategoryTerm iS an otx:SimpleTerm. It serves as a base for dll concrete
ter vhich : mChann i ee iallmembers.

8.4.3.13 ComChannelCategoryValue

This term returns the ComChannelCategory stored in a ComChannelCategory variable. For more
information on value-terms and the syntax and semantics of the valueof attribute and <path> element,
please refer to ISO 13209-2.

Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

©1S0 2022 - All rights reserved 71

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:

otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

8.4.3.14 ComcChannelCategoryLiteral

This term shall return a ComChannelCategory enumeration value (see 8.2.3.2) from a hard-coded literal.

ComChannel]

This af

9 O0TX]

9.1 Gen

At some p
sequences
and DiagCq
blocking c:
event conc

During thg
procedure
state as a
or listener]
to be fully
with comp
encountersg

The prima

Event

examp
the abs

Event
queue

Event

and pd
examil

value |:

CategoryLiteral IS d ComChannelCategoryTerm. ItS members have the rollowing semanti

ComChannelCategories={BASE_ VARIANT | FUNCTIONAL_ GROUP|PROTOCOL} [1]

t'ventHandling extension

bral

pint during execution, an OTX sequence needs to interaet with the outside world.
can cause things to happen in various ways, for examplé, by calling actions from the
m extensions. Responses can also come back into OTX.through these actions (for examp
111 to a hmi :Confirmbialog), but in addition to thesecblocking mechanisms, OTX provide
ept for finer-grained control of input events.

|

3

execution of an OTX procedure events may 6ccur as a result of activities outside
(for example, a user screen click or a timer expires) or inside (for example, a variable char
Fesult of an assignment in a parallel thread). OTX has no mechanisms (such as call-bg
5) to handle these events asynchronously. The OTX EventHandling extension is desig
synchronous—it uses a proceduraltmechanism to wait for events to occur. A proced
|ex event requirements may process events sequentially in a loop until some exit criter
d.

'y elements of the OTX EvéntHandling extension are:

source: an event source is something that creates events as a result of some occurrence
le, a screen press ofa timer expiring. In OTX, event sources are created by terms that exf]

sources may,centain multiple events in their event queue which can be removed from
(eldest first) by using the waitForEvent action.

an event encapsulates all the information about what has occurred. Events are crej
pulated by event sources and can be stored in Event-type variables. Various terms exig
né-and extract content from events. There is no programmatic way to create events.

tribute shall contain one of the values defined in the comChannelcategories enumeration.

S

DTX
IMI

e a
an

the
ges
cks

ned
ure
ais

for

end
tract term EventSourceTerm. An event source starts queuing events right after being creafed.

the

ted

t to

WaitForEvent: the EventHandling extension defines a single action that blocks a thread of execution

until an event occurs. This action is the synchronisation point between the event sources and the
OTX execution thread.

9.2 Data types

9.2.1 Overview

The OTX EventHandling extension introduces two data types named Event and EventSource, as
described in the following.

72

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

9.2.2 Syntax

The syntax of all OTX EventHandling data type declarations is shown in Figure 36.

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

«XSDcomplexType»

Z% Event

«XSDcomplexType» <} «XSDcomplexType»
otx:ComplexType EventSource

Figure 36 — Data model view: EventHandling data types

9.2]3 Semantics

9.213.1 General

Singe the OTX Event data types have no initialization parts, they cannot be declared constarnt.

9.213.2 Event

Varjables of type Event can be declared to hold events generated by event sources. Evenf variables
canpot be initialized, therefore it is not permitted to declare an Event constant.

The Event data type encapsulates the information about a single event. There are no termg or actions
to create events explicitly, programmatically; they are only created implicitly by event sources once the
awdited event occurs.

Onde an event has been obtained from/an event source (by using a waitForEvent actior|) it can be
examined using terms of the EventHandling extension (or other extensions with event handling), so for
insflance terms which tell which type-of event source an event originates from.

Singe Event has no initializatien parts, an Event cannot be declared constant.

IMPORTANT — Other. OTX extensions may define additional event source [terms by
extpnding the EventSourceTerm type. For example, the OTX HMI extension de¢fines the
hmif ScreenClosedEyentSource term which listens for the closed-event when the user [closes the
screen.

9.213.3 EventSource

Varjablesof type Eventsource are handles to event sources created by any EventSourceTerm

o has-beencrec a-event-guene-sha 3 egisterirg—events which
correspond to the EventSourceTerm subtype chosen for creating. Queueing shall be done in a separate
thread of the runtime system.

For instance, in the case of an event source which was created by a MonitorChangeEventSource term and
assigned to an EventSource variable, the event source's internal queue starts registering each change
event of the monitored value immediately.

Registered events may be read out and removed one by one from an event source's queue by repeatedly
calling the waitForEvent action on that event source. See 9.4.3.1 for details on the waitForEvent action.

Event source queueing can be stopped explicitly by using the closeEventsource action, as specified
in 9.4.3.2. Event sources which are created on-the-fly within a waitForEvent action shall be closed
implicitly as soon as the action exits.

©1S0 2022 - All rights reserved 73

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Since EventSource has no initialization parts, an EventSource cannot be declared constant.

9.3 Variable access

9.3.1 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define. All variable access types are derived from the OTX core otx:Variable extension interface. The
following specifies all variable access types defined for the OTX EventHandling extension.

9.3.2 Syntax

Figure 37 5

9.3.3 Se

The geners

9.4 Acti

otx:Extensioninterface

«XSDcomplexType»
otx:Variable

hows the syntax of the EventHandling extension's variable access types.

«XSDcomplexType»

«XSDattribute»
+ name: otx:OtxLink

«XSDelement»
+ path: otx:Path [0..1]

EventVariable

«XSDcomplexType»

mantics

DS

9.4.1 Overview

The OTX E
as describg

9.4.2 Sy

Figure 38 1

d in the following.

ntax

otx:ActionRealisation

«XSDcomplexType»
WaitForEvent

EventSourceVariable

Figure 37 — Data model view: EventHandling variable access types

| semantics for all variable access types apply. Refer to [ISO 13209-2 for further details.

ventHandling extension intyoduces the actions named waitForEvent and CloseEventSou

hows the synitax of all actions in the OTX EventHandling extension.

otx:ActionRealisation

«XSDcomplexType»
CloseEventSource

rce,

KASDUelelTieri»
+ source: EventSourceTerm [1..%]
+ event: EventVariable [0..1]

KASDEICTIEelN»
+ source: EventSourceVariable [1..*]

Figure 38 — Data model view: EventHandling actions

9.4.3 Semantics

9.4.3.1 WaitForEvent

The waitForEvent action shall block the thread of execution until it receives an event from one of its
event sources. As soon as an event becomes available in one of the sources' event queues, WaitForEvent

74

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

shall remove that event from the event source's queue and exit; the thread of execution continues to the
next node.

If an event variable was specified, the event that caused waitForEvent to exit is assigned to the variable.
Special semantics apply for the following cases.

a) Situations may occur when event sources already contain one or multiple events in their event
queue before being used by a waitForEvent action. In that case, waitForEvent shall use the eldest
event available in any of its event sources' queues (and assign it to an event variable, if specified). If
there is more than one eldest event—this may happen for events that occurred at the same time—
the event of the event source which 1s listed f1rst in the action shall be used (first in XM1} document
order).

IMPORTANT — Please keep in mind that the test logic should not depend on the event order.

b) [When waitForEvent exits, those event sources which were created on-the=fly within|the action
shall be closed (the ones that are not assigned to an EventSource variable).

immediately after creation. Without an explicit call to closeEvéntSource the event queue will
continue to grow without limitation as new events are fired. It is recommended to use implicit
event sources, if possible.

IM%ORTANT — Please keep in mind that explicitly opened event sources are collectjng events

In drder to determine later which of the event sources has fired the event, the terms descrilped in 9.5.4
shopld be used.

Thg members of the waitForEvent action have the following semantics:
— |<source> : EventSourceTerm [1l..%*]

This represents one or more event sources that the action shall wait for. The walfit shall be
terminated by the first source to fire an-event.

— |<event> : EventVariable [0. .1}

This optional element represents an Event-type variable which shall receive the |event that
terminates this wait.

9.413.2 CloseEventSource

The closeEventsoufce action shall close and dispose given event sources. Closed event souices will no
mofe queue any,events.

Onde closed; an event source cannot be reopened. Using a closed event source, for exdmple, in a
WaifForEvent action there is an error and will cause an otx: InvalidReferenceException (through the
EveptSéufcevalue term as specified in 9.5.2.3.2).

In casethatctoseEventsourcetsappliedtoamreventsourcewhichts—atready closed;the—ction shall
perform nothing (NOP).

CAUTION — In parallel execution, situations may occur where an event source gets closed by a
CloseEventSource action while being used in a waitForEvent action (in another parallel lane). If the
WaitForEvent action has no other event sources registered, this will cause a deadlock situation.
OTX authors should avoid such situations by careful test sequence design and the usage of the
MutexGroup Node, as specified by ISO 13209-2.

The members of the closeEventSource action have the following semantics:
— <source> : EventSourceVariable [1..*]

This represents one or more variables which contain the event sources that shall be closed.

© IS0 2022 - All rights reserved 75

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

9.4.4 Example

The example below shows the use of the waitForEvent action with a MonitorChangeEventSource on a
variable x and a TimerExpiredEventSource of 10 s.

The MonitorChangeEventSource starts queueing change events of variable x prior to being used
in the waitForEvent action, right after being created in the aAssignment action. In constrast the
TimerExpiredEventSource is created on-the-fly inside of the waitForEvent.

If x does not change its value, the wait will exit after 10 s. In any case, once one of the event sources fires
the event, it is assigned to the event variable myEvent which might be used later for analysis.

After the vait, the MonitorChangeEventSource is closed by an explicit CloseEventSource action| By
contrast, the TimerExpiredEventSource is closed implicitly as soon as the wait exits.

Sample of[EventHandling

<action id="al">
<spe¢ification>Create a MonitorChangeEventSource listening to variable’x</
specificaftion>
<realisation xsi:type="Assignment">
<r¢sult xsi:type="event:EventSourceVariable" name="xMonitor"/Z
<tg¢rm xsi:type="event:MonitorChangeEventSource">
event:variable xsi:type="IntegerVariable" name="x"/>
</term>
</reglisation>
</actign>

<actionp id="az2">
<spe¢ification>Wait for a change of x's value, stOp waiting after 10 seconds</
specificaffion>
<realisation xsi:type="event:WaitForEvent">
<eyent:source xsi:type="event:EventSourceValue" valueOf="xMonitor"/>
<eyent:source xsi:type="event:TimerExpiredEventSource">
event:timeout value="10000" xsi:tyee="IntegerLiteral"/>
</g¢vent:source>
<efent:event name="myEvent"/>
</reglisation>
</acti¢n>

<actiop id="a3">
<spe¢ification>Close xMonlt0tr event source</specification>
<realisation xsi:type="yeyent:CloseEventSource">
<eyent:source name="xMénitor"/>
</reglisation>
</acti¢n>

9.5 Terms

9.5.1 Ovlerview

The Terms|ofthe OTX EventHandling extension are grouped into three different categories.

— Event terms: event terms return events. The OTX EventHandling extension defines exactly one
event term named Eventvalue.

— Event source terms: event source terms can be used within waitForEvent actions. This extension
defines several event sources, but additional event sources may be defined in other OTX extensions.
In particular the OTX HMI extension defines the hmi : ScreenClosedEventSource term as a source of
GUI events.

— Event property terms: the terms in this category are used to examine events that are produced by
event sources. They all operate on an event that is accessed using an EventTerm and return one of
the values stored in the event for further processing.

The term categories described above are shown in Figure 39.

76 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

otx:ExtensionInterface

«XSDcomplexType»
— EventTerm

«XSDcomplexType»

EventSourceTerm

«XSDcomplexType»
event:EventValue

IS0 13209-3:2022(E)

Event terms

Event source terms

«XSDcomplexType»

«XSDcomplexType»

CompositeEventSource

EventSourceValue

«XSDcomplexType»

«XSDcomplexType»
TimerExpiredEventSource

GetEventSourceFromEvent

Other OTX extensions

«XSDcomplexType»
otx:Term

«XSDcomplexType»
otx:SimpleTerm

«XSDcomplexType»

otx:BooleanTerm <}

«XSDcomplexTypp»

«XSDcomplexType»
MonitorChangeEventSource

A

DiagServiceEventSofirce

«XSDcomplexTypp»
ScreenCl iEventSqurce

A

«XSDcomplexType»
ThresholdExceededEventSource

Event query terms

«XSDcomplexType »
IsMonitorChangeEvent

«XSDgomplexType»
IsThresholdExceededEvent

«XSDcomplexType»
IsTimerExpiredEvent

«XSDcomplexType»
IsEventHasException

V

«XSDcomplexType»
ExceptionTerm

Exception terms

Ve

GetExceptionFromEvent

|
|
|
|
|
[
| «XSDcomplexType»
I
|
|
|
|
|
|

«XSDcomplexType»
GetNewValue

Figure 39 — Data model view: EventHandling term categories

9.5.2 Eventterms

9.5.2.1 Description

Terms in this category return events.

9.5.2.2 Syntax

Figure 40 shows the syntax of the event terms.

© IS0 2022 - All rights reserved

77

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

EventTerm

«XSDcomplexType»
EventValue

«XSDattribute»
+ valueOf: otx:OtxLink

«XSDelement»
+ path: otx:Path [0..1]

Figure 40 — Data model view: Event terms

9.5.2.3 S

9.5.2.3.1

emantics

EventTerm

The abstract type EventTerm is an otx:Term. It serves as a base for all concrete termmg‘which returp an

Event. [t hg

9.5.2.3.2

This term
syntax and

Associated
— Core_(
Throws:

otx:0y

It is thirown only if a <path> is set: the <path> points to a location which does not exist (like al

index ¢

otx:In

Itis th
9.5.3 Ew

9.5.3.1 1

Terms in this categor’y represent event sources. In a WaitForEvent action, any of the event source te

defined he
of the emb

s no special members.

EventValue

eturns the Event stored in an Event variable. For more infeximation on value-terms and
semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

checker rules:

hk053 - no dangling OtxLink associations (see ISO13209-2).

tOfBoundsException

xceeding list length, or a map kéy)which is not part of the map).
validReferenceException

Fown if the variable valuelis not valid (no value was assigned to the variable before).
bnt source terms

Jescription

Fe ot in"other OTX extensions may be used. The waitForEvent action waits so long until

the

list

Fms
one

bdded event source term fires an event.

NOTE

Itis anintended design goal of the OTX EventHandling extension that there is no explicit EventSource

data type defined. Therefore, it is not possible to declare EventSource variables. Event source terms are useable

only within

WaitForEvent actions.

9.5.3.2 Syntax

Figure 41 shows the syntax of the event source terms.

78

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

Event:EventSourceTerm

«XSDcomplexType»
EventSourceValue

«XSDattribute»
+ valueOf: otx:OtxLink

«XSDelement»
+ path: otx:Path [0..1]

Event:EventSourceTerm

«XSDcomplexType»
TimerExpiredEventSource

IS0 13209-3:2022(E)

«XSDelement»
+ timeout: otx:IntegerTerm

Event:EventSourceTerm

«XSDcomplexType»
CompositeEventSource

«XSDelement»
+ eventSources: otx:ListTerm

«XSDcomplexTyvnoy
T e

Event:EventSourceTerm

«XSDcomplexType»
ThresholdExceededEventSource

Event:EventSourceTerm

MonitorChangeEventSource

«KSDelement»
variable: otx:Variable

+

«XSDelement»
+ lowerThreshold: otx:SimpleTerm
+ upperThreshold: otx:SimpleTerm

«XSDcomplex] ype»
GetEventSourceFrpmEvent

9.5/3.3 Semantics

Figure 41 — Data model view: Event source terms

«XSDelemehtp,
+ event: ‘EyéntTerm

9.5]3.3.1 CompositeEventSource
CompositeEventSource iS an event:EventSourceTerm that Collects events from a list of evept sources.
When used in an event:WaitForEvent action it will returnthe first event generated by any of jts sources.
CompositeEventSource allows adynamically-creatediist of sourcestobe used with event:WaitForEvent.
Evepts returned from this source will contain“the event:EventSource that originally gerlerated the
event, and not the CompositeEventSource itself.
IMFPORTANT — If the list of sources;is changed while executing event:WaitForEvent then the
behaviour is undefined.
Its nembers have the following.semantics:
— |<eventSource> List<EwventSource> [1]
This is the list of @yéntsources that the term combines. If the List is empty this term|will never
return an Event.
9.5/3.3.2 EventSourceTerm
The abstract type EventSourceTerm iS an otx:Term. It serves as a base for all concrete tegrms which

ret\rrn an'EventSource. It has no special members.

9.5.

3.3.3 EventSourceValue

This term returns the Event stored in an Event variable. For more information on value-terms and the
syntax and semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

Core_Chk053 - no dangling OtxLink associations (see [SO 13209-2).

© IS0 2022 - All rights reserved

79

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:
— otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

— otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

9.5.3.3.4 [GetEventsourcerFromEvent

GetEventSurceFromEvent iS an event:EventSourceTerm that returns the event:EventSoiireée that
generated fin event:Event.

Its members have the following semantics:
— <eveni> : EventTerm [1]

This is|the Event to get the EventSource from.

9.5.3.3.5 | MonitorChangeEventSource

This term ¢reates an event source that shall monitor a variable's valtie and fire an event when it changes.
The fired ¢vent shall maintain a snapshot of the new value of the monitored variable, which may be
read out lafer (see GetNewvalue term). Event queueing shall start'immediately once the event sourde is
created.

IMPORTANT — Change-monitoring shall be shallow;-This means that changes inside of complex
values shdll NOT be recognized, e.g. a change of anritem in a List or Map, or the removal of it¢ms
from a rilst or Map. Regarding complex data types the only recognized change is when [the
variable changes its value, e.g. when another(rist is assigned to the variable.

IMPORTANT — The case when a value is assigned to a formerly uninitialized variable shall 3lso
be recognjzed as a change event and shall NOT pose an error.

MonitorChangeEventSource iS an EyentSourceTerm. [ts members have the following semantics:

— <varigble> : otx:Variable /[1]

This r¢presents the variable that shall be monitored. If the variable value changes, the event shall
be fired, causing a blocking waitForEvent action to exit.
Associated| checker<ules:

— Event JChk002 - no Path in MonitorChange related terms (see A.3.2);

— Event_16kk09 ysage of eventp
torChangeEventSource (see A.3.3).

9.5.3.3.6 ThresholdExceededEventSource

This term creates an event source that shall monitor the value of a variable and fire an event when the
value goes outside a specified range. If the value is outside of the specified range right from the start,
the event shall be fired, too. The fired event shall maintain a snapshot of the new value that exceeded
the threshold, which may be read out later (see GetNewvalue term).

Event queueing shall start immediately once the event source is created.
This event source term shall only be applied for data types on which an order relation is defined. These

are the simpleType data types as specified in [SO 13209-2.

80 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

IMPORTANT — A ThresholdExceededEventSource Which is applied to an uninitialized variable
shall also count as threshold exceeded event and does NOT pose an error.

ThresholdExceededEventSource iS a MonitorChangeEventSource. Its members have the following
semantics:

Ass

9.5
Thi
spe
que

Tim

Thn

<variable>: otx:Variable [1] (derived from MonitorChangeEventSource)

This represents the variable that shall be monitored. If the variable value goes out
specified range (see below) or is already outside from the beginning, the event sha
causing an embedding WaitForEventaction to exit.

side of the
11 be fired,

<lowerThreshold>: otx:SimpleTerm [1]

this value, the event shall be fired.
<upperThreshold>: otx:SimpleTerm [1]

This represents a value to compare against. If the value of the monitered variable becon
than this value, the event shall be fired.

pciated checker rules:
Event_Chk002 - no Path in MonitorChange related terms(s¢e A.3.2);

Event_Chk001 - correct data types of ThresholdExceededEventSource arguments (see A

3.3.7 TimerExpiredEventSource

5 term shall create an event source that produces an event when a specified time ex

ueing shall start immediately once the*event source is created.
brExpiredEventSource iS an EventSourceTerm. Its members have the following semantics
<timeout>: otx:NumericTefm {[1]

This element specifies an-Integer value that is interpreted as a time in milli-seconds to
the given number of\niilli-seconds has passed, the event shall be fired, causing an
WaitForEventActiont0 exit. Float values shall be truncated.

OWS:
otx:0utOfBoundsException

It is thrown if the timeout value is negative.

9.5

This represents a value to compare against. If the value of the monitored variable'becomiles less that

les greater

.3.1).

ires. If the

cified time expires, the timer expiry eventis produced and put into the event source's qiieue. Event

wait. Once
embedding

Eventonronertvterms
r r 4

9.5.4.1 Description

Terms in this category return diverse information on event properties.

9.5.4.2 Syntax

Figure 42 shows the syntax of the event property terms.

©IS

02022 - All rights reserved

81

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:BooleanTerm

«XSDcomplex Type»
IsMonitorChangeEvent

otx:BooleanTermm

«XSDcomplex Type»
IsTimerExpiredEvent

otx:BooleanTerm

«XSDcomplex Type»
IsThresholdE xceededEvent

«XSDelement»
+ event: EventTerm
+ variable: otx:Variable [0..1]

«XSDelement»
+ event: EventTemm

«XSDelement»
+ event: EventTemm

otx:Term otx:BooleanTerm
«XSDcomplexType» «XSDcomplexType»
GotNew\Value IsEvenHasException
«XSDelenfent» «XSDattribute»
+ event: EventTerm + event: EventTerm
Figure 42 — Data model view: Event property terms
9.5.4.3 Semantics
9.5.4.3.1 |IsEventHasException
IsEventHagException iS a BooleanTerm that can be used to detérmine if an event:Event containg
exception. Any event source may report an exception by encapstulating it in an exception event.
For example, an attempt to execute a diag:DiagSet¥wvice asynchronously could fail wit
diag:Loss@fComException. In this case the event sousce can generate an event encapsulating

exception 1

ather than the Result that it would normallyreturn.

an

h a
the

Its members have the following semantics:
— <event> : EventTerm [1]

This is|the Event to be tested for entapsulating an exception.
9.5.4.3.2 |IsMonitorChangeEvent
The 1sMonlitorChangeEvent\term accepts an EventTerm yielding an Event object that has Heen
raised by |the OTX runtithe system, because of either using a MonitorChangeEventSource (r a
ThresholdExceededEverdtSdurce in a WaitForEvent action. The term shall return true if and only if{the
Event origlnates from/such a kind of event source. In case an optional variable is specified, the tfrm
shall return true if\and only if the Event was fired because that particular variable changed. If|the
given varigble Was not the reason for the event, false shall be returned.
IsMonitor(hangeEvent iS an otx:BooleanTerm. [ts members have the following semantics:
— <event> : EventTerm [1]

This represents the Event whose type shall be tested.
— <variable> : otx:Variable [0..1]

This optionally specifies the variable which shall be tested for being the reason for the event.
Associated checker rules:
— Event_Chk002 - no Path in MonitorChange related terms (see A.3.2).
82 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

9.5.4.3.3 IsThresholdExceededEvent

The IsThresholdExceededEvent term accepts an EventTerm yielding an Event object that has been raised
by the OTX runtime, as a result of using a ThresholdExceededEventSource in a WaitForEvent action. The
term shall return true if and only if the Event originates from a ThresholdExceededEventSource.

IsThresholdExceededEvent iS an otx:BooleanTerm. Its members have the following semantics:

<event> : EventTerm [1]

This represents the Event whose type shall be tested.

9.5

The
by 1
sha

IsTimerExpiredEvent iS an otx:BooleanTerm. [ts members have the followingsemantics:

9.5

GetNewvalue shall only be applied to events which werefired by a MonitorChangeEventSou

of i
rep

IM

Mon

timle. Therefore, type-safety of this:term cannot be checked statically. Runtime excef

occ
val

GetNewValue iS an otx: Term. Its’'members have the following semantics:

Thn

ter:r is useful to find out which new value a variable had after it changed.

4.3.4 IsTimerExpiredEvent

he OTX runtime, because of using a TimerExpiredEventSource in a WaitForEvent actior]
I return true if and only if the Event originates from a TimerExpiredEventSource.

<event> : EventTerm [1]

This represents the Event whose type shall be tested.

4.3.5 GetNewValue

's descendants. The term shall return the value~which was stored in the given Event;
Fesents a snapshot of the monitored variable's new value at the time when the event wa

i torChangeEventSource, the return.type of GetNewvalue is in general not known at

ur when results of this term are used in the wrong place, e.g. when using otx:ToIn
he which cannot be converted'to integer.

<event> : EventTerm’ [1]

This represents-the monitor change event from which the new value of the formerly
variable at the'time of value change shall be returned.

OWS:

otx; TypeMismatchException

IsTimerExpiredEvent term accepts an EventTerm term yielding an Event objectthat’has been raised

. The term

Fce Or one
that value
fired. The

ORTANT — Since it depends on the datatype of the variable which was monitored by

authoring
tions may
teger Ol 4

monitored

ftisthrown if the specified event tas ot been raised by a MonitorChangeEventSource
descendants.

9.5.5 Exception terms

9.5.5.1 Description

Terms in this category return exceptions.

9.5.5.2 Syntax

Figure 42 shows the syntax of the exception terms.

©IS

02022 - All rights reserved

r one of its

83

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ExceptionTerm

«XSDcomplexType»
IFD_EventHandling::
GetExceptionFromEvent

«XSDelement»
+ event: EventTerm

Figure 43 — Data model view: Exception terms

9.5.5.3 SYemantics

9.5.5.3.1 | GetExceptionFromEvent

GetExceptjonFromEvent iS an ExceptionTerm that returns an exceptiont¢hrown by an event source. If an
event sourfe fails to complete correctly because of an exception it can,be encapsulated in an event and
returned ulsing this term. If this term is used on an event that doesnot encapsulate an exception, then
a TypeMismatchException Shall be thrown. 1sEventHasException)can be used to determine if the eyent
contains an exception.

Its members have the following semantics:
— <event> : EventTerm [1]

This is|the event to get the exception from.
Throws:
— otx:TypeMismatchException

It is thfown if the event does nof contain an exception.

10 OTX Flash extension

10.1 General

The OTX Flash.extension provides access to data types, terms and actions for reading data from a flash
session contextand creating flash jobs.

IMPORTANT — It is an explicit design goal of the OTX Flash extension that it supports the flash
data acquisition side in the flash process only. There are no actions defined herein which carry
out the actual ECU flashing; this functionality is provided already by the OTX DiagCom extension
as specified in Clause 6.

The OTX Flash extension is designed for flash-data acquisition and flash job creation; downloading to
an ECU shall happen by executing a flash job via Executebiagservice as defined by the OTX DiagCom
extension.

The Flash extension assumes that several flash sessions can exist for a communication channel. A flash
session contains several flash blocks and a flash block several flash segments. The segments contain an
arbitrary number of data bytes. Since data can be compressed, size information is supplied. Additionally,
security information is attached to blocks and the session.

84 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The Flash extension is designed to support use cases from the flash process domain, for example,
choose a flash session and handle low-level functions which are needed inside a flash job to access flash

data and its additional information.

IMPORTANT — It is an explicit design goal of the OTX Flash extension to be usable with any
diagnostic communication kernel. As a design guideline, an ODX/MVCI based system has been
considered; as ODX/MVCI is solving the vehicle communication problem domain on a highly
generic level, the design concepts that have been adopted for this extension should be usable
abstractions for any system that is implementing a solution to the vehicle communication

problem domain.

NOTE In an ODX/MVCI based system, the session context is an ODX ECU-MEM container]
the [examples regarding the usage of the terms and actions of the Flash extension describe” OP
Nevertheless, it is possible to use a subset of the nodes to describe download via proprietary protod
datg sources like binary.

NOTE 2 An additional functionality is specified in the FlashPlus extension.

DjagService

comChannel

FlashSession

Audience

Format

re 44 shows the data structure model of the OTX Flash extension.

Therefore,
K scenarios.
ols and raw

Checksum

Signature

Security

FlashBlock

Identification

Type

Response

1.%

9
3

ecurity Method

Compressed Size

Validity

segment

Uncompressed
Size

Ow nldent

10.2 Data types

Figure 44 — Data structure model of the OTX Flash extension

Start Adress

10.

0

4 O 3
AL UVCTIVITW

The OTX Flash extension introduces the data types named FlashJob and FlashSession, as well as the
enumeration types FlashFileFormat and Audience.

10.2.2 Syntax

The syntax of all OTX Flash data type declarations is shown in Figure 45.

© IS0 2022 - All rights reserved

85

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

A

«XSDcomplexType»
otx:ComplexType

«XSDcomplexType»
diag:DiagService

«XSDcomplexType»
FlashJob

«XSDcomplexType»
FlashSession

10.2.3 Se]

10.2.3.1 (

The data ty

10.2.3.2 K

The rFlash)

«XSDcomplexType» «XSDcomplexType»
—— | «XSDcomplexType» <} FlashFileFormat Audience
otx:SimpleType
peyp «XSDelement» «XSDelement»
+ init: FlashFileFormatLiteral [0..1] + init: AudiencelLiteral[0..1]

Figure 45 — Data model view: Flash data types

mantics

feneral

rpes in the OTX Flash extension are based on otx:Comple%xType and on otx:SimpleType.

lashjob

Job data type represents a diagnostic service that is used for performing the

reprogramming process. Based on the concepts af‘¢the ODX/MVCI standard, a FlashJob can

parameter
This is the
FlashJob W

10.2.3.3 K

The Flash

zed with a specific flash session which-contains the data to be programmed into the E
interface-level difference between a FlashJob and a diag:DiagService. To parameteri
rith a flash session, please refer to.the SetFlashsession action (see 10.5.3.3).

lashSession

bession data type serves‘\as storage for information regarding the context of a diagno

session andl the download information (see the ISO 22901 series [8]).

Since Flas}

10.2.3.4 K

FlashFilel
StoreUplo3

hSession has no jnitialization parts, a FlashSession cannot be declared constant.

lashFileFormat

tdpata’(See 10.5.3.2).

format.iS.ah enumeration type describing the format of a flash file. It is used by the act

ECU
be
CU.
e a

stic

—n

on

OTX runtin

es’shonld at least suppart a basic set of flash file formats which is defined by the folloy

ing

list of allowed enumeration values:

— BINARY:

— INTEL:

— SREC:

raw binary data:
intel hex file:

Motorola S-Record file.

IMPORTANT — FlashFileFormatTerm values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:
BINARY < INTEL < SREC.

IMPORTANT — When applying otx:ToString On a FlashFileFormat value, the resulting string
shall be the name of the enumeration value, e.g. otx:ToString (BINARY)="BINARY". Furthermore,

86 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

applying otx:ToInteger shall return the index of the value in the FlashFileFormat enumeration
(smallest index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

FlashFileFormat iS an otx:SimpleType. Its members have the following semantics:
— <init> : FlashFileFormatLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

— value : FlashFileFormats={BINARY|SREC|INTEL} [1]

This attribute shall contain one of the values defined in the FlashFileFormats entinjeration.

IMBRORTANT — If the FlashFileFormat declaration is not explicitly initialized (omitfed <init>
element), the default value shall be BINaARY.

10.2.3.5 Audience

Audfience is an enumeration type which is used by the term GetListofvalidFlashSessions (flor filtering
flash sessions according to audience property) as well as by the terfrBlockIsvalidForAudience (see
10.64.3.3.3 and 10.6.4.3.7).

The list of allowed enumeration values is defined as follows:
— |"suppPLIER";

— | "DEVELOPMENT";

— | "MANUFACTURING";

— |"AFTERSALES";

— | "AFTERMARKET".

IMPORTANT — AudienceTerm (values may occur as operands of comparigons (see
1S0|13209-2, relational operations). For this case, the following order relation shall apply:
SUPPLIER < DEVELOPMENT < MANUFACTURING < AFTERSALES < AFTERMARKET.

IMRPORTANT — When applying otx: Tostring On an Audience value, the resulting string shall be the
name of the enumeration value, e.g. otx:ToString (SUPPLIER)="SUPPLIER". Furthermore, applying
otx} ToInteger shallreturn the index of the value in the audiences enumeration (smallgst index is
0). The behaviourisundefined for other conversion terms (see ISO 13209-2).

Audfience iS an'gtx: SimpleType. Its members have the following semantics:

— |<inig¢>\ : Audienceliteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at ¢leclaration
time.

— value : Audiences={SUPPLIER |DEVELOPMENT | MANUFACTURING |AFTERSALES |AFTERMARKET} [1]
This attribute shall contain one of the values defined in the audiences enumeration.

IMPORTANT — If the aAudience declaration is not explicitly initialized (omitted <init> element),
the default value shall be suppLIER.

©1S0 2022 - All rights reserved 87

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.3 Exceptions

10.3.1 Overview

All elements referenced in this subclause are derived from the OTX core Exception type as defined by
[SO 13209-2. They represent the full set of exceptions added by the OTX Flash extension.

10.3.2 Syntax

The syntax of all OTX Flash exception type declarations is shown in Figure 46.

otx:Extensioninterface

XSDcomplexType»
otx:DataType

7

XSDcomplexType»
otx:ComplexType

g

XSDcomplexType» :] «XSDcomplexType» :] «XSDcomplexType»

otx:Exception FlashException UnsupportedFormatException

Figure 46 — Data model view: Flash-exceptions

10.3.3 Semantics

10.3.3.1 General

Since all OTX Flash exception types are implicit/exceptions without initialization parts, they cannof be
declared c¢nstant.

10.3.3.2 HlashException

The FlashException is the super.class for all exceptions in the Flash extension. A FlashException shall
be used in|case the more spegific’'exception types described in the remainder of this subclause do[not
apply to th problem at hand.

IMPORTA
exception

T — All terms and action realisations in this extension may potentially throw this

10.3.3.3 UnsupportedFormatException

The Unsuppe n-Sha s
untime system.

e ma-EExeep exeUpleadBata
action is not supported by the r

10.4 Variable access

10.4.1 Overview
As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they

define. All variable access types are derived from the OTX core otx:variable extension interface. The
following specifies all variable access types defined for the Flash extension.

88 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.4.2 Syntax

Figure 47 shows the syntax of the Flash extension's variable access types.

otx:Extensioninterface «XSDcomplexType»
«XSDcomplexType» FlashJobVariable
otx:Variable
«XSDattribute» <l F‘I‘XS;‘Dsmm?'eCTy?eb’;
+ name: otx:OtxLink ashSessionVariable
«XSDelement»
+ path: otx:Path [0..1] «XSDcomplexType»
L:I\k ElachEiloE t\ariablg
«XSDcomplexType» «XSDcomplexType»
otx:ExceptionVariable AudienceVariable

Figure 47 — Data model view: Flash variable access types

10.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 fdr details.
10.5 Actions

10.5.1 Overview

There are three action types defined for the OTXFlash extension: GetDownloadData, StorePploadData
as well as setFlashsession. The types extend the ActionRealisation extension interface as|defined by

[SO[13209-2.

10.5.2 Syntax

Figlire 48 shows the syntax of the actions GetDownloadData and StoreUploadData.

otx:ActionRealisatiof otx:ActionRealisation otx:ActionfRealisation
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetDownloadData StoreUploadData SetFlashSessi¢n
XSDelement» «XSDattribute» «XSDelement»
session: FlashSegssionTerm + append: xsd:boolean + flashJob: FlashJobVriable
block otx:Numern¢Term «XSDelement» + flashSession: FlashSessionTerm
segment:_dpsllumericTem + data: otx:ByteFieldTerm
positions, otx:NumericTerm + target: otx:StringTem
size: otx:NumerllcTerml + address: otx:NumericTerm
data;otx:ByteFieldVariable + format: FlashFileFormatTemn

Figure 48 — Data model view: Flash actions

10.5.3 Semantics

10.5.3.1 GetDownloadData

GetDownloadData shall fill a given otx:ByteField variable with data from the Flashsession context.

©1S0 2022 - All rights reserved 89

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The members of Getbownloadbata have the following semantics:

Throws:

10.5.3.2 StoreUploadData
A storeUploadbata action tells an OTX runtime to store data in a data-storage.

The members of StoreUploadpata have the following semantics:

90

<session> : FlashSessionTerm [1]
This represents the Flashsession which provides the data that shall be addressed.
<block> : otx:NumericTerm [1]

By this element, a block in the Flashsession context shall be addressed. The value shall be in the
range of the existing blocks. Float values shall be truncated.

<segm - - ricTerm [11]
This e]ement shall address a segment in the Flashsession context. The value shall be in the range

of the ¢xisting segments in the block. Float values shall be truncated.

<sizeX : otx:NumericTerm [1]

This element defines how much bytes of memory shall be read from the contextsIt,shall be a posifive
value. Float values shall be truncated.

<posifjion> : otx:NumericTerm [1]

This element defines the first position which shall be read by the action. Position shall be grepter
than o equal to zero and not greater than the size of the segment minus one. Float values shall be
truncafted.

<datal : otx:ByteFieldVariable [1]

This e]lement represents the variable into which the read data shall be stored. It shall be of|the
type oftx:ByteFieldvariable. The size of the ByteField after execution of the action should be
the number of bytes read from the context. If the’ context does not contain the amount of data
which [is requested with the size parameter, then the resulting ByteField is shorter. If the posifion
paramgter overlaps the segment size, the resulting ByteField will be empty.

otx:04ytOfBoundsException

[t is thfown if the block, segmlent or position number does not exist in the download data or if fize
is zerojor negative.

append “_xsd:boolean [1]

The truth-value set for this attribute defines whether data shall be appended to existing data (true)
or not (£alse). If not, the storage shall be cleaned before write access.

<data> : otx:ByteFieldTerm [1]
This element represents the data which shall be stored.
<target> : otx:StringTerm [1]

The element shall provide a data storage. If the target is an URI that describes a file, the data is
stored in that file.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

10.5.3.3 SetFlashSession

Thip action shall set the flash session to be programmed/when the FlashJob is executed
sesgion can be set at a time. If this action is used multiple times, the later call shall overwrite
set py a previous call.

Thg members of setFlashsSession have the following.semantics:

10.5.4 Example

The example below showsa GetbDownloadData action working on mySession, block 1, segment
0 and a size request®f 64 bytes. The data is assigned to the ByteField-variable "myData".

The second partof the example shows a storeUploadbata action with appends the data con
ByIField-variable named "data" to an INTEL-format storage-file at "file://file.hex".

Sa

IS0 13209-3:2022(E)

<address> : otx:NumericTerm [1]

This element shall be used to define the base address of the to-be-stored data. F1oat values shall be

truncated.

<format> : FlashFileFormatTerm [1]

This element defines the format of the flash data file. The basic set of formats which should be
.2.3.4). For

supported by any runtime system specified by the FlashFileFormat data type (see 10
other proprietary formats, proprietary extensions may be used.

otx:InvalidReferenceException

It is thrown if the data storage resource given by the <target> element is not avail
accessible.

UnsupportedFormatException

It is thrown if the runtime system does not support the flash data fileformat.

<flashJob> : FlashJobVariable [1]
This represents the FlashJob where thé session shall be set.
<flashSession> : FlashSessionTerm [1]

This represents the Flashsession to be programmed by the FlashJob.

ple of FlashActions

hble or not

. Only one
fLhe session

1, position

tained in a

action id="al">

<specification>

Get 64 bytes of data from mySession, block 1, segmentl, position 0 and put it in

myData

</specification>
<realisation xsi:type="flash:GetDownloadData">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="1"/>
<flash:segment xsi:type="IntegerLiteral" value="1"/>
<flash:position xsi:type="IntegerLiteral” value="0"/>
<flash:size xsi:type="IntegerLiteral" value="64"/>
<flash:data xsi:type="ByteFieldVariable" name="myData"/>
</realisation>
</action>
<action id="az2">
<specification>Store the upload data in file file.hex</specification>
<realisation xsi:type="flash:StoreUploadData" append="true">

© IS0 2022 - All rights reserved

91

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<flash:data xsi:type="ByteFieldValue" valueOf="data"/>

<flash:target xsi:type="StringLiteral" value="file://file.hex"/>
<flash:address xsi:type="IntegerLiteral" value="1024"/>

<flash:format xsi:type="flash:FlashFileFormatLiteral" value="INTEL"/>

</realisation>
</action>

10.6 Terms

10.6.1 Overview

The terms of the OTX Flash extension are sorted into several categories, depending on whether they
are mainly| flash job-, session-, block-, segment-, security- or own ident related. Additionally, there|are
auxiliary epumeration-type term categories for describing flash file format types and audiences.

IMPORTANT — For all terms described in the following, it is assumed that the blocks .in a flash
session's data will be numbered starting from 0 (first block). The same applies to segment- and
own identtnumbering.

Figure 49 dhows an overview of the OTX Flash extension term categories.

92 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

otx:Extensioninterface

«XSDcomplexType»
otx:Term

AR

«XSDcomplexTy...
otx:SimpleTerm

«XSDcomplexType»
|| diag:DiagServiceTerm

«XSDcomplexType»
FlashFileFormatTerm

«XSDcomplexType»
AudienceTerm

L L

Simple enumeration terms

IS0 13209-3:2022(E)

«XSDcomplexType»

«XSDcomplexType»
FlashFileFormatLiteral

FlashFileFormatValue

«XSDcomplexType»

«XSDcomplexType»
Audienceliteral

AudienceValue

FlashJob related terms

«XSDcomplexType»
FlashJobValue

«XSDcomplexTyvpe»

A

«XSDcomplexType»
FlashJobTerm

«XSDcomplexType»
FlashSessionTerm

CreateFlashJobByName

«XSDcomplexType»
CreateFlashJob

«XSDcomplexType»

CreateFlashJobBySemantic

FlashSession related terms

«XSDcomplexType»
|_ FlashSessionValue

otx:StringTerm

«XSDcomplexType»

GetSessionlD

otx:integerTérm

«XSDcomplexTypex
GetNumberOfBlocks

L «XSDcomplexType»

otx:iritegefTerm

«XSDcomplexType»

GetSessionPriority

otx:String Tprm

«XSDcomplexTypex|
GetFlashKey

«XSDcomplexType»
IsDownloadSession

I
I
I
I
I
I
I
I
! GetFlashSession
I
I
I
I
I
I
I
I

otx:BooleanTerm

«XSDcomplexType»
GetListOfValidFlashSessions

otx:ListTprm

Flash block related terms

otx:integerTerm

«XSDcomplexType»
GetNumberOfSegments

GetNumberOfOw nldents

otx:integerTerm

«XSDcomplexType»

GetNumberOfSecurities

otx:integerTerm

«XSDcomplexType»

otx:StringTerm

«XSDcomplexType»

wtx:StringTerm

«XSDcomptexType»

otx:StringTerm

«XSDcomplexType»

otx:Boolean|erm

«XSDcomplexType»

GetLogicalBlockID

GetCompressionEncryption

GetType

BlocklsValidForAudiencg

Flash block segment related terms

otx:integerTerm,

«XSDcomplexType»
GetStartAddress

otx:integerTerm

«XSDcomplexType»
GetCompressedSize

otx:integerTerm

«XSDcomplexType»
GetUncompressedSize

Security related terms

otx:StringTerm

«X8BcomplexType»
GetSignature

«XSDcomplexType»
GetValidity

otx:StringTerm

otx:StringTerm

«XSDcomplexType»
GetChecksum

otx:String[erm

«XSDcomplexType»
GetSecurityMethod

Own ident related terms

otx:StringTerm

«XSDcomplexType»
GetOwnldentFromEcu

)
)
]
: otx:StringTerm
]
]
]

«XSDcomplexType»
GetOwnldent

Figure 49 — Data model view: Flash term categories

10.6.2 Flash job related terms

10.6.2.1 Description

The following describes the flash job related terms of the OTX Flash extension.

© IS0 2022 - All rights reserved

93

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6.2.2 Syntax

Figure 50 shows the syntax of the flash job related terms.

FlashJobTerm FlashJobTerm FlashJobTerm FlashJobTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
FlashJobValue CreateFlashJob CreateFlashJobByName CreateFlashJobBySemantic
«XSDattribute» «XSDelement» «XSDelement» «XSDelement»
+ valueOf: otx:OtxLink| [+ comChannel: diag:ComChannelTerm + comChannel: diag:ComChannelTerm + comChannel: diag:ComChannelTerm
«XSDelement» [0..1] + name: otx:StringTerm + semantic: otx:StringTerm
+ path: otx:Path [0..1] | |+ Session: FlashSessonTerm + session: FlashSessionTerm [0..1] + session: FlashSessionTerm [0..1]

Figure 50 — Data model view: Flash job related terms

10.6.2.3 Semantics

10.6.2.3.1| FlashjobTerm

The abstract type FlashJobTerm is a diag:DiagServiceTerm. It serves as a base for all concrete tefms
which retufrn a FlashJdob. It has no special members.

10.6.2.3.2| FlashjobValue

This term feturns the FlashJdob stored in a FlashJob variable. Foramore information on value-terms fpnd
the syntaxfand semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

Associated| checker rules:

— Core_(hk053 - no dangling OtxLink associations:(see ISO 13209-2).
Throws:
— otx:0YtOfBoundsException

It is thirown only if a <path> is set: the <path> points to a location which does not exist (like a|list
index ¢xceeding list length, or a niap key which is not part of the map).

— otx:InvalidReferenceException

It is thfown if the variableZvalue is not valid (no value was assigned to the variable before).

10.6.2.3.3| CreateFlashjeb

This term phall create a new FlashJgob for the specified Flashsession. The Flashdob can subsequehtly
be used foy initiating an ECU reprogramming session.

CreateFlaghJdab is a FlashJobTerm. Its members have the following semantics:

— <comChannel> : diag:ComChannelTerm [0..1]

This optionally specifies the diag:ComChannel object to which the to-be-created F1ashJgob belongs
to and will be executed on when the diag:ExecuteDiagService action is used (see 7.6.4.3.1).

— <session> : FlashSessionTerm [1]

This element represents the Flashsession to be programmed by the FlashJdob.

10.6.2.3.4 CreateFlashjobByName

This term shall create a new FlashJob for the specified comChannel. The FlashJdob can subsequently be
used for initiating an ECU reprogramming session. Optionally a FlashSession can be specified which

94 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

will be used by the FlashJob for reprogramming (alternatively the setFlashsession action can be used
to assign a different Flashsession to an already existing FlashJob object).

CreateFlashJobByName iS a FlashJobTerm. [ts members have the following semantics:
— <comChannel> : diag:ComChannelTerm [1]

This specifies the diag: ComChannel object to which the to-be-created F1ashJob belongs to and will
be executed on when the diag:ExecuteDiagService action is used (see 7.6.4.3.1).

— <name> : otx:StringTerm [1]

This represents the name of the to-be-created FlashJob.

— |<session> : FlashSessionTerm [0..1]

This optional element represents the FlashSession to be programmed by the#1ashJob.
Throws:

— |UnknownTargetException

[t is thrown if no Flashdob with the name provided by the <name> element exists.

10.6.2.3.5 CreateFlashjobBySemantic

Thip term shall create a new FlashJgob for the specified comChannel with the semantic attribufe provided
as gqn argument. The FlashJob can subsequently be usedfor initiating an ECU reprogramming session.
Optiionally a Flashsession can be specified which:#ill be used by the Flashdob for reprggramming
(altprnatively the setFlashsession action can be used to assign a different Flashsession tofan already
exigting FlashJob object).

CrepteFlashJobBySemantic iS a FlashJobTexm. [ts members have the following semantics:
— |<comChannel> : diag:ComChannelTerm [1]

This specifies the diag:comGhannel object to which the to-be-created F1ashdob belongs|to and will
be executed on when the,diag:ExecuteDiagService action is used (see 7.6.4.3.1).

— |<semantic> : otx:StringTerm [1]

This represents,the-semantic attribute of the to-be-created Fl1ashJob.

— |<session> ;)FlashSessionTerm [0..1]

This optional element represents the FlashSession to be programmed by the FlashJob.

Thrjows:

— Lo : ‘aB .

It is thrown in case there are none or more than one FlashJob present at the comChannel with the
semantic value specified by the <semantic> element.

10.6.3 Flash session related terms

10.6.3.1 Description

The following describes the flash session related terms of the OTX Flash extension.

© IS0 2022 - All rights reserved 95

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6.3.2 Syntax

Figure 51 shows the syntax of the flash session related terms.

FlashS

«XSDcomplexType»
FlashSessionValue

essionTerm|

«XSDattribute»
+ valueOf: otx:OtxLink

«XSDelement»
+ path: otx:Path [0..1]

FlashSessionTerm

«XSDcomplexType»
GetFlashSession

otx:StringTerm

«XSDcomplexType»
GetSessionlD

«XSDelement»
+ sessionlD: otx:StringTerm

«XSDelement»
+ session: FlashSessionTerm

otx:integerTerm

otx:IntegerTerm

A

SDcomplexType»

otx:ListTerm

GetLisjOfValidFlashSessions

xsd:string

«XSDattribufe» .

. . . . «enumeration»
+ direction| Directions . .

Directions

«XSDelemeht»
+ comCharnel: diag:ComChannelTerm UPLOAD
+ audiencq: AudienceTerm [0..1] DOWNLOAD

«XSDcomplexType»
GetSessionPriority

«XSDcomplexType»
GetNumberOfBlocks

«XSDelement»
+ session: FlashSessionTerm

«XSDelement»
+ session: FlaSiSessionTeim

otx:StringTerm

«XSDcomplexType»
GetFlashKey

otx:BooleanTprm

«XSDecomplexType»
IsDownloadSession

«XSDelement»
+ session: FlashSessionTerm

BDelement»
+ session: FlashSessionTeim

10.6.3.3 Semantics

10.6.3.3.1

FlashSessionTerm

Figure 51 — Data model view: Flash session related terms

The abstrgct type FlashSessionTerm iS an otx:Term\lt serves as a base for all concrete terms which
return a Fllashsession. It has no special members:

10.6.3.3.2

This term

FlashSessionValue

returns the FlashSession.Stored in a FlashSession variable. For more information

on

value-ternis and the syntax and semantics of the valueof attribute and <path> element, please refdr to

ISO 1320942.

Associated

Throws:

index exceeding list

checker rules:

otx:04ytOfBoundsException

egth, or a map key hich is not part of te

otx:InvalidReferenceException

Core_(hk053 - no dangling OtxLink associations (see ISO 13209-2).

map).

3l list

It is thrown if the variable value is not valid (no value was assigned to the variable before).

10.6.3.3.3 GetListOfVa

lidFlashSessions

The GetListofvalidFlashSessions term shall return an otx:List of otx:String items which identify
the Flashsessions that are valid. The validity of a Flashsession shall be defined by rules which exist
in the respective technological environment. For instance, in an ODX environment the ExpectedIdents
shall be checked. In other environments the rules may differ.

96

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

IMPORTANT — GetListOfValidFlashSessions shall return the flash sessions in the order of their
session priority. The highest-ranking Flashsession shall be the first item in the resulting rist
whereas the lowest-ranking shall be the last. For equally-ranked rFlashsessions the order is
unspecified.

NOTE In an ODX/MVCI based system, the session priority is a non-negative integer value assigned to a flash
session, where a value of 0 represents the highest possible priority. For flash sessions without an explicit priority
setting a default priority of 100 applies.

GetListOfValidFlashSessions iS an otx:ListTerm. [ts members have the following semantics:

N . — . —— 1
This attribute defines which kind of F1ashsessions shall be returned.
— |<comChannel> : diag:ComChannelTerm [1]

This element defines a communication channel which is associated to the’flash sessipns. Please
refer to Clause 6 (OTX DiagCom extension) for details on the diag:ComGhannelTerm type

— |<audience> : AudienceTerm [0..1]

This optional element defines a filter on a special audience.-Only flash sessions with the given
audience shall be returned. If the attribute is omitted, no @udience filtering shall be dpne. Please
refer to 10.2.3.5 for information about the audience enunieration.

10.6.3.3.4 GetFlashSession
The GetFlashSession term shall return a Flashsession handle which is identified by a sessign ID.
GetFlashSession iS a FlashSessionTerm. Its mefbers have the following semantics:
— |<sessionID> : otx:StringTerm [1]

This element shall represent a unique identifier in the environment which is used for identifying a
flash session.

Throws:
— |UnsupportedFormatException

It is thrown if the\tuntime system does not support the flash data file format.

10.6.3.3.5 GetSessionID

The GetsessionIib term shall return the identifier of a flash session. The identifier is a string|value.

IMRPORTANT — In ODX/MVCI based systems, the returned ID string should corresppnd to the
SHORT= of the session

GetSessionID iS an otx:StringTerm. [ts members have the following semantics:
— <session> : FlashSessionTerm [1]

This element shall represent the FlashsSession to be used.

10.6.3.3.6 GetFlashKey
The GetFlashkey term shall return the key of a flash session. The key is a string value.

IMPORTANT — In ODX/MVCI based systems, the returned key should correspond to the
PARTNUMBER Of the session (SEssIoN-DESC).

©1S0 2022 - All rights reserved 97

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetFlashKey iS an otx:StringTerm. Its members have the following semantics:
— <session> : FlashSessionTerm [1]

This element shall represent the Flashsession to be used.

10.6.3.3.7 GetSessionPriority

The GetSessionPriority term shall return the priority setting for a flash session. The resulting prio

rity

shall be represented by a non-negative integer value where 0 represents the highest possible priority. If

no priority information is available for a flash session, a default value of 100 shall be returned.

IMPORTANT — In ODX/MVCI based systems, the flash session priority information is giver
a non-negptive integer value, where a value of 0 shall represent the highest possible, priox
For proprjetary systems using a different priority concept, it should nevertheless-be"poss
to define p mapping between proprietary priorities and the priority values required by
documen

GetSessiofPriority iS an otx:IntegerTerm. [ts members have the following semantics:
— <sessilon> : FlashSessionTerm [1]

This element shall represent the Flashsession to be used.

10.6.3.3.8| GetNumberOfBlocks

The GetNLu:[berOfBlocks term shall return the number of blocks in a Flashsession. If no blocks exist
return valye shall be zero, otherwise it shall be a positive nynhiber.

GetNumber(®fBlocks iS an otx: IntegerTerm. Its membershave the following semantics:
— <sessilon> : FlashSessionTerm [1]

This element represents the Flashsessiodfrom which the number of blocks shall be returned.

10.6.3.3.9| IsDownloadSession

by
ity.
ble
this

the

The IsDowrjloadSession term shallreturn true if and only if the flash session's direction is pownzoap. If

the session's direction is upr.oaD;~ false shall be returned.
IsDownloadiSession iS an otx:BooleanTerm. [ts members have the following semantics:
— <session> : FlashSessionTerm [1]

This element shall represent the Flashsession from which the direction shall be determined.

10.6.3.4 HBxample

The example below shows the flash session related terms, embedded in assignment actions.

Sample of FlashSessionRelatedTerms

<action id="al">
<specification>Get all download session for the after sales department</
specification>
<realisation xsi:type="Assignment">
<result xsi:type="ListVariable" name="AllSessions"/>
<term xsi:type="flash:GetListOfValidFlashSessions" direction="DOWNLOAD">
<flash:comChannel xsi:type="diag:ComChannelValue" valueOf="cc"/>
<flash:audience xsi:type="flash:AudiencelLiteral" value="AFTERSALES"/>
</term>
</realisation>
</action>

98 © IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<action id="a2">

<specification>Get the first session from a list</specification>
<realisation xsi:type="Assignment">
<result xsi:type="flash:FlashSessionVariable" name="mySession"/>
<term xsi:type="flash:GetFlashSession">
<flash:sessionID xsi:type="StringValue" valueOf="AllSessions">
<path>
<stepByIndex xsi:type="IntegerLiteral" value="0"/>
</path>
</flash:sessionID>
</term>
</realisation>

10.

10.

Thd
blo

10.

Figlire 52 shows the syfitax of all flash block related terms.

/action>

action id="a3">
<specification>Get the session ID and write it into String variable</specifi
<realisation xsi:type="Assignment">

<result xsi:type="StringVariable" name="SessionString"/>

<term xsi:type="flash:GetSessionID">

<flash:session xsi:type="flash:FlashSessionValue" valueOf¥™pySession"/>

</term>
</realisation>
/action>

action id="a4">

<specification>Get the number of blocks in sessiond/specification>

<realisation xsi:type="Assignment">
<result xsi:type="IntegerVariable" name="blockg&"/>
<term xsi:type="flash:GetNumberOfBlocks">

<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

</term>

</realisation>

/action>

6.4 Flash block related terms

b.4.1 Description

following describes all terms,of-the OTX Flash extensions by which diverse informati
ks can be retrieved.

b.4.2 Syntax

cation>

bn on flash

© IS0 2022 - All rights reserved

929

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:integerTerm

«XSDcomplexType»
GetNumberOfSegments

otx:IntegerTerm

«XSDcomplexType»
GetNumberOfOw nidents

otx:integerTerm

«XSDcomplexType»
GetNumberOfSecurities

«XSDelement»
+ session: FlashSessionTerm
+ block otx:NumericTerm

«XSDelement»
+ session: FlashSessionTerm
+ block otx:NumericTerm

«XSDelement»
+ session: FlashSessionTerm
+ block otx:NumericTerm [0..1]

otx:StringTerm

«XSDcomplexType»
GetLogicalBlockID

otx:StringTerm

«XSDcomplexType»
GetCompressionEncryption

otx:StringTerm

«XSDcomplexType»
GetType

«XSDelemer]t»
+ session: KlashSessionTerm
+ block otf:NumericTerm

«XSDelement»
+ session: FlashSessionTerm
+ block otx:NumericTerm

«XSDelement»
+ session: FlashSessionTerm
+ block otx:NumericTerm

otx:BooleanTerm

A

SDcomplexType»
BlocklsValidForAudience

«XSDelemer}t»

+ session: flashSessionTerm
+ block otf:NumericTerm

+ audience| AudienceTerm

10.6.4.3 Semantics

Figure 52 — Data model view: Flash block rélated terms

10.6.4.3.1| GetNumberOfSegments

The GetNumberofSegments term shall return the number of data segments in a block. If no segme¢nts

exist, the rpturn value shall be zero, otherwise it shall be a positive number.

GetNumber(@fSegments iS an otx: IntegerTexm,lts members have the following semantics:

— <sessilon>

This element represents the Flashsession in which the block of interest resides.

— <blocK>

FlashSessionTerm [1]

otx:NumericTérm [1]

This element providé€sithe number of the block from which the number of data segments shalll be
retrieyed. Float valures shall be truncated.

Throws:

— otx:04ytOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.2 GetNumberOfOwnldents

The GetNumberofownIdents term shall return the number of required and to-be-fulfilled identifications

of a block.

GetNumberOfOwnIdents iS an otx:IntegerTerm. [ts members have the following semantics:

— <session>

FlashSessionTerm [1]

This element represents the Flashsession in which the block of interest resides.

100

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <block> : otx:NumericTerm [1]

This element provides the number of the block from which the number of identifications shall be
retrieved. Float values shall be truncated.

Throws:
— otx:0utOfBoundsException

It is thrown if there was no block found with the requested number.

10.6-2-3-3 GetNumberofSecurities
The GetNumberofsecurities term shall return the number of security information of ablockjor session.
GetNumberOfSecurities iS an otx: IntegerTerm. Its members have the following semantics:
— |<session> : FlashSessionTerm [1]

This element represents the Flashsession of interest.

— |<block> : otx:NumericTerm [0..1]

This optional element defines the block from which the naumber of security informatipn shall be
retrieved. If the <block> element is omitted, the term returns the number of securities defined for
the flash session. Fioat values shall be truncated.

Thrjows:
— |otx:0utOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.4 GetLogicalBlockID
The GetLogicalBlockID term shall return the unique string identification of a block.

IMPORTANT — In ODX/MVEEbased systems, the returned ID string should corresppnd to the
SHORT-NAME Of the block.

GetLogicalBlockID iS al'etx:StringTerm. Its members have the following semantics:
— |<session> : FlashSessionTerm [1]
This eleméntrepresents the Flashsession in which the block resides.

— |<block3 : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

Throws:
— otx:0utOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.5 GetCompressionEncryption

The GetCompressionEncryption term shall return the compression and encryption information of a
block (e.g. AES encryption, LZSS compression).

© IS0 2022 - All rights reserved 101

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

GetCompressionEncryption iS an otx:StringTerm. Its members have the following semantics:
— <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.
— <block> : otx:NumericTerm [1]

This element represents the block number. F1oat values shall be truncated.

Throws:

— otx:04tOfBoundsException

It is thfown if there was no block found with the requested number.

10.6.4.3.6 | GetType

The GetType term shall return the type of a block. The type information indicateswhether a blodk is
used for dqta or for program code.

GetType iS AN otx:StringTerm. Its members have the following semantics:

— <session> : FlashSessionTerm [1]

This element represents the Flashsession in which the block resides.
— <blocK> : otx:NumericTerm [1]

This ellement represents the block number. F1oat valués'shall be truncated.
Throws:
— otx:04tOfBoundsException

It is thfown if there was no block found-with the requested number.

10.6.4.3.7 | BlockIsValidForAudience
The Block]svalidForAudience term/shall return true if and only if a block is valid for a given audience.
BlockIsValidForAudience is«@flotx:BooleanTerm. Its members have the following semantics:

— <session> : FlashSessionTerm [1]

This ellement représents the Flashsession in which the block resides.
— <blocK> :, otx:NumericTerm [1]

t values shall be truncated

— <audience> : AudienceTerm [1]

This attribute defines which audience shall be used for the check. Please refer to 10.2.3.5 for
information about the Audience enumeration.

Throws:
— otx:0utOfBoundsException

It is thrown if there was no block found with the requested number.

102 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6.4.4 Example
The example below shows the flash block related terms, embedded in assignment actions.

Sample of FlashBlockRelatedTerms

<action id="al">
<specification>Get the number of segments in the first block</specification>
<realisation xsi:type="Assignment">

<result xsi:type="IntegerVariable" name="segments"/>

<term xsi:type="flash:GetNumberOfSegments">

<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
L 1doIl.ODLI0OCK _L.L_ypc— J.llL,CgCLJ_AJI_L,CLd.J_ valluc—= U

</term>
</realisation>
/action>

action id="a2">
<specification>Get the number of own idents of block 0</specificlfion>
<realisation xsi:type="Assignment">
<result xsi:type="IntegerVariable" name="ownIdents"/>
<term xsi:type="flash:GetNumberOfOwnIdents">
<flash:session xsi:type="flash:FlashSessionValue" vadueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
</term>
</realisation>
/action>

action id="a3">
<specification>Get the number of securities (©frthe session</specification>
<realisation xsi:type="Assignment">
<result xsi:type="IntegerVariable" namgsVsecurities"/>
<term xsi:type="flash:GetNumberOfSecurities">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<!-- omitted block signals sessien securities -->
</term>
</realisation>
/action>

action id="a4">
<specification>Get idengifdcation of a block</specification>
<realisation xsi:type="Assignment">
<result xsi:type="lintegerVariable" name="identification"/>
<term xsi:type="filladsh:GetLogicalBlockID">
<flash:sessibn) xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:blqoék)xsi:type="IntegerLiteral" value="0"/>
</term>
</realisations
/action>

actionNd="ab">

<spe€ification>Get the compression and encryption method of the block 0</
spefpifdcdtion>

Zrealisation xsi:type="Assignment">

rosult letupne="CStringVaoriabla" nomo="format"
T >

<term xsi:type="flash:GetCompressionEncryption">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
</term>
</realisation>
</action>

<action id="a6">
<specification>Get Type of Block 0</specification>
<realisation xsi:type="Assignment">
<result xsi:type="StringVariable" name="type"/>
<term xsi:type="flash:GetType">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
</term>

© IS0 2022 - All rights reserved

103

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

</realisation>
</action>

<action id="a7">
<specification>checks if block 0 is valid for audience "AFTERSALES"</specification>
<realisation xsi:type="Assignment">
<result xsi:type="BooleanVariable" name="isValid"/>
<term xsi:type="flash:BlockIsValidForAudience">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
<flash:audience xsi:type="flash:AudiencelLiteral" value="AFTERSALES"/>
</term>
</realisation>
</actign>

10.6.5 Fl3sh block segment related terms

10.6.5.1 Description

The follow|ng describes terms for retrieving information on flash block segments.

10.6.5.2 Syntax

Figure 53 ghows the syntax of all flash block segment related terms.

otx:IntegerTem otx:IntegerTerm otx:IntegerTlerm
XSDcomplexType» «XSDcomplexType» «XSDcomplex Type»
GetStartAddress GetCompressedSize GetUncompressedSize
«XSDelement» «XSDelement» «XSDelement»
+ session:| FlashSessionTerm + session: FlashSessionTem + session: FlashSessionTerm
+ block: opx:NumericTerm + block: otx:NumericTerm + block: otx:NumericTerm
+ segmenf otx:NumericTerm + segment: otx:NumericTerm + segment: otx:NumericTerm

Figure 53 — Data model view:-Flash block segment related terms

10.6.5.3 Yemantics

10.6.5.3.1| GetStartAddress

The GetStlrtAddress term shdll return the start address of a segment.
GetStartAddress iS an otxs/IntegerTerm. [ts members have the following semantics:

— <session> : FlashSessionTerm [1]

This e]jment represents the Flashsession in which the block containing the segment resides.
— <bloc ; : i 1]

This element represents the block in which the segment resides. Float values shall be truncated.

— <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.
Throws:
— otx:0utOfBoundsException

It is thrown if there was no block or segment found with the requested number.

104 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6.5.3.2 GetCompressedSize

The GetCompressedsize shall return the number of bytes constituting the compressed data contained
by a segment.

GetCompressedSize iS an otx:IntegerTerm. Its members have the following semantics:
— <session> : FlashSessionTerm [1]
This element represents the Flashsession in which the block containing the segment resides.

— <block> : otx:NumericTerm—[1]
-t

This element represents the block in which the segment resides. Float values shall-be truncated.
— |<segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.
Throws:

— |otx:0utOfBoundsException

It is thrown if there was no block or segment found with the réquested number.

10.6.5.3.3 GetUncompressedSize

The GetUncompressedsize shall return the number of bytes constituting the uncomprgssed data
confained by a segment.

GetPncompressedSize iS an otx:IntegerTerm. [ts-members have the following semantics:
— |<session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment refides.
— |<block> : otx:NumericTerm {[1]
This element represents the'block in which the segment resides. Float values shall be trjuncated.
— |<segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.
Throws:

— |otx:0utOfBoundsException

[t is.thrown if there was no block or segment found with the requested number.

10.6.5.4 Example
The example below shows the flash block segment related terms, embedded in assignment actions.

Sample of FlashSegmentRelatedTerms

<action id="al">
<specification>Get start address of segment</specification>
<realisation xsi:type="Assignment">
<result xsi:type="IntegerVariable" name="startAddress"/>
<term xsi:type="flash:GetStartAddress">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
<flash:segment xsi:type="IntegerLiteral" value="0"/>
</term>

© IS0 2022 - All rights reserved 105

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

</realisation>
</action>

<action id="a2">
<specification>Get the compressed size of the Block</specification>
<realisation xsi:type="Assignment">
<result xsi:type="IntegerVariable" name="compressedSize"/>
<term xsi:type="flash:GetCompressedSize">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
<flash:segment xsi:type="IntegerLiteral" value="0"/>
</term>
</realisation>
</acti¢n>

10.6.6 Segurity related terms

10.6.6.1 Description

The follow|ng describes the security related terms of the OTX Flash extension.

10.6.6.2 Syntax

Figure 54 gdhows the syntax of the security related terms.

otx:StringTerm otx:String Term
«XSDcomplexType» «XSDcomplexType»
GetSignature GetValidity
«XSDelement» «XSPelement»
+ session: FlashSessionTerm +y.session: FlashSessionTerm
+ block: otx:NumericTerm [0..1] + block: otx:NumericTerm [0..1]
+ security: otx:NumericTerm *+ security: otx:NumericTerm
otx:StringTerm otx:StringTerm
«XSDcomplexType» «XSDcomplex Type»
GetChecksum GetSecurityMethod
«XSDelement» «XSDelement»
+ session: FlashSessionTemn + session: FlashSessionTemm
+ block: otx:NumericTern1{0..1] + block: otx:NumericTerm [0..1]
+ security: otx:NumericFerm + security: otx:NumericTerm

Figure 54 — Data model view: Security related terms

10.6.6.3 Yemantics

10.6.6.3.1| GetSignature

The Getsignature shall return the signature information of a block or a session.
GetSignature iS an otx:StringTerm. Its members have the following semantics:
— <session> : FlashSessionTerm [1]

This element represents the Flashsession in which the block resides.
— <block> : otx:NumericTerm [0..1]

This element represents the number of the block whose signature shall be returned. If the <block>
element is omitted, the signature of the flash session shall be returned instead. Float values shall
be truncated.

106 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values
shall be truncated.

Throws:
— otx:0utOfBoundsException

It is thrown if there was no block found with the requested number or the security is not defined.

10.6.6.3:2" Getvalidity

The Getvalidity term shall return the validity information of a block or a session.
GetJalidity iS an otx:StringTerm. [ts members have the following semantics:

— |<session> : FlashSessionTerm [1]

This element represents the Flashsession in which the block resides:

— |<block> : otx:NumericTerm [0..1]

This element represents the block number. If the <block> element is omitted, tHe security
information of the flash session shall be returned instead:\gloat values shall be truncatg¢d.

— |<security> : otx:NumericTerm [1]

This element defines the number of the securityeiwhich the term execution is based. Float values
shall be truncated.

Thrjows:
— |otx:0utOfBoundsException

It is thrown if there was no blo¢k found with the requested number or the security is nof defined.

10.6.6.3.3 GetChecksum

The GetChecksum term shall'return the checksum information of a block or a session.
Getfhecksum iS an otx+StringTerm. [ts members have the following semantics:

— |<session>)FlYashSessionTerm [1]

This elefnent represents the Flashsession in which the block resides.

— |<bXock> : otx:NumericTerm [0..1]

Thic alaxannt vanmeacantc tho e lbae af b Woaol vyyhoca chaclrciiin chall o ot nd 16 +he <block>

TS CTCTIICTIC T CPT CotTITS CIrC IO o T OT C e oTo T vy IO ST CTICCIS SO TIT STrort oC T CTar T oI ©

element is omitted, the checksum of the flash session shall be returned instead. Float values shall
be truncated.

— <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values
shall be truncated.

Throws:
— otx:0utOfBoundsException

[t is thrown if there was no block found with the requested number or the security is not defined.

© IS0 2022 - All rights reserved 107

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6.6.3.4 GetSecurityMethod
The GetSecurityMethod shall return the security method information of a block or a session.
GetSecurityMethod iS an otx:StringTerm. Its members have the following semantics:
— <session> : FlashSessionTerm [1]
This element represents the Flashsession in which the block resides.

— <block> : NumericTerm [0..1]

This element represents number of the block whose security method shall be returned.clf|the
> element is omitted, the security method of the flash session shall be returned-instgad.
alues shall be truncated.

ity> : NumericTerm [1]

This element defines the number of the security on which the term execution is'based. Float values

It is thfrown if there was no block found with the requested nuriber or the security is not defindd.

10.6.6.4 Hxample
The examp|le below shows the security related terms, embedded in assignment actions.
Sample of |FlashSecurityRelatedTerms
<actionp id="al">
<spe¢ification>Get signature 0 of blkock 0</specification>
<realisation xsi:type="AssignmentM>
<ré¢sult xsi:type="StringVariable" name="signature"/>
<te¢rm xsi:type="flash:GetSignature">
flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
flash:block xsi:type='"IntegerLiteral" value="0"/>
flash:security xsi:type="IntegerLiteral” value="0"/>
</term>
</realisation>
</acti¢n>
<actionp id="a2">
<speg¢ification®Get validity 0 of block 0</specification>
<realisation\xsi:type="Assignment">
<ré¢sult.xsi:type="StringVariable" name="validity"/>
<termAxsi:type="flash:GetValidity">
flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
: i emltotegeritterat i —yalueniogll/
<flash:security xsi:type="IntegerLiteral" value="0"/>
</term>
</realisation>
</action>

<action id="a3">
<specification>Get checksum 0 of block 0</specification>
<realisation xsi:type="Assignment">
<result xsi:type="StringVariable" name="checksum"/>
<term xsi:type="flash:GetChecksum">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral” value="0"/>
<flash:security xsi:type="IntegerLiteral" value="0"/>
</term>
</realisation>

108 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

</action>

<action id="a4">
<specification>Get security method 0 of block 0</specification>
<realisation xsi:type="Assignment">
<result xsi:type="StringVariable" name="method"/>
<term xsi:type="flash:GetSecurityMethod">
<flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
<flash:block xsi:type="IntegerLiteral" value="0"/>
<flash:security xsi:type="IntegerLiteral" value="0"/>
</term>
</realisation>
</action>

10.6.7 Own ident related terms

10.6.7.1 Description

The following describes the own ident related terms of the OTX Flash extension,

10.6.7.2 Syntax

Figlire 55 shows the syntax of the own ident related terms.

otx:StringTerm otx:StringTerm
«XSDcomplexType» «XSDcomplexType»
GetOwnldentFromEcu GetOwnldent
«XSDelement» d_BDelement»
+ session: FlashSessionTem + session: FlashSessionTerm
+ block: otx:NumericTerm + block: otx:NumericTerm
+ number: otx:NumericTerm + number: otx:NumericTerm

Figure 55 — Data model view: Own ident related terms

10.6.7.3 Semantics

10.6.7.3.1 GetOwnldentFromEcu

The GetownIdentFromEct term shall return an identification string which shall be read frgm an ECU.
Thg environment shallstore the information to access this string. The empty string shall be feturned, if
thefidentification string cannot be determined, e.g. because the ECU is unknown.

GetpwnIdentFromEcu iS an otx:StringTerm. [ts members have the following semantics:
— |<session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

— <block> : otx:NumericTerm [1]
This element represents the block number. Float values shall be truncated.
— <number> : otx:NumericTerm [1]
This element represents the own identification number. Float values shall be truncated.
Throws:
— otx:0utOfBoundsException

It is thrown if there was no block or own ident number found with the requested number.

© IS0 2022 - All rights reserved 109

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

10.6.7.3.2 GetOwnldent
The GetownIdent term shall return an identification string which is read from the download data.
GetOwnIdent iS an otx:StringTerm. Its members have the following semantics:
— <session> : FlashSessionTerm [1]
This element represents the Flashsession in which the block resides.

— <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.
— <numbgqr> : otx:NumericTerm [1]

This ellement represents the own identification number. Float values shall be truncated.
Throws:

— otx:04tOfBoundsException

It is thfown if there was no block or own identification number found with the requested number.

10.6.7.4 HBxample
The examp|le below shows the own ident related terms, embedded.in assignment actions.

Sample of |FlashOwnIdentRelatedTerms

<action id="al">
<spe¢ification>Get the own ident 0 of blocki/0</specification>
<realisation xsi:type="Assignment">
<ré¢sult xsi:type="BooleanVariable" nameé="OwnlIdentEcu"/>
<term xsi:type="flash:GetOwnIdentFxomEcu">
4flash:session xsi:type="flash:ElashSessionValue" valueOf="mySession"/>
4flash:block xsi:type="Integérkiteral" value="0"/>
4{flash:number xsi:type="IntegérLiteral" value="0"/>
</term>
</reglisation>
</acti¢n>

<action id="a2">
<spe¢ification>Get the identification 0 of block 0</specification>
<realisation xsi:type="Assignment">
<result xsi:typez"StringVariable" name="OwnlIdent"/>
<te¢rm xsi:type="flash:GetOwnIdent">
{flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
4flash;:block xsi:type="IntegerLiteral" value="0"/>
{flashinumber xsi:type="IntegerLiteral" value="0"/>
</term>
</reglisation>
</action>

10.6.8 Enumeration related terms

10.6.8.1 Description

The following describes the terms related to the enumerations FlashFileFormat and Audience, as
specified in 10.2.

10.6.8.2 Syntax

Figure 56 shows the syntax of the enumeration related terms.

110 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

FlashFileFormatTerm) FiashFileFormatTerm| xsd:string AudienceTerm AudienceTerm xsd:string
«XSDcomplexType» «XSDcomplexType» «enumeration» «XSDcomplexType» «XSDcomplexType» «enumeration»
FlashFileFormatValue FlashFileFormatLiteral FlashFileFormats AudienceValue Audienceliteral Audiences

«XSDattribute» «XSDattribute» BINARY «XSDattribute» «XSDattribute» SUPPLIER

+ valueOf: otx:OtxLink + value: FlashFileFormat; INTEL + valueOf: otx:OtxLink + value: Audiences DEVELOPMENT
SREC MANUFACTURING

«XSDeIt'emen't» «><5De|<fme'jt>> AFTERSALES

+ path: otx:Path [0..1] + path: otx:Path [0..1] AFTERMARKET

Figure 56 — Data model view: Enumeration related terms

10.6.8.3 Semantics

10.6.8.3.1 FlashFileFormatTerm

The abstract type FlashFileFormatTerm iS an otx:SimpleTerm. It serves as a basefor all conqrete terms
which return a FlashFileFormat. It has no special members.

10.6.8.3.2 FlashFileFormatValue

Thip term returns the FlashFileFormat stored in a FlashFileFormatwariable. For more infofmation on
valyie-terms and the syntax and semantics of the valueof attrihteand <path> element, please refer to
[SO[13209-2.

Asspciated checker rules:

— |Core_Chk053 - no dangling OtxLink associations-(See ISO 13209-2).
Throws:

— |otx:0utofBoundsException

It is thrown only if a <path> is set:the <path> points to a location which does not exist| (like a list
index exceeding list length, or amiap key which is not part of the map).

10.6.8.3.3 FlashFileFormatLiteral

Thip term shall return a FlashFileFormat value (see 10.2.3.4) from a hard-coded literal.
FlaphFileFormatLiteral iS a FlashFileFormatTerm. [ts members have the following semantifcs:
— |value

FlashFileFormats={BINARY|SREC|INTEL} [1]

This attribute shall contain one of the values defined in the FlashFileFormats enumeratjion.

10.6.8:3.4 AudienceTerm

The abstract type AudienceTerm iS an otx:SimpleTerm. It serves as a base for all concrete terms which
return an Audience. It has no special members.

10.6.8.3.5 AudienceValue

This term returns the Audience stored in an Audience variable. For more information on value-terms
and the syntax and semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

© IS0 2022 - All rights reserved 111

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:
— otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

10.6.8.3.6 AudiencelLiteral

This term shall return an Audience value (see 10.2.3.4) from a hard-coded literal.

AudienceLiteral IS an AudienceTerm. ITS members have the following semantics:
— value |[: Audiences={SUPPLIER|DEVELOPMENT | MANUFACTURING | AFTERSALES | AFTERMARKET} . [1]

This attribute shall contain one of the values defined in the audiences enumeration,

11 OTX HMI extension

11.1 General

11.1.1 General considerations

The human machine interface (HMI) extension provides access:to‘data types, terms and actiong for
interacting with the user through the display of graphical scréens, as well as through additional ifjput
and output| devices such as keyboards, etc.

R
ConfirmDialog \\Q
action

‘ title:String ‘ * Wa rning

‘ message:String ‘ Are yOou Sure you wa nt
‘ dkButton:Event ‘ to continue?

J
|

% Are you sure you want to continue? |

- Cancel OK

Figure 57 — Different hardware configurations

Due to the multiple possible variations on runtime systems, and the fact that some of the target runtime
systems do not even have a display (see Figure 57), one of the design goals of the HMI extension was
to abstract the details regarding the layout of the screens on the system, concentrating instead on the
communication aspects between the test sequence and the user interface. To achieve this goal, there
are two ways to operate screens: a set of basic dialogs that all systems should provide and customizable
screens that allow extra flexibility.

112 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.1.2 Dialogs

The basic dialogs are used to cover the most elemental use cases, such as showing a warning to the user
or asking for simple user input. Dialogs are always modal: it is assumed that the runtime system will
pause execution of the test flow when reaching one of these dialog actions and will provide a way for
the user to dismiss the dialog (normally with an "ok" or "close" button).

Dialogs do not assume any special graphical functionality and shall be supported by all test application
systems. It is possible to implement them in systems without graphical display by using LEDs and
reading static buttons on the device. In this case message information would be ignored.

11.1.3 Custom screens

Custom screens define an interface to a screen that is externally created. The layout’and functionality
of the screen itself is not defined in the OTX file and is only referenced by name, as‘shown in Figure 58.
The call is similar to a standard procedure call, and it only defines ways to passiparameterq in and out
fromn the screen.

oTX screen screen
test sequence interface implementation

screen definition

OTX subsystem (business logic layer) runtime system (presentation lgyer)

Figure 58 — Separation of concerns

Custom screens are non-madal. The execution of the test sequence continues after the screen is
displayed in the runtime system. For this effect, there are actions and terms that help contifol the flow
of the screen: a screen eveént source term by which execution can be stopped until a screem event has
beep received and an-action to close the screen.

Screen implementation is up to the client: The client can either have a graphical user intg¢rface (UI),
a cansole-based-application or a button layout on physical hardware. The screen interface|provides a
levgl of abstfaction that decouples the description of the screen from the test sequence.

A s¢reen\is connected directly to the model of the test sequence. All input values to the |screen are
refgrénces to variables and all out parameteres are assigned to variables.

The update of the screen shall be performed automatically by the runtime system. When one of the
referred variables is updated, the runtime system shall update the display on the screen automatically.
It is assumed that the update will happen asynchronously in a Ul thread and that the execution of the
main sequence will not be interrupted.

The screen can communicate events back to the system by using screen event objects. These events
can indicate if any of a screen's output parameters has changed, or if the user has performed any other
operation on the screen such as closing, minimizing or dismissing. The usage of the event mechanism
allows building applications with complex user interaction, without transmitting specific look and
feel from the target applications. To monitor changes in the screen parameters, it is possible to use the
terms defined in the OTX EventHandling extension (see Clause 8, MonitorChangeEventSource term).

© IS0 2022 - All rights reserved 113

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Custom screens should be handled by a separate thread by the runtime system. As such, when handling
events from the screen (i.e. when waiting for user interaction) it is often advisable to create a parallel
lane in the OTX sequence dedicated to listen for these events with a waitForEvent action in case that
additional processing tasks need to be performed.

11.1.4 Custom screen usage example

Figure 59 provides a typical usage of the custom screens, represented using an UML activity diagram.

The use case is the following:

preser

read v

when {
To achieve

The seque]
evaluation
stops as so

The seque
of differen

parallel lanes. In one lane, the test sequence continiously reads new values from the ECU as long

"finish” fla
screen. On
term in 11|
not exempl

t a screen that displays a list of values measured with an "exit" button;
hlues from an electronic control unit periodically and refresh the screen;
he user decides to exit the application, then stop reading values.

this, two different ways are shown in the example:

hce shown to the left represents a solution for simple cases where fine-grained ey

on as the screen was closed (see screenIsopen term, as specifiedin 11.6.3.3).

- kinds of events which may happen on the screen. Aftef/opening the screen, there are

b is false. In the second lane, a waitForEvent action is\rSed to react on the events fired by
Ce a screen closed event is received, then the sequence terminates (see IsScreenClosedEv
6.3.4). Other event types from the screen might be processed in the event loop also, whig
ified here.

w start

o

[open screen]

open screen]

rent

is not necessary. After opening the screen, there is a loop for reading out ECU values which

ce to the right shows a solution which opens up the possibility to fine-grained hand|ing

fwo
hS a
the

ent

h is

is green wait for event
still open?
[oan] [closed] [not finished] [finished] [any other even
N w (— [screen closed event]
read v3 Il.%from read values from \/
ECU ECU
set finish flag

114

Figure 59 — Custom screen usage example

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

In both solutions, the "exit"-button is not controlled by the OTX sequence; the test applications
presentation layer is responsible for closing the screen as soon as the "exit" button is pressed (note that
there is also an explicit closeScreen action, see 11.5.3.3.2). Furthermore, the update of the ECU values
on the screen is automatic, since screens can be connected directly to variables of the OTX sequence.
In the given example, reads are interrupted cleanly, as once the last read is complete the sequence will
finish.

11.2 Data types

11.2.1 Overview

Thg OTX HMI extension introduces the screen data type required for the custom screen‘jandling as
well as the MessageType and ConfirmationType enumeration types used for dialogs.

11.2.2 Syntax

The syntax of the datatype declarations of the OTX HMI extension is shown it Figure 60.

otx:Extensioninterface

«XSDcomplexType» <| «XSDcomplexType» :] «XSDcomplexType»

otx:DataType otx:ComplexType Screen
«XSDcompléxType»
MessageType
«XSDcomplexType» «XSDelemeqW «XSDcomplexT\oe»
otx:SimpleType <] + init: MessageTypelLiteral [0..1] ConfirmaptionTyge

«XSDelement»
+ init: ConfirmationTypgLiteral [0..1]

Figure 60 — Data model view: HMI data types

11.2.3 Semantics

11.2.3.1 General

The data types in;the OTX HMI extension are based on otx:ComplexType and on otx:SimpleType.

11.2.3.2 Screen

The scteén data type is a handle to a complex screen resource on the runtime system. scrgen handles
represent an interface through which an OTX sequence can display data and receive useslinput. The
current status of a screen can be checked by using the accessor terms associated to the screen data

type.

Since screens are also sources of screen closed events, they can be used as an argument of the term
ScreenCloseEventSource, as specified 11.6.3.3 (see Clause 8, OTX EventHandling extension).

Since screen has no initialization parts, a screen cannot be declared constant.
NOTE It is an explicit design goal of the OTX HMI extension not to make assumptions regarding the layout,

positioning or visualization style of a screen in a specific test application. These presentation layer details are
left to the runtime systems.

© IS0 2022 - All rights reserved 115

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.2.3.3 MessageType

MessageType iS an enumeration type describing the characteristics of a message shown in a
ConfirmbDialog. The type of message also controls which buttons are available in a confirmpialog (see
11.5.2.3.2).

The list of allowed enumeration values is defined as follows:
— INFO: displayed message is just for information;

— WARNING: displayed message is a warning;

— ERROR! displayed message describes an error;

— YESNo |guEsTION: displayed message represents a question answerable by "yes" or "no"
— YESNOJANCEL QUESTION: displayed message is a question which does not require a®€sponse.

T — MessageType values may occur as operands of comparisons (see
-2, relational operations). For this case, the following order relation shall apply:
ING < ERROR < YESNO QUESTION < YESNOCANCEL QUESTION.

T — When applying otx:ToString On a MessageType Valuej the resulting string shall
be the name of the enumeration value, e.g. otx:ToString (INFO)="INFO". Furthermore, applying
otx:ToInteger shall return the index of the value in the MessageTypes enumeration (smallest

This optional element stands for the hard-coded initialization value of the identifier at declaration

<
o
o
(0]
=
[0)
7]
®
o
Q
0
]
0
®
]
H
2
]
o
E
H
2
()
E
(o]
E
>
=
0
2
IO
10
a
=
)
H
o
2
>
=
0
2
é
Q
=
It‘
10
[=]
=
0
H
o
5

T — If the MessageType ‘declaration is not explicitly initialized (omitted <igit>
he default value shall\bée 1nFo.

11.2.3.4 (onfirmationType

ConfirmatjonType is dn-€numeration type describing the button-choice of a user dismissing a
ConfirmDiglog (see 11/5.2.3.2). The information may later be used to find out which button was clidked
for confirmation of\the dialog.

The list of #llowed enumeration values is defined as follows:

— YES: confirmation by "Yes" button or "OK" button;
— NO: confirmation by "No" button;
— caNnceL: confirmation by "Cancel” button.

IMPORTANT — cConfirmationType values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:
YES < NO < CANCEL.

IMPORTANT — When applying otx:ToString On a ConfirmationType Value, the resulting string
shall be the name of the enumeration value, e.g. otx:Tostring (YES)="YEs". Furthermore, applying
otx:ToInteger shall return the index of the value in the confirmationTypes enumeration (smallest
index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

116 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ConfirmationType iS an otx:SimpleType. [ts members have the following semantics:
— <init> : ConfirmationTypeLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

— wvalue : ConfirmationType = {YES|NO|CANCEL} [1]

This attribute shall contain one of the values defined in the confirmationTypes enumeration.

itted <init>
element), the default value shall be vEs.

11.3 Exceptions

11.8.1 Overview

All [exceptions specified in the following are derived from the otx:Exception type as fefined by
[SO|13209-2. They represent the full set of exceptions added by the OTXHMI extension.

11.8.2 Syntax

The syntax of all OTX HMI exception type declarations is shewn in Figure 61.

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

g

«XSDcomplexType»
otx:ComplexType

7

«XSDcomplexType» :] «XSDcomplexType» :] «XSDcomplexType»

otx:Exception HmiException ScreenException

Figure 61 — Data model view: HMI exceptions

11.83.3 Semantics

11.8.3.1 Gemneral

Sing¢ecal'OTX HMI exception types are implicit exceptions without initialization parts, they cannot be
dectaredcomnstant:

11.3.3.2 HmiException

The HmicomException is the super class for all exceptions in the HMI extension. An EHmiException shall
be used in case the more specific exception types described in the remainder of this subclause do not
apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

© IS0 2022 - All rights reserved 117

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.3.3.3 ScreenException

A screenException will be thrown by the runtime system in case that there are problems while

processing

custom screens.

Situations where a screenException Will be thrown include:

— non-existing screen definition in the runtime;

— parameters of the called screen do not match to the signature of the screen;

— errorssadile npd ating the screen

11.4 Varipble access

11.4.1 Overview

As specifigd in ISO 13209-2, OTX extensions shall define a variable access type for each datatype {

hey

define (exdeption types inclusively). All variable access types are derived from-the'OTX core varigble
extension interface. The following specifies all variable access types defined forthe HMI extension.

11.4.2 Sy

Figure 62 s

11.4.3 Se]

The geners

11.5 Acti

ntax

hows the syntax of the HMI extension's variable access types.

otx:Extensioninterface

ﬂ «XSBDcomplexType»

«XSDcomplexType» ScreenVariable
otx:Variable

«XSDcomplexType»
«XSDattribute» MessageTypeVariable
+ name: otx:OtxLink

«XSDelement» «XSDcomplexType»
+ path: otx:Path [0..1] ConfirmationTypeVariable

&

«XSDcomplexTypen,
otx:ExceptionVariable

Figure 62'=— Data model view: HMI variable access types

mantics

| semarities for all variable access types shall apply. Please refer to ISO 13209-2 for detai

DS

11.5.1 Overview

All of the elements described in the following extend the otx:ActionRealisation extension interface as

defined by

[SO 13209-2.

As shown in Figure 63 there are two groups of actions: the dialog actions which serve for opening
different kinds of modal dialogs as well as the custom screen actions for opening and closing custom

screens.

118

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ChoiceDialog

otx:ActionRealisation <]

«XSDattribute»
+ | validFor: otx:OtxLink[0..1]

«XSDcomplex] ype»
ShowDocumentDjalog

otx:Node | Dialogs !
I
|
«XSDcomplexType» | «XSDcomplexType» !
otx:Action | W ConfirmDialog :
; |
I
Lt . : «XSDcomplexType» I
realisation | N InputDialog !
I
otx:Extensioninterface : «XSDcc;r;;;;Lengype» <}— :
«XSDcomplexType» ! «XSDcomplexType» |
: I
| I
| I
- I
| I
| I
| I

Custom screen handling

«XSDcomplexType»
OpenScreen

HighlightScreg

=1

«XSDcomplexType»
CloseScreen

I
I
I
I
I
«XSDcomplexType» :
I
I
I
I
I

Figure 63 — Data model view: HMl actions overview

11.5.2 Dialog related actions

11.5.2.1 Description

The dialog related actions described in this’subclause provide simple message dialogs, input dialogs,
mernu-like choice dialogs as well as displaying static documents. For a general description|of dialogs,
please refer to 11.1.2.

11.5.2.2 Syntax

Figlire 64 shows the syntax-of all modal dialog actions of the HMI extension.

© IS0 2022 - All rights reserved 119

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.5.2.3 §

11.5.2.3.1

The

It represents a modal display that blocks the execution of the test sequence until the user has provi
an input. [
confirmati

The

11.5.2.3.2

otx:ActionRealisation «XSDcomplexType»
«XSDcomplexType» ConfirmDialog
Dialog |
<} «XSDelement»
«XSDelement» + messageType: MessageTypeTerm [0..1]
+ title: otx:StringTerm [0..1] + result: ConfirmationTypeVariable [0..1]
+ message: otx:StringTerm [0..1]
A «XSDcomplexType»
InputDialog
| «XSDelement»

+ initialValue: otx:StringTerm [0..1]

abstral

memb

<titlg> : otx:StringTerm [0.(1]

If the 1|
given |
messa

<messgge> : otx:StringTerm [0..1]

If the 1
string

v iIISlIUlAiUII. Ul)\.ollillg TETT [U‘IJ
+ restriction: otx:StringTerm [0..1]
+ result: otx:StringVariable

«XSDcomplexType»

ChoiceDialog
«XSDcomplexType»
ShowDocumentDialog — | «XSDelement»
+ options: otx:ListTerm
«XSDelement» + default: otx:IntegerTerm [0,1]
+ document: otx:StringTerm + result: otx:IntegerVariable

Figure 64 — Data model view: Dialog related’ actions

emantics

Dialog
ct type Dialog is the base type for all the dialogs used as a part of the dialog usage patt

ialogs are meant to be simple and well'suited for basic interactions with the user, suc
bns and single inputs.

br's of the Dialog action have thefollowing semantics:

untime system contains the capability to show a dialog box with a title bar, the title st
py this element shdllybe shown. The title should be shown with more prominence than
be parameter (see-below).

untime'system contains the capability to show a message as part of the display, the mess
wiveri by this element shall be shown.

brn.
ded
h as

ing
the

age

ConfirmDiatog

The confirmbialog action shows a dialog asking for user confirmation. The choices of buttons and the
decorations shown to the user can be configured by a parameter. Once one of the confirmation options
is selected, the result field will contain the selected index of the options.

Confirmation dialogs are typically used to ask the user for acceptance before performing a procedure.
Depending on the type of procedure to execute, it is possible to select different levels of severity.

Figure 65 shows a possible layout of a confirmbialog instance on a graphical user interface.

120

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Check Ignition
Please make sure that
igniton is turned ON.

Figure 65 — Sample ConfirmDialog layout

Con

11.

FirmDialog iS a Dialog. Its members have the following semantics:
<messageType> : MessageTypeTerm [0..1]

This optional element defines the type of message and the buttons that shall be shown
to confirm the action. If the element is omitted, the default Messagerype value INFO §
Please refer to 11.2.3.3 for information about the MessageType enumeration.

The number of buttons displayed depends on the message type:

— INFO, WARNING, ERROR: show "OK" button;
— YESNO_QUESTION: show "Yes" and "No" buttons;
— YESNOCANCEL_QUESTION: show "Yes", "No".and "Cancel"” buttons.

NOTE Since button labels usually get localized automatically according to test applic
settings, this document does not force butten:labels to be "OK", "Yes", "No" or "Cancel". Any {
equivalent labels are allowed.

<result> : ConfirmationTypeVariable [0..1]

This element represents the variable where the selection from the user will be stored. T
can be omitted in cases when the result is nonrelevant (this especially applies to mes
INFO, WARNING and ERROR which do only provide a single "OK" button).

Result values shall be ong of the following:
— ¥yES: "OK" af*Yes" button was pressed;
— no: "Ne")button was pressed;

— CANQEL; "Cancel” button was pressed.

5.2:3.3 InputDialog

The

to the user
hall apply.

htion locale
emantically

he element
sage types

u 1

thitial value

can be passed to the dialog which shall be shown initially in the input field. Additionally, an input
restriction can be passed to the dialog; this shall be used by runtime systems to pre-validate inputs
before they are passed back to the test sequence. Finally, the entered value is assigned to a string
variable for later use in the test sequence.

InputDialog can only handle one line as simple string. There are no facilities provided for number
parsing, etc. It is assumed that the OTX sequence will perform these actions upon receiving the value.

Figure 66 shows a possible layout of an Inputbialog instance on a graphical user interface.

©IS

02022 - All rights reserved

121

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Enter VIN

Please enter VIN
[wpD2040481A13T |

Please note: VIN must contain 17 characters,
only letters and numbers.

Figure 66 — Sample InputDialog layout

InputDialdg iS a Dialog. [ts members have the following semantics:
— <initilalvalue> : otx:StringTerm [0..1]

This optional element represents the string value that shall be used to initialize the dialog's ifjput
field. Runtime systems should pre-populate the input field with this text, providing an option to|the
user td overwrite this value.

— <instyguction> : otx:StringTerm [0..1]

The instruction is an additional message that can be shown on the input dialog to proyide
information regarding the expected value that should be intreduced.

— <restygiction> : otx:StringTerm [0..1]

This optional element represents a restriction ontgrthe set of allowed input values. The restricfion
shall be formulated by a regular expression which shall be used by runtime systems to pre-validate
the input data. The runtime system should nlot allow test sequence control to proceed until|the
input 4tring matches the given regular expression. The regular expression should follow the same
syntax as defined for string:MatchToRegularExpression.

— <result> : otx:StringVariable [1]

After the user dismisses the input’dialog, the entered value shall be assigned to the string varigble
given by this element.

Throws:
— otx:04tOfBoundsExgception

It is thfown if the'regular expression does not follow the supported syntax of the runtime systdm.

11.5.2.3.4| GhoiceDialog

The choiceDialog shall present a list of options to the user. It shall be possible for the user to select one
of the options and to dismiss the dialog (e.g. by double-clicking an option or by clicking an "OK" button).
Once the dialog is dismissed, the chosen option's index shall be assigned to a result variable. It shall not
be possible to dismiss the dialog unless a choice has been made.

The test sequence author may also preselect one of the options by using the dialog's optional default-
selection property.

For the options, choicebDialog accepts a dynamic list of strings as argument. This is useful as the
strings that will be shown can both be defined by the OTX author statically or they can be generated
dynamically (e.g. by reading a list of values from an ECU).

122 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

The choicebialog visual implementation is up to the runtime system. Suggested visualizations are:

a combination of a combo box with an "OK" button:
a list component with an "OK" button;
a list component which allows dismissing the dialog by double-clicking an option;

aring menu.

Figure 67 shows a possible layout of a choicebialog instance on a graphical user interface. The sample

dia

0g cantains three options which are rendered as a list. The user can select one of the

ptions and

the
as|l

Cho

1 press the "OK" button commit her/ his choice and continue. The "OK" button should(st
bng as no choice has been made.

Mode of Drive Selection

Please select mode of drive.
Options:

Front Wheel Drive

Rear Wheel Drive

Four Wheel Drive

Figure 67 — Sample ChoiceDialog layout

iceDialog iS a Dialog. Its members have.the following semantics:

<options> : otx:ListTerm [1]

Associated checker rules:

— HMI_Chk001 +correct list type for ChoiceDialog options (see A.5.1).
<default> : otx!IntegerTerm [0..1]

This optiondl element represents the index of the option which shall be preselected in th

<result> : otx:IntegerVariable [1]

hy disabled

This element specifies a list f strings which contains the possible options that shall be displayed.

e dialog.

This element indicates the integer variable where the chosen option's index shall be assiFned to:

— 0 the 15t option was selected;

— n-1 thenth option was selected.

Throws:

otx:0utOfBoundsException

[t is thrown if the list of options is empty (nothing to choose from) or if the preselection index is not

within the range [0,n-1], where n is the size of the list of options.

© IS0 2022 - All rights reserved

123

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.5.2.3.5 ShowDocumentDialog

The showDocumentDialog action will open a dialog that can display a document which is identified by,
e.g. a URIL The document can be any resource. The call will block until the user has confirmed reading
the document.

Typical usage of this node is to show additional documentation to the users, such as repair guides and
schematics, or lengthy security information that the user shall read before proceeding with a potentially
dangerous operation. If possible, tester applications should display the document in a maximized way,

for best readability. Dismissing the dialog will close the document.

The set of
be able to
stripped ff
if only a si
and PNG a
application

In case that a document type cannot be opened and displayed by the test application itself, the runt
nte the opening of the document to the application which is registered for that docunment

may deleg
type on th
the applica
continue. (
viewer is |

Ultimately,
then the te
supported

ShowDocumd

om display if the runtime system does not support advanced formatting capabilities
hgle type, monospace font is used). Furthermore, popular image formats suchas JPEG,
b well as document formats like plain text, rich text and PDF should be supported by te
s also.

b operating system. If a tester application uses delegation, a dialog“window shall pop u
tion, blocking execution and asking for confirmation from the@ser that the application
nce the user confirms, the execution of the test sequence shall continue even if the exte
ot closed.

if a document type is supported neither by the testapplication nor by any external vie}
st application shall show a suitable error messagesindicating that the document type is
and can therefore not be displayed.

intDialog iS a Dialog. Its members have the following semantics:

<doc

Throws:

otx:In

It is thrown if the documeént resource given by the <document> element is not available or

access

11.5.2.4 K

The OTX fragment below shows uses of the Confirmbialog, InputDialog and ShowDocumentDia

Please comj

e
This::lement identifies the external documeént that should be shown.

nt> : otx:StringTerm [1]

validReferenceException

ble.

xample

pare'this to Figure 65 and Figure 66 which show graphical equivalents of the dialog acti

HmiDialogs

Sample of

Fupported document types 1S tester application speciiic. However, runtime systems shuld
display at least basic HTML 2.0 according to RFC 1866. Formatting, style and fonts'can be

(i.e.
GIF
Ster

ime
p in
can
‘nal

ver,
not

not

log.
DN S.

<action ig="al">

<specification>Ask user for confirmation that ignition is turned on.</specification>
<realisation xsi:type="hmi:ConfirmDialog">

<hmi:title xsi:type="StringLiteral" value="Check Ignition"/>

<hmi:message xsi:type="StringLiteral"
turned ON.
<hmi:messageType xsi:type="hmi:MessageTypelLiteral"

value="Please make sure that ignition is
n/>
value="WARNING" />

</realisation>
</action>

<action id="a2">
<specification>Get VIN from user and store in variable "Vin"</specification>
<realisation xsi:type="hmi:InputDialog">

<hmi:title xsi:type="StringLiteral"
<hmi:message xsi:type="StringLiteral"

124

value="Enter VIN"/>
value="Please enter VIN"/>

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

<hmi:instruction xsi:type="StringLiteral"

value="Please note:

<hmi:result name="Vin"/>

</realisation>
</action>

<action id="a3">

<specification>Show a wiring diagram to user.</specification>

<realisation xsi:type="hmi:ShowDocumentDialog">
<hmi:document xsi:type="StringLiteral" value="http://www.myCompany.com/

WiringDiagram.svg"/>
</realisation>
</action>

VIN must contain 17 characters,

IS0 13209-3:2022(E)

only letters and numbers"/>

11.

11.5.3.1 Description

In ¢
SCI6
Hig]
and
intq

11.5.3.2 Syntax

Figlire 68 shows the syntax of all custom screen related actions of the HMI extension.

5.3 Custom screen related actions

OpenScreen

otx:ActionRealisation

«XSDcomplexType»

SDattribute»
+ | screen: otx:OtxLink
+ | modal: xsd:boolean [0..1]

A

SDelement»

A

+ | screenHandle: ScreenVariable [0..1}]

ontrast to the dialog actions described above, the actions below support'the handling of custom
ens, as described in 11.1.3. In particular, there are the actions, openscréen; Closescrees as well as
hlightScreen Which allow controlling GUI output and input to and from the user and the opening
closing of screens. Custom screens are also related to so-called screen signatures whicll define the
rface to application-specific screen definitions (see 11.7).

otx:ActionRealisation

«XSDcomplexType»
HighlightScreen

otx:ActiohRealisation

«XSDcomplgxType»
CloseScfeen

«XSDelement»

+ screen: ScreenVariable

«XSDelement»
+ screen: ScrefenVariable

arguments | 0..1

«XSDcomplexType»
ScreenArguments

)

termArg\JMm1

inArg | 1

inoutArg

1

outArg

«X8DcomplexType»
ScréenTermArgument

«XSDcomplexType»
ScreenlnArgument

«XSDcomplexType»
ScreenlnOutArgument

«XSDcomplgxType»
ScreenOutArgument

«XSDattribute»
+ param: otx:OtxName

«XSDelement»
+ term: otx:Term

«XSDattribute»

+ param: otx:OtxName

«XSDelement»

+ variable: otx:Variable

«XSDattribute»

«XSDelement»

+ param: otx:OtxName

+ variable: otx:Variable

«XSDattribute»
+ param: otx:OtxName

«XSDelement»
+ variable: otx:Variable

Figure 68 — Data model view: Custom screen related actions

© IS0 2022 - All rights reserved

125

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.5.3.3 S

11.5.3.3.1

emantics

OpenScreen

The openscreen action creates and displays a custom screen at runtime. The screen shall be displayed
immediately, and it can accept user input. If other screens are already open when the new screen is
opened, the test application shall ensure that the new screen is not hidden by other screens.

IMPORTANT — In systems where screens are shown in separate GUI windows, the new screen

should be

sent on top of all other windows.

A screen shall remain opened until the user dismisses the screen via some UI control or a Closes

action is e3

when the procedure which opened the screens exits, only those screens on which at least one scr
5ts shall remain opened; all other screens shall be disposed of (see <screenHandlé> elenent

handle exi
specified b

When a sc
given scre
the given
ScreenExcs

IMPORTALI
Layout an
a runtime
semantica

IMPORTALI
lanes shoy

The memb

sScreer

This a
descri]
screen
corres
signat
layout
Associ

Co
HN

ecuted explicitly on its screen handle. Also, when there are unclosed screens at the-imo

elow).

Feen is opened, the runtime system will internally locate a screen definition linked to
bn signature name (see 11.7.3.2), or create a screen from scratch-that allows display
Falues to the user. If the screen cannot be opened or the open action is not supporte
b ption shall be thrown.

NT — It is an explicit design goal of OTX not to describe the graphical layout of scres
[look and feel of screens should be described by specific screen definitions usec
system. Since these features are highly application-specific and do not repres

NT — Execute service (open screen, excutedevice service) action usage inside para
1d be threadsafe.

brs of the openscreen action have the following semantics:
: otx:0txLink [1]

[tribute contains a name which points to a screensignature which contains a param
btion for the screen that~shall be opened (it is the interface description to a spe
definition, see 11.7.3.2).,The arguments of openscreen shall match the definitions in
ponding signature. It is-the task of the runtime system to provide a mapping from scr
ires to a runtime-specific screen definition (see Figure 57) which provides the actual scy

ated checkertules:
re_Chk053 - no dangling OtxLink associations (see ISO 13209-2);
11-Chk002 - correct target for OpenScreen (see A.5.2).

cyeen

7

ent
een

the
ring
d, a

PNS.
by
ent

lly relevant information concerning the "pure" test sequence logic, screen definitions
are not part of this document.

llel

bter
rific
the
een
een

modal :

xsd:boolean={false|true} [0..1]

This option tells the runtime system to make this screen modal or non-modal. This means that if
modal is false (the default), the OTX execution flow will immediately move on to the next action,
without waiting for the screen to close (see Figure 59 for usage examples of non-modal screens).
Otherwise, if modal is true, the screen behaves like the dialog actions; it shall block the execution
flow until the screen was closed (by a user action or a closeScreen action, e.g. in another parallel

lane).

NOTE

126

Non-modal screens are well suited for dynamic cases where the test sequence needs to react on
and process input from the screen, or needs to update values shown on the screen, where modal screens are
better suited for the cases where static information is presented to the user.

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

<screenHandle> :

IS0 13209-3:2022(E)

ScreenVariable [0..1]

This optional element represents the variable which shall be the handle for the opened screen. This
can be later used to query the status of the screen, highlighting the screen or closing the screen
explicitly (see screenIsOpen term, HighlightScreen Or ScreenClose actions below).

<arguments> :

ScreenArguments [0..1]

This simple container element represents a list of arguments for an open screen call. The content-
type of ScreenArguments iS <xsd:choice> [1..*] which allows an arbitrary-length list of different
screen argument elements. The given arguments shall correspond to the parameters described in

<termArg> : ScreenTermArgument

This argument type allows setting a calculated value into the screen. The valug

always an input-value to the screen. It shall be calculated exactly once upon opening
no later recalculations of the term value shall happen.

the screen signature (linked Dy the screen attribute]. I'here are different argument typgs:

passed is
the screen,

This type of arguments can be used, when a value that is passed to a screen is ndt expected

to change during the execution of the test sequence. Hence, itis not required that t

he runtime

system keeps a "watch" on the value. Because it accepts a térmi, it becomes possible fo calculate

the value that should be set for a screen. For example, it might be desired to show 3

title that additionally contains a concatenated extra string.

A term argument may be omitted if and only if there is an explicit initial value defi
corresponding parameter in the screen signature. In that situation, the initial val
used instead of the omitted argument.

The counterpart to a <termarg> shall beldefined in the corresponding screen sigr

<termParam>.

param : otx:0txName [1]

This attribute indicates a*unique parameter of the screen that shall receive

translated

Ined for the
e shall be

ature by a

the to-be-

displayed value. The-indicated parameter shall be defined in the corresponding screen

signature. The screen definition should then contain a widget that will be fe
value.
— <term> : otx:Term [1]

|l with this

This element represents the term that shall be evaluated once and set as a value into the

SCreen,
<inArg> : ScreenInArgument

This argument type shall bind a variable to a parameter of the screen. Changes to t
shall be automatically reflected on the screen.

he variable

An input argument may be omitted if and only if there is an explicit initial value
the corresponding parameter in the screen signature. In that situation, the initial va
used instead of the omitted argument.

defined for
lue shall be

The counterpart to an <inarg> shall be defined in the corresponding screen signature by an

<inParam>.

param : otx:0txName [1]

This attribute indicates a unique input-parameter of the screen that shall be bound to a

variable.

© IS0 2022 - All rights reserved

127

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

128

<variable> : otx:Variable [1]

This element represents the to-be-bound variable whose value shall be monitored

and

whose current value shall be fed into the screen. The screen definition should then contain

a widget that will be fed with this variable's current value.

<inoutArg> : ScreenInOutArgument

This argument type shall bind a variable to a parameter of the screen, in a bidirectional fashion:
changes to the variable from the test sequence model shall be automatically reflected on the
screen. Vice versa, changes triggered from the screen (e.g. by user actions) shall automatically

ch nge the value or the variable.

A

defined for the corresponding parameter in the screen signature. In that situation, the in
value shall be used instead of the omitted argument.

Th

<i

<o|

TH
S

2]

Ou
th

Th

input/output argument may be omitted if and only if there is an explicit inifial’'v

e counterpart to an <inoutarg> shall be defined in the corresponding screen signature b
houtParam>.

param : otx:0OtxName [1]
This attribute indicates a unique input/output parameter thatshall be bound to a varia
<variable> : otx:Variable [1]

This element represents the to-be-bound variable ‘whose value shall be monitored
whose current value shall be fed into the screen, The variable shall also reflect char

that will be fed with this variable's current value and that also allows for the user to cha
the value.

LtArg> : ScreenOutArgument

is argument type shall bind a variable to an output parameter of the screen. Changes onl
reen shall trigger an update of the‘bound variable's value.

P screen data).

e counterpart to the <outarg> shall be defined in the corresponding screen signature |
itParam>.

param : otx:OtxName [1]
This_attribute indicates a unique output-parameter that shall be bound to a variable.

<variable> : otx:Variable [1]

hlue
tial

y an

ble.

and
ges

triggered from the screen, vice versa. The scréen definition should then contain a widiget

nge

the

tput arguments may be omitted freely (e.g. in the case when there is no interest in one of

Dy a

I'his element represents the to-be-bound variable which shall retlect the value set on

the

screen (e.g. entered by the user). The screen definition should then contain an input widget

that allows for the user to change the value.

Associated checker rules:

HMI_Chk003 - correct OpenScreen arguments (see A.5.3);

HMI_Chk004 - OpenScreen term, input and input/output argument omission (see A.5.4);

HMI_ChkO0O5 - no Path in connected OpenScreen arguments (see A.5.5).

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

Thr

IS0 13209-3:2022(E)

OWS:

ScreenException

It is thrown if the screen definition cannot be found, if the assigned parameters are incorrect or if

the runtime system cannot support a screen open operation.

11.5.3.3.2 HighlightScreen

The HighlightScreen action shall highlight a given screen in a way appropriate for drawing the user's
attention to the screen. This supports use cases where user attention is required, for example, when a

situation occurs which immediately requires user input on a particular screen, or when a s¢rieen displays

important information which tells the user which actions to take to solve, e.g. a critical situ

IM
scr

ORTANT — In systems where screens are shown in separate GUI windows, high
ben should bring the screen on top of any other windows. For systems wWhere s¢

shown, for example, in one partitioned GUI window, highlighting may be.done for i

ma
ma

Thd

Thn

11.

Thd
ass

Aftg
tot

Clos
sha

Thd

king the new screen's portion of the window blink for some time, or'similar. Non-Gl
y use, for example, warning LEDs to draw user attention.

members of the HighlightScreen action have the following semantics:

<screen> : ScreenVariable [1]

This element represents the screen handle of the screenthat shall be highlighted.
ows:

InvalidReferenceException

It is thrown if the screen variable is uninitialized or if the screen has already been close

5.3.3.3 CloseScreen

CloseScreen action shall cause(the runtime system to dismiss the screen and release al
ciated to the screen.

r the execution of the cl1osescreen action, the screen shall not send any more events for
he OTX sequence and.shall not allow any more user interaction to be performed.

ing an uninitialized/or already closed screen shall perform no operation and report n
1 be for all effeets-a NOP.

members of-the closescreen action have the following semantics:

<screen> : ScreenVariable [1]

ation.

lighting a
reens are
jstance by
JI systems

resources

[processing

D errors. It

This element represents the screen handle of the screen that shall be closed.

11.

6 Terms

11.6.1 Overview

The terms of the OTX HMI extension are mainly related to custom screen handling and the events
which may be fired by screens. Furthermore, there are simple enumeration type terms related to the
ConfirmDialog action 11.5.2.3.2).

Figure 69 provides an overview about the different term categories.

©IS

02022 - All rights reserved

129

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:Term

Screen related terms

ﬂ «XSDcomplexType»

N

|
|
! «XSDcomplexType»
ScreenTerm ﬂ | ScreenValue
|

Eventrelated terms

I
I
«XSDcomplexType» j [«XSDcomplexType»
event:EventSourceTerm ! ScreenClosedEv entSource

Non !

-
coDCOMPTexXTyPe

«XSDcomplexType»
otx:SimpleTerm

11.6.2 Syntax

Figure 70 ghows the syntax of all'terms in the OTX HMI extension.

IsScreenClosedEvent
<} «XSDcomplexType»
otx:BooleanTerm
«XSDcomplexType»

ScreenlsOpen

Dialog related terms

«XSDcomplexType»
MessageTypeValue

«XSDcomplexType»
MessageTypeTerm

«XSDcomplexType»
MessageTypelLiteral

«XSDcomplexType»

I
I
I
I
1
1
1
! ConfirmationTypeValue
] I
I
I
I
I

«XSDcomplexType»
ConfirmationTypeTerm

«XSDcomplexType»
ConfirmationTypeLiteral

Figure 69 — Data medel view: HMI term categories

130

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ScreenTerm event:EventSource Term

«XSDcomplexType»
ScreenValue

«XSDcomplexType»
ScreenClosedEventSource

otx:BooleanTerm

«XSDcomplexType»
IsScreenClosedEvent

«XSDcomplexType»

otx:BooleanTerm

ScreenlsOpen

«XSDattribute» «XSDelement»
+ valueOf: otx:OtxLink| + screen: ScreenTerm
«XSDelement»

+ path: otx:Path [0..1]

«XSDelement»
+ event: event:EventValue
+ screen: ScreenVariable [0..1]

«XSDelement»
screen: ScreenVariable

+

Message TypeTerm Message TypeTerm

xsd:string

4XSDcomplexType» «XSDcomplexType»

«enumeration»

«qSDelement»
+ | path: otx:Path [0..1]

MessageTypeValue MessageTypelLiteral MessageTypes
«ASDattribute» «XSDattribute» INFO
+ | valueOf: otx:OtxLink| |+ value: MessageTypes WARNING

ERROR

YESNO_QUESTION
YESNOCANCEL_QUESTION

ConfirmationType Term ConfirmationTypeTerm

4XSDcomplexType»
CdnfirmationTypeValue

«XSDcomplexType»
ConfirmationTypelLiteral

«ASDattribute» «XSDattribute»
+ | valueOf: otx:OtxLink + value: ConfirmationTypes
«ASDelement»

xsd:string

«enumeration»
ConfirmationTypes

+ | path: otx:Path [0..1]

YES
NQ
CANCEL

11.6.3 Semantics

11.6.3.1 ScreenTerm

Figure 70 — Datainodel view: HMI terms

ScrgenTerm iS an otx:Term. [t'serves as the abstract base type for all concrete terms whigh return a

Screen. It has no further mémbers.

11.6.3.2 ScreenValue

Thip term returns'the screen stored in a Screen variable. For more information on value-terjms and the
synkax and semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

Asspciatedchecker rules:

— |@ore_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

Throws:

— otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

— otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

© IS0 2022 - All rights reserved

131

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.6.3.3 ScreenClosedEventSource

The screenClosedEventSource term accepts a Screen object thatis to be made an event source. This term
enables an OTX sequence to use a screen as a source for events in the context of the OTX EventHandling
extension (please refer to Clause 8). A screen shall trigger an event every when the specified screen is
closed. This can be used within an event:waitForEventAction to continue execution after a screen was
closed.

NOTE Other events that may happen on a screen (e.g. button presses, values entered into an input field) can be
identified by using the event source terms MonitorChangeEventSource or ThresholdExceededEventSource,
as specified by the OTX EventHandling extension (see Clause 9). As screens are executed on an asynchronous
thread, useffinteraction can be received at any time. T herefore, the value monitoring event sources are especjally
useful with frespect to non-modal custom screens (see Figure 59) in order to react on different user actions\

ScreenClosedEventSource iS an event:EventSource. [ts members have the following semantics:
— <scregn> : ScreenTerm [1]

This r¢presents the screen that shall be connected to the event source.

11.6.3.4 IsScreenClosedEvent

The IsScreéenClosedEvent term accepts an Eventvalue term yieldingsan-Event object that has Heen
raised by the OTX runtime, as a result of declaring a screen object™as an event source by using|the
term Scre¢nClosedEventSource. The term shall return true if and\only if the Event originates from a
ScreenClosedEventSource term. In case an optional Screenvariabtle is specified, the term shall return
true if and|only if the Event was fired because that particular sereen was closed.

This term pxists because closing a screen is a very common event and many times the execution fllow
shall continue only when a screen is dismissed. To simplify writing test sequences, it is thus simplgr to
write a wajtForEvent node that only listens for this-évent type, and without requiring additional qode
to analyse the type of even as required with a regular screen event.

IsScreenClosedEvent iS an otx:BooleanTerm.{ts members have the following semantics:
— <event]> : event:EventValue [1]
This r¢presents the Event whose type shall be tested.
— <screqn> : ScreenVariable)[0..1]
This optionally specifiésthe particular screen which fired the event.
Throws:
InvalidRefexrenceException

It is thfown if a screenvariable is specified and it is uninitialized.

11.6.3.5 ScreenlsOpen

This is a term used to verify that a screen is open and active. A screen is open and active if it has been
opened by using an openscreen action, it has not been dismissed by the user and it has not been closed
by using a closeScreen action.

IMPORTANT — Due to the fact that there may be multiple parallel lanes, and that a screen engine
normally works in a different thread, if the screenisopen term returns true there is actually no
guarantee that the screen is still open on the next step.

132 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

ScreenIsOpen iS an otx:BooleanTerm. [ts members have the following semantics:
— <screen> : ScreenVariable [1]
This element represents the variable which is a handle to the screen that shall be checked.

ScreenIsOpen shall return false, if variable is unitialized.

11.6.3.6 MessageTypeTerm

The abstract type MessageTypeTerm iS an otx:SimpleTerm. It serves as a base for all concrete terms
which return a MessageType value (see 11.2.3.3]. It has no special members.

11.6.3.7 MessageTypeValue

Thif term returns the MessageType stored in a MessageType variable. For moreGnformation on value-
terms and the syntax and semantics of the valueof attribute and <path>relement, pleafpe refer to
1SO[13209-2.

Asspciated checker rules:

— |Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).
Thrjows:

— |otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which'is not part of the map).

11.6.3.8 MessageTypelLiteral

Thip term shall return a MessageType vallie (see 11.2.3.3) from a hard-coded literal.
MeskageTypeliteral iS a MessageTypeTerm. Its members have the following semantics:
— |value : MessageTypes={INFO|WARNING|ERROR|YESNO_ QUESTION |YESNOCANCEL QUESTION} [1]

This attribute shall contain one of the values defined in the MessageTypes enumeration.

11.6.3.9 ConfirmationTypeTerm

The abstract type-ConfirmationTypeTermis an otx:SimpleTerm. It serves as a base for all congrete terms
whilch return-aConfirmationType value (see 11.2.3.4). It has no special members.

11.6.340 ConfirmationTypeValue

Thist&rm—- he-eo rtiontype-Store o Trtiontype-var er-more-thformation
on value-terms and the syntax and semantics of the valueof attribute and <path> element, please refer
to ISO 13209-2.

Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).
Throws:

— otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

© IS0 2022 - All rights reserved 133

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

11.6.3.11 ConfirmationTypelLiteral

This term shall return a confirmationType value (see 11.2.3.4) from a hard-coded literal.
ConfirmationTypeLiteral iSaConfirmationTypeTerm. [ts members have the following semantics:
— value : ConfirmationTypes={YES|NO|CANCEL} [1]

This attribute shall contain one of the values defined in the confirmationTypes enumeration.

11.7 Signatures

11.7.1 Overview

As specifigd by ISO 13209-2, OTX extensions may define new specialialized types of signature§ by
extending |otx:SignatureRealisation. The OTX HMI extension uses this extensipility by adding
the screer{signature type which allows in-document, high-level interface specifigations to scijeen
definitionswhich are used by the openscreen action, as specified in 11.5.3.3.1.

11.7.2 Syntax

Figure 71 dhows the syntax of the HMI extension's signature types.

otx:SigpatureRealisation

«XSDcorpiplexType»
ScreenSignature

parameters | 0..1

«XSDcomplexType»
ScreenParameterDeclarations|

termParam 1 inParam | 1 inoutParam | 1 outParam | 1

Declaration Declaration Declaration Declardtion

«XSDcpmplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ScreenTermParameterDeclaration ScreeninParameterDeclaration | [ScreenlnOutParameterDeclaration| [ScreenOutParameterDeclaratjon

«XSDattributé» «XSDattribute» «XSDattribute» «XSDattribute»
category: |xsd:string [0..1] - cafegory: xsd:string [0..1] - category: xsd:string [0..1] - category: xsd:string [0..1]

Figure 71 — Data model view: HMI signatures

IMPORTANT — The XSD complex type screenParameterDeclarations iS Of <xsd:choice> [1].*]
content-type, which is not explicitly shown in Figure 71.

11.7.3 Semantics

11.7.3.1 General

The basic semantics common to all kinds of signatures are specified in ISO 13209-2.

11.7.3.2 ScreenSignature

The screensignature is a specialisation of the OTX core type otx:SignatureRealisation that adds
additional interface description functionality along with the OTX core type otx:ProcedureSignature. A
ScreenSignature represents the interface between openscreen actions and the runtime specific screen
definitions.

134 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Typically, all screens supported by a runtime system should be described in a dedicated set of OTX
documents, "screen description documents”, which contain the signatures of all screen definitions
available for the OTX author. This allows the author to create test sequences that use a pre-established

UL

Screen signatures shall also be used to verify that the arguments given by an openscreen action are
complete.

Since ScreenSignature iS an otx:SignatureRealisation, screen signatures have to be globally defined
in OTX documents. They are located under the <signatures> element right below the root element
<otx>, as defined by ISO 13209-2.

Thd

members of screensignature have the following semantics:

<parameters> : ScreenParameterDeclarations [0..1]

This contains a list of parameters of different types. They describe which input- alll’ld output-

values a certain screen needs or provides. The parameters of a specifi¢_sereen signat
counterparts of the arguments of a screenopen action (see 11.5.3.3.1). Since all paramete
derived from the otx:Declaration type as defined in ISO 13209-2,(the parameters hav
specification and a data type declaration (not specified here).

ScreenParameters iS Of <xsd:choice> [1..*] content-type which allows an arbitrary-le
parameter sub-elements of the following types:

— <termParam> : ScreenTermParameter

This represents the counterpart to the <termarg> type of the openscreen action (see
It declares an input parameter for a screemwhose value shall be computed once oy
given in a corresponding term argumentof an openScreen action. The value shall b
a suitable widget on the screen.

— category : xsd:string [1]
This attribute indicategthe category of the parameter, see below for details.
— <inParam> : ScreenInParameter

This represents theé ¢ounterpart to the <inarg> type of the openscreen action (see
It declares an input parameter which shall be linked to an OTX variable (by ex
OpenScreen aétion at runtime). Value changes of the variable shall automatically
update of therespective widget on the screen.

— catégory : xsd:string [1]
This attribute indicates the category of the parameter, see below for details.

— XinoutParam> : ScreenInOutParameter

re are the
I types are
P a name, a

ngth list of

11.5.3.3.1).
t of a term
e shown by

11.5.3.3.1).
ecuting an
trigger an

This represents the counterpart to the <inoutarg> type of the oOpenscreen action (see
11.5.3.3.1). It declares a bidirectional input/output parameter which shall be linked to an OTX
variable (by executing an openscreen action at runtime). Value changes in the variable shall
automatically trigger an update of the respective widget on the screen and vice versa, if the
user changes the value on the screen, the new value shall be reflected in the linked variable.

— category : xsd:string [1]
This attribute indicates the category of the parameter, see below for details.
— <outParam> : ScreenOutParameter

This represents the counterpart to the <outarg> type of the openscreen action (see

11.5.3.3.1).

It declares an output parameter of the screen which shall be linked to an OTX variable (by

© IS0 2022 - All rights reserved

135

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

executing an openscreen action at runtime). If the user changes the value on the screen via the
corresponding input widget, the new value shall be reflected in the linked variable.

— category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

As specified above, each of the parameter types contains an additional category attribute. It is an
optional hint to the runtime system regarding the usage of the associated parameter. Some runtime
systems might not have a specific screen definition corresponding to a given screen signature, or do not
support the concept of screen definitions at all. Such systems can use the category to attach semantic

meaning t¢ certain arguments of an OpenScreen action and choosSe an approprlate representatlon

the values.

Runtime sy
following h

— TITLE:
MESSAQ

GRAPH:

BUTTON
CHECKE

INPUT:

12 OTXi

12.1 Gen

The OTX i
translating
runtime sy

Due to the
plants and
agnostic of

strings that will be*presented to the user shall be stored in a common format, referenced by keys

translated

WARNING: parameter should be displayed as a warning;

cHoIcH: parameter should be rendered as a choice{dpplies to otx:List and otx:Map only).

rstems are not required to implement this functionality. Any text can be used; however,
ave standardized meanings:

parameter should be rendered as a title;
E: parameter should be rendered as a message;

parameter should be displayed with a visual graphical representation;

: parameter should be rendered as a button;
ox: parameter should be rendered as a checkbox;

parameter should be rendered as input mask;

18n extension

bral

[8n (Internationalizatign)-extension provides access to data types, terms and actions
strings, quantity upnits and values to the language and unit system of the locale of
stem.

international feach of vehicle manufacturers and the existence of research labs, produc
repair shops+across the globe, it is necessary to provide an API that will make a test sequg
the particularities of the language and the system present on the target region. Thus

on the fly.

for

the

for
the

Fion
nce
all

and

12.2 Data types

12.2.1 Overview

The OTX i18n extension introduces a single data type named TranslationKey, as described in the

following.

12.2.2 Syntax

The syntax of the Translationkey datatype declaration of the OTX i18n extension is shown in Figure 72.

136

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

12.

12.
The

12.

AT
cor
inn
and|
The

Tra

IM
ele

12.

12.
All

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:DataType
«XSDcomplexType»
4& TranslationKey

«XSDcomplexType» <] «XSDelement»

otx:SimpleType + init: TransationKeyLiteral [0..1]

Figure 72 — Data model view: i18n data types

.3 Semantics

P.3.1 General

data types in the OTX i18n extension are derived from otx:SimpleType.

P.3.2 TranslationKey

ranslationKey iS a reference to a unique string message which ¢an be internationaliZ

hany programming languages, where all messages that shall be shown to the user are e
referenced by keys.

actual retrieval procedure is defined by the runtimé.system.
hslationKey iS an otx:SimpleType. [ts members*have the following semantics:

<init> : TranslationKeyLiteral [0..1]

is done by a hard-coded text ID in the OTX document.
— wvalue : xsd:string [1]
This attribute contains'the text ID value.

ORTANT — If the rranslationkey declaration is not explicitly initialized (omit
ent), the defaultvalue shall be the empty string.

3 Exceptions

8.1 Overview

blements referenced in this subclause are derived from the OTX core Exception type as

ISO

ed (e.g. by

‘esponding entries in a thesaurus database). The concept used i1 OTX is similar to the cgncept used

rternalized

This optional element stands for the invitialization of the identifier at declaration time. Infitialization

fed <init>

defined by

13209-2. They represent the full set of exceptions added by the OTX {18n extension

12.3.2 Syntax

The syntax of all OTX i18n exception type declarations is shown in Figure 73.

© IS0 2022 - All rights reserved

137

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

L

«XSDcomplexType»
otx:ComplexType

§

«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»

P P

—otx-Exception trrsupportedtocateException

it8mException

12.3.3 Se]

12.3.3.1 (

Since all O
declared c

12.3.3.2 i

The i18nE4
be used in
apply to th

IMPORTALI
exception

12.3.3.3 U

The unsupy
runtime sy

12.4 Vari

1241 O

Figure 73 — Data model view: i18n exceptions

mantics

feneral

X 118n exception types are implicit exceptions without initialization parts, they canno
nstant.

[18nException

tception is the super class for all exceptions in the,i18n extension. An i18nException S
case the more specific exception types described in the remainder of this subclause do
e problem at hand.

NT — All terms and action realisations‘in this extension may potentially throw

nsupportedLocaleException

bortedLocaleException shall\be thrown when a locale related operation fails because
stem does not support the target locale.

able access

rview

As specifigd in ISO3209-2, OTX extensions shall define a variable access type for each datatype t
define (exgeption types inclusively). All variable access types are derived from the OTX core varigble
extension interface. The following specifies all variable access types defined for the i18n extension.

L be

hall
not

this

the

hey

12.4.2 Syntax

Figure 74 shows the syntax of the i18n extension's variable access types.

138

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:Variable

«XSDattribute»
+ name: otx:OtxLink

«XSDelement» <] «XSDcomplexType»
+ path: otx:Path [0..1] TranslationKeyVariable

&

«XSDcomplexType»

12.

Thd
det

12,

12.

All
ind
The

for
OoT?

otx

Othler i18n terms extend the-abstract OTX core terms otx:ListTerm, otx:Strin

otx
refd

The

otx:ExceptionVariable

Figure 74 — Data model view: i18n variable access types

1.3 Semantics

general semantics for all variable access types shall apply. Please nefer to ISO 13209-2
hils.

5 Terms

5.1 Overview

of the i18n terms shown in Figure 75 extend the otx:Term extension interface (di
rectly), as defined by ISO 13209-2.

i18n extension introduces the abstract typé TranslationKeyTerm which serves as thd
a1l i18n terms yielding TranslationKeyvalues. TranslationKeyTerm itself is based on tl
[core term otx:StringTerm. Therefore,'d TranslationKeyTerm can be applied in any plac
: StringTerm is required.

. BooleanTerm, furthermore.quant:QuantityTerm is used for the localisation of quantit]
r to Clause 16).

i18n terms are assigned to the following categories:
Locale settings:terms in this category are related to locale settings of diagnostic appli
Translation‘related: this category is for terms which represent diverse translation fun

Quantityrelated: these are terms used for localizing quantities.

for further

rectly and

base type
he abstract
e where an

jTerm and

ies (please

ations;

Ctionality;

©IS

02022 - All rights reserved

139

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Locale settings

1 I
1 I
| «XSDcomplexType» «XSDcomplexType» 1 «XSDcomplexType» !
otx:CollectionTerm <t otx:ListTerm <}F— GetAllLocales :
! «XSDcomplexType» |
| GetCurrentLocale |
I
otx:Extensioninterface o _____ - -_-_-__C J
P
«XSDcomplexType» [<—— | «XSDcom'pIexType» P Translation related terms
g otx:StringTerm 1
otx:Term
| «XSDcomplexType»
: Translate
L «XSDcomplexType»
XSD lexT XSD loxT ! XSD lexT TranslateToLocale
L « complexType»] « complexType» 1 « complexType»
otx:SimpleTerm TranslationKeyTerm ﬂ ! TranslationKeyValue
! «XSDcomplexType»
A | CreateTranslationKey
} - ©XSBeomptextyper
\ . :
«XSDcomplexType» L | «XSDcomplexType» | TranslationKeyLiteral «XSDcomplexTypep,
otx:NumericTerm otx:BooleanTerm <= T CompareUntransiatedString
1
1

| Quantity related terms

«XSDcomplexType»
I LocalizeQuantity

«XSDcomplexType» :‘ «XSDcomplexType»
otx:FloatTerm quant:Quantity Term |

«XSDcomplexType» «XSDcomplexTy.}
! | LocalizeQuantityToUnitGroup UnitGroupDefinitign

Figure 75 — Data model view: i18n term categories

12.5.2 Lofale settings related terms

12.5.2.1 Description

The terms fin this category are designed for retrieving locale settings of diagnostic applications.

12.5.2.2 Syntax

Figure 76 ghows the syntax of all locale settihg Telated terms of the i18n extension.

otx:StringTerm otx:ListTerm
«XSDcomplexTypesp «XSDcomplexType»
GetCurrentLocale GetAllLocales

Figure/76 — Data model view: Locale setting related terms

12.5.2.3 SemantieS

12.5.2.3.1| GetCurrentLocale

The GetCurrentLocale term shall retrieve the current locale code in use by the runtime system. The
returned locale code shall be a combination of the ISO 639-1 two-letter language code followed by a
hyphen, and then the uppercase two letter country code as defined by ISO 3166-1. Optionally, a variant
code may be added in case of additional customizations (headed by another hyphen). The variant codes
are not defined by this document.

If no current locale is selected, the system shall return the default locale.

EXAMPLE Following the rules above, a returned locale is formed like, e.g. "de-cH-1901" (for the variant of
German orthography dating from the 1901 reforms, as seen in Switzerland).

GetCurrentLocale iS an otx:StringTerm. It has no members.

140 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

12.5.2.3.2 GetAllLocales

The term GetalllLocales should retrieve all available locales from the runtime system that are
supported and for which translations are available.

The fact that a runtime system returns a locale does not guarantee that all translations and units are
available. Rather, this method returns the locales that can be used, regardless of data availability. It is
however recommended that runtime systems consult their translation data store before returning the
list of locales, so the results should be close to the actual available data.

The returned value shall be a list of strings using the same locale format as specified for the
GetfurrentLocale term (see above).

Thip term allows querying some of the capabilities of the underlying runtime system. It is useful
infqrmation, for example, for the TranslateToLocale term, as it is known beforehand what dan be used
as yalid locale input.

GetpllLocales is an otx:ListTerm without any further members.
12.5.3 Translation related terms

12.5.3.1 Description

The terms in this category are designed for managing, translating and comparing TranglationKey
valyges.

12.5.3.2 Syntax

Figlire 77 shows the syntax of all translation related terms of the i18n extension.

TranslationKeyTerm| TranslationKeyTerm| TranslationKeyTerm|
«XSDcomplexType» «XSDcomplexTypep «XSDcomplexType»
[ranslationKeyValue TranslationKeyliteral CreateTranslationKey
«XSDattribute» «XSDattribute» «XSDelement» «XSDcomblexTvpes
+ | valueOf: otx:OtxLink + value:\xsd’string + textld: otx:StringTerm . P P
TranslatiorfArguments
«XSDelement»
+ | path: otx:Path [0..1] + arg: otxfrerm [1..”]
otX:StringTerm otx:StringTerm otxjBooleanTerm
«XSDcomplexFype» «XSDcomplexType» «XSDcomplexType»
Translate TranslateToLocale CompareUntranslated$tring
«qSDelementy, «XSDelement» «XSDelement»
+ |translationKey: TranslationKeyTerm + locale: otx:StringTerm + translationKey: TranslationKeyTerm
+ |arguments: TranslationArguments[0..1] [| + translationKey: TranslationKeyTerm + arguments: TranslationArguments[0..1]
+ arguments: TranslationArguments[0..1]| | + untranslatedString: otx:StrjngTerm

Figure 77 — Data model view: Translation related terms

12.5.3.3 Semantics

12.5.3.3.1 TranslationKeyTerm

The abstract type TranslationKeyTerm iS an otx:StingTerm. It serves as a base for all concrete terms
which return a TranslationKey. It has no special members.

IMPORTANT — If the OTX core conversion term otx:ToString is applied to a TranslationKey, the
internal text ID string value contained in the Translationkey shall be returned.

© IS0 2022 - All rights reserved 141

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

12.5.3.3.2 TranslationKeyValue

This term returns the TranslationKey Stored in a TranslationKey variable. For more information on
value-terms and the syntax and semantics of the valueof attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:
— Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

Throws:

— otx:04tOfBoundsException

It is thirown only if a <path> is set: the <path> points to a location which does not exist(like aflist
index ¢xceeding list length, or a map key which is not part of the map).

12.5.3.3.3| TranslationKeyLiteral

This term $hall be used to create a TranslationKey data object based on a hard-coded text ID. The fext
ID is a reference to an external thesaurus system. It is assumed that the runtifne system contains a data
storage th3t knows how to create a TranslationKey data based on the literal.

IMPORTANT — The creation of the object should always work, as'the data should not be loaded
from the rfuntime system.

Translati¢nKeyLiteral iS a TranslationKeyTerm. Its members have the following semantics:
— value |: xsd:string [1]

The text ID represents a simple string that is used by the runtime system as a reference tq its
interngl storage of localized string translations. " The exact usage and translation is not definef in
the this document.

12.5.3.3.4| CreateTranslationKey

The creatqTranslationKey term creates'a TranslationKey out of a given string. The string is usegl as
the text ID|that will be used to create.the TranslationKey.

This term pllows dynamically.creating translation keys as a result of, for example, accessing spe¢ific
parts of OI}X data sources.

CreateTranpslationKeyd$ & TranslationKeyTerm. [ts members have the following semantics:
— <textld> : otk:StringTerm [1]

The string term value provided that will be used to generate a translation key.

12.5.3.3.5 Translate

The Translate term accepts a TranslationKey which may be supplemented by additional translation
arguments for message parameter substitution (if required by the associated thesaurus entry). It shall
return a localized string in the current user language.

It is assumed that the runtime system contains a user or system selected locale which will be used to
automatically perform the translation.

Recommendation: If no translation is available in the current locale, the runtime system may use a
fall-back strategy that consists on consulting a family that share a common base language. Otherwise,
the default language may be used. This fallback strategy is out of scope of the specification.

142 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

In case that the translation is unknown by the runtime system, the translation key itself shall be
returned as the translation. This is to avoid error conditions in the system due to incorrect translations.

IMPORTANT — It is not in the scope of this document to specify or expect a certain kind of
thesaurus database structure. However, concerning compound thesaurus entries (messages
with parameters), thesaurus entries should be formed in a similar way like the string
patterns specified by the Java class MessageFormat (java.text.MessageFormat). This allows
identifying parameters in the pattern unambiguously, e.g. the parameters {0} and {1} in "The
resistance of injector {0} is {1}". This provided, Translate shall function like MessageFormat.
format (String pattern, Object[] arguments), Where the arguments substitute the message

parameters according to their position in the argumentsarray,
Trahslate iS an otx:StringTerm. [ts members have the following semantics:
— |<translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search.itsinternal database for
a translation. Once a translation is found and parameter substitution has-taken place, the resulting
message string shall be returned.

— |<arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments fory/the’ translation. The argurhents shall
be evaluated first before being inserted into the translated message. The order of arguments is
important; the first argument shall substitute message\parameter {0}, the second pargmeter {1},
and so on.

— <arg> : Term [1..%*]

This represents an argument which will be substituted in the resulting messdges at the
corresponding parameter's position. Non-string arguments shall be converted aufomatically
to string prior to parameter substitution.

EXAMPLE Consider a thesaurus entrydn English ID1: "The resistance of injector {0} |is {1}" or
sim]lar, in German ID1: "Der Widerstand des Injektors {0} ist {1}".Also consider a quantity @ which
repfesents 10 Ohm. If the current locales English, applying Translate (ID1, [3, Q]) will producq the English
output "The resistance of injeetor 2 is 10 Ohm." or likewise, if the currentlocale is Germai, the output
"Defr Widerstand des Injektors 2 ist 10 Ohm.".

IMPORTANT — If the format message is invalid, or if an argument in the arguments plement is
not|of the type expected by the format element(s) that uses it, an i18nException shall ble thrown.

12.5.3.3.6 TranslateToLocale

The TranslateToLocale term shall perform a similar function to the Translate term, buf] instead of
using the-current locale it shall use a target locale that is given as an argument to the call, fgrmed after
thefrules of ISO 639-1.

NOTE Using this term forces a translation to a specific language. This can be desirable for specific situations
such as feedback sent to a support desk.

TranslateToLocale iS an otx:StringTerm. Its members have the following semantics:
— <locale> : otx:StringTerm [1]

The translation process shall use this string as the target locale for the translation. The locale is
expected to be formed after the rules of ISO 639-1, as explained for the GetCurrentLocale term (see
12.5.2.3.1).

© IS0 2022 - All rights reserved 143

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<translationKey>

: TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database for
a translation. Once a translation is found and parameter substitution has taken place, the resulting
message string shall be returned.

<arguments> :

TranslationArguments [0..1]

This optional element represents a list of arguments for the translation. The arguments shall
be evaluated first before being inserted into the translated message. The order of arguments is
important; the first argument shall substitute message parameter {0}, the second parameter {1},

and so

Th
co
to

Throws:

Unsupg
Itis th

IMPORTAI
not of the

12.5.3.3.7

TheCompal
the translg
considered

EXAMPLE

responds in|
may now b
and use th
tools might
myOpenClo

CompareUnf

This e
for a 1
argum

<tranglationKey>

on.
<arg> : Term [1..%*]

is represents an argument which will be substituted in the resulting messages at
responding parameter's position. Non-string arguments shall be converted-automatic
String prior to parameter substitution.

ortedLocaleException
Fown if the runtime system does not support the given locale

NT — If the format message is invalid, or if an argument in the arguments elemer

CompareUntranslatedString

the
ally

tis

Lype expected by the format element(s) that uses.it;an i18nException shall be throyn.

eUntranslatedString term compares whethér an untranslated string equals at least o

by the runtime. The term shall return true if and only if a matching translation can be fo

The CompareUntranslatedString term is useful in cases where, for example, an
the form of a hard-coded string,.e.g”"OFFEN" (German for "OPEN"). CompareUntranslatedStx
e used by an OTX author to.find out if whether this is a translation for a given translation
ht information for further urposes. This is also important at authoring time since OTX eg
show the key translation in the current locale of the editor, thus making comparisons
teResponseGerman=={0PEN" possible/visible, and therefore, localizing the editor tool.

translatedString-S an otx:BooleanTerm. [ts members have the following semantics:
~TranslationKeyTerm [1]

ement represents a unique key that the system shall use to search its internal datah
hatching translation which matches the untranslated string. If message parameters e}
ent substitution shall be performed first, prior to comparison.

e of
tions of a given translation key. While searching for a match, each available locale sha'* be

nd.
ECU

ing
key
itor
like

ase
Kist,

<arguments> :

TranslationArguments [0..1]

This optional element represents a list of arguments for the translation (see Translate term). The
arguments shall be evaluated first before being inserted into the translated message. The order of
arguments is important; the first argument shall substitute message parameter {0}, the second

param

<arg> :

eter {1}, and so on.

Term [1..%*]

This represents an argument which will be substituted in the resulting messages at the
corresponding parameter's position. Non-string arguments shall be converted automatically

to

144

String prior to parameter substitution.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<untranslatedString> : otx:StringTerm [1]

This represents the string which shall be tested for a match.
12.5.4 Quantity related terms

12.5.4.1 Description

The terms in this category are designed for managing quantities with respect to locale settings.

12.5.4. 2 Syntax

Figlire 78 shows the syntax of all quantity related terms of the i18n extension.

quant:QuantityTerm quant:QuantityTerm

«XSDcom
UnitGroup

lexType»

«XSDcomplexType» Definition

LocalizeQuantity

«XSDcomplexType»
LocalizeQuantityToUnitGroup

«XSDany»
+ XLinkat

«XSDelement» ributes

+ quantity: quant:QuantityTerni
+ equivalentUnitGroup: UnitGroupDefinition

SDelement»
quantity: quant:QuantityTerm

Figure 78 — Data model view: Quantity related terms

12.5.4.3 Semantics

12.5.4.3.1 Referring to unit group definitions

The LocalizeQuantityToUnitGroup term,usSes the unitGroup type in order to refer to

defjnitions located in an external resource. The OTX i18n extension reuses the unit defi
modlel specified by the ODX standard.(se€ uniT-spEc data type in ISO 22901-1:2008, 7.3.6.7).
refgrences from OTX to uNIT-sPEC entries, the rules below shall apply.

Lnit group
hition data
Concerning

all link to
Link. This
klink:href

IMFPORTANT — Any elements-of the OTX i18n terms that work with unit groups sh
required ODX unit group definitions by using simple XLinks only, as specified by W3C X
means that the x1ink: type attribute shall always be set to "simple". Furthermore, the ;

attribute should follow the pattern " {ur1}#{SHORT-NAME}", Where {URI} represents the
respurce and {sHoRT NaME} identifies the unit group definition by its ODX SHORT-NAME
The pattern corresponds to a shorthand notation XPointer, as specified by Refer

UNIT-SPEC
property.
ence [10].

Hoyever, in case the shorthand notation is not sufficient to address unit group definjitions, the
full XPointer notation may be used (e.g. when one ODX-document contains more than one unIT-
SPEf confainer).

EXAMPLE
ele

in 16.1, the
/>,

For linking to the unit definition for "EU_Metric" given in the exemplary UNIT-SPE(

This is related to the OTX quantities extension, please refer to Clause 16 for further details.

12.5.4.3.2 LocalizeQuantity
The LocalizeQuantity term is used to create a localized version of a given Quantity.

A guantity contains a value and display unit information. However, the display unit might be unsuitable
for the currentlocale (e.g. when a distance-type quantity with a display unit of miles should be displayed
to a user who is used to dealing with metric units). Because OTX test sequences should remain agnostic
of localisation details, it is necessary to express conversions in such a way that both the display unit
and the value of a Quantity can be localized in a consistent way.

© IS0 2022 - All rights reserved 145

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

IMPORTANT — The conversion shall consider factors such as the unit groups, known units and
physical dimensions known to the system. From the point of view of the OTX sequence, quantities
are just data containers and the whole conversion process happens in the background. For native
implementations, it is acceptable that the returned value is exactly the same as the given value.

Localization in the LocalizeQuantity term shall always be performed using the current locale.
LocalizeQuantity iS a quant:QuantityTerm. [ts members have the following semantics:
— <quantity> : quant:QuantityTerm [1]

This represents

Throws:
— quant:InvalidConversionException

It is thfown if the Quantity cannot be converted for any reason.

12.5.4.3.3| LocalizeQuantityToUnitGroup

The LocalizeQuantityToUnitGroup term shall create a version of a Quantity localized to a specific finit
group.

There are ffwo different types of unit groups: country and equivalentyunit groups. This term shall cr¢ate

a new Quanftity containing the display unit given by the new group.that is equivalent to the display linit

of the origiLnal Quantity.
I

NOTE is assumed that the runtime system contains a list\of known and valid equivalent unit groupg. In
case that thp runtime system decides to implement a naive solution, it is valid to return the same quantity aq the
one that hag been received.
LocalizeQuantityToUnitGroup iS @ quant:QuantityTerm. Its members have the following semantics:
— <quanyity> : quant:QuantityTerm [1]

This r¢presents the quantity that shall be localized using the given country unit group name.
— <equivialentUnitGroup> : UnitGroupDefinition [1]

This r¢presents the uniT-GROUP definition that shall be used as the target for unit localization.

The el¢gment allows all.attributes from the namespace "http: //www.w3.0rg/1999/x1ink", as defined
by W3[XLink. Forthetisage of the attributes, the rules given in 12.5.4.3.1 shall apply.

Throws:

— quant:UnkhownUnitException

It iS th akmiftha tavrant it grasin 1o e avazn by tha vt n cuctnns
VW ttRettarget T S roupiStHsh WHB Yt e FHHttHREe- 5y 5t

— quant:InvalidConversionException

It is thrown if the conversion is physically not possible (i.e. conversion from a length to a voltage
measurement).

Associated checker rules:

— Quantities_Chk001 - correct unit linking (see A.6.1).

146 © IS0 2022 - All rights reserved

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13 OTX Logging extension

13.1 General

The OTX Logging extension provides functionality which allows for explicitly writing log-messages to a
logging-resource.

For reasons of interoperability and exchangeability, the usage of relative paths is recommended (see
[SO 13209-2, OTX home directory).

Foll ‘Alihg the npprnm‘h of the de-facto-standard lngd}' (‘Arhirh isaJava™-based]ngging fram '-‘WOI'k), the

exténsion uses so-called severity-levels which are associated to log-messages, and loglefels which
can|be set in the logging framework. Depending on the currently set log-level and the severify-level of a
logimessage fired by an OTX sequence, the message gets logged or is discarded. For.that reason, a log-
levgl represents a certain threshold which shall be exceeded by the severity-leyel of a log-message in
ordpr to be written into the logging-resource.

The severity-levels for log-messages are shown in Table 6 (in decreasing onder of severity).

Table 6 — Severity-levels

Severity |Description

FATAL Severe errors that cause premature termination

ERHOR Other runtime errors or unexpected conditions

WARN Other runtime situations that are undesirable or\iinexpected, but not necessarily "wronlg"
INHO Interesting runtime events

DERUG Detailed information on the flow through:the sequence

TRACE Even more detailed information

Avdlilable log-levels are shown in Table 7 (invincreasing order of logging verbosity).

Table 7 — Log-levels

Thresold |Description

OFH Nothing will be logged.

FATAL Messages with severity FATAL will be logged.

ERHOR Messages with severity ERROR or above will be logged.
WARN Messdges with severity WARN or above will be logged.
INBO Messages with severity INFO or above will be logged.
DEHUG Messages with severity DEBUG or above will be logged.
TRACE Messages with severity TRACE or above will be logged.
ALT All messages will be logged (this is the default setting).

OTX authors may control which kind of log-messages make it into the logfile and which not by simply
setting the log-level to the desired threshold value. For instance, if the current log-level is set to ERROR,
a log-message with a severity of FATAL passes the log-level threshold, whereas a log-message with a
rather uninteresting severity of TrRace will not pass the threshold.

NOTE The OTX Logging extension makes no assumptions, nor does it define any rules concerning the
resource into which log-messages are written. It is entirely up to the specific OTX application whether the
messages are written to a text-file, a log-queue or a database, etc. Also the extension does not define any actions
for the handling of the log-resource, e.g. clearing the log. OTX applications may provide a specific functionality
for such use cases.

© IS0 2022 - All rights reserved 147

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13.2 Data types

13.2.1 Overview

The OTX Logging extension defines two data types. These are the enumerations LogLevel and
SeverityLevel.

13.2.2 Syntax

The syntax of the datatype declarations of the OTX Logging extension is shown in Figure 79.

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

A

«XSDcomplexType»
otx:SimpleType

<

«XSDcomplexType»

LogLevel

«XSDelement»

+

init: LogLevellLiteral [0..1]

«XSDcomplexType»
SeverityLevel

13.2.3 Se]

13.2.3.1 (

The enumg

13.2.3.2 1

LogLevel i
The allowsg

IMPORTALI
relational
ALL < TRA(

IMPORTALI
the name
otx:ToIntgd
0). The bel

LogLevel i

— <init}

mantics

feneral

oglLevel

. LogLevellLiteral [0..1]

«XSDelement»

+

init: SeverityLevelLiteral [0..1]

Figure 79 — Data model view: Logging data types

ration types in the OTX Logging extension are.based on otx:SimpleType.

an enumeration type describing logthresholds used by the setLogLevel action (see 13.4.8.1
d enumeration values are specifiedin Table 7.

NT — LogLevel values may occur as operands of comparisons (see ISO 1320
operations). For this case; the following order relation shall apply:
'E < DEBUG < INFO < WARN < ERROR < FATAL < OFF.

NT — When applyig otx:ToString On a LogLevel value, the resulting string shal
of the enumeration value, e.g. otx:ToString (TRACE)="TRACE". Furthermore, apply
tger shall retiirn the index of the value in the LogLevels enumeration (smallest inde
haviour is undefined for other conversion terms (see ISO 13209-2).

an otx:SimpleType. Its members have the following semantics:

be
ing
X is

This optional element stands for the hard-coded initialization value of the identifier at declaration

time.

— value :

LogLevels={ALL| TRACE | DEBUG | INFO | WARN | ERROR | FATAL |OFF} [1]

This attribute shall contain one of the values defined in the LogLevels enumeration.

IMPORTANT — If the LogLevel declaration is not explicitly initialized (omitted <init> element),
the default value shall be arr.

148

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13.2.3.3 SeverityLevel

SeverityLevel is an enumeration type describing the severity of a log message written by a WriteLog
action (see 13.4.3.2). The allowed enumeration values are specified in Table 6.

IMPORTANT — severitylLevel values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:
TRACE < DEBUG < INFO < WARN < ERROR < FATAL.

IMPORTANT — When applying otx:ToString On a SeverityLevel value, the resulting string shall
be the name of the enumeration value, e.g. otx: Tostring (TRACE) ="TRACE". Furthermore, applying

otx
ind

Sev

IM
ele

13.

13.

As s
defi
extq

13.

Figlire 80 shows the syntax of the Logging extension's variable access types.

ex is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).
brityLevel iS an otx:SimpleType. Its members have the following semantics:
<init> : SeverityLevelLiteral [0..1]

This optional element stands for the hard-coded initialization value ofithé identifier at
time.

— value : SeverityLevels={TRACE |DEBUG|INFO|WARN |ERROR[FATAL} [1]

t ToInteger Shall return the index of the value 1n the SeverityLevels enumeration (smallest

leclaration

This attribute shall contain one of the values defined in‘the severityLevels enumerfation.

ORTANT — If the severityLevel declaration is not explicitly initialized (omitfed <init>

ent), the default value shall be TRacE.
3 Variable access

8.1 Overview

pecified in ISO 13209-2, OTX extensions shall define a variable access type for each dat
ne (exception types inclusively),-All*variable access types are derived from the OTX cor
bnsion interface. The following specifies all variable access types defined for the Logging

8.2 Syntax

otx:Extensioninterface

«XSDcomplexType»
otx:Variable

«XSDcomplexType»
LogLevelVariable

«XSDattribute» <}
+ name: otx:OtxLink

atype they
e Variable
extension.

«XSDelement» «XSDcomplexType»
+ path: otx-Path [0 1] SeveritylevelVariable

Figure 80 — Data model view: Logging variable access types

13.3.3 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for details.

© IS0 2022 - All rights reserved

149

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13.4 Actions

13.4.1 Overview

There are two complementary action types defined for the OTX Logging extension: SetLogLevel
for setting the log-level and writeLog for writing a log-message to a file. Both types extend the
ActionRealisation extension interface as defined by ISO 13209-2.

13.4.2 Syntax

Figure 81 gliowsthesymtaxof attactions i the O TX Foggimg extension.

otx:ActionRealisation otx:ActionRealisation
«XSDcomplexType» «XSDcomplexType»
SetLoglLevel WriteLog
«XSDelement» «XSDelement»
+ level: LoglLevelTerm + level: SeverityLevelTerm
+ target: otx:StringTerm [0..1]
+ message: otx:StringTerm

Figure 81 — Data model view: Logging actions

13.4.3 Semantics

13.4.3.1 SetLogLevel

As outlinedl in 13.1, the setLogLevel action shall cause*the OTX runtime system to set the log-lgvel
threshold ffo a given value.

The membegrs of setLogLevel have the followingsemantics:
— <level> : LogLevelTerm [1]

This element represents the log-level which shall be set in the OTX runtime's logging framework
(see 13.2.3.2 for LogLevel values).

13.4.3.2 WriteLog

nto
htly
may
n of

— <level> : SeverityLevelTerm [1]

This element represents the severity-level of the log-message (see 13.2.3.3 for severityLevel
values).

— <target> : otx:StringTerm [0..1]

The optional element shall be used for locating the resource to which the message shall be written.
The target should be defined by a URI. Other resource-location mechanisms may also be used.

150 ©1S0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <message> : otx:StringTerm [1]

This string value represents the log-message. The OTX runtime shall compare the severity-level of
the message to the current log-level after the rules given in Table 7. If the conditions for writing the
message hold, the log-message shall be appended to the logging-resource.

Throws:
— otx:InvalidReferenceException

It is thrown if the log-resource given by the <target> element is not available or not accessible.

13.4.4 Example

The usage of setLogLevel and writeLog is shown below. First, the log-level is set to "ERROR|, then two
logimessages with severity-level "INFo" resp. "FATAL" are triggered. The first message's seyerity does
not|pass the log-level threshold, so only the latter message will be logged.

Sample of Logging

K?xml version="1.0" encoding="UTF-8"?>

Kotx name="LoggingExample" package="org.iso.otx.examples! 4did="otxl"
version="1.0" timestamp="2010-03-18T14:40:10"
xmlns="http://iso.org/0TX/1.0.0"
xmlns:log="http://iso.org/0TX/1.0.0/Logging"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instéance"

xsi:schemaLocation="http://iso.org/0TX/1.0.0Cere/otx.xsd
http://iso.o0rg/0TX/1.0.0/LoggingStandardInterface/otxIFD Logging.xsd">

<procedures>
<procedure name="main" visibility="PUBLIC" id="pl">
<specification>Demonstration of\OTX Logging extension capabilities</
spefification>
<realisation>
<flow>
<action id="al">
<specification>Se# log-level to ERROR<L/specification>
<realisation %si':type="log:SetLogLevel">
<log:level \xsi:type="log:LoglLevelliteral" value="ERROR"/>
</realisation>
</action>

<action’id="a2">
<specification>Trigger a INFO log-message</specification>
Lrealisation xsi:type="log:WriteLog">
<log:level xsi:type="log:SeverityLevelliteral" value="INFO"/>
<log:target xsi:type="StringlLiteral" wvalue="file:///c:/myLog.tx{"/>
<log:message xsi:type="StringLiteral" value="This will not be ldgged."/>
</realisation>
</action>

Fctiomr—td="=3"
<specification>Trigger a FATAL log-message</specification>
<realisation xsi:type="log:WriteLog">
<log:level xsi:type="log:SeveritylLevelliteral" value="FATAL"/>
<log:target xsi:type="StringlLiteral" value="file:///c:/myLog.txt"/>
<log:message xsi:type="StringlLiteral" wvalue="Houston, we have a
problem."/>
</realisation>
</action>
</flow>
</realisation>
</procedure>
</procedures>
</otx>

© IS0 2022 - All rights reserved 151

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13.5 Terms

13.5.1 Overview

The terms of the OTX Logging extension are related to the handling of the enumerations rogrevel and
SeverityLevel (see 13.2).

13.5.2 Syntax

Figure 82 shows the syntax of all terms in the OTX Logging extension.

LoglLevelTerm LoglLevelTerm xsd:string
«XSDcomplexType» «XSDcomplexType» «enumeration»
LogLevelValue LogLevelLiteral LogLevels

«XSDattribute» «XSDattribute» ALL
+ valueOf: otx:OtxLink + value: LoglLevels TRACE
DEBUG
«XSDeI(lemen't» INFO
+ path: otx:Path [0..1] WARN
ERROR
FATALE
OFF
SeverityLevel Term SeverityLevel Term xsd:string
«XSDcomplexType» «XSDcomplexType» «enumeration»
SeverityLevelValue SeverityLevellLiteral SeverityLevels
«XSDattribute» «XSDattribute» TRACE
+ valueOf: otx:OtxLink + value: Severitybevels :?\IEFBOUG
«XSDeI(lemen't» WARN
+ path: otx:Path [0..1] ERROR
FATAL

Figure 82 — Datamodel view: Logging terms

13.5.3 Semantics

13.5.3.1 LogLevelTerm

The abstract type LogLevelTérm is an otx:SimpleTerm. It serves as a base for all concrete terms which
return a LdgLevel valu€(s€e 13.2.3.2). It has no special members.

13.5.3.2 LogLevelValue

This term feturns the LogLevel stored in a LogLevel variable. For more information on value-termsjnd
the syntaxla i i

Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).
Throws:

— otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

152 ©1S0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

13.5.3.3 LogLevelLiteral

This term shall return a LogLevel value (see 13.2.3.2) from a hard-coded literal.
LogLevelLiteral iS a LogLevelTerm. [ts members have the following semantics:
— wvalue : LogLevels={ALL|TRACE |DEBUG | INFO |WARN | ERROR | FATAL|OFF} [1]

This attribute shall contain one of the values defined in the LogLevels enumeration.

13.5.3.4 SeverityLevelTerm

The abstract type severityLevelTerm iS an otx:SimpleTerm. It serves as a base for all gondrete terms
which return a severitylLevel value (see 13.2.3.3). It has no special members.

13.5.3.5 SeverityLevelValue

Thip term returns the severityLevel stored in a severityLevel variable/’for more infofmation on
valyie-terms and the syntax and semantics of the valueof attribute and <path> element, plegse refer to
1SO[13209-2.

Asspciated checker rules:

— |Core_Chk053 - no dangling OtxLink associations (see ISO{13209-2).
Thrjows:

— |otx:0utofBoundsException

It is thrown only if a <path> is set: the <path$'points to a location which does not exist| (like a list
index exceeding list length, or a map key whiich is not part of the map).

13.5.3.6 SeverityLevelLiteral

Thip term shall return a severityLevel value (see 13.2.3.3) from a hard-coded literal.
SevgrityLevelLiteral iS a SevérityLevelTerm. [ts members have the following semantics:
— |value : SeverityLevels={TRACE |DEBUG|INFO|WARN|ERROR|FATAL} [1]

This attribute shall’éontain one of the values defined in the severityLevels enumeratioh.

14|0TX Math‘extension

14.1 General

NOTE An additional functionality is specified in the Util extension.

IMPORTANT — The XML schema of this extensions contains an undocumented term abs. This
term should not be used; the otx:2absolutevalue term should be used instead.

© IS0 2022 - All rights reserved 153

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

14.2 Terms

14.2.1 Overview

The OTX Math extension provides terms which OTX authors may use for trigonometric, logarithmic and
exponential calculations. Since all terms specified here return rFloat type values they are derived from
the otx:FloatTerm type as defined by ISO 13209-2.

14.2.2 Syntax

Figure 83 Jhrowstie Symtax of att terms of the MatiT eXtension.

otx:FloatTerm

«XSDcomplexType»
Abs

«XSDelement»
+ numeral: otx:NumericTerm

[~~~ 77 " |Exponential terms ~ 1T

otx:FloatTerm

(XXSDcomplexType»
Power

«XSDel

ment»
Imeral: otx:NumericTerm
bonent: otx:NumericTerm

otx:FloatTerm

(XSDcomplexType»
Sin

«XSDel

+ raq:

ment»
otx:NumericTerm

14.2.3 Se

manties

14.2.3.1 A

\bs

Logarithmic terms

otx:FloatTerm

«XSDcomplexType»
Log

otx:FloatTerm

«XSDcomplexType»
Ln

«XSDelement»
+ numeral: otx:NumericTerm
+ base: otx:NumericTerm

«XSDelement»
+ numeral: otx:NumericTerm

Trigonometric terms

otx:FloatTerm

«XSDcomplexType»
Cos

otx:FloatTerm

«XSDcomplexType»
Tan

«XSDelement»
+ rad: otx:NumericTerm

«XSDelement»
+ rad: otx:NumericTerm

Figure 83 — Data model view: Math terms

b

Abs is a FloatTerm which returns the value of the operand without regard to its sign. Its members have
the following semantics:

— <numeral> NumericTerm [1]
The numeric term whose absolute value shall be returned.
IMPORTANT — This term waslisted in the XML schema, but was not specified in SO 13209-3:2012.

DEPRECATED Use otx:AbsoluteValue instead.

154 ©1S0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

14.2.3.2 Power
The power term shall be used for calculating the power of a given number using a given exponent.
Power iS an otx:FloatTerm. [ts members have the following semantics:
— <numeral> : otx:NumericTerm [1]
This represents the numeric value on which the power shall be calculated.

— <exponent> : otx:NumericTerm [1]

This represents the numeric value which shall serve as the exponent in the calculation

IMBRORTANT — Special cases concerning the <numeral> and <exponent> arguments-shall be taken
int¢g account (e.g. special Float values like 0, -0, INF, -INF and NaNas well as)speciallargument
combinations). The reference implementation for these special cases is the/Java method java.
langj.Math.pow (double a, double b).There shall be no deviation from thisimplementagion.

14.2.3.3 Log

The Log term shall be used for calculating the logarithm of a given number to a given base.
Log|is an otx:FloatTerm. [ts members have the following semantics:

— |<numeral> : otx:NumericTerm [1]

This represents the numeric value on which the logarithm shall be calculated. If the value is
Integer, it shall be automatically promoted to Eloat.

— |<base> : otx:NumericTerm [1]

This represents the numeric value which shall serve as the logarithmic base of the calculation. If
the value is Integer, it shall be automatically promoted to Float.

IMFPORTANT — Special cases concerning the <numeral>and <base> arguments shall be faken into
accpunt (e.g. special Fioat values like 0, -0, 1NF, -INF and Nan as well as special|argument
combinations). The reference.implementation for these special cases is the Java method java.
lanfy.Math.log (double a) injeombination with the Java /-operator (since java.Math only provides
the| natural logarithm,the OTX Log (base,numeral) equals Java log(numeral)/log(bask)). There
shalll be no deviation®rom this implementation.

14.2.3.4 Ln
The n terméshall be used for calculating the natural logarithm of a given number.

Ln if an(otx:FloatTerm. Its members have the following semantics:

— <numerai>——otxNumericFerm—ii}
This represents the numeric value on which the logarithm shall be calculated.

IMPORTANT — Special cases concerning the <numeral> argument shall be taken into account
(e.g. special Fioat valueslike 0, -0, INF, -INF and NaN). The reference implementation for these
special cases is the Java method java.lang.Math.log(double a). There shall be no deviation from
this implementation.

14.2.3.5 Sin

The sin term shall be used for calculating the sine of a given angle (in radians).

© IS0 2022 - All rights reserved 155

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Sin iS an otx:FloatTerm. [ts members have the following semantics:
— <rad> : otx:NumericTerm [1]
This represents the angle from which the sine shall be calculated (radian interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g.
special Float values like 0, -0, 1INF, -INF and NaN). The reference implementation for these
special cases is the Java method java.lang.Math.sin(double a). There shall be no deviation from
this implementation.

— <rad>|: otx:NumericTerm [1]
This r¢presents the angle from which the cosine shall be calculated (radian‘interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be ‘taken into account (e.g.
special Fipat values like 0, -0, 1INF, -INF and NaN). The reference implementation for these
special cages is the Java method java.lang.Math.cos (double a).Thére shall be no deviation fffom
this implementation.

14.2.3.7 Tan
The Tan tefm shall be used for calculating the tangent of a given angle (in radians).

Tan iS an o¢x:FloatTerm. Its members have the followihg semantics:

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g.
special Fipat values like 0, -0, (z§F, -INF and NaN). The reference implementation for these
special cases is the Java method'java.lang.Math.tan(double a). There shall be no deviation fifom
this implementation.

15 OTX Measure extension

15.1 General

In manufacturing a significant amount of the overall test steps are electric and electronic measurement
and control actions that are not related to a standardised diagnostic ECU-communication as it is
described in the OTX DiagCom extension. The OTX Measure extension shall serve as a simple interface
to describe these electronic and electric measurement and control actions.

NOTE The Measure extension is not multi-instance capable. This means a device signature can be mapped to
only one physical device.

156 ©1S0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

15.2 Data types

15.2.1 Overview

The OTX Measure extension introduces a single data type named Measurement, as described in the
following.

15.2.2 Syntax

The syntax of the Measurement datatype declaration of the OTX Measure extension is shown in Figure 84.

15.2.3 Semantics

15.2.3.1 General

Sing

15.2.3.2 Measurement

Med

Thd

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

-

«XSDcomplexType» <] «XSDcomplexType»,

otx:ComplexType Measurement

Figure 84 — Data model view: Measure data types

internal properties of a measurement can be acquired by the terms GetMeasuremer

e the OTX Measure data types have no initialization parts, they cannot be declared constant.

surement serves as container forla specific measurement. It includes a timestamp of the
megsurement, the status of the measurement and the measured quantity.

tQuantity,

GetMeasurementTimestamp, GetMeasurementStatus,IsValidMeasurementas well as GetMeasurdmentvalue.

Sin

15.3 Exceptions

15.

All
ISO

e the Measurement data type has no initialization parts, a Measurement cannot be declare

8.1 Overview

blements referenced in this subclause are derived from the OTX core Exception type as
13209-2. They represent the full set of exceptions added by the OTX Measure extension.

d constant.

defined by

15.3.2 Syntax

The syntax of all OTX Measure exception type declarations is shown in Figure 85.

©IS

02022 - All rights reserved

157

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

«XSDcomplexType»

otx:Extensioninterface «XSDcomplexType»

ConfigurationException

otx:DataType

«XSDcomplexType»
DeviceException

2

«XSDcomplexType»
otx:ComplexType

«XSDcomplexType»
CommunicationException

&

«XSDcomplexType»

«XSDcomplexType»

«XSDcomplexType» ServicePreconditionException

VWA LALTPUUN MUC«I&UIGEADCPIIUII

15.3.3 Se]

15.3.3.1 (

Since all O]

be declaregl constant.

15.3.3.2 MeasureException

The Measuq
shall be us
not apply t

IMPORTALI
exception

15.3.3.3 (

A Configuy
channel foj

15.3.3.4 (

A Communid
iS no answ

15.3.3.5 [

«XSDcomplexType»
InvalidMeasurementException

Figure 85 — Data model view: Measure exceptions

mantics

feneral

X Measure exception types are implicit exceptions withoutyinitialization parts, they cay

eException is the super class for all exceptionsin the Measure extension. A MeasureExcept
bd in case the more specific exception typesidescribed in the remainder of this subclaus
b the problem at hand.

NT — All terms and action realisations in this extension may potentially throw

onfigurationException

ationException is throwh if there is a configuration problem, e.g. if a channel is not a |
an intended operation.

ommunicatienException

ationException is thrown in case the communication to a device did not succeed, e.g. t}
br from the device or an error occurred in the communication infrastructure.

JeviceException

not

ion

b do

this

boal

jere

A DpeviceException is thrown if there is a measurement device problem. The physical device is reachable
but has problems and sends a hint, e.g. that a contact is broken.

15.3.3.6 ServicePreconditionException

The servicePreconditionException is thrown if a precondition is not met which is vital for the
execution of the demanded device service. This may happen, for example, if the minimal speed is not yet
reached for a break test.

158

© IS0 2022 - All rights rese

rved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

15.3.3.7 InvalidMeasurementException

The InvalidMeasurementException shall be thrown when an invalid measurement is received
from a measurement device. By contrast to ServicePreconditionException (see above), a thrown
InvalidMeasurementException means that the measurement device is fine, but the measured value
is nevertheless regarded as invalid by the device. Since there are cases where invalid measurements
pose to exceptional situation or the production of additional return values shall not be hindered, the
throw of this exception can be controlled by the optional suppressinvalidMeasurementException flag
of ExecuteDeviceService action (see 15.6.3.2).

15 4 XL LG |
ul vVdl IdUIT dTLTOS

15.4.1 Overview

As §pecified in ISO 13209-2, OTX extensions shall define a variable access type for each datlatype they
define (exception types inclusively). All variable access types are derived from.the OTX corfe variable
exténsion interface. The following specifies all variable access types defined fof the i18n extension.

15.4.2 Syntax

re 86 shows the syntax of the Measure extension's variable acéess types.

otx:Extensioninterface

«XSDcomplexType»
otx:Variable

«XSDattribute»
+ name: otx:OtxLink

«XSDelement» < «XSDcomplexType»
+ path: otx:Path [0..1] MeasurementVariable

&

«XSDcomplexType»
otx:ExceptionVariable

Figure 86.— Data model view: Measure variable access types

15.4.3 Semantics

The general sendantics for all variable access types shall apply. Please refer to ISO 13209-2 [for further
details.

15.5 Signatures

15.5.1 Overview

As specified by ISO 13209-2, OTX extensions may define new specialized types of signatures by
extending otx:SignatureRealisation. The OTX Measure extension uses this extensibility by adding the
DeviceSignature type which allows in-document, high-level interface specifications of measurement
devices and their capabilities.

15.5.2 Syntax

Figure 87 shows the syntax of the Measure extension's signature types.

© IS0 2022 - All rights reserved 159

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:SignatureRealisation

«XSDcomplexType»
DeviceSignature 1

services «XSDcomplexType»

DeviceServices

«XSDcomplexType»
DeviceServiceParameterDeclarations

parameters

*

«XSDelement»
+ inParam: DeviceServicelnParameterDeclaration
+ outParam: DeviceServiceOutParameterDeclaration

service Y 1. 0.1

otx:NamedAndSpecified

«XSDcomplexType»

DeviceServiceSignature

«XSDcomplexType»

0.1 Throws

realisation throws

«XSDcomplexType»
DeviceServiceRealisation

0.1

«XSDelement»
+ exception: MeasureException [1..*]

IMPORTALI

<xsd:choid

15.5.3 Sel

15.5.3.1 (
The basic g

15.5.3.2 [

Each meas

test sequerpce shall be described by a device signature.

The device
configurat
signature's

A Devices
probe. It c
ExecuteDey

blueprint fi
DeviceSigi

<servi

Figure 87 — Data model view: Measure signatures

NT — The XSD complex type DeviceServiceParameterDeclarations iS

te> [1..*] content-type, which is not explicitly shown in Figure 87.
mantics

feneral

emantics common to all kinds of signatures are specifiedinASO 13209-2.

JeviceSignature

rement device which is attached to a diagnostic application, and which is used by an

ids (the signature's name attribute) are Symbolic and shall be mapped by some runt
on to the concrete measurement and control device drivers. For the mapping, the use
meta data element is recommended by this document.

gnature describes the measurément and control interface of a measurement devic¢
bmprises a collection of (sub®)signatures for each device service that can be called by
riceService action (see-15)6.3.2). The parameters described for such a service serve
br the arguments of an ExecuteDeviceService action.

lature iS an otx:SignatureRealisation. [ts members have the following semantics:

ces> DeviceServices [0..1]

This c

available for astheasurement device.

<sptvice>

ntainer€lement holds a collection of device service signatures describing the set of serv|

DeviceServiceSignature [1..*]

of

DTX

ime
of a

or

[dan
S a

ices

This describes a measurement device's service that can be called by an ExecuteDeviceService.

<specification>

name otx:0txName [0..1] [derived from otx:NamedAndSpecified)

This represents the service's name. ExecuteDeviceService actions shall identify the to-be-

executed device service by using this.

xsd:string [0..1] (derived from otx:NamedAndSpecified)

This optional string should be used by OTX authors to specify the purpose and properties/

pa

160

rameters of a device service for human readers.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <metadata> : otx:MetaData [0..1] (derived from otx:NamedAndSpecified)

In case that a diagnostic application needs to associate any further (tool-specific) information

to a device service, this element shall be used.
— <realisation> : DeviceServiceRealisation [0..1]

This is the formal counterpart of the <specification>. It contains a list of
descriptions adhering to a device service.

— <parameters> : DeviceServiceParameterDeclarations [0..1]

parameter

This simple container element represents the list of arguments for a devicé)s

allows an arbitrary-length list of in- and output parameters of a device service.

NOTE While it might be pretty seldom that more than one out parameter is
there are cases in which the device serves as a kind of gateway or 5@ complex de|
ECOS measurement device which is able to return a variety of retunn values like, f
numberOfUpperLimitViolations, MeasurementsAfterStopTrigger, etc.

— <inParam> : DeviceServicelInParameterDeclaration

This describes an input parameter for a sérvice. This is needed for me

The content-type of DeviceServiceParameterDeclarations iS <xsd:choice> [1]

ervice call.
.*]1 which

described,
vice like an
pr instance,

asurement

DeviceServiceInParameterDeclaration iS based on type otx:D
Therefore, an <inParam> element has“a name, a specification and a
declaration (please refer to ISO 13209-2 for details about declarations).

— <outParam> : DeviceServiceOutParameterDeclaration

Describes an output parameter for the requested service.

Therefore, an <outBaram> element has a name, a specification and a
declaration (please refer to ISO 13209-2 for details about declarations).

— <throws> : Throws [0..1]

This shall deglare an arbitrary-length list of measure exception types which
service may potentially throw.

— ,<exception> : MeasureException [1..%*]

This describes an exception type which may possibly be thrown by th
device service.

services which require additional arguments for parametrizing their exea:]non.

claration.

data type

DeviceServiceQdtParameterDeclaration is based on type otx:Dfclaration.

data type

this device

e enclosing

15.6Actions

15.6.1 Overview

The OTX Measure extension introduces one action named ExecuteDeviceService, as descr
following subclauses.

15.6.2 Syntax

Figure 88 shows the syntax of the Measure extension's signature types.

© IS0 2022 - All rights reserved

ibed in the

161

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:ActionRealisation

«XSDcomplexType»
ExecuteDeviceService

arguments

+

+
+
+

«XSDattribute»

device: otx:OtxLink

service: otx:OtxName
suppressinvalidMeasurementException: xsd:boolean
executeAsync: xsd:boolean [0..1]

0.1

«XSDcomplexType»
DeviceServiceArguments

inArgument | 1

1 | outArgument

«XSDcomplexType»
DeviceServicelnArgument

«XSDcomplexType»
DeviceServiceOutArgument

«XSDattribute»
+ parameter: otx:OtxName

«XSDattribute»
+ parameter: otx:OtxName

«XSDelement»

«XSDelement»

+ term: otx:Term +

target: otx:Variable

Figure 88 — Data model view: Measure actions

IMPORTANT — The XSD complex type DeviceServiceArguments is Of <xsd:choice> [0..*] cont
type, whidh is not explicitly shown in Figure 88.

15.6.3 Semantics

15.6.3.1 General

The basic §emantics common to all kinds of OTX actions are specified in ISO 13209-2.

15.6.3.2 HExecuteDeviceService

The ExecuteDeviceservice action shall execute a se¥vice provided by a measurement device.
action conmnects to physical devices from where it retrieves measurements. The OTX author may chq
which of the retrieved measurements shall be assigned to OTX variables. The devices to which
ExecuteDeyiceService action connects shall be described by device signatures, as specified in]
(Devicesignature type).

nt-

The
ose
the
5.5

IMPORTANT — There are devices which need to be configured prior to execution of a spegific

service. Cpnfiguration should be{ done by previously executing the respective configurat
services (triggered also by ExecuteDeviceService actions). This allows, for example, setf

ion
ing

parameters of the test equipment or controlling the object under test (e.g. setting the speed on
a roller tgst bench). Execute’service (open screen, excute device service) action usage ingide
parallel lanes should bethreadsafe.
The membegrs of the ExecuteDeviceService type have the following semantics:
— executfeAsync xsd:boolean={false|true} [0..1]
This option tells the communication backend to make this device service execution non-blockling.
This means that if executeAsync 1S SEL L0 true, the U1 X execution (1ow will immediately move on

162

to the next action, without waiting for the result of the ExecuteDeviceservice action. An OTX
sequence can make use of the beviceEventSource term (refer to 15.7.3.3.1) to be notified when a
new result from an asynchronously executed device service has arrived. When this happens, the
OTX variable(s) which are linked to a service's output parameter(s) will potentially contain a new

value.
suppressInvalidMeasurementException xsd:boolean={false|true} [0..1]

This flag shall affect only those device services which declare InvalidMeasurementException in
their <throws> block. For other device services, it shall have no effect.

When the flag is set to false (the default), any InvalidMeasurementException produced by the
executed device service will be passed on to the OTX sequence by the ExecuteDeviceService action.

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

This supports the most common use case when it is senseless to continue a test sequence if no valid
measurement could be produced. This ensures that later uses of the term isvalidMeasurement will
always return true, therefore the OTX author does not have to check each measurement if it is
valid, and he or she can treat exceptional cases of invalid measurements by using ordinary OTX
exception handling mechanisms.

Otherwise, if the flag is set to true, the action shall hand over invalid-state Measurement values to
the OTX sequence and suppress any throw of an InvalidMeasurementException. An example for
the use of invalid measurements is: an embedded system that measures a measurement profile at
a fixed rate or in a loop might produce a few invalid measurements as well (because the measuring
situation for these measurements was bad) but the measurement process should not be interrupted
by an exception. In this case, it may be important to know nevertheless which measureipents were
invalid and which were not.

An invalid measurement does return a quantity, but the value can be arbitrary*The unif (if any) is
defined by the measuring device and its configuration at measuring time.

— |device : otx:0txLink [1]

This attribute identifies the measurement device to execute the sekrvice on. The link shpll point to
the corresponding pevicesignature for that device.

Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations (se¢ [SO 13209-2);
— Measure_Chk001 - correct target for ExecuteDeviceService and DeviceEventSourcel(see A.4.1).
— |service : otx:OtxName [1]

This identifies the service which shall be egecuted. The service name shall be defined|within the
corresponding service declaration within the pevicesignature.

Associated checker rules:
— Measure_Chk002 - executed-device service is declarated in device signature (see A.f.2).
— |<arguments> : DeviceServiceArguments [0..1]

The content-type of this;simple container elementis <xsd: choice> [1..*] which allowsan arbitrary-
length list of in- and-ottput arguments for the to-be-executed device service's parametefs.

— <inArgumént> : DeviceServiceInArgument

This represents an input argument for an input parameter of the to-be-executed devjice service.
Ansinput argument may be omitted if and only if there is an explicit initial value fefined for
the corresponding parameter. This initial value applies in place of the missing arggiment. The
parameter for the argument is identified by name; the value that shall be passef into that
parameteris described hy aterm:

— parameter : otx:0OtxName [1]
This attribute represents the target parameter to which the argument shall be assigned.
— <term> : otx:Term [1]

This represents the value to be used as input argument for the service parameter. The
value data type shall match to the parameter data type as declared in the corresponding
device’s signature.

© IS0 2022 - All rights reserved 163

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <outArgument> : DeviceServiceOutArgument

This represents an ouput argument for an output parameter of the to-be-executed device
service. Output arguments may be omitted freely (e.g. in the case when there is no interest in
one of the returned data). The parameter is identified by name, the argument is a variable:

— parameter : otx:OtxName [1]

This attribute represents the output parameter whose value shall be assigned to the target
OTX variable.

. . fo o
—<target>——otxVartabte—t1}

This represents the OTX variable to hold the value of the output parameter of the ldeyice
service. The variable's data type shall match to the parameter data type as declakbed in|the
corresponding device’s signature.

Associpted checker rules:

— Megasure_Chk003 - correct ExecuteDeviceService arguments (see A.4.3);

— Mg¢asure_Chk004 - ExecuteDeviceService input argument omission'(see A.4.4);

— Mg¢asure_Chk005 - no Path in ExecuteDeviceService ouput arglvments (see A.4.5).
Throws:

The excepfions that this action may throw depend on the <throws> declarations defined for [the
executed device service in the corresponding device signatiife (this is similar to otx:Proceduredall
which throgws exceptions according to the called procedure)-

15.7 Terms

15.7.1 Oveerview

The OTX Nleasure extension introduces two categories of terms, the first of which describes tefms
that allow|[measurement value handling' while the other supports the handling of events fired from
measurement devices. Figure 89 provides an overview of the OTX Measure term categories.

164 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Fmmmmmmm -
| Measurement related terms
- I
otx:Extensioninterface «XSDcomplexType» < | «XSDcomplexType»
«XSDcomplexType» <} MeasurementTerm : MeasurementValue
otx:Term 1
«XSDcomplexType» ﬂ 1 «XSDcomplexType»
A A K‘? I_E otx:FloatTerm : GetMeasurementFloatValue
I
«XSDcomplexType» «XSDcomplexType» < «XSDcomplexType»
otx:NumericTerm quant:QuantityTerm : GetMeasurementQuantity
I
L «XSDcomplexType» <'_| «XSDcomplexType»
otx:IntegerTerm etMeasurementTimestamp
tx:IntegerTe : GetM Ti
]
v 1| «XSDcomplexTypg»
«XSDcomplexType» j : GetMeasurementSthtus
otx:SimpleTerm |
«XSDcomplexType» <} 1 «XSDcemplexType»
otx:BooleanTerm : IsValidMeasurement
D REpER R -
| Event related terms
I
! «XSDcomplexTypg»
: IsDeviceEvent
]
«XSDcomplexType» <_ ! «XSDcomplexTypg»
otx:StringTerm <)—: GetDeviceServiceNameKromEvent
I
«XSDcomplexType» ! «XSDcomplexTypg»
event:EventSourceTerm | DeviceEventSoulce

Figure 89 — Data model view:' Measurement term categories

15.7.2 Measurement related terms

15.7.2.1 Description

The primary purpose of the meaSurement related terms is to get information out of Measurement objects

which have been retrieved from*a measurement device by executing an ExecuteDeviceServilce action.

15.7.2.2 Syntax

Figlire 90 shows the Syntax of the measurement related terms of the Measure extension.

GetMeasurementQuantity

MeasurementTern otx:IntegerTerm| otx:StringTerm
&XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
MeasurementValue GetMeasurementTimestamp GetMeasurementStafus

&X§Dattribute» «XSDelement» «XSDelement»
+—vatueOf—otx-Otxbink +—Teasurerment—veasurementTerm +—Teasurerment—vieasurerhentTerm
«XSDelement»
+ path: otx:Path [0..1]
quant: QuantityTerm otx:FloatTerm otx:BooleanTerm|
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»

GetMeasurementFloatValue

IsValidMeasurement

«XSDelement»
+ measurement: MeasurementTerm

«XSDelement»
+ measurement: MeasurementTerm

«XSDelement»
+ measurement: MeasurementTerm

Figure 90 — Data model view: Measurement related terms

© IS0 2022 - All rights reserved

165

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

15.7.2.3 Semantics

15.7.2.3.1

MeasurementTerm

The abstract type MeasurementTerm iS an otx:Term. It serves as a base for all concrete terms which
return a Measurement. It has no special members.

15.7.2.3.2

MeasurementValue

This term returns the Measurement stored in a Measurement variable. For more information on value-

terms and
Associated|
— Core_(
Throws:

otx:0y

It is thirown only if a <path> is set: the <path> points to a location which'does not exist (like al

index ¢

otx:In

Itis th

15.7.2.3.3

Get the tin
UTC (see t
exists, the

GetMeasur¢mentTimestamp iS an otx: IntegerTerm. [ts members have the following semantics:

<measy
This rg
Throws:

measuxy

Itis th

15.7.2.3.4

Get the st

thesymtaxamd semantics of the varweor attribute amd<patsetement; Tefer to 1SO-13209

checker rules:

hk053 - no dangling OtxLink associations (see ISO 13209-2).

tOfBoundsException

xceeding list length, or a map key which is not part of the map):
validReferenceException

Fown if the variable value is not valid (no value was assigned to the variable before).

GetMeasurementTimestamp

nestamp of a measurement, expressed in-milliseconds elapsed since 1970-01-01 00:0
ime : GetTimestamp as specified in the OTX-DateTime extension in Clause 6). If no timestd
measurement is not valid and an exceptien shall be thrown.

rement> : MeasurementTerm, [1]

presents the measurement'whose timestamp shall be acquired.

e:InvalidMeasurementException

Fown if thetpieasurement contains no timestamp (invalid measurement).

GetMeasurementStatus

htas of a measurement. The status of the measurement does reflect the situation o

)-2.

list

:00
|\ mp

its

generation. The returned status shall be a string. This document does not specify a set of allowed values
for the returned status strings; however, a listing of commonly used status strings is recommended

below.

The following are recommendations for common status values.

Status

"ok": this state is used for ordinarily measured values (the normal case).

Status "generated": this state is commonly used for measurements whose value was generated

duringaninvalid state of the system under test. This state applies only to measurementdevices which
return a (fake) value despite the invalid machine state (for other devices, the ExecuteDeviceService
action would have thrown a servicePreconditionException). This situation may occur, for example,
when the rpm of an engine shall be measured but the engine is not running and does not provide the
rpm signal; therefore, the measurement device assumes at this point that the rpm is 0, thus it fakes

166

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

a 0 measurement. Other than that this state may also be used for measurements whose value was
not measured but generated, e.g. when a measurement device is running in a simulation mode.

— Status "interpolated": commonly used for measurements whose value was not directly measured
but calculated.

— Status "invalid": commonly used for measurements whose value could neither be measured
correctly nor interpolated or faked, etc.

— Status "normalized": commonly used for measurements whose value has been normalized, e.g. if a
filter in the measurement device or driver has cut off outliers in a frequency measurement.

— |Status "outdated": commonly used for measurements whose value is outdated. This is|the case if
the value is present but not current enough for the used service.

GetMeasurementStatus iS an otx:StringTerm. Its members have the following seman®ics:
— |<measurement> : MeasurementTerm [1]

This represents the measurement whose status shall be acquired.

15.7.2.3.5 GetMeasurementQuantity

Get|the measured quantity value from a measurement (see Clause 16 about quantities).
GetMeasurementQuantity iS a quant:QuantityTerm. [ts members have the following semanticp:
— |<measurement> : MeasurementTerm [1]

This is the measurement whose quantity valug shall be acquired.
Throws:

— |measure:InvalidMeasurementException

It is thrown if the measurement isinvalid.

15.7.2.3.6 GetMeasurementFloatValue

Get|the raw float value~ef.a measurement as it has been received from the measurempnt device,
distegarding any physicalunit information.

GetMeasurementV&11& IS an otx:FloatTerm. [ts members have the following semantics:
— |<measurement> : Measurement [1]
Thissisithe measurement whose raw float value shall be acquired.

Thrjows:

— measure:InvalidMeasurementException

It is thrown if the measurement is invalid.

15.7.2.3.7 IsValidMeasurement

IsvalidMeasurement evaluates the status of a measurement. As the status constants are not fixed by
this document (see listing of recommended states given for GetMeasurementStatus term in 15.7.2.3.4)
this action can be used to determine whether the measurement can be used or not.

A measurement shall be considered valid if it contains at least a quantity and a timestamp. Furthermore,
the status of the measurement should correspond to the above: if the status is "invalid", "outdated" or

© IS0 2022 - All rights reserved 167

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

has a value with equivalent semantics, this action should return faise. If the status is "generated" or

equivalent,

it is application-specific whether the measurement is to be considered valid or not.

IsValidMeasurement iS an otx:BooleanTerm. [ts members have the following semantics:

This is

<measurement>

: MeasurementTerm [1]

the measurement whose status shall be evaluated.

15.7.3 Eventrelated terms

15.7.3.1

escription

The terms ntroduced in the following subclauses support the event handling mechanisms as described

for the OTK EventHandling extension in Clause 8. The terms can be used for creating évent sou

listening

event (IsbpviceEvent) and for identifying the particular device and service which-fired an ey

(GetDevic

15.7.3.2 §

Figure 91 5

r events fired by measurement device (DeviceEventSource), for queryihg the typ

ServiceFromEvent).

yntax

hows the syntax of the event related terms of the Measure extension.

"ces
b of
rent

EventSourceTerm otx:BooleanTerm otx:StringTerm

«XSDcomplexType»
DeviceEventSource

«XSDcomplexType»
IsDeviceEvent

«XSDcomplexType»
GetDeviceServiceNameFromEvent

«XSDatt}
+ devi

«XSDelement»
+ event: event:EventValue

«XSDelement»
+ event: event:EventValue

ibute»
e: otx:OtxLink

15.7.3.3 §

15.7.3.3.1

The Devicd
source. Th
context of
shall trigg
DeviceEve]
the Execut
to true, th{
touseitas

Figure 91 — Data modelview: Event related terms

emantics

DeviceEventSource

EventSource term adcepts a link to a bevicesignature of a device that is to be made an ey
s term enables annOTX sequence to use a measurement device as a source for events in
the OTX EventHandling extension (please refer to Clause 8). A measurement device (dri
br an event €very time a new output parameter from one of its services has arrived.

b tSource tepm is the complementary functionality to the asynchronous execution featur
bDeviceService action: when ExecuteDeviceService is used with executeAsync attribute
e onlycway to be notified of incoming measurement values for the executed device servic
an event source through the beviceEventSource term.

rent
the
7er)
The
e of
set
eis

DeviceEventSource iS an event:EventSourceTerm. [ts members have the following semantics:

device

otx:0txLink [1]

This represents the to-be-monitored device. If an output parameter of an earlier triggered device
servicebecomesavailable, the eventshall be fired, causingan embeddingevent:WaitForEventAction
to exit.

Associated

168

checker rules:

Measure_Chk001 - correct target for ExecuteDeviceService and DeviceEventSource (see A.4.1).

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

15.7.3.3.2 IsDeviceEvent

The IsDeviceEvent term accepts an EventValue term yielding an Event object that has been raised
by the OTX runtime, as a result of declaring a measurement device as an event source by using the
term DeviceEventSource. The term shall return true if and only if the Event originates from a
DeviceEventSource term.

IsDeviceEvent iS an otx:BooleanTerm. [ts members have the following semantics:

— <event> : event:EventValue [1]

. 1 4= 1 111 4= PR |
l lllS lE[)l ESElltS tlle Evernrtwitose Ly Pt Slidll DT LTSLTU.

15.7.3.3.3 GetDeviceServiceNameFromEvent

The GetDeviceServiceNameFromEvent term accepts an Eventvalue term yielding.an Event jobject that
has|been raised by the OTX runtime, as a result of declaring a measurement device as an eyent source
by yising the term peviceEventSource. It shall return a string which contains’the device gdnd service
nanpe of the device and service that caused the event. By using this term,.an*OTX sequence dan wait for
an Bvent raised by a device receiving a new result and then evaluate whieh'service of that deyice caused
thelevent.

Theg returned string value shall be composed out of two pafts: "devicename.servicenape", where
“defricename” is the fully qualified name of the bevicesignature, and “servicename” is the[otxName of
thepeviceServiceSignature.

GetpeviceServiceNameFromEvent iS an otx:StringTerm, [ts members have the following semgntics:
— |<event> : event:EventValue [1]

This represents the event that was raised after executing a device service.
Thrjows:

— |otx:TypeMismatchException

[t is thrown if the specified.event has not been raised by a beviceEventSource.

16|0TX quantities extension

16.1 General

The guantity data types specified in this extension offer an additional layer of abstraction of top of the
numeric datatypes provided by the OTX core as specified by ISO 13209-2. The Quantity type contains
addFtional information about a value’s physical unit, allowing it to describe actual measurenjent values.

Thip allows, for example, the OTX DiagCom extension (see Clause 6) to use quantities for getfing data in

andlout ani:\gnncfir services

A guantity, as mentioned, contains information about a physical unit besides the actual value. To do
this, OTX quantities reuses the unit definition data model specified by the ODX standard (see uNIT-SPEC
data type in ISO 22901-1:2008, 7.3.6.7). The intention is to use ODX for defining a set of units that can
then be referenced by elements of the OTX quantities extension. Please note that the ODX uNIT-SPEC can
be used separately from the rest of the ODX standard. As an example, a minimal uniT-spEC definition is
provided in the EXAMPLE in this subclause.

The way an ODX uniT-spEC is defined allows an OTX runtime system to automatically convert Quantity
values into different units, as long as these are defined as equivalent units in ODX. Thus, an OTX runtime
is able to automatically perform basic arithmetic operations on Quantity operands, so for example, an
addition operation on a Quantity containing a ‘km/h’ value with another guantity containing a value in
‘m/h’. To achieve this, an OTX runtime is expected to perform any arithmetic involving quantities using

© IS0 2022 - All rights reserved 169

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

an internal presentation of the quantities’ values that is normalized to the SI base unit(s) underlying the
unit of the guantity. For example, to add a guantity with a unit of “miles per hour” to another guantity
with a unit of “kilometres per hour”, the OTX runtime should convert both quantities’ values to the
underyling base SI dimensions (in this case “meters per second”) before adding both quantities' values.
In subsequent subclauses, the user-assigned unit of a Quantity is referred to as a display unit, while
the corresponding SI-dimensioned unit is called base unit. Accordingly, the quantities’ value in display
units is called physical or display value, while the value in base SI dimensions is referred to as internal

or normalized value.

EXAMPLE An XML instance of the ODX UNIT-SPEC.

<?xml yersion="1.0" encoding="UTEF-8" standalone="no"?>

<ODX MQDEL-VERSION="2.2.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<DIAG-LAYER-CONTAINER ID="UNIT-SPEC-DLC">
<SHORT-NAME>DLC_ UnitSpec</SHORT-NAME>
<LPNG-NAME>DLCUnitSpec</LONG-NAME>
<EJU-SHARED-DATAS>

{ECU-SHARED-DATA ID="UNIT-SPEC-ESD">

<SHORT-NAME>ESD UnitSpec</SHORT-NAME>

<DIAG-DATA-DICTIONARY-SPEC>

<UNIT-SPEC>

<UNIT-GROUPS>
<UNIT-GROUP OID="EU Metric">
<SHORT-NAME>EU Metric</SHORT-NAME>
<CATEGORY>COUNTRY</CATEGORY>
<UNIT-REFS>
<UNIT-REF ID-REF="km"/>
<UNIT-REF ID-REF="m"/>
<UNIT-REF ID-REF="mm"/>
</UNIT-REFS>
</UNIT-GROUP>

<UNIT-GROUP OID="UK Imperial">
<SHORT-NAME>UK Imperial</SHORT-NAME>
<CATEGORY>COUNTRY</CATEGORY>
<UNIT-REFS>
<UNIT-REF ID-REF="mi"/>
<UNIT-REF ID<REF="ft"/>
<UNIT-REFID~REF="in"/>
</UNIT-REEFS>
</UNIT-GRQUP>

<UNIT-GRQUP OID="TravelDistance">
<SHORT-NAME>TravelDistance</SHORT-NAME>
<GATEGORY>EQUIV-UNITS</CATEGORY>
<UNIT-REFS>
<UNIT-REF ID-REF="mi"/>
<UNIT-REF ID-REF="km"/>
</UNIT-REFS>
</UNIT-GROUP>

ONLT I ORUULO

<UNITS>

<UNIT ID="km">
<SHORT-NAME>km</SHORT-NAME>
<LONG-NAME>kilometers</LONG-NAME>
<DISPLAY-NAME>km</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>.001</FACTOR-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

</UNIT>

<UNIT ID="s">
<SHORT-NAME>s</SHORT-NAME>
<LONG-NAME>seconds</LONG-NAME>
<DISPLAY-NAME>s</DISPLAY-NAME>
<PHYSICAL-DIMENSION-REF ID-REF="PD-s"/>

170

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

</UNIT>

<UNIT ID="km h">
<SHORT—NAME>km7h</SHORT—NAME>
<LONG-NAME>kilometers per hour</LONG-NAME>
<DISPLAY-NAME>km/h</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>3.6</FACTOR-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF ID—REFb"PD—mis"/>

</UNIT>

<UNIT ID="min">
<SHORT-NAME>min</SHORT-NAME>
<LONG-NAME>minutes</LONG-NAME>
<DISPLAY-NAME>min</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>60</FACTOR-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF ID-REF="PD-s"/>

</UNIT>

<UNIT ID="m">
<SHORT-NAME>m</SHORT-NAME>
<LONG-NAME>meters</LONG-NAME>
<DISPLAY-NAME>m</DISPLAY-NAME>
<PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

</UNIT>

<UNIT ID="mm">
<SHORT-NAME>mm</SHORT-NAME>
<LONG-NAME>millimeters</LONG-NAME>
<DISPLAY-NAME>mm</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>0.001</FACTOR-SI~TO-UNIT>
<PHYSICAL-DIMENSION-REF ID-REF="PD<m"/>

</UNIT>

<UNIT ID="mi">
<SHORT-NAME>mi</SHORT-NAME>
<LONG-NAME>m1i 1 e</LONG-NAME>
<DISPLAY-NAME>mi</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>6 ~A1'3712E-4</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>0) 0</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

</UNIT>

<UNIT ID="ft">
<SHORT-NAME>f t</SHORT-NAME>
<LONG-NAME>foot</LONG-NAME>
<DISPLAY-NAME>ft</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>3.28084</FACTOR-SI-TO-UNIT>
<OFESET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>
<PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

</UNIT>

<UNIT ID="in">
<SHORT-NAME>in</SHORT-NAME>
<LONG-NAME>inch</LONG-NAME>
<DISPLAY-NAME>in</DISPLAY-NAME>
<FACTOR-SI-TO-UNIT>39.37008</FACTOR-SI-TO-UNIT>
<OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>
JPHYSICAL-DIMENSION-REF ID-REF="PD-m"/7>

</UNIT>

</UNITS>

<PHYSICAL-DIMENSIONS>
<PHYSICAL-DIMENSION ID="PD-m">
<SHORT-NAME>km</SHORT-NAME>
<LENGTH-EXP>1</LENGTH-EXP>
</PHYSICAL-DIMENSION>

<PHYSICAL-DIMENSION ID="PD-s">
<SHORT-NAME>s</SHORT-NAME>
<TIME-EXP>1</TIME-EXP>

</PHYSICAL-DIMENSION>

<PHYSICAL-DIMENSION ID="PD-m s">

© IS0 2022 - All rights reserved 171

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

<SHORT-NAME>m s</SHORT-NAME>

<LENGTH-EXP>1</LENGTH-EXP>

<TIME-EXP>-1</TIME-EXP>
</PHYSICAL-DIMENSION>

<PHYSICAL-DIMENSION ID="PD-m ss">
<SHORT-NAME>km h</SHORT-NAME>
<LENGTH-EXP>1</LENGTH-EXP>
<TIME-EXP>-2</TIME-EXP>
</PHYSICAL-DIMENSION>
</PHYSICAL-DIMENSIONS>

</UNIT-SPEC>
</DIAG-DATA-DICTIONARY-SPEC>
/ECU-SHARED-DATA>
</BCU-SHARED-DATAS>
</DIAG-LAYER-CONTAINER>
</0DX>

16.2 Datq types

16.2.1 Overview

The OTX qliantities extension introduces the data types Quantity and unit,as'described in the following
subclauses|

16.2.2 Syntax

The syntay of the datatype declarations of the OTX quantities extension is shown in Figure 92.

otx:Extensioninterface
«XSDcomplexType» «XSDcompfexType»
otx:DataType Quantity
«XSDcomplexType»
A «X8Delement» Unit
+/.init: QuantityLiteral [0..1]
«XSDco.mpIexType» < «XSDelement»
otx:SimpleType + _init: UnitLiteral [0..1]

Figure 92 —Data model view: Quantities data types

16.2.3 Semantics

16.2.3.1 General

The follow|ng subclauses describe the runtime semantics of the OTX quantities data types.

16.2.3.2 Quantity

A gQuantity represents a numeral value which has a display unit associated with it. For instance, the
value "5" is described more specifically by a guantity that also contains information about the unit of
the value, e.g. "5 km/h". Furthermore, a Quantity has an optional display precision property which has
an effect on the otx:Tostring conversion of a Quantity (16.5.3.3.1).

A guantity can be initialized at declaration time.
The members of guantity have the following semantics:
— <init> : QuantitylLiteral [0..1]

This optional element represents the hard-coded value from which the declared guantity shall be
created. The literal includes a float-value, a display unit name and a display precision; when the
Quantity is created, the float value shall be interpreted according to the display unit:

172 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <numeral> : otx:FloatLiteral [1]

This represents the hard-coded float-value from which the guantity shall be created.

— <displayUnit> : UnitLiteral [1]
This represents the hard-coded display unit of the QuantityLiteral.

— <displayPrecision> : otx:IntegerLiteral [0..1]

This optionally represents the hard-coded display precision of the Quantity declaration

(165331)

See[16.5.2.3.4 for further details on term QuantityLiteral.

IMBPORTANT — If a guantity declaration is not explicitly initialized (omitted <init> ele
default value shall be a guantity with a base value of 0.0 and a dimensionless unit.

16.2.3.3 Unit

ap

A ujdit represents a physical unit which is defined in a un1T-sPEC (see @6:1). A unit can be as
disi

lay unit of a Quantity to another unit object.

A ugit can be initialized at declaration time.

Thg members of unit have the following semantics:

— |<init> : UnitLiteral [0..1]

This optional element describes the initialization value from which the unit shall be cre
— <value> : UnitDefinition [1]

This element represents the hand-coded link to the appropriate uniT definition in 4
which shall be associated o jthe declared unit. For linking, the element allows all

of the attributes, the rules given in 16.5.2.3.1 shall apply.
See|16.5.2.3.8 for further.details on term UnitLiteral.

IMBPORTANT — If a‘Unit declaration is not explicitly initialized (omitted <init> ele
defhult value shallbe a dimensionless unit.

16.3 Exceptions

16.8.14A0verview

ment), the

sociated to

ysical value when creating a Quantity, but it can also be used stand-alone, e.g. when conjparing the

Qted:

UNIT-SPEC
attributes

from the namespace "http://www.w3.0rg/1999/x1ink", as defined by W3C XLink. For the usage

ment), the

All elements referenced In this subclause are derived from the UTX core Exception type as

defined by

ISO 13209-2. They represent the full set of exceptions added by the OTX quantities extension.

16.3.2 Syntax

The syntax of all 0TX quantities exception type declarations is shown in Figure 93.

© IS0 2022 - All rights reserved

173

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:DataType

{

«XSDcomplexType»
otx:ComplexType

«XSDcomplexType»

7

Unknow nUnitException

«XSDcomplexType»

«XSDcomplexType» «XSDcomplexType»

otx:Exception

) QuantityException -~ InvalidConv ersionException

16.3.3 Se]

16.3.3.1 (
Since all O

mantics

feneral

be declaregl constant.

16.3.3.2 (

The Quant
QuantityEJ
of this sub

IMPORTALI
exception

16.3.3.3 U

An Unknow

Figure 93 — Data model view: Quantities exceptions

'X quantities exception types are implicit exceptions without initialization parts, they car

JuantityException

| tyException type is the base type for all exceptions in the OTX quantities extensio
tception shall be used in case the more specific'exception types described in the remair
rlause do not apply to the problem at hand.

NT — All terms and action realisations in this extension may potentially throw

JnknownUnitException

UnitException shall be thrown if a referenced unit is not known by the runtime syst
This excepfion can for instance o¢cur' when using the unitLiteral term and passing a unit refere

that does rfot exist in the system’s, UNIT-SPEC.

16.3.3.4 IpvalidConversionException

An InvalidiConversionException shall be thrown if the physical dimensions of Quantity operand|

arithmeticloperations$ are incompatible, e.g. if a speed is added to a voltage.

16.4 Varipble.access

not

. A
der

this

nce

16.4.1 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core variable
extension interface. The following subclauses specify all variable access types defined for the OTX
quantities extension.

16.4.2 Syntax

Figure 94 shows the syntax of the quantities extension's variable access types.

174

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

16.

The

det

16.

16.

All
ISO
des

As s

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexType»
otx:Variable

<} «XSDcomplexType»
«XSDattribute» QuantityVariable
+ name: otx:OtxLink
«XSDelement» «XSDcomplexType»
+ path: otx:Path [0..1] UnitVariable

I

TRSDTOMPIEXT ype»
otx:ExceptionVariable

Figure 94 — Data model view: Quantities variable access types

1.3 Semantics

general semantics for all variable access types shall apply. Pleaserefer to ISO 13209-2
ils.

5 Terms

5.1 Overview
pf the OTX quantities terms shown in Figure 95€xtend the Term extension interface as

Cription subclauses below.
hown in Figure 95, there are three OTX'\Quantity term categories.

The first category contains terms.yi€lding guantity values; these are all based on the ab
QuantityTerm.

The second category contains terms which allow accessing various properties of a Quant;
the display value, baseunit and display unit.

The third category-~centains basic terms for unit handling.

for further

defined by

13209-2. Information about the specific super class of a term is provided in the individual term

stract term

ty, such as

© IS0 2022 - All rights reserved

175

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

otx:Extensioninterface

«XSDcomplexTyp...
otx:Term

1

«XSDcomplexTyp...
otx:SimpleTerm

T_T

Quantity terms

«XSDcomplexType»
QuantityValue

«XSDcomplexTyp...
QuantityTerm

«XSDcomplexType»
QuantityLiteral

«XSDcomplexType»
CreateQuantity

Getter Terms

«XSDcomplexTyp...
otx:NumericTerm

«XSDcomplexTyp... ﬂ

otx:FloatTerm

«XSDcomplexType»
GetDisplayValue

«XSDcomplexType»
GetDisplayUnit

«XSDcomplexType»
GetBaseUnit

UnitTerm

Unit terms

«XSDcomplexType»
UnitValue

I

I

I

I

I

I

I

I

I
«XSDcomplexTyp... [E——

< I—I_

I

I

I

I

I

I

|

1

«XSDcomplexType»
UnitLiteral

Figure 95 — Data model view: Quantities term categories

16.5.2 Quantity and unit related terms

16.5.2.1 Description

The follow|ng subclauses specify the'terms for creating and accessing Quantity and unit values.

16.5.2.2 Syntax

Figure 96 gdhows the syntaxof all Quantity related terms of the quantities extension.

QpantityTerm

QuantityTerm

QuantityTerm otx:Floatferm

+ path: otx:Path [0..1]

+ displayPrecision: otx:IntegerLiteral [0..1]

«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType
QuantityValue QuantityLiteral CreateQuantity GetDisplayValue
«XSDattribute» «XSDelement» «XSDelement» «XSDelement»
+ valueOf: ¢tX.OtxLink + numeral: otx:FloatLiteral + numeral: otx:NumericTerm + quantity: QuantityTlerm
- - H laalloit- Lloitl il - = Lol loit- Lot T o
«XSDelement» Spray g Spray i

+ displayPrecision: otx:NumericTerm [0..1

UnitTerm

UnitTerm

«XSDcomplexType»
UnitValue

«XSDcomplexType»

UnitTerm

«XSDattribute» «XSDelement»

«XSDelement»
+ path: otx:Path [0..1]

+ valueOf: otx:OtxLink + value: UnitDefinition

«XSDcomplexTyp...
UnitDefinition

«XSDany»
+ XLinkattributes

«XSDcomplexType»
GetDisplayUnit

«XSDelement»
+ quantity: QuantityTerm

UnitTerm

«XSDcomplexType»
GetBaseUnit

«XSDelement»
+ quantity: QuantityTerm

Figure 96 — Data model view: Quantity related terms

176

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

16.5.2.3 Semantics

16.5.2.3.1 Referring to unit definitions

Several terms in the OTX quantities extension use the unit type in order to refer to unit or unit group
definitions located in an external resource. The extension reuses the unit definition data model specified
by the ODX standard (see uniT-spEC data type ISO 22901-1:2008, 7.3.6.7). Concerning references from
OTX to un1iT-SPEC entries, the rules below shall apply.

IMPORTANT — Any elements of the OTX quantities terms that work with units shall link to
the i i initi i L L ifi Link. This
means that the x1ink: type attribute shall always be set to "simple". Furthermore, thié ¥1ink:href
attribute value should follow the pattern of "{ur1}#{sHORT-NaME}", where {URI} leresents

the| uniT-spEc resource and {sHorT-NaME} identifies the unit definition by its ODX $HORT-NAME
erty. The pattern corresponds to a shorthand notation XPointer, as specified by |Reference
[10]. However, in case the shorthand notation is not sufficient to address unit'definitions, the full
XPginter notation may be used (e.g. when one ODX-document containsnore than one uNIT-SPEC
container).

EXAMPLE For linking to the unit definition for "mm" given in the exemplary uNIT-sPEC in 16.1,|the element
hashe form of <unit xlink:type="simple" xlink:href="unit-spedé:.xml#mm" />

16.5.2.3.2 QuantityTerm

The abstract type QuantityTerm iS an otx:FloatTerm. It Serves as a base for all concrete tdrms which
retirn a Quantity. It has no special members.

16.5.2.3.3 QuantityValue

Thip term returns the Quantity stored in a Quantity variable. For more information on valuefterms and
the[syntax and semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

Asspciated checker rules:

— |Core_Chk053 - no dangling QtxLink associations (see ISO 13209-2).
Thrjows:

— |otx:0outofBoundsException

It is thrown onlyif a <path> is set: the <path> points to a location which does not exist| (like a list
index exceeding list length, or a map key which is not part of the map).

16.5.2.3.4QuantityLiteral

Thip téerm shall be used to create a Quantity object based on a hard-coded float value and a djsplay unit.
Tha pravided float value shall he interpreted as a display value (je the value of the guantily in given
display units). Furthermore, the term optionally allows specifying a precision property which has an
effect on the otx:Tostring conversion of the resulting guantity (16.5.3.3.1).

QuantityLiteral iS a QuantityTerm. [ts members have the following semantics:
— <numeral> : otx:FloatLiteral [1]

This represents the hard-coded value from which the guantity shall be created. The value shall be
interpreted in display units.

— <displayUnit> : UnitLiteral [1]

This represents the display unit of the Quantity. See 16.5.2.3.8 for further details on term
UnitLiteral.

© IS0 2022 - All rights reserved 177

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

— <displayPrecision> : otx:IntegerLiteral [0..1]

This represents the hard-coded display precision of the QuantityLiteral (16.5.3.3.1).

16.5.2.3.5 CreateQuantity

The createguantity term is the constructor for a Quantity. The provided numeric value shall be
interpreted as a display value (i.e. the value of the Quantity in given display units). Furthermore,
the term optionally allows specifying a precision property which has an effect on the otx:Tostring
conversion of the resulting guantity (16.5.3.3.1).

The exactjehaviour of createguantity depends on the type of the passed numeric value:

— Integdr Or Float type: the value shall be interpreted according to the given digplay uynit.
Furthgrmore, the resulting internal value shall be Float, even for an Integer typerargumenft. If
a display precision is given, the property shall be set in the created guantity; othefwise it shall
remain unset (16.5.3.3.1).

— Quantilty type: this is the copy-constructor-case which shall only work if the physical dimensjons
of both original and new Quantity match. Otherwise, an InvalidConversionException shal|l be
throwh. If the physical dimensions match, the internal value of the originalQuantity shall be copied
into thie new guantity. Neither the original display unit nor the display precision shall be copidd—
insteagl, the new display unit and display precision specified in tlie term shall apply. If no display
precision is given, the property shall remain unset (16.5.3.3.1).

CreateQuantity iS a QuantityTerm. [ts members have the followiig semantics:
— <numeyal> : NumericTerm [1]

This r¢presents the numeric value from which the @uantity shall be created (in display units). [The
value ¢an be either an Integer, a Float or another Quantity.

— <displlayUnit> : UnitTerm [1]

This represents the display unit of the to-be-created Quantity. See 16.5.2.3.6 for detaild on

UnitTdrm.
— <displlayPrecision> : otx:NumericTerm [0..1]

This optionally represents(the display precision of the to-be-created Quantity (16.5.3.3.1). Flloat
values|shall be truncated.,

Throws:
— InvalidConvers$ionException

It is thrown/if <numeral> is a Quantity and its physical dimension does not match the phydical
dimenkion given by <displayUnit>.

16.5.2.3.6 UnitTerm

The abstract type UnitTermis an otx: SimpleTerm. It serves as a base for all concrete terms which return
aunit. It has no special members.

16.5.2.3.7 UnitValue

This term returns the unit stored in a unit variable. For more information on value-terms and the
syntax and semantics of the valueof attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations (see ISO 13209-2).

178 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

Throws:
— otx:0utOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

16.5.2.3.8 UnitLiteral

This term shall be used to create a unit object based on a unit definition contained in UNIT-SPEC
document. UnitLiteral allows referencing the unit definition by using W3C XLink methodology.

UnifLiteral iS a UnitTerm. Its members have the following semantics:
— |<value> : UnitDefinition [1]

This element represents the link to the unzT definition in a unzT-spEc which'shall be asgociated to
the unit. The element allows all attributes from the namespace "http://www.w3.0rg/1p99/x1link"
for linking, as defined by W3C XLink. For the usage of the attributes, the rules given i 16.5.2.3.1
shall apply.

Throws:

— |UnknownUnitException

It is thrown if the given unit is not defined in the runtime system's unit specification.
Asspciated checker rules:

— |Quantities_Chk001 - correct unit linking (seeA.6.1);

— |Quantities_Chk002 - no dangling unit definition links (see A.6.2).

16.5.2.3.9 GetDisplayValue

The GetDisplayValue term shall return the (dimensionless) Float value of a Quantity accor{ding to the
Quaptity's display unit. Compare.the otx:ToFloat term which, when applied to a guantity|will result
in the guantity's value in normalized SI-unit representation.

Thip term disregards the display precision.
GetpisplayValue iS@n'otx:FloatTerm. Its members have the following semantics:
— |<quantity>“¢ "QuantityTerm [1]

This represents the guantity from which the numeral value shall be extracted.

16.52:3.10 GetDisplayUnit

The GetbisplayunitName term shall extract the display unit out of a Quantity value (e.g. "mp/h",
llkm/hll , "h", llsecll .

GetDisplayUnit iS a UnitTerm. [ts members have the following semantics:
— <quantity> : QuantityTerm [1]
This represents the guantity from which the display unit shall be extracted.
Throws:
— UnknownUnitException

[t is thrown if the unit associated with the quantity is not defined in the system's unit specification.

© IS0 2022 - All rights reserved 179

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

16.5.2.3.11 GetBaseUnit

The GetBaseUnit term shall return the base unit of a Quantity value, according to its physical dimension
(eg "m" , um/su , vlsvl .

GetBaseUnit iS a UnitTerm. [ts members have the following semantics:
— <quantity> : QuantityTerm [1]

This represents the Quantity from which the base unit shall be extracted.

Throws:

— UnknownUnitException

It is thfrown if the base unit cannot be obtained from the system's unit specification.

Since QuantityTerm is based on OTX core FloatTerm, Quantity values may.be used in all places where
FloatTerm I NumericTerm arguments are allowed. This is, for example/the OTX core arithmetic tefms,
comparisoh terms and conversion terms, for which special rules shall'apply when the operands|are
guantity vplues. There are also places where general rules apply, e.g{ where a display value can be uped,
discardinglunit-information.

WARNING|— Special care shall be taken by OTX authors-when arithmetic operations are applied
on Quantity values with display units involving an offset to the corresponding SI base unit.|For
instance, ¢onsider the operation 50 °C - 10 °C whiclyyields 40 °K (which is -233,15 °C). Physichally
this is correct because the OTX runtime treats the operand 10 °C as an absolute temperatjure
quantity, hot as a temperature difference. However, OTX authors unaware of the influencg¢ of
unit offsets might expect a different result (40 °C). To facilitate the handling of unit offsets, jt is
strongly fecommended to use separateAinits for absolute values and difference values, where
differerence values do not have an offset to the SI base unit. In the example above, the first
operand should use an absolute temperature unit T[°C], while the second operand should us$e a
differenced temperature unit AT[°C].With this, the operation 50 °C - 10 °C yields 313,15 °K (40 C),
which is the expected result.

16.5.3.2 {yntax

The syntax of the OTX<{cere arithmetic terms, comparison terms and conversion terms is specified in
ISO 1320942.

16.5.3.3 Semantics

16.5.3.3.1 Conversions

When applied to a Quantity, the otx:ToFloat term shall return the value of the guantity normalized to
the SI base units correlated to its display unit. For example, a guantity representing a speed value of
12,4 kilometres per hour will return a float value of 3.44 (as 12,4 km/h equal 3,44 m/s).

When applied to a Quantity, the otx:ToString term shall return a string containing the Quanitity's
display value followed by a space (Unicode character U+0020) followed by the p1sprLay-NaME of the unit
definition of its display unit. For computing the string representation of the display value, the same
rules as specified for otx:Tostring (Float) shall apply. However, if the display precision property of the
Quantity is set, the fixed-point-part shall be rounded to the decimal place given by the display precision
property. Negative precision values are also allowed (expressing decimal positions to the left of the
point). For instance, a Quantity representing a speed value of 12,35 kilometres per hour with a display

180 © IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

precision of 1 will be rendered as "12,4 km/h", whereas a Quantity of 1 234,5 kilometres and a precision
of -2 shall be rendered as "1 200 km", etc. For very large or very small values where otx: Tostring yields
arepresentation in scientific notation, the same rules shall apply, so for instance a uantity of 1,123*105
milliseconds with a display precision of 2 shall be rendered as "1,12E5 ms". Furthermore, if the display
precision is greater than the number of decimal digits representing the fractional part, the string shall
be stuffed by zero, e.g. a Quantity of 100,1 metres with a display precision of 3 yields "100,100 m".

When applied to a unit, the otx: Tostring term shall return a string containing the prspray-nName of the
corresponding unit definition. For example, a Quantity representing a speed value of 12,4 kilometres
per hour will be rendered as "12,4 km/h".

IMFPORTANT — For all other OTX core conversion terms, the behaviour when applied o guantity
or ynit values is unspecified. However, OTX applications may provide custom implementations
of the conversion terms for Quantity or Unit arguments, if required. Please refer to IS0 13209-2
for further information and restrictions on conversion terms.

16.5.3.3.2 Addition/Subtraction

unit of all
all only be
on shall be

WhEn Quantity values are added or subtracted, the physical dimensions of the display
guaptity operands shall be identical. That means that, for example, a-distance Quantity sh
added to another distance Quantity (or a scalar). Otherwise an Inv¥alidConversionExcepti
thrown, e.g. when a distance is added to a time.

If s
dim
will

alar operands exist, they shall be interpreted as norinalized values according to the physical
ension of the guantity operands. This allows, for example, the addition of 2 km + 1 m § 11 which
result in a Quantity of 2 012 m.

The
Qua
the
an 1

16.
Wh

Qua
dist
Sys

display unit of the resulting Quantity should.be set to the SI base unit correspond
htity's physical dimension. Furthermore, thetdisplay precision of the resulting Quanti
maximum of the display precisions of the @perands. If the base unit is not defined in the
nvalidConversionException shall be thrown.

5.3.3.3 Multiplication, Division.and Modulo

htity has to exist in the uNIT-spEC available to the OTX system. That means that, for

em (e.g. 72 km divided by 2 h equals 10 m/s). Otherwise an InvalidConversionExcepti

thrown.

Sca
whi

The
dim
sha

ar operands.shall be interpreted "as is"; this allows, for example, the multiplication g
ch will resultin a guantity of 4 000 m.

displayunit of the resulting guantity should be set to the SI base unit corresponding to t

ling to the
ty shall be
UNIT-SPEC,

bn Quantity values are multiplied or divided, a definition of the physical dimension of the resulting

example, a

ance Quantity can only bg divided by a time Quantity if a distance/time base unit is known to the

on shall be

f2*2km

he physical

ension-resulting from the operation. Furthermore, the display precision of the resultinjg guantity

ldbe the maximum of the display precisions of the operands.

16.5.3.3.4 Absolute Value and Negation

When the absolute value or the negation is computed from a Quantity, the display unit of the resulting
guantity should be set to the SI base unit corresponding to the physical dimension of the original
Quantity. Furthermore, the display precision of the resulting Quantity shall be equal to the display
precision of the original Quantity. First the computation to SI Unit is done, and secondly the math
function is calculated.

EXAMPLE [-10 °C| transform to SI |263 K| Result: 263 K (this is equal to -10 °C).

© IS0 2022 - All rights reserved 181

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

IS0 13209-3:2022(E)

16.5.3.3.5

Relational operations

When gQuantity values are compared using relational operators, an OTX runtime shall use the
quantities' normalized values for comparison. So if, for example, a Quantity of 8 km is to be compared
with a Quantity of 10 mi., the runtime system shall convert both values into metres before doing the
comparison.

Furthermore, the physical dimensions of the display unit of the guantity values being compared shall
be identical, for example, it is allowed to compare distances with each other, but it is illegal to compare
a distance to a time, in that case an InvalidConversionException shall be thrown.

If scalar operands exist, they shall be interpreted as normalized values according to the phy{

dimension|of the guantity operands. This allows, for example, the comparison of 2 km < 11 which

i

result in £41se (because the comparison is equivalent to comparing 2 km < 11 m).

16.5.3.3.6
Generally ¥
is provided
Quantity's
math:Sin t
operation.

17 OTX §

17.1 Gen
This OTX ¢

NOTE 4

17.2 Datd

Other operations

vhenever guantity values are used in OTX actions or terms for which no_specific defini
| regarding the behaviour in the case of guantity arguments, an OTX runtime shall use
otx:ToFloat value for computation. For instance, if a guantity is dised as an operand to
brm, the Float value (that is, the Quantity’s normalized value) shall be used as input for

ptringUtil extension

eral
xtension provides a collection of data typesand terms which operate on strings.

\n additional functionality is specified in theyUtil extension.

| types

17.2.1 Overview

The OTX St

17.2.2 Sy

The syntax

ringUtil extension define$ one enumeration type named Encoding.

ntax

of the Encoding declaration is shown in Figure 97.

otx:Extensioninterface

«XSDcomplexType»

ical
will

[ion
the
the
the

otx:DataType
x «XSDcomplexType»
JAY ENCOUINg
«XSDcomplexType» | «xsDelement»
S AT + init: EncodingLiteral [0..1]

Figure 97 — Data model view: StringUtil data types

17.2.3 Semantics

17.2.3.1 General

The Encoding enumeration type of the OTX StringUtil extension is based on otx:simpleType.

182

© IS0 2022 - All rights reserved

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Requirements and recommendations
	4.1 Basic principles for requirements and recommendations definition
	4.2 Entries priorities
	4.3 Requirement listing

	5 Extension overview
	5.1 General
	5.2 Dependencies
	5.3 Basic characteristics of the OTX extensions

	6 OTX DateTime extension
	6.1 General
	6.2 Terms
	6.2.1 Overview
	6.2.2 Syntax
	6.2.3 Semantics

	7 OTX DiagCom extension
	7.1 General
	7.2 General considerations
	7.2.1 Communication channels
	7.2.2 Diagnostic services
	7.2.3 Diagnostic communication patterns
	7.2.4 Special-purpose diagnostic data types

	7.3 Data types
	7.3.1 Overview
	7.3.2 Syntax
	7.3.3 Semantics

	7.4 Exceptions
	7.4.1 Overview
	7.4.2 Syntax
	7.4.3 Semantics

	7.5 Variable access
	7.5.1 Overview
	7.5.2 Syntax
	7.5.3 Semantics

	7.6 Actions
	7.6.1 Overview
	7.6.2 ComChannel related actions
	7.6.3 ComParameter related actions
	7.6.4 DiagService related actions

	7.7 Terms
	7.7.1 Overview
	7.7.2 ComChannel related terms
	7.7.3 DiagService related terms
	7.7.4 Request related terms
	7.7.5 Result related terms
	7.7.6 Response related terms
	7.7.7 Parameter related terms
	7.7.8 ComParam related terms
	7.7.9 Event related terms

	8 OTX DiagDataBrowsing extension
	8.1 General
	8.2 Data types
	8.2.1 Overview
	8.2.2 Syntax
	8.2.3 Semantics

	8.3 Variable access
	8.3.1 Overview
	8.3.2 Syntax
	8.3.3 Semantics

	8.4 Terms
	8.4.1 Overview
	8.4.2 Syntax
	8.4.3 Semantics

	9 OTX EventHandling extension
	9.1 General
	9.2 Data types
	9.2.1 Overview
	9.2.2 Syntax
	9.2.3 Semantics

	9.3 Variable access
	9.3.1 Overview
	9.3.2 Syntax
	9.3.3 Semantics

	9.4 Actions
	9.4.1 Overview
	9.4.2 Syntax
	9.4.3 Semantics
	9.4.4 Example

	9.5 Terms
	9.5.1 Overview
	9.5.2 Event terms
	9.5.3 Event source terms
	9.5.4 Event property terms
	9.5.5 Exception terms

	10 OTX Flash extension
	10.1 General
	10.2 Data types
	10.2.1 Overview
	10.2.2 Syntax
	10.2.3 Semantics

	10.3 Exceptions
	10.3.1 Overview
	10.3.2 Syntax
	10.3.3 Semantics

	10.4 Variable access
	10.4.1 Overview
	10.4.2 Syntax
	10.4.3 Semantics

	10.5 Actions
	10.5.1 Overview
	10.5.2 Syntax
	10.5.3 Semantics
	10.5.4 Example

	10.6 Terms
	10.6.1 Overview
	10.6.2 Flash job related terms
	10.6.3 Flash session related terms
	10.6.4 Flash block related terms
	10.6.5 Flash block segment related terms
	10.6.6 Security related terms
	10.6.7 Own ident related terms
	10.6.8 Enumeration related terms

	11 OTX HMI extension
	11.1 General
	11.1.1 General considerations
	11.1.2 Dialogs
	11.1.3 Custom screens
	11.1.4 Custom screen usage example

	11.2 Data types
	11.2.1 Overview
	11.2.2 Syntax
	11.2.3 Semantics

	11.3 Exceptions
	11.3.1 Overview
	11.3.2 Syntax
	11.3.3 Semantics

	11.4 Variable access
	11.4.1 Overview
	11.4.2 Syntax
	11.4.3 Semantics

	11.5 Actions
	11.5.1 Overview
	11.5.2 Dialog related actions
	11.5.3 Custom screen related actions

	11.6 Terms
	11.6.1 Overview
	11.6.2 Syntax
	11.6.3 Semantics

	11.7 Signatures
	11.7.1 Overview
	11.7.2 Syntax
	11.7.3 Semantics

	12 OTX i18n extension
	12.1 General
	12.2 Data types
	12.2.1 Overview
	12.2.2 Syntax
	12.2.3 Semantics

	12.3 Exceptions
	12.3.1 Overview
	12.3.2 Syntax
	12.3.3 Semantics

	12.4 Variable access
	12.4.1 Overview
	12.4.2 Syntax
	12.4.3 Semantics

	12.5 Terms
	12.5.1 Overview
	12.5.2 Locale settings related terms
	12.5.3 Translation related terms
	12.5.4 Quantity related terms

	13 OTX Logging extension
	13.1 General
	13.2 Data types
	13.2.1 Overview
	13.2.2 Syntax
	13.2.3 Semantics

	13.3 Variable access
	13.3.1 Overview
	13.3.2 Syntax
	13.3.3 Semantics

	13.4 Actions
	13.4.1 Overview
	13.4.2 Syntax
	13.4.3 Semantics
	13.4.4 Example

	13.5 Terms
	13.5.1 Overview
	13.5.2 Syntax
	13.5.3 Semantics

	14 OTX Math extension
	14.1 General
	14.2 Terms
	14.2.1 Overview
	14.2.2 Syntax
	14.2.3 Semantics

	15 OTX Measure extension
	15.1 General
	15.2 Data types
	15.2.1 Overview
	15.2.2 Syntax
	15.2.3 Semantics

	15.3 Exceptions
	15.3.1 Overview
	15.3.2 Syntax
	15.3.3 Semantics

	15.4 Variable access
	15.4.1 Overview
	15.4.2 Syntax
	15.4.3 Semantics

	15.5 Signatures
	15.5.1 Overview
	15.5.2 Syntax
	15.5.3 Semantics

	15.6 Actions
	15.6.1 Overview
	15.6.2 Syntax
	15.6.3 Semantics

	15.7 Terms
	15.7.1 Overview
	15.7.2 Measurement related terms
	15.7.3 Event related terms

	16 OTX quantities extension
	16.1 General
	16.2 Data types
	16.2.1 Overview
	16.2.2 Syntax
	16.2.3 Semantics

	16.3 Exceptions
	16.3.1 Overview
	16.3.2 Syntax
	16.3.3 Semantics

	16.4 Variable access
	16.4.1 Overview
	16.4.2 Syntax
	16.4.3 Semantics

	16.5 Terms
	16.5.1 Overview
	16.5.2 Quantity and unit related terms
	16.5.3 Overloading semantics

	17 OTX StringUtil extension
	17.1 General
	17.2 Data types
	17.2.1 Overview
	17.2.2 Syntax
	17.2.3 Semantics

	17.3 Exceptions
	17.3.1 Overview
	17.3.2 Syntax
	17.3.3 Semantics

	17.4 Variable access
	17.4.1 Overview
	17.4.2 Syntax
	17.4.3 Semantics

	17.5 Terms
	17.5.1 Overview
	17.5.2 Syntax
	17.5.3 Semantics

	Annex A (normative) Comprehensive checker rule listing
	Annex B (normative) OTX DiagCom extension data type mappings
	Annex C (normative) OTX DiagMetaData auxiliary for the OTX DiagCom extension
	Annex D (informative) OTX DiagComRaw extension for resource-restrained systems
	Annex E (informative) OTX job extension
	Bibliography

