
Road vehicles — Open Test sequence
eXchange format (OTX) —
Part 3:
Standard extensions and
requirements
Véhicules routiers — Format public d'échange de séquence-tests
(OTX) —
Partie 3: Exigences et spécifications des extensions du standard

INTERNATIONAL
STANDARD

ISO
13209-3

Second edition
2022-06

Reference number
ISO 13209-3:2022(E)

© ISO 2022

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ii

ISO 13209-3:2022(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

	 ﻿� © ISO 2022 – All rights reserved
�

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://www.iso.org
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Foreword...viii
Introduction..ix
1	 Scope.. 1
2	 Normative references.. 1
3	 Terms, definitions and abbreviated terms... 1

3.1	 Terms and definitions... 1
3.2	 Abbreviated terms... 2

4	 Requirements and recommendations... 3
4.1	 Basic principles for requirements and recommendations definition... 3
4.2	 Entries priorities... 3
4.3	 Requirement listing.. 3

5	 Extension overview.. 6
5.1	 General.. 6
5.2	 Dependencies.. 6
5.3	 Basic characteristics of the OTX extensions... 8

6	 OTX DateTime extension.. 9
6.1	 General.. 9
6.2	 Terms... 9

6.2.1	 Overview.. 9
6.2.2	 Syntax.. 9
6.2.3	 Semantics.. 10

7	 OTX DiagCom extension...12
7.1	 General... 12
7.2	 General considerations... 13

7.2.1	 Communication channels... 13
7.2.2	 Diagnostic services.. 13
7.2.3	 Diagnostic communication patterns.. 15
7.2.4	 Special-purpose diagnostic data types.. 19

7.3	 Data types... 20
7.3.1	 Overview... 20
7.3.2	 Syntax... 20
7.3.3	 Semantics.. 20

7.4	 Exceptions.. 23
7.4.1	 Overview... 23
7.4.2	 Syntax... 23
7.4.3	 Semantics.. 24

7.5	 Variable access.. 25
7.5.1	 Overview... 25
7.5.2	 Syntax... 25
7.5.3	 Semantics.. 26

7.6	 Actions... 26
7.6.1	 Overview... 26
7.6.2	 ComChannel related actions.. 26
7.6.3	 ComParameter related actions.. 28
7.6.4	 DiagService related actions.. 29

7.7	 Terms..40
7.7.1	 Overview...40
7.7.2	 ComChannel related terms.. 41
7.7.3	 DiagService related terms... 45
7.7.4	 Request related terms...49
7.7.5	 Result related terms.. 50
7.7.6	 Response related terms... 53

iii© ISO 2022 – All rights reserved	 ﻿

Contents� Page

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.7	 Parameter related terms... 55
7.7.8	 ComParam related terms.. 61
7.7.9	 Event related terms...64

8	 OTX DiagDataBrowsing extension...65
8.1	 General...65
8.2	 Data types...66

8.2.1	 Overview...66
8.2.2	 Syntax...66
8.2.3	 Semantics..66

8.3	 Variable access.. 67
8.3.1	 Overview... 67
8.3.2	 Syntax... 67
8.3.3	 Semantics.. 67

8.4	 Terms..68
8.4.1	 Overview...68
8.4.2	 Syntax...68
8.4.3	 Semantics..68

9	 OTX EventHandling extension..72
9.1	 General... 72
9.2	 Data types... 72

9.2.1	 Overview... 72
9.2.2	 Syntax...73
9.2.3	 Semantics.. 73

9.3	 Variable access...74
9.3.1	 Overview..74
9.3.2	 Syntax..74
9.3.3	 Semantics...74

9.4	 Actions..74
9.4.1	 Overview..74
9.4.2	 Syntax..74
9.4.3	 Semantics...74
9.4.4	 Example.. 76

9.5	 Terms.. 76
9.5.1	 Overview... 76
9.5.2	 Event terms... 77
9.5.3	 Event source terms... 78
9.5.4	 Event property terms... 81
9.5.5	 Exception terms.. 83

10	 OTX Flash extension...84
10.1	 General...84
10.2	 Data types... 85

10.2.1	 Overview... 85
10.2.2	 Syntax... 85
10.2.3	 Semantics.. 86

10.3	 Exceptions..88
10.3.1	 Overview...88
10.3.2	 Syntax...88
10.3.3	 Semantics..88

10.4	 Variable access..88
10.4.1	 Overview...88
10.4.2	 Syntax...89
10.4.3	 Semantics..89

10.5	 Actions...89
10.5.1	 Overview...89
10.5.2	 Syntax...89
10.5.3	 Semantics..89
10.5.4	 Example.. 91

iv 	 ﻿� © ISO 2022 – All rights reserved
�

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6	 Terms.. 92
10.6.1	 Overview... 92
10.6.2	 Flash job related terms... 93
10.6.3	 Flash session related terms.. 95
10.6.4	 Flash block related terms...99
10.6.5	 Flash block segment related terms...104
10.6.6	 Security related terms...106
10.6.7	 Own ident related terms..109
10.6.8	 Enumeration related terms... 110

11	 OTX HMI extension.. 112
11.1	 General..112

11.1.1	 General considerations..112
11.1.2	 Dialogs..113
11.1.3	 Custom screens...113
11.1.4	 Custom screen usage example.. 114

11.2	 Data types..115
11.2.1	 Overview..115
11.2.2	 Syntax..115
11.2.3	 Semantics...115

11.3	 Exceptions... 117
11.3.1	 Overview.. 117
11.3.2	 Syntax.. 117
11.3.3	 Semantics... 117

11.4	 Variable access... 118
11.4.1	 Overview.. 118
11.4.2	 Syntax.. 118
11.4.3	 Semantics... 118

11.5	 Actions.. 118
11.5.1	 Overview.. 118
11.5.2	 Dialog related actions... 119
11.5.3	 Custom screen related actions..125

11.6	 Terms...129
11.6.1	 Overview..129
11.6.2	 Syntax..130
11.6.3	 Semantics...131

11.7	 Signatures..134
11.7.1	 Overview..134
11.7.2	 Syntax..134
11.7.3	 Semantics...134

12	 OTX i18n extension... 136
12.1	 General..136
12.2	 Data types..136

12.2.1	 Overview..136
12.2.2	 Syntax..136
12.2.3	 Semantics...137

12.3	 Exceptions...137
12.3.1	 Overview..137
12.3.2	 Syntax..137
12.3.3	 Semantics...138

12.4	 Variable access...138
12.4.1	 Overview..138
12.4.2	 Syntax..138
12.4.3	 Semantics...139

12.5	 Terms...139
12.5.1	 Overview..139
12.5.2	 Locale settings related terms..140
12.5.3	 Translation related terms... 141

v© ISO 2022 – All rights reserved	 ﻿

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

12.5.4	 Quantity related terms.. 145
13	 OTX Logging extension..147

13.1	 General.. 147
13.2	 Data types.. 148

13.2.1	 Overview.. 148
13.2.2	 Syntax..148
13.2.3	 Semantics... 148

13.3	 Variable access... 149
13.3.1	 Overview.. 149
13.3.2	 Syntax.. 149
13.3.3	 Semantics... 149

13.4	 Actions..150
13.4.1	 Overview..150
13.4.2	 Syntax..150
13.4.3	 Semantics...150
13.4.4	 Example... 151

13.5	 Terms...152
13.5.1	 Overview..152
13.5.2	 Syntax..152
13.5.3	 Semantics...152

14	 OTX Math extension... 153
14.1	 General..153
14.2	 Terms...154

14.2.1	 Overview..154
14.2.2	 Syntax..154
14.2.3	 Semantics...154

15	 OTX Measure extension.. 156
15.1	 General..156
15.2	 Data types..157

15.2.1	 Overview..157
15.2.2	 Syntax..157
15.2.3	 Semantics...157

15.3	 Exceptions...157
15.3.1	 Overview..157
15.3.2	 Syntax..157
15.3.3	 Semantics...158

15.4	 Variable access...159
15.4.1	 Overview..159
15.4.2	 Syntax..159
15.4.3	 Semantics...159

15.5	 Signatures..159
15.5.1	 Overview..159
15.5.2	 Syntax..159
15.5.3	 Semantics...160

15.6	 Actions.. 161
15.6.1	 Overview.. 161
15.6.2	 Syntax.. 161
15.6.3	 Semantics... 162

15.7	 Terms...164
15.7.1	 Overview..164
15.7.2	 Measurement related terms..165
15.7.3	 Event related terms..168

16	 OTX quantities extension... 169
16.1	 General..169
16.2	 Data types.. 172

16.2.1	 Overview.. 172

vi 	 ﻿� © ISO 2022 – All rights reserved
�

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

16.2.2	 Syntax.. 172
16.2.3	 Semantics... 172

16.3	 Exceptions...173
16.3.1	 Overview.. 173
16.3.2	 Syntax..173
16.3.3	 Semantics... 174

16.4	 Variable access... 174
16.4.1	 Overview.. 174
16.4.2	 Syntax.. 174
16.4.3	 Semantics... 175

16.5	 Terms... 175
16.5.1	 Overview.. 175
16.5.2	 Quantity and unit related terms.. 176
16.5.3	 Overloading semantics...180

17	 OTX StringUtil extension.. 182
17.1	 General..182
17.2	 Data types..182

17.2.1	 Overview..182
17.2.2	 Syntax..182
17.2.3	 Semantics...182

17.3	 Exceptions...183
17.3.1	 Overview..183
17.3.2	 Syntax..183
17.3.3	 Semantics...184

17.4	 Variable access...184
17.4.1	 Overview..184
17.4.2	 Syntax..184
17.4.3	 Semantics...185

17.5	 Terms...185
17.5.1	 Overview..185
17.5.2	 Syntax..185
17.5.3	 Semantics...186

Annex A (normative) Comprehensive checker rule listing...193
Annex B (normative) OTX DiagCom extension data type mappings... 197
Annex C (normative) OTX DiagMetaData auxiliary for the OTX DiagCom extension............................... 201
Annex D (informative) OTX DiagComRaw extension for resource-restrained systems........................ 206
Annex E (informative) OTX job extension...217
Bibliography.. 228

vii© ISO 2022 – All rights reserved	 ﻿

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 31,
Data communication.

This second edition cancels and replaces the first edition (ISO 13209-3:2012), which has been
technically revised.

The main changes are as follows:

—	 DiagMetaData: introduced ComChannelGroup and EcuVariantGroup;

—	 EventHandling: introduced CompositeEventSource, GetEventSourceFromEvent,
IsEventHasException;

—	 DiagCom: introduced textIdTarget, GetParameterValueTextId;

—	 added new checker rules.

A list of all parts in the ISO 13209 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

viii 	 ﻿� © ISO 2022 – All rights reserved
�

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/foreword.html
http://www.iso.org/members.html
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Introduction

Diagnostic test sequences are utilized whenever automotive components or functions with diagnostic
abilities are being diagnosed, tested, reprogrammed or initialized by off-board test equipment. Test
sequences define the succession of interactions between the user (i.e. workshop or assembly line staff),
the diagnostic application (the test equipment) and the vehicle communication interface as well as
any calculations and decisions that have to be carried out. Test sequences provide a means to define
interactive, guided diagnostics or similar test logic.

Today, the automotive industry mainly relies on paper documentation and/or proprietary authoring
environments to document and to implement such test sequences for a specific test application. An
author who is setting up engineering, assembly line or service diagnostic test applications needs
to implement the required test sequences manually, supported by non-uniform test sequence
documentation, most likely using different authoring applications and formats for each specific test
application. This redundant effort can be greatly reduced if processes and tools support the OTX
concept.

The ISO 13209 series proposes an open and standardized format for the human- and machine-readable
description of diagnostic test sequences. The format supports the requirements of transferring
diagnostic test sequence logic uniformly between electronic system suppliers, vehicle manufacturers
and service dealerships/repair shops.

ISO 13209-2 represents the requirements and technical specification for the fundament of the OTX
format, namely the "OTX Core". The core describes the basic structure underlying every OTX document.
This comprises detailed data model definitions of all required control structures by which test
sequence logic is described, but also definitions of the outer, enveloping document structure in which
test sequence logic is embedded. To achieve extensibility the core also contains well-defined extension
points that allow a separate definition of additional OTX features—without the need to change the core
data model.

This document extends the core by a set of additional features, using the extension mechanism rules
described in ISO 13209-2. The extensions defined herein comprise features which allow diagnostic
communication to a vehicle's diagnostic interface, flashing, executing diagnostic jobs, controlling
measurement equipment, internationalisation, working with physical units, accessing the environment,
communication via a human machine interface (HMI) and other utility extensions.

ix© ISO 2022 – All rights reserved	 ﻿

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

INTERNATIONAL STANDARD ISO 13209-3:2022(E)

Road vehicles — Open Test sequence eXchange format
(OTX) —

Part 3:
Standard extensions and requirements

1	 Scope

This document defines the Open Test sequence eXchange (OTX) extension requirements and data model
specifications.

The requirements are derived from the use cases described in ISO 13209-1. They are listed in Clause 4.

The data model specification aims at an exhaustive definition of all features of the OTX extensions
which have been implemented to satisfy the requirements. This document establishes rules for the
syntactical entities of each extension. Each of these syntactical entities is accompanied by semantic
rules which determine how OTX documents containing extension features are to be interpreted. The
syntax rules are provided by UML class diagrams and XML schemas, whereas the semantics are given
by UML activity diagrams and prose definitions.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-1, Codes for the representation of names of languages — Part 1: Alpha-2 code

ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1: Country
code

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates
and times

ISO 13209-1, Road vehicles — Open Test sequence eXchange format (OTX) — Part 1: General information
and use cases

ISO 13209-2, Road vehicles — Open Test sequence eXchange format (OTX) — Part 2: Core data model
specification and requirements

W3C XLink, W3C Recommendation: XML Linking Language (XLink) Version 1.1

3	 Terms, definitions and abbreviated terms

3.1	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13209-1, ISO 13209-2 and the
following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

1© ISO 2022 – All rights reserved	 ﻿

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://www.iso.org/obp
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 IEC Electropedia: available at https://​www​.electropedia​.org/​

3.1.1
custom screen
screen with attributes and fields defined by a test sequence author

3.1.2
dialog
screen with predefined attributes and fields which can be set or read from an OTX sequence

3.1.3
ECOS measurement device
widely-used embedded system for testing electrical consumer's current and voltage curves

3.1.4
modal dialog
dialog (3.1.2) which is blocking the flow execution until the user dismisses it

3.1.5
non-modal screen
asynchronous, non-blocking screen which is still displayed while the test sequence execution continues

3.1.6
tester
computer system attached to a vehicle via a vehicle communication interface, running a diagnostic
application

3.1.7
text ID
string reference to a thesaurus data base entry containing localized string translations

3.2	 Abbreviated terms

API Application Programming Interface

DTC Diagnostic Trouble Code

ECOS Electric Check-Out System

ECU Electronic Control Unit

GUI Graphical User Interface

HMI Human Machine Interface

IFD Interface Definition (OTX extension)

NOP No Operation Performed

OEM Original Equipment Manufacturer

OTX Open Test sequence eXchange

PDU Protocol Data Unit

UI User Interface

UML Unified Modeling Language

VCI Vehicle Communication Interface

	 ﻿� © ISO 2022 – All rights reserved
�﻿

2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://www.electropedia.org/
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

XML Extensible Markup Language

XSD XML Schema Definition

4	 Requirements and recommendations

4.1	 Basic principles for requirements and recommendations definition

Basic principles have been established as a guideline to define the OTX requirements or
recommendations:

a)	 OTX requirements or recommendations specify the conditions that the OTX data model and format
shall satisfy;

b)	 all stakeholders (system suppliers, OEMs, tool suppliers), which offer diagnostic test procedures
are expected to implement and follow the requirements of this document.

The content of OTX documents and the quality of the information is the responsibility of the originator.

4.2	 Entries priorities

Each of the following requirements and recommendations carries a priority-attribute which can be set
to SHALL or SHOULD.

—	 SHALL:

The requirement represents stakeholder-defined characteristics the absence of which will result in
a deficiency that cannot be compensated by other means.

—	 SHOULD:

If the recommendations-defined characteristic is not or not fully implemented in the data model, it
does not result in a deficiency, because other features in the data model can be used to circumvent
this.

4.3	 Requirement listing

Extensions_R01 – Read current date and time

Priority: SHALL

Rationale: It shall be possible to retrieve the current date and time.

Description: The current date and time shall be accessible in a way appropriate for calculating
durations between two dates but also for generating a human readable form of a date.

Extensions_R02 – Support but not require ODX

Priority: SHALL

Rationale: For communication with vehicle ECUs, the usage of ODX shall be supported but not forced.

Description: Any vehicle communication related extension data model shall match to a useful subset of
the functionality of ODX.

Extensions_R03 – Handle flash sessions

Priority: SHALL

Rationale: A functionality shall be provided to browse and select flash sessions.

© ISO 2022 – All rights reserved	 ﻿
﻿

3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Description: A extension for flashing shall provide the possibility to select by direction and name.

Extensions_R04 – Low-level flash-data access

Priority: SHALL

Rationale: A functionality shall be provided for browsing and selecting data from the flash environment
(download container).

Description: The data shall be clustered in blocks and segments. Security functions, used by modern
data formats like ODX Flash, shall be supported.

Extensions _R05 – Flash-data storage

Priority: SHALL

Rationale: Uploaded flash data shall be stored in local storage.

Description: For flash-data upload, an OTX extension for flashing shall provide a functionality to store
in a selected format.

Extensions _R06 – Enable developer to use OTX in place of ODX Java jobs

Priority: SHALL

Rationale: A functionality shall be provided to emulate ODX Java jobs by OTX sequences.

Description: A job extension shall enable developers to run OTX sequences as ODX Java jobs.
SingelEcuJob, SecurityAccessJob and FlashJob shall be supported.

Extensions _R07 – Provide means for diagnostic communication with vehicle ECUs

Priority: SHALL

Rationale: A functionality shall be provided for diagnostic communication with a vehicle's ECU
systems.

Description: There shall be an OTX extension which allows configuring and executing diagnostic
services of vehicle ECUs. It shall be possible to establish a communication channel to a particular ECU,
to request parameters of a diagnostic service which is sent to the ECU and to analyse the response
parameters of the ECU. The description of communication channels, diagnostic services and parameters
shall happen in a human-readable and symbolic way; any existing diagnostic symbolic-to-binary
mapping (e.g. ODX) shall be supported. The actual functionality for sending a diagnostic service and
receiving shall be provided through an interface between test sequence and vehicle (e.g. MCD 3D API
and MVCI).

Extensions _R08 – Provide means to browse diagnostic data

Priority: SHALL

Rationale: A functionality shall be provided to read information from the static diagnostic data base of
a diagnostic application.

Description: An OTX extension shall be provided which allows reading static information from a
diagnostic data base, e.g. available communication channels, diagnostic services for a communication
channel or parameters for a diagnostic service.

Extensions _R09 – Enable developer to handle events

Priority: SHALL

Rationale: A functionality shall be provided which allows for an OTX test sequence to react on a well-
defined set of events.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Description: An OTX extension shall enable developers to configure a test sequence so that it can
wait for certain events to happen (e.g. when a timer expires, a variable value changes or user input is
received from the UI). There shall be a way to get further information about an event, for example, what
kind of event it is, and additional information about a particular event.

Extensions _R10 – Provide means for human machine interface functionality

Priority: SHALL

Rationale: A functionality shall be provided which allows OTX test sequences to communicate with a
user in a bidirectional way.

Description: An OTX extension is required which allows sending and receiving information to and
from a user interface (e.g. a GUI window with input controls). The extension shall not provide means
for explicitly configuring the graphical layout of the information; instead it shall only provide a
bidirectional interface for the communicated data itself.

Extensions _R11 – Enable developer to configure localized test sequences

Priority: SHALL

Rationale: A test sequence developer shall be supported in configuring OTX test sequences which are
prepared for translation to different languages.

Description: An OTX extension is required which allows the developer to access a thesaurus data base
via a text ID concept. The developer shall be supported by functionality which translates text IDs into
the language configured for the runtime system or to other languages (as far as known by the runtime
system). The thesaurus data base itself shall not be part of the standard. A generic approach shall
support different kinds of thesaurus data bases.

Extensions _R12 – Provide means for logging

Priority: SHALL

Rationale: It shall be possible to write log messages to a logging resource.

Description: An OTX extension is required which allows writing log messages to a logging resource;
messages shall be filterable according to severity.

Extensions _R13 – Support measurement equipment

Priority: SHALL

Rationale: Measurement equipment in manufacturing and after sales workshops shall be accessible via
appropriate functionality.

Description: An OTX extension is required which allows receiving measurement values from
measurement equipment. There shall be an abstraction layer which allows using any kind of
measurement equipment.

Extensions _R14 – Support physical units

Priority: SHALL

Rationale: A functionality is required which allows the handling of physical values with units.

Description: An OTX extension is required which allows describing physical quantities. The extension
shall facilitate common calculations done on such physical quantities, for example, the transformation
of a physical value from one unit-system to another (e.g. representing a distance by kilometres or
miles). It shall also allow basic mathematical operations on quantities without requiring the developer
to explicitly care for the unit (e.g. it shall be possible to calculate 10 m + 2 km directly).

Extensions _R15 – Support for enhanced string operations

© ISO 2022 – All rights reserved	 ﻿
﻿

5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Priority: SHALL

Rationale: The OTX core string operations shall be extended by additional commonly used string
operations.

Description: An OTX extension is required which describes additional string operations which shall
facilitate calculations on string values.

Extensions _R16 – Support of basic mathematical functions

Priority: SHALL

Rationale: The arithmetic operations of the OTX core shall be extended by additional mathematical
functions.

Description: An OTX extension is required which describes a set of additional mathematical functions
which are needed in some diagnostic applications (e.g. trigonometric and logarithmic functions).

5	 Extension overview

5.1	 General

This document represents the specification of the OTX standard extensions for data model version
"1.0.0". https://​standards​.iso​.org/​iso/​13209/​-3/​ed​-2/​en/​ includes code on the OTX extensions.

Annex A contains a comprehensive listing of all checker rules rules which shall be followed. The rules
are needed because some constraints existing on OTX documents cannot be ensured by XSD validation
alone. These constraints need to be checked by additional checker applications.

5.2	 Dependencies

Figure 1 shows a UML package diagram[5] describing the full set of OTX extensions (together with the
OTX core) and the import dependencies in between them. OTX extensions use or extend types defined
in the OTX core. Therefore, all of the extensions are (directly or indirectly) based on the OTX core data
model, as specified by ISO 13209-2. Aside of the OTX core, the OTX EventHandling, OTX DiagCom and
OTX quantities extensions also play a central role; types defined there are used or extended by other
OTX extensions.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standards.iso.org/iso/13209/-3/ed-2/en/
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 1 — Overview: OTX schema dependencies

IMPORTANT — The OTX core is a prerequisite for any OTX application and shall always be fully
supported. By contrast, OTX applications are NOT required to support all of the extensions
specified in this document. The set of supported extensions may vary depending on the field
of application. However, an OTX application supporting an extension which imports other
extensions shall support these, too. This guarantees that the set of supported extensions is
consistent with regard to the dependencies.

Figure 1 also shows the auxiliary packages OTX DiagMetaData as well as OTX AppInfo. These
packages are not OTX extensions; they support OTX authoring systems with additional data used
only at authoring time. The information is not required at runtime of an OTX test sequence. For the
DiagMetaData auxiliary please see Annex C, which shall be followed. For the AppInfo auxiliary, please
refer to ISO 13209-2.

Annex E describes how Java jobs of the MVCI system can be used in OTX test sequences.

© ISO 2022 – All rights reserved	 ﻿
﻿

7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

5.3	 Basic characteristics of the OTX extensions

Table 1 provides an overview about all OTX extensions and their basic characteristics.

Table 1 — OTX extension characteristics

Extension (schema file) Summary Dependencies
DateTime
(otxIFD_DateTime.xsd)

provides access to system time Core

DiagCom
(otxIFD_DiagCom.xsd)

connecting to ECUs, creating and executing diagnostic
services, analysing communication data

EventHandling,
Quantities, Core

DiagComRaw
(otxIFD_DiagComRaw.xsd)

direct diagnostic communication on a non-symbolic
(binary) level DiagCom

DiagDataBrowsing
(otxIFD_DiagDataBrosing.
xsd)

browsing functionality for reading data from the diag-
nostic data base DiagCom, Core

EventHandling
(otxIFD_Event.xsd)

support for the OTX event handling mechanism Core

Flash
(otxIFD_Flash.xsd)

functionality for downloading and uploading flash data
to and from ECUs DiagCom, Core

HMI
(otxIFD_HMI.xsd)

functionality for communicating with the UI (user inter-
face), through dialogs and screens EventHandling, Core

i18n
(otxIFD_I18n.xsd)

internationalisation features, multi-language support
and translation mechanisms Quantities, Core

Job
(otxIFD_Job.xsd)

functionality for emulating ODX Java jobs by OTX test
sequences

DiagCom, Quantities,
Core

Logging
(otxIFD_Logging.xsd)

support for (Log4J-style) logging Core

Math
(otxIFD_Math.xsd)

extended mathematical functions Core

Measure
(otxIFD_Measure.xsd)

executing measurement device services, measuring phys-
ical values, analysing measurements

EventHandling Quan-
tities, Core

Quantities
(otxIFD_Quantities.xsd)

handling of quantity data, wrt. SI unit system, transfor-
mations between units, etc. Core

StringUtil
(otxIFD_StringUtil.xsd)

extended functionality for string handling Core

Table 2 shows the XSD namespace associations of all OTX extensions based on References [11] and [12].
Each namespace has a prefix assigned to it. This applies also to the OTX core namespace which has
the otx: prefix (not shown in the table). In the remainder of this document, the prefixes defined here
are used to mark types which belong to extensions other than the one which is currently described. In
contrast, the types defined by the currently described extension are not prefixed.

Table 2 — OTX extension namespace associations

Extension Namespace Prefix
DateTime http://iso.org/OTX/1.0.0/DateTime time:

DiagCom http://iso.org/OTX/1.0.0/DiagCom diag:

	 ﻿� © ISO 2022 – All rights reserved
�﻿

8

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

http://iso.org/OTX/1.0.0/DateTime
http://iso.org/OTX/1.0.0/DiagCom
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Extension Namespace Prefix
DiagComRaw http://iso.org/OTX/1.0.0/DiagComRaw raw:

DiagDataBrowsing http://iso.org/OTX/1.0.0/DiagDataBrowsing data:

EventHandling http://iso.org/OTX/1.0.0/Event event:

Flash http://iso.org/OTX/1.0.0/Flash flash:

HMI http://iso.org/OTX/1.0.0/HMI hmi:

i18n http://iso.org/OTX/1.0.0/i18n i18n:

Job http://iso.org/OTX/1.0.0/Job job:

Logging http://iso.org/OTX/1.0.0/Logging log:

Math http://iso.org/OTX/1.0.0/Math math:

Measure http://iso.org/OTX/1.0.0/Measure measure:

Quantities http://iso.org/OTX/1.0.0/Quantities quant:

StringUtil http://iso.org/OTX/1.0.0/StringUtil string:

Please consider the example in Figure 2. It shows the IsDiagServiceEvent term from the OTX DiagCom
extension. The term accepts a parameter which is defined in the OTX EventHandling extension, therefore
the type of the element is marked with the event: prefix (event:EventValue). The same applies to the
Boolean return type defined for the figure, which is defined in the OTX core and is marked accordingly
with the otx: prefix (otx:BooleanTerm). The type IsDiagServiceEvent itself is not prefixed since is a
member of the currently described OTX DiagCom extension.

Figure 2 — Example: Usage of extension prefixes

6	 OTX DateTime extension

6.1	 General

The purpose of the OTX DateTime extension is to retrieve information about the current date and time
provided by the diagnostic application.

6.2	 Terms

6.2.1	 Overview

The terms in the OTX DateTime extension shall be used to retrieve information about the current
system time.

6.2.2	 Syntax

Figure 3 shows the syntax of all terms in the OTX DateTime extension.

Table 2 (continued)

© ISO 2022 – All rights reserved	 ﻿
﻿

9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

http://iso.org/OTX/1.0.0/DiagComRaw
http://iso.org/OTX/1.0.0/DiagDataBrowsing
http://iso.org/OTX/1.0.0/Event
http://iso.org/OTX/1.0.0/Flash
http://iso.org/OTX/1.0.0/HMI
http://iso.org/OTX/1.0.0/i18n
http://iso.org/OTX/1.0.0/Job
http://iso.org/OTX/1.0.0/Logging
http://iso.org/OTX/1.0.0/Math
http://iso.org/OTX/1.0.0/Measure
http://iso.org/OTX/1.0.0/Quantities
http://iso.org/OTX/1.0.0/StringUtil
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 3 — Data model view: DateTime terms

6.2.3	 Semantics

6.2.3.1	 GetTimestamp

GetTimestamp shall return a timestamp, expressed in milliseconds elapsed since 1970-01-01 00:00:00
UTC.

The semantics of GetTimestamp shall be according to the java.util.Date.getTime() method as
specified by the Java™1) 2 Platform Standard Ed. 6.

GetTimestamp is an otx:Integer term. It has no members.

6.2.3.2	 FormatDate

Results from FormatDate should be used for user representations only. These values should not be used
inside the test logic. The reason for this is that the exchangeability is not guaranteed across different
run time systems (e.g. era, time zone).

The FormatDate term shall transform a timestamp (see GetTimestamp term above) into a date
representation which shall be formatted as follows.

a)	 In case there is no custom format specified, the returned string shall be formatted according to the
rules given by ISO 8601.

b)	 If a custom format is given (by the <format> element), the string shall be formatted according to the
cusom format rules as specified below.

The custom format pattern can be configured by the OTX author; it controls the text presentation of
the date. A format pattern consists of one or more predefined date and time format specifiers (see
Table 3) as well as user-defined string sequences. Non-numeric outputs (e.g. the name of a month) shall
be translated automatically to the currently set locale (see Clause 12, OTX i18n extension).

Table 3 — Date format pattern specifiers

Specifier(s) Meaning Presentation Example
G Era Text (localized) AD

yy, yyyy Year (two digits / four digits) Number 11, 2011

M, MM Month in year (without / with leading zero) Number 9, 09

MMM, MMMM Month in year (short form / long form) Text (localized) Jan, January

d, dd Day in month (without / with leading zero) Number 3, 09

D Day in year Number 304

F Day of week of month Number 3

E, EEEE Day of week (short form / long form) Text (localized) Wed, Wednesday

1)	 Java is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not
constitute an endorsement by ISO of this product.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

10

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Specifier(s) Meaning Presentation Example
h, hh Hours, 1-12 count (without / with leading zero) Number 7, 07

H, HH Hours, 0-23 count (without / with leading zero) Number 7, 07

m, mm Minutes (without / with leading zero) Number 2, 02

s, ss Seconds (without / with leading zero) Number 4, 04

S, SS, SSS Milliseconds (without / with leading zeros) Number 357, 04, 002

w, W Week in year / Week in month Number 34, 3

a AM/PM designator Text (localized) AM

z, zzzz Time zone (short form / long form) Text (localized) CET, Central European Time

Z RFC 822 timezone (timeshift to GMT) Text +0100

The format pattern rules are analogous to the rules given for the class java.text.SimpleDateFormat as
specified by the Java™ 2 Platform Standard Ed. 6. The overall semantics of FormatDate shall be according
to the semantics of the method SimpleDateFormat.format(Date date).

EXAMPLE 1	 At a given date and time of 2011-03-10 11:23:56 in the Central European Time zone (CET) and
with the current locale set to en-US, a pattern like, e.g. "hh 'o''clock' a, zzzz" would produce the following
formatted output: "11 o'clock AM, Central European Time."

If no custom format is given, the ISO 8601 conform date output shall be formatted equivalent to the
custom pattern "yyyy-MM-dd'T'HH:mm:ss'.'SSSZ", where "T" is the time designator and "." is a
separator for the following millisecond portion. This pattern is language independent; the currently set
locale does not influence the output.

EXAMPLE 2	 At a given date and time of 2011-03-10 11:23:56 in the Central European Time zone (CET), the
following standard-format output will be produced: "2011-03-10T11:23:56.123+0100".

FormatDate is an otx:StringTerm. Its members have the following semantics:

—	 <timestamp> : otx:NumericTerm [1]

This element represents a date given as timestamp which shall be interpreted as the amount
of milliseconds elapsed since January 1, 1970 00:00:00 UTC. The corresponding date shall be
formatted to a string output according to the rules given above. Float values shall be truncated.

—	 <format> : otx:StringTerm [0..1]

This optional element represents the custom format pattern which shall be applied in order to
produce a custom date output string.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the timestamp value is negative or the pattern format is wrong.

6.2.3.3	 FormatDuration

The FormatDuration term shall return a given millisecond duration in a string representation.
Formatting shall be done in analogy to the FormatDate term, with the difference that the milliseconds
passed to the term are to be interpreted as duration, not as date.

Since some of the format specifiers given in Table 3 are meaningless with respect to durations (e.g. time
zone, week day name, era), only the specifiers defined in Table 4 should be used.

Accordingly, the values expressed shall not exceed the "carry-over-points" of 12 months, 30 days,
24 hours, 60 min and 60 s.

Table 3 (continued)

© ISO 2022 – All rights reserved	 ﻿
﻿

11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Table 4 — Duration format pattern specifiers

Specifier(s) Meaning Example
y Years portion of duration 11, 124

M, MM Months portion of duration, 0-11 count (without / with leading zero) 2, 02

d, dd Days portion of duration, 0-29 count (without / with leading zero) 3, 09

H, HH Hours portion of duration, 0-23 count (without / with leading zero) 7, 07

m, mm Minutes portion of duration, 0-59 count (without / with leading zero) 2, 02

s, ss Seconds portion of duration, 0-59 count (without / with leading zero) 4, 04

S, SS, SSS Milliseconds of duration, 0-999 count (without / with leading zeros) 357, 03, 002

EXAMPLE 1	 For a given duration of 203 443 ms (this is 3 min, 23 s and 443 ms), a pattern like, e.g. "This took
about 'm' minutes and 's' seconds." would produce the following formatted output: "This took about
3 min and 23 s."

If no custom format is given, the ISO 8601 conform date output shall be formatted equivalent to the
custom pattern "'P'y-MM-dd'T'HH:mm:ss'.'SSS", where "P" is the duration designator and "T"is the
time designator.

EXAMPLE 2	 For a given duration of 203 443 ms (this is 3 min, 23 s and 443 ms), the following standard-format
output will be produced: "P0-00-00T00:03:23.443".

FormatDuration is an otx:StringTerm. Its members have the following semantics:

—	 <duration> : otx:NumericTerm [1]

This element represents a duration in milliseconds which shall be transformed to a string which is
formatted according to the rules given above. Float values shall be truncated.

—	 <format> : otx:StringTerm [0..1]

This optional element represents the custom format pattern which shall be applied to produce a
custom duration output string.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the duration value is negative or the pattern format is wrong.

7	 OTX DiagCom extension

7.1	 General

The purpose of the OTX DiagCom extension is to provide the necessary OTX elements for performing
diagnostic vehicle communication. Specifically, the following diagnostic use cases have been considered:

—	 handling of ECU communication channels;

—	 execution of a diagnostic service;

—	 setting of service request parameters and evaluation of service response parameters;

—	 dealing with positive or various negative responses of a diagnostic service;

—	 handling of communication channel protocol parameters;

—	 performing variant identification of an ECU;

—	 functionally addressed diagnostic services: more than one ECU will respond to a request;

	 ﻿� © ISO 2022 – All rights reserved
�﻿

12

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 repeated/cyclic execution of diagnostic services: a single request will result in multiple responses
from the same ECU;

—	 a potential combination of functional addressing and cyclic service execution: multiple ECUs
responding multiple times to one request

—	 complex data structures within the requests and responses of diagnostic services: structures of
parameters, lists of parameters, lists containing structures of parameters.

The considerations below introduce the problem domain that is addressed by the design of the DiagCom
extension. Although it is unlikely that these features will all be supported by all runtime environments
that execute OTX sequences, the OTX DiagCom extension has to provide the means to deal with these
concepts, as it aims to be a universally usable way for defining vehicle diagnostics.

IMPORTANT — It is an explicit design goal of the DiagCom extension to be usable with any
diagnostic communication kernel. As a design guideline, an ODX/MVCI (see the ISO 22901[8]
and ISO 22900[7] series) based system has been considered – as ODX/MVCI is solving the
vehicle communication problem domain on a highly generic level, the design concepts that have
been adopted for the DiagCom extension should be usable abstractions for any system that is
implementing a solution to the vehicle communication problem domain.

IMPORTANT — It is an explicit design goal of the DiagCom extension to only provide a runtime
interface for diagnostic vehicle communication. The browsing of diagnostic data bases (e.g. the
database parts of the ASAM MCD3 API) is not a design goal of the DiagCom extension. For such
use cases, a separate OTX extension specifically providing data access functionality should be
created.

In contrast to working at a symbolic level, the DiagComRaw extension (see Annex D) can be used to
work at a raw data (binary) level for diagnostic communication.

NOTE	 An additional functionality is specified in the DiagComPlus extension.

7.2	 General considerations

7.2.1	 Communication channels

The prerequisite for performing any diagnostic communication is a communication channel between
the diagnostic application and the electronic control unit(s) of a vehicle. In the OTX this instance is
called a ComChannel, designating a logical connection between the test sequence and the intended
communication target. A ComChannel is not concerned with any details about the protocols, cabling,
connectors or pinning required for communication with the desired endpoint; rather, these aspects
are to be handled by the underlying vehicle communication layer. A ComChannel works on a symbolic
level in that it is supposed to address ECUs through their name and be aware about an ECUs diagnostic
capability through the specific variant of an ECU that is present at runtime. As such, in OTX there is the
concept of ECU variant identification on a ComChannel, and the capability of creating channels to point
to specific ECU variants or retrieve the currently active ECU variant name of a ComChannel.

NOTE	 It is an explicit design goal of the OTX DiagCom extension to be useable with any diagnostic
communication kernel. However, the concepts of ComChannels and ECU variants are based on the MVCI
definitions for logical links and ECU variant identification as they represent a generic, high-level approach to a
widely applicable design problem.

7.2.2	 Diagnostic services

Figure 4 gives a high-level overview of a diagnostic service’s request and result data structure. The
service contains one request. The request comprises one or more parameters. A diagnostic service can
have an arbitrary number of results. In the example, one result is shown. A service result can contain
an arbitrary number of ECU responses. A response contains one or more parameters. A parameter can
either be a simple data type or a complex type containing lists or structures of parameters.

© ISO 2022 – All rights reserved	 ﻿
﻿

13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 4 — Diagnostic service request - result structure

The request illustrated in Figure 5 consists of a simple parameter, a struct parameter containing two
inferior parameters and a list parameter containing two items which in turn contain three simple data
type parameters each. It is also shown how the different parameters can be accessed by terms and
actions within the DiagCom extension, using the <stepByIndex> and <stepByName> method defined by
the <path> element (please refer to the remainder of this subclause, as well as ISO 13209-2 for more
information). The way the parameters are accessed by path as shown in the example request also
applies to ECU responses, which can comprise complex parameter structures as well.

To deal with repeated service execution patterns (please refer to 7.2.3), a diag service features the
concept of a result queue. Every time a request is sent to an ECU, a new result element is added to the
queue which contains the ECUs response(s) to that request. The OTX DiagCom extension provides three
methods of interacting with the result queue:

a)	 the first result of the queue can be accessed by using the GetFirstResult term;

b)	 all results currently in the queue can be retrieved as an OTX list by using the GetAllResults term;

c)	 the GetAllResultsAndClear action retrieves all results in the queue and clears the queue.

The lifecycle of the results in a diagnostic service's queue is delimited by service execution requests: a
diagnostic service's queue is cleared each time ExecuteDiagService or StartRepetition is invoked on
that DiagService object.

Figure 5 — Complex request structure with <stepByName> and <stepByIndex>

	 ﻿� © ISO 2022 – All rights reserved
�﻿

14

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.2.3	 Diagnostic communication patterns

7.2.3.1	 General

Besides diagnostic service requests and responses being of arbitrary structural complexity, the
interaction model between a diagnostic application and the ECUs within a vehicle is also providing
challenges to a diagnostic application. One diagnostic service request sent to a vehicle can result in
multiple ECUs answering that request, or in multiple request and response frames in case of a diagnostic
service being executed repeatedly by the communication backend. Further complications arise when
an ECU's answer is sent in multiple parts. The conceivable permutations of physical and functional
addressing, one-shot and repeated execution and single- and multi-part responses and the resulting
result structures are illustrated below.

7.2.3.2	 One-shot service, physical addressing, single-part response

Figure 6 shows a communication flow between a tester and one ECU.

Figure 6 — One-shot service, physical addressing, single-part response

The ECU receives a physically addressed service request which results in the ECU sending a single-part
response to the tester system. The request sent to the ECU leads to the creation of a corresponding
result object (Result_1). The ECU's response is contained within that result object (Response_1).

7.2.3.3	 One-shot service, physical addressing, multi-part responses

Figure 7 shows a communication flow between a tester and one ECU.

Figure 7 — One-shot service, physical addressing, multi-part responses

The ECU receives a physically addressed service request which results in the ECU sending a multi-part
response to the tester system. The request sent to the ECU leads to the creation of a corresponding
result object (Result_1). The ECU's responses are contained within that result object (Response_1 and
Response_2).

7.2.3.4	 One-shot service, functional addressing, single-part response

Figure 8 shows a communication flow between a diagnostic application and a set of ECUs.

© ISO 2022 – All rights reserved	 ﻿
﻿

15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 8 — One-shot service, functional addressing, single-part response

The ECUs receive a functionally addressed service request which results in the ECUs sending a single-
part response to the application. The request sent to the ECUs leads to the creation of a corresponding
result object (Result_1). The ECU's response is contained within that result object (Response_1 and
Response_2). Please note that the OTX DiagCom term GetComChannelIdentifierFromResponse can be
used to identify the ECU (ComChannel) that a response is associated with.

7.2.3.5	 One-shot service, functional addressing, multi-part responses

Figure 9 shows a communication flow between a diagnostic application and a set of ECUs.

Figure 9 — One-shot service, functional addressing, multi-part responses

The ECUs receive a functionally addressed service request which results in the ECUs sending a multi-
part response to the tester system. The request sent to the ECUs leads to the creation of a corresponding
result object (Result_1). The ECU's responses are contained within that result object (Response_1
through Response_4).

7.2.3.6	 Repeated service, physical addressing, single-part response

Figure 10 shows a communication flow between a diagnostic application and one ECU.

Figure 10 — Repeated service, physical addressing, single-part response

	 ﻿� © ISO 2022 – All rights reserved
�﻿

16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The ECU receives a repeated physically addressed service request which results in the ECU sending a
single-part response to the diagnostic application for each request. The requests sent to the ECU lead
to the creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the
repeated requests are contained within the result object corresponding to the execution cycle that
provoked the response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

7.2.3.7	 Repeated service, functional addressing, single-part response

Figure 11 shows a communication flow between a diagnostic application and a set of ECUs.

Figure 11 — Repeated service, functional addressing, single-part response

The ECUs receive a repeated functionally addressed service request which results in the ECUs sending
a single-part response to the diagnostic application for each request. The requests sent to the ECUs
lead to the creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to
the repeated requests are contained within the result object corresponding to the execution cycle that
provoked the response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

7.2.3.8	 Repeated service, physical addressing, multi-part responses

Figure 12 shows a communication flow between a diagnostic application and one ECU.

Figure 12 — Repeated service, physical addressing, multi-part responses

The ECU receives a repeated physically addressed service request which results in the ECU sending a
multi-part response to the diagnostic application for each request. The requests sent to the ECU lead
to the creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the
repeated requests are contained within the result object corresponding to the execution cycle that
provoked the response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

© ISO 2022 – All rights reserved	 ﻿
﻿

17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.2.3.9	 Repeated service, functional addressing, multi-part responses

Figure 13 shows a communication flow between a diagnostic application and a set of ECUs.

Figure 13 — Repeated service, functional addressing, multi-part responses

The ECUs receive a repeated functionally addressed service request which results in the ECUs sending
a multi-part response to the diagnostic application for each request. The requests sent to the ECUs lead
to the creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the
repeated requests are contained within the result object corresponding to the execution cycle that
provoked the response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

7.2.3.10	 Other patterns

Please note that the OTX DiagCom extension does not explicitly support the feature of cyclically
executing diagnostic services, i.e. services where one request to an ECU leads to the ECU cyclically
sending responses to the tester system without corresponding requests. If such behaviour has to
be mapped by an OTX DiagCom runtime system, the basic rule is that an OTX result object always
corresponds to one request sent out by the tester system.

Figure 14 illustrates the theoretical case of a group of ECUs cyclically sending multi-part responses to
a diagnostic application. In OTX, the initial request send by the application will cause a corresponding
result object to be created, which subsumes any responses that were subsequently received. Please
note that OTX does not support any convenience functionality for the stopping of cyclic diagnostic
services. An OTX author that needs an ECU to stop its sending of cyclic responses has to manually select
and execute the appropriate diagnostic service for telling the ECU to stop.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

18

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 14 — One-shot service, functional addressing, cyclical multi-part responses

7.2.4	 Special-purpose diagnostic data types

As OTX does not support the explicit definition of structured data types, it needs to be mentioned how
the DiagCom extension treats ubiquitious diagnostic datatypes like DTCs or freeze frame data. Looking
at a DTC, it is a structured data type, with a set of structure parameters defined by SAE J1979[9] and
others that are OEM-specific. As such, a DTC in OTX is treated like any other structured parameter:
when a parameter that represents a DTC is retrieved from a diagnostic service's response, the DTC's
fields can be accesed through using the DiagCom term GetParameterByPath on the DTC parameter,
passing the name of the required sub-parameter in the <path> element.

For instance, if in a diagnostic system, a DTC's PID value is named "TroubleCode" to access that
information the OTX sequence would look as shown in the OTX sample below.

Sample of DTC

 <action id="a1">
 <specification>Get trouble code parameter from DTC</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="diag:ParameterVariable" name="TroubleCodeParameter"/>
 <term xsi:type="diag:GetParameterByPath">
 <diag:parameterContainer xsi:type="diag:ParameterValue" valueOf="dtc"/>
 <diag:path>
 <stepByName xsi:type="StringLiteral" value="TroubleCode"/>
 </diag:path>
 </term>
 </realisation>
 </action>

 <action id="a2">
 <specification>Get trouble code quantity from parameter</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="TroubleCodeValue"/>
 <term xsi:type="diag:GetParameterValueAsInteger">
 <diag:parameter xsi:type="diag:ParameterValue" valueOf="dtc"/>
 </term>
 </realisation>
 </action>

© ISO 2022 – All rights reserved	 ﻿
﻿

19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.3	 Data types

7.3.1	 Overview

All datatypes introduced by the OTX DiagCom extension are derived from the OTX core ComplexType
which means they define complex data types as defined by ISO 13209-2. The elements described here
are handles to the corresponding objects of the underlying communication system.

7.3.2	 Syntax

The syntax of all OTX DiagCom exception type declarations is shown in Figure 15.

Figure 15 — Data model view: DiagCom data types

7.3.3	 Semantics

7.3.3.1	 General

The OTX DiagCom data types have no initialization parts (except for the enumeration types
ResponseState and ResultState); therefore, these cannot be declared constant.

7.3.3.2	 ComChannel

A ComChannel is a handle to a communication channel. It represents the concept of linking to one specific
communication endpoint, e.g. an ECU module (physical addressing) or a set of ECU modules (functional
addressing).

NOTE	 In case of an MVCI/ODX based system, a ComChannel handle points to a MCDDLogicalLink object.

7.3.3.3	 DiagService

A DiagService is a handle to an object representing a diagnostic service, e.g. a service for reading
error codes. A DiagService handle can be used for performing a diagnostic service execution using the
ExecuteDiagService action (see 7.6.4.3.1).

NOTE	 In case of an MVCI/ODX based system, a DiagService handle represents a MCDDiagComPrimitive
object.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

20

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.3.3.4	 Result

A Result is a handle to the result of a diagnostic service object. See Figure 4 for an explanation of the
structure of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE	 In case of an MVCI/ODX based system, a Result handle represents an MCDResult object.

7.3.3.5	 ParameterContainer

The ParameterContainer is an abstract data type which subsumes all data types that contain
parameters, i.e. Parameter and Message handles.

7.3.3.6	 Parameter

A Parameter is a handle to a parameter object of a diagnostic service request or response. It can
represent a simple or a complex type parameter, i.e. a Parameter handle might point to a simple Integer
or String parameter, or it might correspond to a parameter structure or a list of parameters, depending
on the definitions of the underlying communication system. See Figure 4 for an explanation of the
structure of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE	 In case of an MVCI/ODX based system, a Parameter handle represents an MCDParameter object (or its
specializations MCDRequestParameter and MCDResponseParameter, respectively).

7.3.3.7	 Message

The Message element is an abstract data type that encapsulates actual ECU messages.

7.3.3.8	 Response

A Response is a handle to a response object of a diagnostic service’s result. See Figure 4 for an explanation
of the structure of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE	 In case of an MVCI/ODX based system, a Response handle represents an MCDResponse object.

7.3.3.9	 Request

A Request is a handle to a request of a diagnostic service. See Figure 4 for an explanation of the structure
of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE	 In case of an MVCI/ODX based system, a Request handle represents an MCDRequest object.

7.3.3.10	 ResultState

ResultState is an enumeration type describing the state of a Result.

The list of allowed enumeration values is defined as follows:

—	 ALL_FAILED: all ECUs in a functional group (listening to the same functional address) failed to
answer, in case of physical addressing: the one requested ECU failed to answer;

—	 ALL_INVALID: all ECUs in a functional group (listening to the same functional address) returned an
invalid answer, in case of physical addressing: the one requested ECU returned an invalid response;

—	 ALL_NEGATIVE: all ECUs in a functional group (listening to the same functional address) returned
a negative response, in case of physical addressing: the one requested ECU returned a negative
response;

—	 ALL_POSITIVE: all ECUs in a functional group (listening to the same functional address) returned
a positive response, in case of physical addressing: the one requested ECU returned a positive
response;

© ISO 2022 – All rights reserved	 ﻿
﻿

21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 FAILED: some of the ECUs in a functional group (listening to the same functional address) failed to
answer;

—	 INVALID: some of the ECUs in a functional group (listening to the same functional address) returned
an invalid response;

—	 NEGATIVE: some of the ECUs in a functional group (listening to the same functional address) returned
a negative response;

—	 POSITIVE: some of the ECUs in a functional group (listening to the same functional address) returned
a positive response.

The mapping from an MVCIServer is shown in Table 5 — Relation between OTXResultState and
MCDEXecutionState.

Table 5 — Relation between OTXResultState and MCDEXecutionState

OTX ResultState MCDExecutationState
ALL_FAILED eALL_FAILED
ALL_INVALID eALL_INVALID_RESPONSE
ALL_NEGATIVE eALL_NEGATIVE
ALL_POSITIVE eALL_POSITIVE
FAILED eCANCELED_DURING_EXECUTION

eCANCELED_FROM_QUEUE
eFAILED

INVALID eINVALID_RESPONSE
NEGATIVE eNEGATIVE
POSITIVE -----

Please note that the value Positive will never occur.

IMPORTANT — ResultState values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
ALL_FAILED < ALL_INVALID < ALL_NEGATIVE < ALL_POSITIVE < FAILED < INVALID < NEGATIVE <
POSITIVE.

IMPORTANT — When applying otx:ToString on a ResultState value, the resulting string shall
be the name of the enumeration value, e.g. otx:ToString(POSITIVE)="POSITIVE". Furthermore,
applying otx:ToInteger shall return the index of the value in the ResultStates enumeration
(smallest index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

ResultState is an otx:SimpleType. Its members have the following semantics:

—	 <init> : ResultStateLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : ResultStates={ALL_FAILED|ALL_INVALID|ALL_NEGATIVE|ALL_POSITIVE| FAILED|INVA
LID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResultStates enumeration.

IMPORTANT — If the ResultState declaration is not explicitly initialized (omitted <init>
element), the default value shall be ALL_FAILED.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

22

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.3.3.11	 ResponseState

ResponseState is an enumeration type describing the state of a Response.

The list of allowed enumeration values is defined as follows:

— FAILED: the ECU failed to answer;

— INVALID: the ECUs returned an invalid response;

— NEGATIVE: the ECUs returned a negative response;

— POSITIVE: the ECUs returned a positive response.

IMPORTANT — ResponseState values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
FAILED < INVALID < NEGATIVE < POSITIVE.

IMPORTANT — When applying otx:ToString on a ResponseState value, the resulting string shall
be the name of the enumeration value, e.g. otx:ToString(POSITIVE)="POSITIVE". Furthermore,
applying otx:ToInteger shall return the index of the value in the ResponseStates enumeration
(smallest index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

ResponseState is an otx:SimpleType. Its members have the following semantics:

—	 <init> : ResponseStateLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : ResponseStates={FAILED|INVALID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResponseStates enumeration.

IMPORTANT — If the ResponseState declaration is not explicitly initialized (omitted <init>
element), the default value shall be FAILED.

7.4	 Exceptions

7.4.1	 Overview

All elements referenced in this subclause are derived from the OTX core Exception type as defined by
ISO 13209-2. They represent the full set of exceptions added by the OTX DiagCom extension.

7.4.2	 Syntax

The syntax of all OTX DiagCom exception type declarations is shown in Figure 16.

© ISO 2022 – All rights reserved	 ﻿
﻿

23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 16 — Data model view: DiagCom exceptions

7.4.3	 Semantics

7.4.3.1	 General

Since all OTX DiagCom exception types are implicit exceptions without initialization parts, they cannot
be declared constant.

7.4.3.2	 DiagComException

The DiagComException is the super class for all exceptions in the DiagCom extension. A DiagComException
shall be used in case the more specific exception types described in the remainder of this subclause do
not apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

7.4.3.3	 AmbiguousSemanticException

The AmbiguousSemanticException is thrown if there is more than one object with the same semantic
attribute matching a DiagCom activity. This exception can be thrown by the following actions/terms:

—	 CreateDiagServiceBySemantic ;

—	 GetParameterBySemantic ;

—	 SetParameterValueBySemantic .

7.4.3.4	 UnknownTargetException

The UnknownTargetException is thrown if a DiagCom action or term references an object in the
underlying communication system that is not available or not defined.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

24

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.4.3.5	 LossOfComException

The LossOfComException is thrown if there is a communication breakdown during a service execution,
e.g. in case the cable to the vehicle gets unplugged.

7.4.3.6	 UnknownResponseException

This exception is thrown in case execution of a diagnostic service returned a response that was not
mapped by the ExecuteDiagService action (see 7.6.4.3.1). If no <responseParameters> are defined, no
UnknownResponseException will be thrown.

7.4.3.7	 UnknownComChannelException

This exception is thrown in case a Response handle cannot be linked to a communication channel when
using the GetComChannelNameFromResponse term (see 7.7.2.3.4).

7.4.3.8	 InvalidStateException

This exception is thrown in case the StartRepeatedExecution action used on a DiagService that is
already executing repeatedly, in case the StopRepeatedExecution action is used on a DiagService that
is not currently executing repeatedly or in case the SetRepetitionTime action is used on a DiagService
that is currently executing repeatedly.

7.4.3.9	 IncompleteParameterizationException

This exception is thrown in case a DiagService was executed where not all request parameters have
been set that did not have a default value.

7.5	 Variable access

7.5.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following specifies all variable access types defined for the DiagCom extension.

7.5.2	 Syntax

Figure 17 shows the syntax of the DiagCom extension's variable access types.

Figure 17 — Data model view: DiagCom variable access types

© ISO 2022 – All rights reserved	 ﻿
﻿

25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.5.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for details.

7.6	 Actions

7.6.1	 Overview

All of the elements shown in Figure 18 extend the otx:ActionRealisation extension interface as
defined by ISO 13209-2.

Figure 18 — Data model view: DiagCom actions overview

7.6.2	 ComChannel related actions

7.6.2.1	 Description

All actions described in this subclause effect changes on a ComChannel handle.

7.6.2.2	 Syntax

Figure 19 shows the syntax of all ComChannel related ActionRealisation types of the DiagCom
extension.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

26

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 19 — Data model view: ComChannel related actions

7.6.2.3	 Semantics

7.6.2.3.1	 IdentifyAndSelectVariant

The IdentifyAndSelectVariant action shall be used to tell the communication backend to identify the
ECU variant that is present at runtime at a specific communication channel. In case an ECU variant can
be identified, the communication channel is switched to point to that specific variant.

This document cannot make assumptions about whether the vehicle communication component used
by an OTX runtime supports the concept of ECU variant identification or about the behaviour of the
communication component in case it does. The relevant parts of the DiagCom extension are based on
the following assumptions.

—	 A communication channel to an ECU is associated with a data set describing diagnostic behaviour of
a specific variant of that ECU.

—	 The vehicle communication component can explicitly perform an ECU variant identification
operation on a communication channel to an ECU.

—	 The required logic and data for performing the variant identification is intrinsic to the vehicle
communication component, i.e. there is no additional external information required for the
communication component to perform the ECU variant identification.

—	 After an ECU variant has been identified, the vehicle communication component is able to explicitly
associate the communication channel to that ECU with the specific data set for that ECU variant,
effectively switching the communication channel from the old variant data set to a new one.

The IdentifyAndSelectVariant action tells the runtime system to perform the variant identification
operation on the provided communication channel and then switch the data set associated with that
channel to the one fitting the newly identified variant (if any). Please refer also to the GetComChannel
term (see 7.7.2.3.3) which tells the runtime system to create a new communication channel, immediately
perform the variant identification operation on the new communication channel and then switch the
data set associated with that channel to the one fitting the newly identified variant (if any).

NOTE	 In case an ODX/MVCI system is used, the exact semantics of variant identification and selection are
specified by the ISO ODX and MVCI standards.

The members of the IdentifyAndSelectVariant action the following semantics:

—	 <comChannel> : ComChannelValue [1]

This element comprises the communication channel which shall be used for identifying the actual
variant of the ECU the communication channel is connected to.

Throws:

—	 LossOfComException

It is thrown if communication to the ECU was interrupted during the variant identification process.

IMPORTANT — If a variant identification returns without identifying a variant, a DiagComException
shall be thrown.

© ISO 2022 – All rights reserved	 ﻿
﻿

27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.6.2.3.2	 CloseComChannel

The action CloseComChannel tells the OTX runtime system that the communication channel to an ECU
can be closed and associated resources can be freed. Please note that the use of the CloseComChannel
action by an OTX sequence only indicates that the channel is not needed any more, it is up to the
implementation of a specific runtime system whether it frees all resources and closes the channel at this
point. If a diagnostic sequence uses a ComChannel handle after it has been freed by a CloseComChannel
action, the runtime system shall throw an otx:InvalidReferenceException.

Closing an uninitialized or already closed ComChannel shall perform no operation and report no errors.
It shall be for all effects a NOP.

The members of the CloseComChannel action have the following semantics:

—	 <comChannel>: ComChannelVariable [1]

This element comprises communication channel which shall be closed.

7.6.3	 ComParameter related actions

7.6.3.1	 Description

All actions described in this subclause change communication parameter settings of a ComChannel
handle. For example, CAN timeouts or baudrate settings usually are modelled as communication
parameters.

7.6.3.2	 Syntax

Figure 20 shows the syntax of all parameters handling related ActionRealisation types of the DiagCom
extension.

Figure 20 — Data model view: Communication parameter handling

7.6.3.3	 Semantics

7.6.3.3.1	 SetComParameter

The SetComParameter action shall be used to change the value of a communication parameter used by the
communication backend. For example, bus timeouts or baud rates can be set using the SetComParameter
node.

NOTE	 In case an ODX/MVCI system is used for vehicle communication, the communication parameter names
and data types that can be set are defined by the D-PDU API/ODX communication parameter specification.

IMPORTANT — In case an ODX/MVCI system is used for vehicle communication, this action
should implicitly control the LogicalLink State. The state should be adjusted for setting of COM
Parameters. This requires state eONLINE.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

28

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The members of the SetComParameter action have the following semantics:

—	 <comChannel> : ComChannelValue [1]

This element comprises the communication channel where the communication parameter shall be
modified.

—	 <name> : otx:StringTerm [1]

This element specifies the name of the communication parameter which shall be changed.

—	 <value> : otx:Term [1]

This element specifies the new communication parameter value that shall be set.

Throws:

—	 UnknownTargetException

It is thrown if no communication parameter with the specified name exists.

—	 otx:TypeMismatchException

It is thrown if the specified quantity type does not match the data type of the communication
parameter to be set.

7.6.3.3.2	 SetComplexComParameter

The SetComplexComParameter action is an enhanced variant of SetComParameter. The difference between
these actions is that in this case complex data types can be used.

NOTE	 For instance, in an ODX/MVCI based system, complex communication parameter data types are used
to define response ID lists for the functional addressing use case.

The members of the SetComplexComParameter action have the following semantics:

—	 <comChannel> : ComChannelValue [1]

This element comprises the communication channel where the communication parameter shall be
modified.

—	 <parameter> : ParameterTerm [1]

This element comprises the parameter structure which shall be set.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified <parameter> element does not match the communication parameter to
be set.

7.6.4	 DiagService related actions

7.6.4.1	 Description

Actions described in this subclause are used for setting up and performing actual ECU communication.

7.6.4.2	 Syntax

Figure 21 shows the syntax of all ActionRealisation types of the DiagCom extension which relate to
diagnostic service configuration and execution.

© ISO 2022 – All rights reserved	 ﻿
﻿

29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 21 — Data model view: DiagService related actions

7.6.4.3	 Semantics

7.6.4.3.1	 ExecuteDiagService

The ExecuteDiagService action shall be used for performing diagnostic vehicle communication. An
ExecuteDiagService node in an OTX sequence indicates to the runtime system that at this point, a
service request shall be transmitted to one or more ECUs, and that any associated responses might
have to be provided to the OTX sequence. To be able to do this, the ExecuteDiagService action requires
two sets of information:

a)	 the DiagService to use;

b)	 the definition for mapping OTX values to the service’s request parameters as well as the values of
the service’s response parameters back to OTX variables.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

30

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The writing/reading of values to/from service parameters can be done in two ways, depending on
whether a service’s parameter structure is known at OTX authoring time or will have to be dynamically
evaluated at run time.

—	 Inline mapping: In case a service’s parameter structure is known at authoring time, the
ExecuteDiagService action can be used to define request and response parameter mappings inline
through its <RequestParameters> and <ResponseParameters> members. A detailed explanation will
be given in the remainder of this subclause. Please note that the inline mapping approach is only
meant to be used in cases where there is one response from one ECU to a diagnostic service. In case
more than one ECU respond to a service request and/or ECUs respond more than once, the inline
mapping will only relate to the first response within the first result.

—	 Dynamic response: In case a service’s parameter structure is dynamic at runtime (not known at
authoring time), it is possible to use terms defined by the DiagCom extension to evaluate request
and response parameter structures by explicit OTX statements. This way, it is possible to, e.g. loop
through a service response that contains a list of structures. An example for a diagnostic service
where the response parameter structure varies in such a way at runtime is the read DTC as defined
by the UDS protocol[6].

The mapping of the data types between ODX/MVCI and OTX is described in detail for inline mapping
and dynamic response in Annex B which shall be followed.

Manual evaluation of results is also needed in case a diagnostic service produces a complex result
structure. This can happen in two cases, the first one being a diagnostic service where one service
execution results in multiple, cyclic responses from an ECU. In this case, the diagnostic service will
have multiple results associated with it, one for each of the ECUs responses along the timeline. The
individual results shall be accessed and evaluated through the terms defined in 7.6.4.4. The second
case is when one diagnostic request results in multiple responses from different ECUs, i.e. when using
functional addressing. In this case, there is one result associated with the diagnostic service, which
in turn contains multiple responses, one for each ECU that responded to the functional request. The
individual responses shall be accessed and evaluated using the terms defined in 7.6.4.4. Please note that
in theory, both cases can also be combined; it is possible to imagine a repeatedly sent diagnostic service
which uses functional addressing, producing multiple results including multiple responses each. Please
refer to 7.6.4.4 for more details.

The following rules apply for inline mapping of parameters in the ExecuteDiagService element.

—	 Response mapping and exception behaviour of ExecuteDiagService: generally, the
ExecuteDiagService action can contain multiple sequences of response parameters—one for each
response that is of interest to the OTX sequence. If at runtime an ECU response is encountered
that is not represented by a <responseParameters> element in the ExecuteDiagService node, and
there are any <responseParameters> elements, this shall result in an UnknownResponseException. If
no <responseParameters> are defined, no UnknownResponseException will be thrown. To be able to
determine the nature of the problem, in this case it is possible to retrieve the DiagService object that
was executed from the UnknownResponseException using the term GetDiagServiceFromException
(see 7.7.3.3.7), and then to analyse its response structure by looking at the PDU of the response (see
term GetPdu in 7.7.4.3.4) or by the usual traversal methods using the appropriate DiagCom terms.

—	 Defining which service responses are of interest to the diagnostic sequence: as has been elaborated
in the previous paragraph, an ExecuteDiagService node can freely define which of the responses
of a service it is interested in by providing a <responseParameters> element with the appropriate
response name. Please note that a <responseParameters> element is allowed to be empty, it is not
required that any mappings of actual response parameters are defined. This allows a diagnostic
sequence author fine-grained control over the behaviour of the ExecuteDiagService action:
whether the ExecuteDiagService action is supposed to throw an exception in case an unexpected/
unwanted response is encountered is simply a matter of providing a potenitally empty response
parameter mapping for the response in question. For example, if a diagnostic sequence author is
only interested in a positive response and considers the occurence of a negative response to be an
error, the author should only provide a mapping for the positive response's name. If the occurence of
the negative response is not considered an error and shall not cause an UnknownResponseException,

© ISO 2022 – All rights reserved	 ﻿
﻿

31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

the author can simply provide a mapping for the negative response as well, which can be empty
if the author does not care about the acutal response parameters. The princple applies for any
combination of responses (positive, negative, global negative, etc.); simply by providing an
appropriate <responseParameters> element, the author can control whether the occurence of the
response shall be treated as an UnknownResponseException (no mapping) or not (mapping present).

NOTE	 In case the OTX DiagCom extension functionality is used with an ODX/MVCI system, the name of the
<responseParameters> element is the SHORT-NAME of the response (positive, local negative, global negative)
in the corresponding ODX data. In case of the DiagCom extension being used with a different communications
backend that has no concept of multiple responses for a service/no names for responses, a similar internal
naming convention could be used to map OTX response parameters to positive or negative responses.

The ExecuteDiagService action can also be configured to tell the communication backend that the
addressed ECU shall suppress the sending of a positive response, in case that concept is supported by
the communication backend and by the specific diagnostic service that is to be executed. This shall
happen if the value of the attribute suppressPositiveResponse is set to true. If the attribute is omitted
from ExecuteDiagService, the default value shall be false.

The members of ExecuteDiagService action have the following semantics:

—	 executeAsync : xsd:boolean={false|true} [0..1]

This option tells the communication backend to make this diagnostic service execution non-
blocking. This means that if executeAsync is set to true, the OTX execution flow will immediately
move on to the next Action, without waiting for the result of the ExecuteDiagService action. As
a consequence, any response parameter mappings defined by this ExecuteDiagService action are
ignored: as the diagnostic service execution has not necessarily finished with the execution of the
ExecuteDiagService node, the OTX variables that are statically mapped to contain the service's
responses cannot contain a value at this point. The use of the executeAsync capability always
requires the OTX sequence to perform dynamic response interpretation. An OTX sequence can
make use of the DiagServiceEventSource term (refer to 7.7.9.3.1) to be notified when a new result
for an asynchronously executed diagnostic service has arrived.

—	 suppressPositiveResponse : xsd:boolean={false|true} [0..1]

This option tells the ECU(s) addressed by the diagnostic service to suppress sending of a positive
response. This feature has to be supported by the underlying communication system, diagnostic
protocol and specific diagnostic service (compare to suppressPosRspMsgIndicationBit of the UDS
protocol[6]).

—	 <diagService> : DiagServiceTerm [1]

The element specifies the service which shall be executed. Syntax and semantics of expression
DiagServiceTerm are specified in 7.7.3.

—	 <requestParameters> : RequestParameters [0..1]

In this part OTX values are mapped to service request parameters.

—	 <requestParam> : RequestParameter [1..*]

This element shall be used to assign OTX values to request parameters of the diagnostic service.

—	 <value> : otx:Term [1]

This element specifies the value which shall be assigned to a service’s request parameter.
At runtime, the value is yieled by evaluation of the term given by the <value> member
element. It is only allowed to map from OTX simple data types, OTX bytefields, lists and
maps as well as OTX quantities as defined in the OTX quantities extension. The specific
data type to be used in a mapping depends on the type expected by the diagnostic service’s
request parameter.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

32

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <path> : otx:Path [1]

This element is described in the OTX core language specification. Here it shall be used to
locate the request parameter to which the value shall be assigned to.

The full path shall be used, that is all short names shall be contained, starting from the
table row. In case of dynamic elements (e.g. eEND_OF_PDU, eFIELD, eSTRUCT_FIELD) an
index as number can be inserted, instead of a short name.

The usage of the following elements depends on the elements necessary stepping through
the parameter hierarchy. If more steps like <stepByIndex> / <stepByName> are necessary
these elements get combined.

—	 <stepByIndex> : otx:NumericTerm [1]

	 The element shall be used locate a parameter inside a list of request parameters.
For example, in case a diagnostic service request contains a list of three parameter
structures, the <stepByIndex> element can be set to 0 to indicate a mapping to the first
of these three list entries. Float values shall be truncated.

—	 <stepByName> : otx:StringTerm [1]

	 The element shall be used to locate a named parameter of a request. For example,
in case a diagnostic service request contains three parameters "RequestParameterA",
"RequestParameterB" and "RequestParameterC", the <stepByName> element can be
set to "RequestParameterB" to indicate a mapping to the second of these request
parameters.

—	 <responseParameters> : ResponseParameters [0..*]

In this part service response parameters are assigned to OTX variables.

—	 <name> : otx:StringTerm [1]

This element shall contain the name of the response that shall be used for this mapping
definition.

IMPORTANT — In case an ODX/MVCI based communication backend is used, this element
shall contain the SHORT-NAME of the RESPONSE element that shall be mapped. In case a non-
ODX based system is used, this element should contain an equivalent response identifier
to denote a positive, negative etc. response.

—	 <responseParam> : ResponseParameter [0..*]

This element shall be used to assign response parameter values of a diagnostic service to OTX
variables.

—	 <target> : otx:Variable [0..1]

This element specifies the OTX variable the response value shall be assigned to. It is only
allowed to assign to OTX simple data types, OTX bytefields, parameters, lists and maps and
OTX quantities.

—	 <path> : otx:Path [1]

This element is described in the OTX core language definition. Here it shall be used to define
which response parameter shall be mapped to an OTX variable.

The full path shall be used, that is all short names shall be contained, starting from the table
row. In case of dynamic elements (e.g. eEND_OF_PDU, eFIELD, eSTRUCT_FIELD) an index as
number can be inserted, instead of a short name.

© ISO 2022 – All rights reserved	 ﻿
﻿

33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The member elements <stepByIndex> and <stepByName> are not further specified here since
they have identical semantics as specified for the <requestParameters> mapping explained
above.

—	 <textIdTarget> : otx:StringVariable [0..1]

This element specifies the OTX string variable the text identifier of the response parameter
value shall be assigned to. If the value returned by the ResponseParameter does not have a text
identifier an otx:TypeMismatchException shall be thrown.

NOTE	 In case an ODX/MVCI based system is used, the text identifier shall return the LongNameID of
the related database object.

—	 <result> : otx:ResultVariable [0..1]

After execution of the diagnostic service, the first result shall be assigned to the variable given by
this optional element.

In order to get further results (e.g. in case of cyclic execution), the GetAllResults term shall be
used (see 7.7.5.3.4).

—	 <resultState> : otx:ResultStateVariable [0..1]

After execution of the diagnostic service, the state of its first result (i.e. whether the ECU(s)
answered at all, correctly, positively or negatively) shall be assigned to the variable given by this
optional element. Allowed result state values are specified by the ResultState data type as defined
in 7.3.3.10.

In order to get the result state of further results (e.g. in case of cyclic execution), the GetResultState
term shall be used (see 7.7.5.3.8).

Throws:

—	 IncompleteParameterizationException

It is thrown if one or more request parameters of the diag service have not been set and do not have
a default value.

—	 LossOfComException

It is thrown if communication to the ECU was interrupted during diagnostic service execution.

—	 UnknownTargetException

It is thrown if no request or response parameter with the specified name in any of the parameter
mappings exist.

—	 UnknownResponseException

It is thrown if execution of the diagnostic service returned a response that was not mapped by any
<responseParameters> element.

—	 otx:OutOfBoundsException

It is thrown if a conversion cannot be made because an OTX value exceeds the limits of the target
data type of a parameter of the vehicle communication component.

—	 otx:TypeMismatchException

It is thrown if an invalid OTX data type is mapped to a request parameter or a response parameter
is mapped to an invalid OTX data type. For instance, it is thrown if a String variable gets mapped
onto a request parameter that is of type Integer.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

34

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

If an OTX element is mapped to <textIdTarget> of a ResponseParameter, but the value returned by the
ResponseParameter does not have a text identifier.

Associated checker rules:

—	 DiagCom_Chk001 – no Path in ExecuteDiagService response parameter arguments (see A.2.1);

—	 DiagCom_Chk003 – target definition for ResponseParameter (see A.2.3).

An example for the ExecuteDiagService action is given in 7.6.4.4.

7.6.4.3.2	 ExecuteHexDiagService

The ExecuteHexDiagSevice action allows the sending of diagnostic services by directly entering the
request byte stream, bypassing the symbolic level that is utilized by the normal ExecuteDiagService
action. By using this action, ECUs can be directly addressed with hex requests defined by the OTX
sequence author. Possible use cases for this functionality are errors in the diagnostic database which
shall be bypassed to achieve a temporary workaround. The response to an ExecuteHexDiagService is
provided as a ByteField containing the raw, uninterpreted ECU response message. Please note that
the ExecuteHexDiagSevice action is only meant to be used in cases where there is one response from
one ECU to a diagnostic service. In case more than one ECU respond to a service request and/or ECUs
respond more than once, the <hexResponse> assignment will only contain the first Response of the first
Result.

A PDU as understood by the DiagCom extension comprises the complete payload of a message including
the service identifier and any other request parameters. It does not include header or checksum bytes
from underlying protocol layers.

The members of the ExecuteHexDiagService action have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

This element shall comprise the handle of the communication channel which shall be used for
communication with the ECU.

—	 <hexRequest> : otx:ByteFieldTerm [1]

This element shall contain the service request as a set of raw bytes.

—	 <hexResponse> : otx:ByteFieldVariable [0..1]

This element specifies the OTX ByteField variable to which the raw response bytes of the service
shall be assigned.

Throws:

—	 LossOfComException

It is thrown if communication to the ECU was interrupted during diagnostic service execution.

7.6.4.3.3	 StartRepeatedExecution

This action causes a DiagService to be executed repeatedly by the underlying communication
backend. The repetition time shall be set through the SetRepetitionTime action and queried by the
GetRepetitionTime term. The behaviour depends on the underplaying system. Especially if the repetition
time value is 0 or lower than the physical possible repetition time. The StartRepeatedExecution action
will return immediately, the results of the DiagService created by the repeeated service execution can
be queried through the GetFirstResult or GetAllResults terms or the GetAllResultsAndClear action.
Each new result (each execution cycle) will cause a DiagServiceEvent to be raised by the DiagService
object. To stop a repeated service execution, the StopRepeatedExecution action is to be used.

© ISO 2022 – All rights reserved	 ﻿
﻿

35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The members of the StartRepeatedExecution action have the following semantics:

—	 <diagService> : DiagServiceValue [1]

The element specifies the service which shall be executed repeatedly.

Throws:

—	 InvalidStateException

The diag service is already being executed repeatedly.

—	 IncompleteParameterizationException

One or more request parameters of the diag service have not been set and do not have a default
value.

7.6.4.3.4	 StopRepeatedExecution

This action causes the repeated execution of a DiagService to be stopped. The results of the
DiagService created by the repeated service execution can be queried through the GetFirstResult / or
GetAllResults terms or the GetAllResultsAndClear action. To start a repeated service execution, the
StartRepeatedExecution action is to be used.

The members of the StopRepeatedExecution action have the following semantics:

—	 <diagService> : DiagServiceValue [1]

The element specifies the service which shall not be executed repeatedly anymore.

Throws:

—	 InvalidStateException

The diag service is currently not being executed repeatedly.

7.6.4.3.5	 SetRepetitionTime

This action sets the repetition cycle time of a diagnostic service. The repetition time is always provided
in millisecond (ms) granularity. It is not allowed to set the repetition time of a service while it is being
executed repeatedly. To start or stop a repeated service execution, the StartRepeatedExecution and
StopRepeatedExecution actions are to be used ().

The members of the SetRepetitionTime action have the following semantics:

—	 <diagService> : DiagServiceValue [1]

The element specifies the service where the repetition time should be set.

—	 <repetitionTime> : otx:NumericTerm [1]

This element specifies the repetition cycle time in milliseconds (ms). Float values shall be
truncated.

Throws:

—	 InvalidStateException

The diag service is currently being executed repeatedly.

—	 otx:OutOfBoundsException

The repetition time value is negative.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

36

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.6.4.3.6	 GetAllResultsAndClear

This action retrieves all available result entries from a diagnostic service and then clears the diagnostic
communication system’s result buffer. The results are provided as a list of Result elements. In
comparison to the term GetAllResults defined in 7.7.5.3.4, GetAllResultsAndClear is modelled as an
ActionRealisation because it changes the DiagService object it is invoked on by clearing its result
buffer.

This action is designed based on the assumption that a diagnostic communication component as used
by an OTX runtime has the capability to buffer results it receives from ECUs. Especially for dealing
with system behaviour as illustrated in Figure 6 (one ECU returning multiple results for one diagnostic
request) a communication system requires a buffering concept for ECU results. The following
assumptions are made in the context of the DiagCom extension regarding the result buffer.

—	 The result buffer is owned and managed by the vehicle communication component and is outside
the scope of an OTX runtime.

—	 Every DiagService object has an associated result buffer which contains any results that were
received as a reaction to an ExecuteDiagService action.

—	 This result buffer is of finite size, i.e. a loop buffer that will wrap around after a number of results
have been received by the vehicle communication component.

—	 The DiagCom term GetFirstResult (see 7.7.5.3.3) only fetches the first (in time) result out of the
communication component's result buffer but does not modify that buffer.

—	 The DiagCom term GetAllResults (see 7.7.5.3.4) fetches all results present at the time of the call out
of the communication component's result buffer but does not modify that buffer. The list of results
that is returned to OTX will be in ascending order from first (oldest) to last (most recent) result.

—	 The DiagCom action GetAllResultsAndClear (see 7.6.4.3.6) fetches all results present at the time of
the call out of the communication component's result buffer and tells the communication component
to clear the buffer afterwards. The list of results that is returned to OTX will be in ascending order
from first (oldest) to last (most recent) result.

The members of the GetAllResultsAndClear action have the following semantics:

—	 <diagService> : DiagServiceValue [1]

This element specifies the diagnostic service to retrieve results from. Syntax and semantics of
expression DiagServiceVariable are specified in 7.5.

—	 <resultList> : otx:ListVariable [1]

This element specifies the List to which the list of Result items shall be assigned.

Associated checker rules:

—	 DiagCom_Chk002 – type-safe GetAllResultsAndClear (see A.2.2).

7.6.4.3.7	 SetParameterValue

This action sets a specific value to a Parameter element. The value to be set is to be provided as an OTX
simple type, an OTX bytefield, an OTX list an OTX map or an OTX Quantity as defined in Clause 16.

The members of the SetParameterValue action have the following semantics:

—	 <parameter> : ParameterTerm [1]

This element specifies the parameter which will be set. Syntax and semantics of the ParameterTerm
type are specified in 7.7.6.3.9.

© ISO 2022 – All rights reserved	 ﻿
﻿

37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <value> : otx:Term [1]

This element specifies the value that shall be set on the parameter. Allowed input types are OTX
simple types, OTX bytefields, OTX lists and OTX maps.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the conversion cannot be made because the OTX value exceeds the limits of the target
data type of a parameter of the vehicle communication component.

If the underlying system cannot set the parameter value, for example, because the parameter is a
ResponseParameter or ConstantParameter.

—	 otx:TypeMismatchException

It is thrown if the data type of the OTX value to be set does not match the parameter vehicle
communication component. For instance, it is thrown if a String variable gets mapped onto a
parameter that is of type Integer.

7.6.4.3.8	 SetParameterValueBySemantic

This action sets a value to a <parameter> element with a specific semantic. This action is used in case the
backend communication system provides the means to associate semantic metadata with parameters
of diagnostic services. The value to be set is to be provided as an OTX simple type, an OTX bytefield, list
or map or an OTX Quantity as defined in Clause 16.

NOTE 1	 The ability to assign a semantic value to a diagnostic service or service parameter allows applications
working with diagnostic data to access functionality in a manner more abstract than directly pointing to
specific names of services/parameters. For example, the diagnostic service to be used for DTC reading could be
required to carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter
what the actual name of the service in a specific data set is. While using semantic attributes, certain elements
of a diagnostic data set can become universally identifiable, even though the names of these elements have to
conform to user-specific conventions and therefore, differ between or even within companies.

NOTE 2	 When using an ODX/MVCI based system it is mandatory to assign specific semantic attribute values
to the parameters used by diagnostic services for implementing DDLID (dynamically defined local identifier)
functionality, like the DDLID-POS semantic attribute that is used for indicating the parameter that defines the
position of a value in a dynamically created response.

The members of the SetParameterValueBySemantic action have the following semantics:

—	 <parameterContainer> : ParameterContainerTerm [1]

The object that contains the parameter that shall be changed. Syntax and semantics of expression
ParameterContainerTerm are specified in 7.7.6.3.9.

—	 <semantic> : otx:StringTerm [1]

This element specifies the semantic of the parameter that shall be modified.

—	 <value> : otx:Term [1]

This element specifies the value that shall be set to the Parameter. Allowed input types are OTX
simple types, OTX bytefields, lists and maps and OTX quantities.

Throws:

—	 AmbiguousSemanticException

It is thrown if there are none or more than one parameters present in the ParameterContainerTerm
with the semantic value specified by the <semantic> element.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

38

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 otx:OutOfBoundsException

It is thrown if the conversion cannot be made because the OTX value exceeds the limits of the target
data type of a parameter of the vehicle communication component.

—	 otx:TypeMismatchException

It is thrown if the data type of the OTX value to be set does not match the parameter vehicle
communication component. For instance, it is thrown if a String variable is mapped onto an
Integer-type parameter.

7.6.4.3.9	 SetPdu

This action is used to directly set a specific ByteField to a Request instance, without using the symbolic
level provided by the parameter mapping mechanism of the ExecuteDiagService action or the related
DiagCom terms. In addition to SetPdu, there exists a term GetPdu which is used to retrieve the raw byte
representation from a Response instance (see 7.7.4.3.4). SetPdu is modelled as an ActionRealisation
because it modifies the object it is invoked on.

A PDU as understood by the OTX DiagCom extension comprises the complete payload of a message
including the service identifier and any other request parameters. It does not include header or
checksum bytes from underlying protocol layers.

The members of the SetPdu action have the following semantics:

—	 <request> : RequestTerm [1]

This element specifies the Request to which the value given by <pdu> shall be assigned. Syntax and
semantics of expression RequestTerm are specified in 7.7.3.3.8.

—	 <pdu> : otx:ByteFieldTerm [1]

The ByteField which shall be written to the Request.

7.6.4.4	 Example

The example below illustrates the inline mapping usage of the ExecuteDiagService action node, using
the prefix "ODX_" to indicate identifiers that link to the ODX/MVCI communication component. The
example executes a diagnostic service called "ODX_DiagServiceName" on a ComChannel defined by the
variable "ComChannelHandle". The request parameter with the name "ODX_RequestParameterShortName"
is set to the string value "ExampleParameterValue", and the response parameter named "ODX_
ResponseParameterShortName" of the response named "ODX_PositiveResponseName" is mapped to the
OTX variable called "outputParamHandle".

Figure 22 shows the usage of the <stepByName> element. The first XML example defines a reference to
parameter "ReqParam2". In the second example a reference over two levels to "StructParam2" is shown.

Figure 23 shows the usage of the <stepByIndex> element. The XML example shows a reference to a
parameter over three levels, inside a list of parameters structures. The first and the third path steps
are <stepByName> references. The second is a <stepByIndex> reference to indicate the desired list entry.

Sample of ExecuteDiagService

 <action id="a1">
 <specification>Execute a diagservice and map a response to an OTX variable</
specification>
 <realisation xsi:type="diag:ExecuteDiagService">
 <diag:diagService xsi:type="diag:CreateDiagServiceByName">
 <diag:comChannel xsi:type="diag:ComChannelValue" valueOf="comChannelHandle"/>
 <diag:name xsi:type="StringLiteral" value="ODX_DiagServiceName"/>
 </diag:diagService>
 <diag:requestParameters>
 <diag:requestParam>

© ISO 2022 – All rights reserved	 ﻿
﻿

39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 <diag:value xsi:type="StringLiteral" value="ExampleParameterValue"/>
 <diag:path>
 <stepByName xsi:type="StringLiteral" value="ODX_RequestParameterShortName"/>
 </diag:path>
 </diag:requestParam>
 </diag:requestParameters>
 <diag:responseParameters>
 <diag:name xsi:type="StringLiteral" value="ODX_PositiveResponseName"/>
 <diag:responseParam>
 <diag:target xsi:type="diag:ParameterVariable" name="outputParamHandle"/>
 <diag:path>
 <stepByName xsi:type="StringLiteral" value="ODX_ResponseParameterShortName"/>
 </diag:path>
 </diag:responseParam>
 </diag:responseParameters>
 </realisation>
 </action>

 <action id="a2">
 <specification>Deselect the communication channel</specification>
 <realisation xsi:type="diag:CloseComChannel">
 <diag:comChannel xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>
 </realisation>
 </action>

Figure 22 — Referencing parameters via <stepByName>

Figure 23 — Referencing parameters via <stepByName> and <stepByIndex>

7.7	 Terms

7.7.1	 Overview

All of the DiagCom terms shown in Figure 24 extend the otx:Term extension interface as defined in
ISO 13209-2. Information about the specific super class of a term is provided in the individual term
description clauses below.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

40

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 24 — Data model view: Abstract DiagCom term hierarchy

The abstract types ComChannelTerm, DiagServiceTerm and ResultTerm are the base types for all DiagCom
terms returning a ComChannel, DiagService or Result object, respectively.

ParameterContainerTerms return handles to any kind of object that can contain parameters. It is an
abstract type which is the super class of the ParameterTerm (Parameter objects can contain sub-
parameters in case of complex parameter structures) and the MessageTerm which subsumes diagnostic
service requests and responses (Request and Response objects) which also contain parameters.

Since there are DiagCom terms which return event:EventSource objects, the Event extension term
event:EventSourceTerm is also listed here. See Clause 8 for details about the Event extension.

Furthermore, the otx:SimpleTerm types ResultStateTerm and ResponseStateTerm are the base types
for all DiagCom terms returning a ResultState or ResponseState enumeration value.

7.7.2	 ComChannel related terms

7.7.2.1	 Description

All terms specified in the following subclauses relate to the handling of ComChannel objects.

7.7.2.2	 Syntax

Figure 25 shows the syntax of all ComChannel related terms of the DiagCom extension.

© ISO 2022 – All rights reserved	 ﻿
﻿

41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 25 — Data model view: ComChannel related terms

7.7.2.3	 Semantics

7.7.2.3.1	 ComChannelTerm

The abstract type ComChannelTerm is an otx:Term. It serves as a base for all concrete terms which return
a ComChannel. It has no special members.

7.7.2.3.2	 ComChannelValue

This term returns the ComChannel stored in a ComChannel variable. For more information on value-terms
and the syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

7.7.2.3.3	 GetComChannel

This term shall create a communication channel to an ECU. It depends on the implementation of the
OTX runtime system when the channel is created by the communications layer. There are three possible
scenarios.

—	 The channel is created at the time this term is executed.

—	 The channel already exists; no additional action is carried out by the execution of this term.

—	 The channel is created when it is first needed for actual diagnostic communication.

No matter which approach is chosen, the term GetComChannel shall always return a handle to the same
ComChannel for a given ECU. It is possible to manually control the lifecycle of a ComChannel object by
closing a ComChannel handle using the CloseComChannel action (refer to 7.6.2.3.2). This is up to the

	 ﻿� © ISO 2022 – All rights reserved
�﻿

42

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

author of a diagnostic sequence, an OTX runtime system is expected to clean up open ComChannel
handles at the end of a diagnostic session.

The OTX runtime shall perform an ECU variant selection after opening of the channel if the term
given by the optional element <performVariantSelection> yields true. This implies that when the
next action on a communication channel is performed, the runtime system has identified the variant
of the ECU actually present at runtime and configured the ComChannel accordingly. In case both an
<ecuVariantName> is provided and <performVariantSelection> yields true, the channel is created to
point at the desired ECU variant and variant selection is performed on the link afterwards. The variant
identification functionality also exists as a separate action, see 7.6.2.3.1.

GetComChannel is a ComChannelTerm. Its members have the following semantics:

—	 <identifier> : otx:StringTerm [1]

This element represents a string identifying the communication channel which shall be created.

NOTE	 In case an MVCI/ODX system is used, the identifier specifies the SHORT-NAME of the MCDLogicalLink
to be used for communication.

—	 <ecuVariantName> : otx:StringTerm [0..1]

This optional element allows an OTX sequence to explicitly specify a particular ECU variant
that the ComChannel shall be associated with. It is provided in addition to the identifier attribute
based on the assumption that the ComChannel identifier specifies a connection to a base variant
of an ECU, the precise variant of which then can be implicitly or explicitly identified by the
diagnostic application (compare the <performVariantSelection> element in this subclause and
the IdentifyAndSelectVariant action in 7.6.2.3.1). The <ecuVariantName> element can be used to
directly create a ComChannel to a specific ECU variant without needing to perform the ECU variant
identification step.

NOTE	 In case an MVCI/ODX system is used, the <ecuVariantName> element specifies the SHORT-NAME
of the MCDDbEcuVariant to be associated with the logical link.

—	 <performVariantSelection> : otx:BooleanTerm [0..1]

This optional element can be used by the OTX author for controlling whether an implicit variant
selection shall be done. If <performVariantSelection> yields true at runtime, the variant selection
is done automatically after the ComChannel is created. If the element is not set, the default value
false applies.

This document cannot make assumptions about whether the vehicle communication component used
by an OTX runtime supports the concept of ECU variant identification or about the behaviour of the
communication component in case it does. The relevant parts of the OTX DiagCom standard are based
on the following assumptions.

—	 A communication channel to an ECU is associated with a data set describing diagnostic behaviour of
a specific variant of that ECU.

—	 The vehicle communication component is able to explicitly perform an ECU variant identification
operation on a communication channel to an ECU.

—	 The required logic and data for performing the variant identification is intrinsic to the vehicle
communication component, i.e. there is no additional external information required for the
communication component to perform the ECU variant identification.

—	 After an ECU variant has been identified, the vehicle communication component is able to explicitly
associate the communication channel to that ECU with the specific data set for that ECU variant,
effectively switching the communication channel from the old variant data set to a new one.

© ISO 2022 – All rights reserved	 ﻿
﻿

43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 The IdentifyAndSelectVariant action (see 7.6.2.3.1) tells the runtime system to perform the
variant identification operation on the provided communication channel and then switch the data
set associated with that channel to the one fitting the newly identified variant (if any).

—	 The GetComChannel term (see 7.7.2.3.3) tells the runtime system to create a new communication
channel, immediately perform the variant identification operation on the new communication
channel and then switch the data set associated with that channel to the one fitting the newly
identified variant (if any).

NOTE	 In case an ODX/MVCI system is used, the exact semantics of Variant Identification and Selection are
specified by the ISO ODX and MVCI standards.

Throws:

—	 UnknownTargetException

It is thrown if the ComChannel identifier provided by the <identifer> element does not exist or is
invalid, or if the variant provided by the <ecuVariantName> element is unknown.

—	 LossOfComException

It is thrown if communication to the ECU was interrupted during the variant identification process.

IMPORTANT — If a variant identification returns without identifying a variant, a DiagComException
shall be thrown.

7.7.2.3.4	 GetComChannelIdentifierFromResponse

This term accepts a response and returns the identifier of the communication channel associated with
the ECU that sent the response. This term is especially useful for results containing responses from
different ECUs (functional addressing, refer to the example in Figure 7).

GetComChannelIdentifierFromResponse is an otx:StringTerm. Its members have the following
semantics:

—	 <response> : ResponseTerm [1]

This element specifies the response of which the originating ECU shall be returned.

Throws:

—	 UnknownComChannelException

It is thrown if no ComChannel can be found that is associated with the Response referenced by the
<response> element.

NOTE	 In case an MVCI/ODX system is used, the identifier specifies the SHORT-NAME of the MCDLogicalLink
to be used for communication. Based on the logical link table the SHORT-NAME of responding ECU's is in such
cases the name of an ECUBaseVariant. This SHORT-NAME is the result of MCDResponse:getAccessKeyOfLocati
on ().getECUBaseVariant().

7.7.2.3.5	 GetComChannelEcuVariantName

The GetComChannelEcuVariantName term accepts a handle of a communication channel and returns the
name of the ECU variant associated with that channel. For instance, this term can be used to determine
the identified ECU variant after having used the IdentifyAndSelectVariant action (please refer to
7.6.2.3.1). In case the base variant is selected, an empty string shall be returned.

IMPORTANT — In case an MVCI/ODX system is used the term shall return the SHORT-NAME of the
MCDDbEcuVariant associated with the logical link represented by the ComChannel.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

44

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetComChannelIdentifier is an otx:StringTerm. Its members have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

The ComChannelTerm yields the handle of the communication channel of which the identifier shall
be returned.

7.7.2.3.6	 IsVariant

The IsVariant term is used to compare the name of the ECU variant associated with the communication
channel with the given variant name. It accepts a communication channel handle as well as the name
of the ECU variant in question. The result is true or false depending on whether the ECU variant name
equals the ComChannel identifier or not.

IsVariant is an otx:BooleanTerm. Its members have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

The ComChannelTerm represents the communication channel which shall be evaluated.

—	 <ecuVariantName> : otx:StringTerm [1]

The StringTerm specifies the ECU variant name to be compared with the ECU variant associated
with the communication channel.

NOTE	 In case an MVCI/ODX system is used, the variant attribute specifies the SHORT-NAME of the
MCDDbEcuVariant to be queried.

7.7.3	 DiagService related terms

7.7.3.1	 Description

All terms specified in the following subclauses relate to the handling of DiagService objects.

7.7.3.2	 Syntax

Figure 26 shows the syntax of all DiagService related terms of the DiagCom extension.

Figure 26 — Data model view: DiagService related terms

© ISO 2022 – All rights reserved	 ﻿
﻿

45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.3.3	 Semantics

7.7.3.3.1	 DiagServiceTerm

The abstract type DiagServiceTerm is an otx:Term. It serves as a base for all concrete terms which
return a DiagService. It has no special members.

7.7.3.3.2	 DiagServiceValue

This term returns the DiagService stored in a DiagService variable. For more information on value-
terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

7.7.3.3.3	 CreateDiagServiceByName

The CreateDiagServiceByName term creates a handle to a diagnostic service that can subsequently be
used for parameterizing or executing that service. The diagnostic service to be created is identified by
its name. The CreateDiagServiceByName term accepts a ComChannelTerm and the name of the desired
diagnostic service as an otx:StringTerm. As a result the term returns a DiagService handle.

IMPORTANT — In case an MVCI/ODX system is used, the name passed into the
CreateDiagServiceByName term shall be the SHORT-NAME of the associated MCDDiagComPrimitive
object.

CreateDiagServiceByName is a DiagServiceTerm. Its members have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

The ComChannelTerm to which the to-be-created diagnostic service belongs to and will be executed
on when the ExecuteDiagService action is used.

—	 <name> : otx:StringTerm [1]

The name of the to-be-created diagnostic service.

Throws:

—	 UnknownTargetException

It is thrown if no DiagService with the name provided by the <name> element exists.

7.7.3.3.4	 CreateDiagServiceBySemantic

The CreateDiagServiceBySemantic term creates a handle to a diagnostic service that can subsequently
be used for configuring or executing that service. The diagnostic service to be created is identified by its
semantic attribute. The term accepts a ComChannelTerm and the semantic value as an otx:StringTerm.
As a result, the term returns a DiagService handle. Please note that using this term can result in an

	 ﻿� © ISO 2022 – All rights reserved
�﻿

46

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

AmbiguousSemanticException in case more than one diagnostic service with the desired semantic
attribute value exists within this communication channel.

NOTE 1	 The ability to assign a semantic value to a diagnostic service or service parameter allows applications
working with diagnostic data to access functionality in a manner more abstract than directly pointing to
specific names of services/parameters. For example, the diagnostic service to be used for DTC reading could be
required to carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter
what the actual name of the service in a specific data set is. While using semantic attributes, certain elements
of a diagnostic data set can become universally identifiable, even though the names of these elements have to
conform to user-specific conventions and therefore, differ between or even within companies.

NOTE 2	 The semantic attribute concept is defined by the ODX/MVCI standards, for example, the diagnostic
service used for clearing an ECU's fault memory has the semantic attribute "FAULTCLEAR".

CreateDiagServiceBySemantic is a DiagServiceTerm. Its members have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

The ComChannelTerm to which the to-be-created diagnostic service belongs to and will be executed
on when the ExecuteDiagService action is used.

—	 <semantic> : otx:StringTerm [1]

The semantic value of the to-be-created diagnostic service.

Throws:

—	 AmbiguousSemanticException

It is thrown in case there are none or more than one DiagService present at the ComChannel with
the semantic value specified by the <semantic> element.

7.7.3.3.5	 GetDiagServiceListBySemantic

The term GetDiagServiceListBySemantic returns a complete list of all DiagService handles which have
the same semantic. This is required in case more than one service with the same semantic attribute
value exists within the data set associated with the ComChannel.

NOTE	 The ability to assign a semantic value to a diagnostic service or service parameter allows applications
working with diagnostic data to access functionality in a manner more abstract than directly pointing to
specific names of services/parameters. For example, the diagnostic service to be used for DTC reading could be
required to carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter
what the actual name of the service in a specific data set is. While using semantic attributes, certain elements
of a diagnostic data set can become universally identifiable, even though the names of these elements have to
conform to user-specific conventions and therefore, differ between or even within companies.

GetDiagServiceListBySemantic is an otx:​ListTerm.

Its members have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

The ComChannelTerm that shall be queried for all the services with the given semantic.

—	 <semantic> : otx:StringTerm [1]

The semantic value of the DiagServices to be returned.

7.7.3.3.6	 GetDiagServiceFromResult

The GetDiagServiceFromResult term accepts a ResultTerm and will return the handle of the DiagService
the Result belongs to.

© ISO 2022 – All rights reserved	 ﻿
﻿

47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetDiagServiceFromResult is an otx:​DiagServiceTerm. Its members have the following semantics:

—	 <result> : ResultTerm [1]

This specifies the Result for which the containing DiagService name shall be retrieved.

Throws:

—	 otx:InvalidReferenceException

It is thrown if the DiagService to which the Result belongs to cannot be determined.

7.7.3.3.7	 GetDiagServiceFromException

The GetDiagServiceFromException term accepts an ExceptionReference and shall return the handle of
the DiagService that caused the exception to be thrown. It shall only be used together with exceptions
of type UnknownResponseException that shall be thrown by the ExecuteDiagService action in case the
static response mapping does not map a response that has been returned from the vehicle. In that
case, it allows the OTX sequence to analyse the result that caused the exception by making it accessible
through the DiagService object.

GetDiagServiceFromException is a DiagServiceTerm. Its members have the following semantics:

—	 <unknownResponseException> : otx:ExceptionValue [1]

This specifies the Exception for which the DiagService shall be retrieved that caused the exception
when executed. It is only allowed to reference exceptions of type UnknownResponseException.

Throws:

—	 UnknownTargetException

It is thrown if the DiagService belonging to the exception cannot be determined.

—	 otx:TypeMismatchException

It is thrown if the specified exception is not of type UnknownResponseException.

7.7.3.3.8	 GetDiagServiceName

The GetDiagServiceName term accepts a DiagService handle and returns the name of the DiagService
as a string.

NOTE	 In case an MVCI/ODX system is used, this term will return the SHORT-NAME of the MCDDiagComPrimitive
object represented by the DiagService handle.

GetDiagServiceName is an otx:StringTerm. Its members have the following semantics:

—	 <diagService> : DiagServiceTerm [1]

This is the DiagService of which the name shall be returned.

7.7.3.3.9	 GetRepetitionTime

The GetRepetitionTime term accepts a DiagService and returns the currently set repetition cycle time
of that diag service in milliseconds (ms).

GetRepetitionTime is an otx:IntegerTerm. Its members have the following semantics:

—	 <diagService> : DiagServiceTerm [1]

This is the DiagService of which the current repetition cycle time shall be returned.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

48

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.4	 Request related terms

7.7.4.1	 Description

All terms specified in the following subclauses relate to the handling of Request objects.

7.7.4.2	 Syntax

Figure 27 shows the syntax of all Request related terms of the DiagCom extension.

Figure 27 — Data model view: Request related terms

7.7.4.3	 Semantics

7.7.4.3.1	 RequestTerm

The abstract type RequestTerm is a MessageTerm. It serves as a base for all concrete terms which return
a Request. It has no special members.

7.7.4.3.2	 RequestValue

This term returns the Request stored in a Request variable. For more information on value-terms and
the syntax and semantics of the valueOf attribute and <path> element, refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

7.7.4.3.3	 GetRequest

The GetRequest term shall return the Request belonging to a diagnostic service. It accepts a diagnostic
service handle.

GetRequest is a RequestTerm. Its members have the following semantics:

—	 <diagService> : DiagServiceTerm [1]

The term shall yield a handle to the DiagService that the Request belongs to.

© ISO 2022 – All rights reserved	 ﻿
﻿

49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.4.3.4	 GetPdu

The GetPdu term shall return the raw byte stream data represented by a Request or a Response as seen
on the physical layer. The GetPdu term is derived from ByteFieldTerm. A possible use case for retrieving
raw communication data could be to implement bus tracing functionality. The corresponding opposite
operation to the GetPdu term is provided by the SetPdu action (see 7.6.4.3.8).

A PDU as understood by the DiagCom extension comprises the complete payload of a message including
the service identifier and any other request parameters. It does not include header or checksum bytes
from underlying protocol layers.

IMPORTANT — If no complete PDU can be generated for any reason, a DiagComException is
thrown. Possible reasons include:

—	 Request parameters are not set, or

—	 the Service does not represent a bus message (for example, a Java job).

GetPdu is an otx:ByteFieldTerm. Its members have the following semantics:

—	 <message> : MessageTerm [1]

This is the Message (e.g. Request or Response) which is to be returned in ByteField form.

7.7.5	 Result related terms

7.7.5.1	 Description

All terms specified in the following subclauses relate to the handling of Result objects.

The result related terms are designed based on the assumption that a diagnostic communication
component as used by an OTX runtime has the capability to buffer results it receives from ECUs.
Especially for dealing with system behaviour as illustrated in Figure 6 (one ECU returning multiple
results for one diagnostic request) a communication system requires a buffering concept for ECU
results. The following assumptions are made in the OTX DiagCom context regarding the result buffer.

—	 The result buffer is owned and managed by the vehicle communication component and is outside
the scope of an OTX runtime.

—	 Every DiagService object has an associated result buffer which contains any results that were
received as a reaction to an ExecuteDiagService action.

—	 This result buffer is of finite size, i.e. a loop buffer that will wrap around after a number of results
have been received by the vehicle communication component.

—	 The DiagCom term GetFirstResult (see 7.7.5.3.3) only fetches the first (in time) result out of the
communication component's result buffer, but does not modify that buffer.

—	 The DiagCom term GetAllResults (see 7.7.5.3.4) fetches all results present at the time of the call out
of the communication component's result buffer, but does not modify that buffer. The list of results
that is returned to OTX will be in ascending order from first (oldest) to last (most recent) result.

—	 The DiagCom action GetAllResultsAndClear (see 7.6.4.3.6) fetches all results present at the time of
the call out of the communication component's result buffer and tells the communication component
to clear the buffer afterwards. The list of results that is returned to OTX will be in ascending order
from first (oldest) to last (most recent) result.

7.7.5.2	 Syntax

Figure 28 shows the syntax of all Result related terms of the DiagCom extension.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

50

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 28 — Data model view: Result related terms

7.7.5.3	 Semantics

7.7.5.3.1	 ResultTerm

The abstract type ResultTerm is an otx:Term. It serves as a base for all concrete terms which return a
Result. It has no special members.

7.7.5.3.2	 ResultValue

This term returns the Result stored in a Result variable. For more information on value-terms and the
syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

7.7.5.3.3	 GetFirstResult

The GetFirstResult term returns the first result of a service execution, irrespective of whether there
exists more than one result. The term accepts a DiagServiceTerm argument and returns a Result object.

GetFirstResult is a ResultTerm. Its members have the following semantics:

—	 <diagService> : DiagServiceReference [1]

This represents the DiagService object of which the first Result shall be returned.

© ISO 2022 – All rights reserved	 ﻿
﻿

51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:OutOfBoundsException

It is thrown if there exists no Result object in the DiagService object.

7.7.5.3.4	 GetAllResults

The GetAllResults returns all available results of a diagnostic service as a ListTerm. The list contains
Result objects. In comparison to the action GetAllResultsAndClear referenced in DiagCom actions
specified in 7.6, this term only reads Result entries and does not delete the buffer containing the
results. Possible use case is the monitoring of results without changing the state of the DiagService.
GetAllResults is derived from ListTerm.

GetAllResults is an otx:ListTerm. Its members have the following semantics:

—	 <diagService> : DiagServiceTerm [1]

This represents the DiagService of which the Results shall be returned.

7.7.5.3.5	 ResultStateTerm

The abstract type ResultStateTerm is an otx:SimpleTerm. It serves as a base for all concrete terms
which return a ResultState value (see 7.3.3.10). It has no special members.

7.7.5.3.6	 ResultStateValue

This term returns the ResultState stored in a ResultState variable. For more information on value-
terms and the syntax and semantics of the valueOf attribute and <path> element, refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

7.7.5.3.7	 ResultStateLiteral

This term shall return a ResultState value (see 7.3.3.10) from a hard-coded literal.

ResultStateLiteral is a ResultStateTerm. Its members have the following semantics:

—	 value : ResultStates={ALL_FAILED|ALL_INVALID|ALL_NEGATIVE|ALL_POSITIVE| FAILED|INVALID|
NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResultStates enumeration.

7.7.5.3.8	 GetResultState

This term shall retrieve the state of a Result (i.e. whether the ECU(s) answered at all, correctly,
positively or negatively). Allowed result state values are specified by the ResultState data type as
defined in 7.3.3.10. This also corresponds to the <resultState> element of the ExecuteDiagService
action, see 7.6.4.3.2.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

52

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetResultState is a ResultStateTerm. Its members have the following semantics:

—	 <result> : ResultTerm [1]

This is the Result whose state shall be returned.

7.7.6	 Response related terms

7.7.6.1	 Description

All terms specified in the following subclauses relate to the handling of Response objects.

7.7.6.2	 Syntax

Figure 29 shows the syntax of all Response related terms of the DiagCom extension.

Figure 29 — Data model view: Response related terms

7.7.6.3	 Semantics

7.7.6.3.1	 ResponseTerm

The abstract type ResponseTerm is a MessageTerm. It serves as a base for all concrete terms which return
a Response. It has no special members.

7.7.6.3.2	 ResponseValue

This term returns the Response stored in a Response variable. For more information on value-terms and
the syntax and semantics of the valueOf attribute and <path> element, refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

© ISO 2022 – All rights reserved	 ﻿
﻿

53

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.6.3.3	 GetFirstResponse

The GetFirstResponse term is used to retrieve the first Response of a Result handle. In case there is
more than one Response available in a Result, only the first Response will be returned.

GetFirstResponse is a ResponseTerm. Its members have the following semantics:

—	 <result> : ResultTerm [1]

This is the Result whose first response shall be returned.

7.7.6.3.4	 GetAllResponses

The GetAllResponses term returns a list of all responses that are available for that Result. It accepts a
ResultTerm. For example, in case of a functionally addressed diagnostic service, this term can be used to
retrieve all ECU responses that were received in response to the functional service execution. Normally
there will only be one response per diagnostic service (standard physical addressing), in which case
the term GetFirstResponse shall be used.

GetAllResponses is an otx:ListTerm. Its members have the following semantics:

—	 <result> : ResultTerm [1]

This is the Result whose responses shall be returned.

7.7.6.3.5	 GetResponseName

This term shall retrieve the name of a Response. For example, it can be used to determine whether a
Response is positive or negative by comparing the response name with preset response names valid for
the vehicle communication component.

NOTE	 In case an MVCI/ODX system is used, the GetResponseName term returns the SHORT-NAME of the
associated MCDResponse object.

GetResponseName is an otx:StringTerm. Its members have the following semantics:

—	 <response> : ResponseTerm [1]

This is the Response whose name shall be returned.

7.7.6.3.6	 ResponseStateTerm

The abstract type ResponseStateTerm is an otx:SimpleTerm. It serves as a base for all concrete terms
which return a ResponseState value (see 7.3.3.11). It has no special members.

7.7.6.3.7	 ResponseStateValue

This term returns the ResponseState stored in a ResponseState variable. For more information on
value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

54

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

7.7.6.3.8	 ResponseStateLiteral

This term shall return a ResponseState value (see 7.3.3.11) from a hard-coded literal.

ResponseStateLiteral is a ResponseStateTerm. Its members have the following semantics:

—	 value : ResponseStates={FAILED|INVALID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResponseStates enumeration.

7.7.6.3.9	 GetResponseState

This term shall retrieve the state of a Response. Allowed response state values are specified by the
ResponseState data type as defined in 7.3.3.11.

GetResponseState is a ResponseStateTerm. Its members have the following semantics:

—	 <response> : ResponseTerm [1]

This is the Response whose state shall be returned.

7.7.6.3.10	 IsPositive

The IsPositive term shall check whether a response is positive. It accepts a ResponseTerm. For details
on response states, please refer to the ResponseState data type (see 7.3.3.11).

IsPositive is an otx:BooleanTerm. Its members have the following semantics:

—	 <response> : ResponseTerm [1]

This is the Response which shall be checked for being positive.

7.7.7	 Parameter related terms

7.7.7.1	 Description

All terms specified in the following subclauses relate to the handling of Parameter objects.

7.7.7.2	 Syntax

Figure 30 shows the syntax of all Parameter related terms of the DiagCom extension.

© ISO 2022 – All rights reserved	 ﻿
﻿

55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 30 — Data model view: Parameter related terms

7.7.7.3	 Semantics

7.7.7.3.1	 ParameterTerm

The abstract type ParameterTerm is a ParameterContainerTerm. It serves as a base for all concrete terms
which return a Parameter. It has no special members.

7.7.7.3.2	 ParameterValue

This term returns the Parameter stored in a Parameter variable. For more information on value-terms
and the syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

56

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.7.3.3	 GetParameterBySemantic

The GetParameterBySemantic term accepts a ParameterContainerTerm and the semantic value of the
parameter to be retrieved. It can return simple type or complex type parameters, depending on the
parameter structure of the diagnostic service definition of the underlying communication system
and the specific parameter that is being retrieved. Only the first level of child parameters shall be
investigated.

NOTE 1	 The ability to assign a semantic value to a diagnostic service or service parameter allows applications
working with diagnostic data to access functionality in a manner more abstract than directly pointing to
specific names of services/parameters. For example, the diagnostic service to be used for DTC reading could be
required to carry the semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter
what the actual name of the service in a specific data set is. While using semantic attributes, certain elements
of a diagnostic data set can become universally identifiable, even though the names of these elements have to
conform to user-specific conventions and therefore, differ between or even within companies.

NOTE 2	 In case an MVCI/ODX system is used, the semantic value is equivalent to the semantic attribute of the
corresponding MCDParameter object.

GetParameterBySemantic is a ParameterTerm. Its members have the following semantics:

—	 <parameterContainer> : ParameterContainerTerm [1]

This is the container from which the Parameter shall be retrieved.

—	 <name> : otx:StringTerm [1]

This is the semantic attribute of the Parameter which shall be returned.

Throws:

—	 AmbiguousSemanticException

It is thrown if there are none or more than one parameter present in the ParameterContainerTerm
with the semantic value specified by the <semantic> element.

7.7.7.3.4	 GetParameterByPath

The GetParameterByPath term accepts a ParameterContainerTerm and a Path to the parameter to be
retrieved. It returns the parameter that is pointed to within the parameter container by the Path
definition. It can return simple type or complex type parameters, depending on the parameter structure
of the diagnostic service definition of the underlying communication system and the specific parameter
that is being retrieved. This term operates on the assumption that parameter names are unique within
one hierarchy level of the parameter structure. An example for retrieving a Parameter by otx:Path is
shown in Figure 22.

GetParameterByPath is a ParameterTerm. Its members have the following semantics:

—	 <parameterContainer> : ParameterContainerTerm [1]

This is the container from which the Parameter shall be retrieved.

—	 <path> : otx:Path [1]

This is the path element specifies the path to the desired parameter. If the path contains
<stepByIndex> elements, Float values shall be truncated.

Throws:

—	 UnknownTargetException

It is thrown if the Parameter object referenced by the <path> element doesn ot exist or is invalid.

© ISO 2022 – All rights reserved	 ﻿
﻿

57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.7.3.5	 GetParameterName

The GetParameterName term accepts a ParameterTerm and returns the name of the parameter.

NOTE	 In case an MVCI/ODX system is used, it returns the SHORT-NAME of the corresponding MCDParameter
object.

GetParameterName is an otx:StringTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose name shall be returned.

7.7.7.3.6	 GetParameterSemantic

The GetParameterSemantic term accepts a ParameterTerm and returns the semantic attribute value of
the Parameter.

NOTE	 In case an MVCI/ODX system is used, it returns the semantic attribute of the corresponding
MCDParameter object.

GetParameterSemantic is an otx:StringTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the ParameterTerm whose semantic attribute shall be returned.

7.7.7.3.7	 GetParameterTextId

The GetParameterTextId term accepts a ParameterTerm and returns the text id of the Parameter.

The actual functionality of this term and format of returned information depends on the communication
backend that is used by the OTX runtime and is not defined by this document.

NOTE	 In case an MVCI/ODX system is used, it returns the LongNameId attribute of the corresponding
MCDDbObject object. In case the parameter represents a DTC, the DiagTroubleCodeTextID of the
MCDDbDiagTroubleCode is returned.

GetParameterTextId is an otx:StringTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose text id attribute shall be returned.

7.7.7.3.8	 GetParameterAsList

The GetParameterAsList term accepts a ParameterContainerTerm and returns an otx:List of Parameter
handles, corresponding to the contents of the passed in parameter container object. This term is used
in case a ParameterContainer of a diagnostic service contains a set of parameters, i.e. an array or a list
of parameters. Please refer to Figure 5 which shows an example of a complex list-type parameter. If
the ParameterContainer supports child parameters, all child parameters should be returned. This list
can be empty. If the ParameterContainer does not support child parameters, a TypeMismatchException
shall be thrown.

GetParameterAsList is an otx:ListTerm. Its members have the following semantics:

—	 <parameterContainer> : ParameterContainerTerm [1]

This is the ParameterContainer whose child parameters shall be returned.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

58

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified ParameterContainer supports no child parameters.

7.7.7.3.9	 GetParameterValueAsBoolean

The GetParameterValueAsBoolean term accepts a ParameterTerm and returns the actual value of the
parameter as a Boolean.

GetParameterValueAsBoolean is an otx:BooleanTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose value shall be returned as a Boolean.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter is not of Boolean type.

7.7.7.3.10	 GetParameterValueAsString

The GetParameterValueAsString term accepts a ParameterTerm and returns the actual value of the
parameter as a string.

GetParameterValueAsString is an otx:StringTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose value shall be returned as a string.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter is not of string type.

7.7.7.3.11	 GetParameterValueAsInteger

The GetParameterValueAsInteger term accepts a ParameterTerm and returns the actual value of the
parameter as an integer.

GetParameterValueAsInteger is an otx:IntegerTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose value shall be returned as an integer.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter is not of integer type.

7.7.7.3.12	 GetParameterValueAsFloat

The GetParameterValueAsFloat term accepts a ParameterTerm and returns the actual value of the
parameter as a float.

© ISO 2022 – All rights reserved	 ﻿
﻿

59

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetParameterValueAsFloat is an otx:FloatTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose value shall be returned as a float.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter is not of float type.

7.7.7.3.13	 GetParameterValueAsByteField

The GetParameterValueAsByteField term accepts a ParameterTerm and returns the actual value of the
parameter as a bytefield.

GetParameterValueAsByteField is an otx:ByteFieldTerm with the following member semantics:

—	 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as a bytefield.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter is not of bytefield type.

7.7.7.3.14	 GetParameterValueAsQuantity

The GetParameterValueAsQuantity term accepts a ParameterTerm and returns the actual value of the
parameter as a quantity.

GetParameterValueAsQuantity is a quant:QuantityTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose value shall be returned as a quantity.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter is not of quantity type.

7.7.7.3.15	 GetParameterValueTextId

The GetParameterValueTextId term accepts a ParameterTerm and returns the text identifier of the
Parameter value as a string. In case an ODX/MVCI based system is used, the text identifier shall return
the LongNameID of the related database object.

GetParameterValueTextId is an otx:StringTerm. Its members have the following semantics:

—	 <parameter> : ParameterTerm [1]

This is the Parameter whose text identifier value shall be returned as a string.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified Parameter does not have a text identifier value.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

60

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.8	 ComParam related terms

7.7.8.1	 Description

All terms specified in the following subclauses relate to the handling of communication parameters.

7.7.8.2	 Syntax

Figure 31 shows the syntax of all ComParam related terms of the DiagCom extension.

Figure 31 — Data model view: ComParam related terms

7.7.8.3	 Semantics

7.7.8.3.1	 ChannelAndParameterName group

The following properties are part of all of the following terms and are therefore, defined as a separate
group.

The members of the ChannelAndParameterName group have the following semantics:

—	 <comChannel> : ComChannelTerm [1]

The ComChannelTerm specifies the ComChannel which shall be queried.

—	 <comParameterName> : otx:StringTerm [1]

The otx:StringTerm specifies the name of a communication parameter.

© ISO 2022 – All rights reserved	 ﻿
﻿

61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 UnknownTargetException

It is thrown if there exists no communication parameter with the name provided by
<comParameterName>.

—	 otx:TypeMismatchException

It is thrown if the specified parameter is not of the correct type.

7.7.8.3.2	 GetDefaultComplexComParameter

The GetDefaultComplexComParameter term comprises the ChannelAndParameterName attribute group
and shall return the default value of a complex communication parameter (e.g. list and struct parameter
types).

GetDefaultComplexComParameter is a ParameterTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.3	 GetComplexComParameter

The GetComplexComParameter term comprises the ChannelAndParameterName attribute group and shall
return the current value of a complex communication parameter (e.g. list and struct parameter types).
If the communication parameter has not been previously modified by the SetComplexComParameter
action (defined in 7.6.3.3.2), the default parameter value shall be returned.

GetComplexComParameter is a ParameterTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.4	 GetComParameterValueAsBoolean

The GetComParameterAsBoolean term comprises the ChannelAndParameterName attribute group and
shall return the current value of a Boolean communication parameter. If the communication parameter
has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default
parameter value shall be returned.

GetComParameterValueAsBoolean is an otx:BooleanTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.5	 GetComParameterValueAsString

The GetComParameterAsString term comprises the ChannelAndParameterName attribute group and shall
return the current value of a string type communication parameter. If the communication parameter
has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default
parameter value shall be returned.

GetComParameterValueAsString is an otx:StringTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.6	 GetComParameterValueAsInteger

The GetComParameterAsInteger term comprises the ChannelAndParameterName attribute group and
shall return the current value of an integer type communication parameter. If the communication
parameter has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the
default parameter value shall be returned.

GetComParameterAsInteger is an otx:IntegerTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

62

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.8.3.7	 GetComParameterValueAsFloat

The GetComParameterAsFloat term comprises the ChannelAndParameterName attribute group and shall
return the current value of a float type communication parameter. If the communication parameter
has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default
parameter value shall be returned.

GetComParameterAsFloat is an otx:FloatTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.8	 GetComParameterValueAsByteField

The GetComParameterAsByteField term comprises the ChannelAndParameterName attribute group and
shall return the current value of a bytefield type communication parameter. If the communication
parameter has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the
default parameter value shall be returned.

GetComParameterAsByteField is an otx:ByteFieldTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.9	 GetComParameterValueAsQuantity

The GetComParameterAsQuantity term comprises the ChannelAndParameterName attribute group and
shall return the current value of a quantity type communication parameter. If the communication
parameter has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the
default parameter value shall be returned.

GetComParameterAsQuantity is a quant:QuantityTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.10	 GetDefaultComParameterValueAsBoolean

The GetDefaultComParameterAsBoolean term comprises the ChannelAndParameterName attribute group
and shall return the default value of a Boolean type communication parameter.

GetDefaultComParameterAsBoolean is an otx:BooleanTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.11	 GetDefaultComParameterValueAsString

The GetDefaultComParameterAsString term comprises the ChannelAndParameterName attribute group
and shall return the default value of a string type communication parameter.

GetDefaultComParameterAsString is an otx:StringTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.12	 GetDefaultComParameterValueAsInteger

The GetDefaultComParameterAsInteger term comprises the ChannelAndParameterName attribute group
and shall return the default value of an integer type communication parameter.

GetDefaultComParameterAsInteger is an otx:IntegerTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.13	 GetDefaultComParameterValueAsFloat

The GetDefaultComParameterAsFloat term comprises the ChannelAndParameterName attribute group
and shall return the default value of a float type communication parameter.

© ISO 2022 – All rights reserved	 ﻿
﻿

63

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetDefaultComParameterAsFloat is an otx:FloatTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.8.3.14	 GetDefaultComParameterValueAsByteField

The GetDefaultComParameterAsByteField term comprises the ChannelAndParameterName attribute
group and shall return the default value of a bytefield type communication parameter.

GetDefaultComParameterValueAsByteField is an otx:ByteFieldTerm. Its members are described by the
group ChannelAndParameterName, as specified above.

7.7.8.3.15	 GetDefaultComParameterValueAsQuantity

The GetDefaultComParameterAsQuantity term comprises the ChannelAndParameterName attribute
group and shall return the default value of a communication parameter.

GetDefaultComParameterAsQuantity is an quant:QuantityTerm. Its members are described by the group
ChannelAndParameterName, as specified above.

7.7.9	 Event related terms

7.7.9.1	 Description

All terms specified in the following subclauses relate to event handling. For further details about the
OTX EventHandling extension please refer to Clause 8.

7.7.9.2	 Syntax

Figure 32 shows the syntax of all event related terms of the DiagCom extension.

Figure 32 — Data model view: Event related terms

7.7.9.3	 Semantics

7.7.9.3.1	 DiagServiceEventSource

The DiagServiceEventSource term accepts a DiagService object that is to be made an event source.
This term enables an OTX sequence to use a DiagService as a source for events in the context of the
OTX EventHandling extension (please refer to Clause 8). A DiagService shall trigger an event every
time a new Result has arrived (please compare Figure 6). The DiagServiceEventSource term is the
complementary functionality to the asynchronous execution feature of the ExecuteDiagService
action: when ExecuteDiagService is used with <executeAsync> set to true, the only way to be notified
of available results for the executed diagnostic service is to use it as an event source through the
DiagServiceEventSource term. The type of event can then be retrieved by using the IsDiagServiceEvent
term as specified below.

DiagServiceEventSource is an event:EventSource. Its members have the following semantics:

—	 <diagService> : DiagServiceTerm [1]

This represents the DiagService that shall be connected to the event source.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

64

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

7.7.9.3.2	 IsDiagServiceEvent

The IsDiagServiceEvent term accepts an EventValue term yielding an Event object that has been
raised by the OTX runtime, as a result of declaring a DiagService object as an event source by using
the term DiagServiceEventSource. The term shall return true if and only if the Event originates from a
DiagServiceEventSource term.

IsDiagServiceEvent is an otx:BooleanTerm. Its members have the following semantics:

—	 <event> : event:EventValue [1]

This represents the Event whose type shall be tested.

7.7.9.3.3	 GetDiagServiceFromEvent

The GetDiagServiceFromEvent term accepts an EventValue term yielding an Event object that has been
raised by the OTX runtime, as a result of declaring a DiagService object as an event source by using the
term DiagServiceEventSource. It returns a handle to the DiagService object that caused the event (i.e.
because a new ECU Result has been received after the DiagService has been executed, please refer to
7.6.4.3.1 and 7.7.9.3.1). By using this term, an OTX sequence can wait for an Event raised by a DiagService
receiving a new Result and then evaluate the Result/Response structure of that DiagService.

GetDiagServiceFromEvent is a DiagServiceTerm. Its members have the following semantics:

—	 <event> : event:EventValue [1]

This represents the event that was raised by the DiagService that shall be retrieved.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified event has not been raised by a DiagServiceEventSource.

8	 OTX DiagDataBrowsing extension

8.1	 General

The OTX DiagDataBrowsing extension provides a set of terms for reading static information associated
with communication channels, diagnostic services and request- or response-parameters. The data is
static insofar that it originates from a diagnostic vehicle information database; this is unlike dynamic
data which is, e.g. read from an ECU.

The extension is designed for supporting cases where diagnostic information is required by a test
sequence, but the information is not known at authoring time and therefore, needs to be retrieved at
runtime; for instance if a list of available communication channels is required, if different variants of a
communication channel need to be queried or if details of the diagnostic services of a communication
channel need to be retrieved at runtime.

The terms provided in this extension are based on the assumption that the diagnostic data associated
to the specific to-be-diagnosed vehicle (model) is provided implicitly by the runtime system. The
identification and retrieval of the data is the task of the initialization process of diagnostic application;
it is not intended to provide the ability to specify the diagnostic data to load by means of this extension.

NOTE 1	 For an ODX-MVCI based system, the information provided by the OTX DiagDataBrowsing terms is
dependent on the pre‑loaded ODX data and especially on the selected vehicle information table (VIT).

© ISO 2022 – All rights reserved	 ﻿
﻿

65

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The OTX DiagDataBrowsing extension is based on the OTX DiagCom extension, as specified in Clause 7.
It uses the diag:ComChannel, diag:DiagService and diag:Parameter objects from which diverse static
information can be queried.

NOTE 2	 In case an ODX/MVCI system is used, the targeted data is contained in the VEHICLE-INFORMATION
section of the ODX data which can be queried via the ASAM MCD-3D-API.

NOTE 3	 An additional functionality is specified in the DiagDataBrowsingPlus extension.

8.2	 Data types

8.2.1	 Overview

The OTX DiagDataBrowsing extension introduces a single data type named ComChannelCategory, as
described in the following.

8.2.2	 Syntax

The syntax of the ComChannelCategory datatype declaration of the OTX DiagDataBrowsing extension is
shown in Figure 33.

Figure 33 — Data model view: DiagDataBrowsing data types

8.2.3	 Semantics

8.2.3.1	 General

The ComChannelCategory enumeration type in the OTX DiagDataBrowsing extension is derived from
otx:SimpleType.

8.2.3.2	 ComChannelCategory

ComChannelCategory is an enumeration type describing the category of a ComChannel.

The list of allowed enumeration values is defined as follows.

—	 BASE_VARIANT: a ComChannel of this category references a base variant that is the common
denominator of a set of ECU variants.

—	 FUNCTIONAL_GROUP: 	 a ComChannel of this category references a functional group of ECUs, i.e. a
set of ECUs that share the same functional address.

—	 PROTOCOL: a ComChannel of this category references a protocol-level communication link, i.e. it
contains a set of diagnostic services that are common to all ECUs implementing a specific procotol.

Communication channel categories are used by GetComChannelList for filtering available communication
channels by category (see 8.4.3.1). Since filtering by the fourth category—ECU_VARIANT—would in many
cases produce a large and rather unmanageable list of ECU variants, this category is intentionally not
part of the ComChannelCategory enumeration. Instead, the term GetEcuVariantList shall be used for
getting only those ECU variants associated to a single ECU base variant at a time (see 8.4.3.2).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

66

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

IMPORTANT — ComChannelCategory values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
BASE_VARIANT < FUNCTIONAL_GROUP < PROTOCOL.

IMPORTANT — When applying otx:ToString on a ComChannelCategory value, the resulting
string shall be the name of the enumeration value, e.g. otx:ToString(PROTOCOL)="PROTOCOL"
. Furthermore, applying otx:ToInteger shall return the index of the value in the enumeration
ComChannelCategories (smallest index is 0). The behaviour is undefined for other conversion
terms (see ISO 13209-2).

ComChannelCategory is an otx:SimpleType. Its members have the following semantics:

—	 <init> : ComChannelCategoryLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : ComChannelCategories={BASE_VARIANT|FUNCTIONAL_GROUP|PROTOCOL} [1]

This attribute shall contain one of the values defined in the ComChannelCategories enumeration.

IMPORTANT — If the ComChannelCategory declaration is not explicitly initialized (omitted <init>
element), the default value shall be BASE_VARIANT.

8.3	 Variable access

8.3.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following specifies all variable access types defined for the DiagDataBrowsing
extension.

8.3.2	 Syntax

Figure 34 shows the syntax of the DiagDataBrowsing extension's variable access types.

Figure 34 — Data model view: DiagDataBrowsing variable access types

8.3.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for further
details.

© ISO 2022 – All rights reserved	 ﻿
﻿

67

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

8.4	 Terms

8.4.1	 Overview

The terms in the OTX DiagDataBrowsing extension shall be used to retrieve static information from the
diagnostic vehicle information database, at runtime.

8.4.2	 Syntax

Figure 35 shows the syntax of all terms in the OTX DiagDataBrowsing extension.

Figure 35 — Data model view: DiagDataBrowsing terms

8.4.3	 Semantics

8.4.3.1	 GetComChannelList

GetComChannelList shall return a list of strings containing the identifiers of all communication channels
described in the diagnostic vehicle information data base.

If the optional attribute category is set, only those communication channel identifiers shall be returned
which belong to the given category.

IMPORTANT — In the case of an MVCI/ODX based system, the equivalent of a communication
channel identifier shall be the SHORT-NAME of a LOGICAL-LINK.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

68

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetComChannelList is an otx:ListTerm. Its members have the following semantics:

—	 <category> : ComChannelCategoryTerm [0..1]

This optional element specifies the category according to which the com channels shall be filtered.

8.4.3.2	 GetEcuVariantList

GetEcuVariantList shall return a list of strings which represents the names of all ECU variants for a
given communication channel (see 7.7.2, communication channel related terms of the OTX DiagCom
extension). The channel shall either point to a base variant or an ECU variant—in both cases, the
names of the ECU variants of the base variant shall be returned. If a base variant has no associated ECU
variants, an empty list shall be returned. Furthermore, in case the communication channel points to a
protocol or functional group, an exception shall be thrown.

IMPORTANT — In the case of an MVCI/ODX based system, the equivalent of a variant name shall
be the SHORT-NAME of an ECU-VARIANT.

GetEcuVariantList is an otx:ListTerm. Its members have the following semantics:

—	 <comChannel> : diag:ComChannelTerm [1]

This element represents the communication channel which provides the data.

Throws:

—	 otx:TypeMismatchException

It is thrown if the communication channel belongs to the category PROTOCOL or FUNCTIONAL_GROUP
(see 8.2.3.2).

8.4.3.3	 GetDiagServiceList

GetDiagServiceList shall return a list of strings containing the names of all diagnostic services
available for a given communication channel (see 7.7.2, communication channel related terms of OTX
DiagCom).

IMPORTANT — In the case of an MVCI/ODX based system, the equivalent of a diagnostic service
name shall be the SHORT-NAME of a DIAG-COMM.

GetDiagServiceList is an otx:ListTerm. Its members have the following semantics:

—	 <comChannel> : diag:ComChannelTerm [1]

This element represents the communication channel whose diagnostic services shall be listed.

8.4.3.4	 GetRequestParameterList

GetRequestParameterList shall return a list of strings containing the names of all request parameters
of a given diagnostic service (see 7.7.3, diagnostic service related terms of the OTX DiagCom extension).

IMPORTANT — In the case of an MVCI/ODX based system, the returned list shall contain the
SHORT-NAMEs of all PARAM objects (enclosed in a PARAMS object of the REQUEST). In case a request
parameter is a complex parameter (e.g. a STRUCT) there shall be no deep recursion into that
parameter.

GetRequestParameterList is an otx:ListTerm. Its members have the following semantics:

—	 <diagService> : diag:DiagServiceTerm [1]

This element represents the diagnostic service whose request parameters shall be listed.

© ISO 2022 – All rights reserved	 ﻿
﻿

69

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

8.4.3.5	 GetResponseParameterList

GetResponseParameterList shall return a list of strings containing the names of all response parameters
of a given diagnostic service (see 7.7.3, diagnostic service related terms of the OTX DiagCom extension).

IMPORTANT — In the case of an MVCI/ODX based system, the returned list shall contain the
SHORT-NAMEs of all PARAM objects (enclosed in a PARAMS object of the first POS-RESPONSE). In case a
response parameter is a complex parameter (e.g. a STRUCT) there is no deep recursion into that
parameter.

GetResponseParameterList is an otx:ListTerm. Its members have the following semantics:

—	 <diagService> : diag:DiagServiceTerm [1]

This element represents the diagnostic service whose response parameters shall be listed.

8.4.3.6	 GetAllowedParameterValueList

GetAllowedParameterValueList shall return a list of strings containing the allowed values for a
parameter. If there is no enumeration of allowed values associated to the parameter, the empty list shall
be returned.

NOTE	 In the case of an MVCI/ODX based system, this applies only to parameters which have a TEXTTABLE
as COMPU-METHOD or to parameters which are of type TABLE-KEY. For those parameters the list contains all valid
entries of a TEXTTABLE or all entries which are valid for the TABLE-KEY. For other parameters the returned list is
empty.

GetParameterValueList is an otx:ListTerm. Its members have the following semantics:

—	 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter.

8.4.3.7	 IsStringParameter

IsStringParameter shall return true if and only if the given parameter represents a string value
according to its definition in the diagnostic data base.

IsStringParameter is an otx:BooleanTerm. Its members have the following semantics:

—	 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

NOTE	 In the case of an MVCI/ODX based system, it returns True whether the value of this parameter is of
one of the following MCDDataType: eA_ASCIISTRING, eA_UNICODE2STRING, eKEY, eTEXTTABLE.

8.4.3.8	 IsBooleanParameter

IsBooleanParameter shall return true if and only if the given parameter represents a Boolean value
according to its definition in the diagnostic data base.

IsBooleanParameter is an otx:BooleanTerm. Its members have the following semantics:

—	 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

NOTE	 In the case of an MVCI/ODX based system, it returns True whether the value of this parameter is of
one of the following MCDDataType: eA_BOOLEAN.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

70

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

8.4.3.9	 IsNumericParameter

IsNumericParameter shall return true if and only if the given parameter represents a numeric value
according to its definition in the diagnostic data base.

IsNumericParameter is an otx:BooleanTerm. Its members have the following semantics:

—	 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

NOTE	 In the case of an MVCI/ODX based system, it returns True whether the value of this parameter is
of one of the following MCDDataType: eA_FLOAT32, eA_FLOAT64, eA_INT16, eA_INT32, eA_INT64, eA_INT8,
eA_UINT16, eA_UINT32, eA_UINT64, eA_UINT8, eDTC, eEND_OF_PDU, eENVDATA, eENVDATADESC, eFIELD,
eMULTIPLEXER, eSTRUCTURE, eLENGTHKEY, eTABLE_ROW.

8.4.3.10	 IsByteFieldParameter

IsByteFieldParameter shall return true if and only if the given parameter represents a bytefield value
according to its definition in the diagnostic data base.

IsByteFieldParameter is an otx:BooleanTerm. Its members have the following semantics:

—	 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

NOTE	 In the case of an MVCI/ODX based system, it returns True whether the value of this parameter is of
one of the following MCDDataType: eA_BITFIELD, eA_BYTEFIELD.

8.4.3.11	 IsComplexParameter

IsComplexParameter shall return true if and only if the given parameter neither represents a string,
Boolean, numeric nor bytefield value according to its definition in the diagnostic data base.

IsComplexParameter is an otx:BooleanTerm. Its members have the following semantics:

—	 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

NOTE	 In the case of an MVCI/ODX based system, it returns True whether the value of this parameter is
of one of the following MCDDataType: eEND_OF_PDU, eENVDATA, eENVDATADESC, eFIELD, eMULTIPLEXER,
eSTRUCTURE, eTABLE_ROW.

8.4.3.12	 ComChannelCategoryTerm

The abstract type ComChannelCategoryTerm is an otx:SimpleTerm. It serves as a base for all concrete
terms which return a ComChannelCategory enumeration value (see 8.2.3.2). It has no special members.

8.4.3.13	 ComChannelCategoryValue

This term returns the ComChannelCategory stored in a ComChannelCategory variable. For more
information on value-terms and the syntax and semantics of the valueOf attribute and <path> element,
please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

© ISO 2022 – All rights reserved	 ﻿
﻿

71

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

8.4.3.14	 ComChannelCategoryLiteral

This term shall return a ComChannelCategory enumeration value (see 8.2.3.2) from a hard-coded literal.

ComChannelCategoryLiteral is a ComChannelCategoryTerm. Its members have the following semantics:

—	 value : ComChannelCategories={BASE_VARIANT|FUNCTIONAL_GROUP|PROTOCOL} [1]

This attribute shall contain one of the values defined in the ComChannelCategories enumeration.

9	 OTX EventHandling extension

9.1	 General

At some point during execution, an OTX sequence needs to interact with the outside world. OTX
sequences can cause things to happen in various ways, for example, by calling actions from the HMI
and DiagCom extensions. Responses can also come back into OTX through these actions (for example, a
blocking call to a hmi:ConfirmDialog), but in addition to these blocking mechanisms, OTX provides an
event concept for finer‑grained control of input events.

During the execution of an OTX procedure events may occur as a result of activities outside the
procedure (for example, a user screen click or a timer expires) or inside (for example, a variable changes
state as a result of an assignment in a parallel thread). OTX has no mechanisms (such as call-backs
or listeners) to handle these events asynchronously. The OTX EventHandling extension is designed
to be fully synchronous—it uses a procedural mechanism to wait for events to occur. A procedure
with complex event requirements may process events sequentially in a loop until some exit criteria is
encountered.

The primary elements of the OTX EventHandling extension are:

—	 Event source: an event source is something that creates events as a result of some occurrence, for
example, a screen press or a timer expiring. In OTX, event sources are created by terms that extend
the abstract term EventSourceTerm. An event source starts queuing events right after being created.
Event sources may contain multiple events in their event queue which can be removed from the
queue (eldest first) by using the WaitForEvent action.

—	 Event: an event encapsulates all the information about what has occurred. Events are created
and populated by event sources and can be stored in Event-type variables. Various terms exist to
examine and extract content from events. There is no programmatic way to create events.

—	 WaitForEvent: the EventHandling extension defines a single action that blocks a thread of execution
until an event occurs. This action is the synchronisation point between the event sources and the
OTX execution thread.

9.2	 Data types

9.2.1	 Overview

The OTX EventHandling extension introduces two data types named Event and EventSource, as
described in the following.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

72

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

9.2.2	 Syntax

The syntax of all OTX EventHandling data type declarations is shown in Figure 36.

Figure 36 — Data model view: EventHandling data types

9.2.3	 Semantics

9.2.3.1	 General

Since the OTX Event data types have no initialization parts, they cannot be declared constant.

9.2.3.2	 Event

Variables of type Event can be declared to hold events generated by event sources. Event variables
cannot be initialized, therefore it is not permitted to declare an Event constant.

The Event data type encapsulates the information about a single event. There are no terms or actions
to create events explicitly, programmatically; they are only created implicitly by event sources once the
awaited event occurs.

Once an event has been obtained from an event source (by using a WaitForEvent action) it can be
examined using terms of the EventHandling extension (or other extensions with event handling), so for
instance terms which tell which type of event source an event originates from.

Since Event has no initialization parts, an Event cannot be declared constant.

IMPORTANT — Other OTX extensions may define additional event source terms by
extending the EventSourceTerm type. For example, the OTX HMI extension defines the
hmi:ScreenClosedEventSource term which listens for the closed-event when the user closes the
screen.

9.2.3.3	 EventSource

Variables of type EventSource are handles to event sources created by any EventSourceTerm.

Once an EventSource has been created, its internal event queue shall start registering events which
correspond to the EventSourceTerm subtype chosen for creating. Queueing shall be done in a separate
thread of the runtime system.

For instance, in the case of an event source which was created by a MonitorChangeEventSource term and
assigned to an EventSource variable, the event source's internal queue starts registering each change
event of the monitored value immediately.

Registered events may be read out and removed one by one from an event source's queue by repeatedly
calling the WaitForEvent action on that event source. See 9.4.3.1 for details on the WaitForEvent action.

Event source queueing can be stopped explicitly by using the CloseEventSource action, as specified
in 9.4.3.2. Event sources which are created on-the-fly within a WaitForEvent action shall be closed
implicitly as soon as the action exits.

© ISO 2022 – All rights reserved	 ﻿
﻿

73

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Since EventSource has no initialization parts, an EventSource cannot be declared constant.

9.3	 Variable access

9.3.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define. All variable access types are derived from the OTX core otx:Variable extension interface. The
following specifies all variable access types defined for the OTX EventHandling extension.

9.3.2	 Syntax

Figure 37 shows the syntax of the EventHandling extension's variable access types.

Figure 37 — Data model view: EventHandling variable access types

9.3.3	 Semantics

The general semantics for all variable access types apply. Refer to ISO 13209-2 for further details.

9.4	 Actions

9.4.1	 Overview

The OTX EventHandling extension introduces the actions named WaitForEvent and CloseEventSource,
as described in the following.

9.4.2	 Syntax

Figure 38 shows the syntax of all actions in the OTX EventHandling extension.

Figure 38 — Data model view: EventHandling actions

9.4.3	 Semantics

9.4.3.1	 WaitForEvent

The WaitForEvent action shall block the thread of execution until it receives an event from one of its
event sources. As soon as an event becomes available in one of the sources' event queues, WaitForEvent

	 ﻿� © ISO 2022 – All rights reserved
�﻿

74

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

shall remove that event from the event source's queue and exit; the thread of execution continues to the
next node.

If an event variable was specified, the event that caused WaitForEvent to exit is assigned to the variable.

Special semantics apply for the following cases.

a)	 Situations may occur when event sources already contain one or multiple events in their event
queue before being used by a WaitForEvent action. In that case, WaitForEvent shall use the eldest
event available in any of its event sources' queues (and assign it to an event variable, if specified). If
there is more than one eldest event—this may happen for events that occurred at the same time—
the event of the event source which is listed first in the action shall be used (first in XML document
order).

IMPORTANT — Please keep in mind that the test logic should not depend on the event order.

b)	 When WaitForEvent exits, those event sources which were created on-the-fly within the action
shall be closed (the ones that are not assigned to an EventSource variable).

IMPORTANT — Please keep in mind that explicitly opened event sources are collecting events
immediately after creation. Without an explicit call to CloseEventSource the event queue will
continue to grow without limitation as new events are fired. It is recommended to use implicit
event sources, if possible.

In order to determine later which of the event sources has fired the event, the terms described in 9.5.4
should be used.

The members of the WaitForEvent action have the following semantics:

—	 <source> : EventSourceTerm [1..*]

This represents one or more event sources that the action shall wait for. The wait shall be
terminated by the first source to fire an event.

—	 <event> : EventVariable [0..1]

This optional element represents an Event-type variable which shall receive the event that
terminates this wait.

9.4.3.2	 CloseEventSource

The CloseEventSource action shall close and dispose given event sources. Closed event sources will no
more queue any events.

Once closed, an event source cannot be reopened. Using a closed event source, for example, in a
WaitForEvent action there is an error and will cause an otx:InvalidReferenceException (through the
EventSourceValue term as specified in 9.5.2.3.2).

In case that CloseEventSource is applied to an event source which is already closed, the action shall
perform nothing (NOP).

CAUTION — In parallel execution, situations may occur where an event source gets closed by a
CloseEventSource action while being used in a WaitForEvent action (in another parallel lane). If the
WaitForEvent action has no other event sources registered, this will cause a deadlock situation.
OTX authors should avoid such situations by careful test sequence design and the usage of the
MutexGroup node, as specified by ISO 13209-2.

The members of the CloseEventSource action have the following semantics:

—	 <source> : EventSourceVariable [1..*]

This represents one or more variables which contain the event sources that shall be closed.

© ISO 2022 – All rights reserved	 ﻿
﻿

75

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

9.4.4	 Example

The example below shows the use of the WaitForEvent action with a MonitorChangeEventSource on a
variable x and a TimerExpiredEventSource of 10 s.

The MonitorChangeEventSource starts queueing change events of variable x prior to being used
in the WaitForEvent action, right after being created in the Assignment action. In constrast the
TimerExpiredEventSource is created on-the-fly inside of the WaitForEvent.

If x does not change its value, the wait will exit after 10 s. In any case, once one of the event sources fires
the event, it is assigned to the event variable myEvent which might be used later for analysis.

After the wait, the MonitorChangeEventSource is closed by an explicit CloseEventSource action. By
contrast, the TimerExpiredEventSource is closed implicitly as soon as the wait exits.

Sample of EventHandling

 <action id="a1">
 <specification>Create a MonitorChangeEventSource listening to variable x</
specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="event:EventSourceVariable" name="xMonitor"/>
 <term xsi:type="event:MonitorChangeEventSource">
 <event:variable xsi:type="IntegerVariable" name="x"/>
 </term>
 </realisation>
 </action>

 <action id="a2">
 <specification>Wait for a change of x's value, stop waiting after 10 seconds</
specification>
 <realisation xsi:type="event:WaitForEvent">
 <event:source xsi:type="event:EventSourceValue" valueOf="xMonitor"/>
 <event:source xsi:type="event:TimerExpiredEventSource">
 <event:timeout value="10000" xsi:type="IntegerLiteral"/>
 </event:source>
 <event:event name="myEvent"/>
 </realisation>
 </action>

 <action id="a3">
 <specification>Close xMonitor event source</specification>
 <realisation xsi:type="event:CloseEventSource">
 <event:source name="xMonitor"/>
 </realisation>
 </action>

9.5	 Terms

9.5.1	 Overview

The Terms of the OTX EventHandling extension are grouped into three different categories.

—	 Event terms: event terms return events. The OTX EventHandling extension defines exactly one
event term named EventValue.

—	 Event source terms: event source terms can be used within WaitForEvent actions. This extension
defines several event sources, but additional event sources may be defined in other OTX extensions.
In particular the OTX HMI extension defines the hmi:ScreenClosedEventSource term as a source of
GUI events.

—	 Event property terms: the terms in this category are used to examine events that are produced by
event sources. They all operate on an event that is accessed using an EventTerm and return one of
the values stored in the event for further processing.

The term categories described above are shown in Figure 39.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

76

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 39 — Data model view: EventHandling term categories

9.5.2	 Event terms

9.5.2.1	 Description

Terms in this category return events.

9.5.2.2	 Syntax

Figure 40 shows the syntax of the event terms.

© ISO 2022 – All rights reserved	 ﻿
﻿

77

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 40 — Data model view: Event terms

9.5.2.3	 Semantics

9.5.2.3.1	 EventTerm

The abstract type EventTerm is an otx:Term. It serves as a base for all concrete terms which return an
Event. It has no special members.

9.5.2.3.2	 EventValue

This term returns the Event stored in an Event variable. For more information on value-terms and the
syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

9.5.3	 Event source terms

9.5.3.1	 Description

Terms in this category represent event sources. In a WaitForEvent action, any of the event source terms
defined here or in other OTX extensions may be used. The WaitForEvent action waits so long until one
of the embedded event source term fires an event.

NOTE	 It is an intended design goal of the OTX EventHandling extension that there is no explicit EventSource
data type defined. Therefore, it is not possible to declare EventSource variables. Event source terms are useable
only within WaitForEvent actions.

9.5.3.2	 Syntax

Figure 41 shows the syntax of the event source terms.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

78

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 41 — Data model view: Event source terms

9.5.3.3	 Semantics

9.5.3.3.1	 CompositeEventSource

CompositeEventSource is an event:EventSourceTerm that collects events from a list of event sources.
When used in an event:WaitForEvent action it will return the first event generated by any of its sources.

CompositeEventSource allows a dynamically-created list of sources to be used with event:WaitForEvent.

Events returned from this source will contain the event:EventSource that originally generated the
event, and not the CompositeEventSource itself.

IMPORTANT — If the list of sources is changed while executing event:WaitForEvent then the
behaviour is undefined.

Its members have the following semantics:

—	 <eventSource> : List<EventSource> [1]

This is the list of eventsources that the term combines. If the List is empty this term will never
return an Event.

9.5.3.3.2	 EventSourceTerm

The abstract type EventSourceTerm is an otx:Term. It serves as a base for all concrete terms which
return an EventSource. It has no special members.

9.5.3.3.3	 EventSourceValue

This term returns the Event stored in an Event variable. For more information on value-terms and the
syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

© ISO 2022 – All rights reserved	 ﻿
﻿

79

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

9.5.3.3.4	 GetEventSourceFromEvent

GetEventSourceFromEvent is an event:EventSourceTerm that returns the event:EventSource that
generated an event:Event.

Its members have the following semantics:

—	 <event> : EventTerm [1]

This is the Event to get the EventSource from.

9.5.3.3.5	 MonitorChangeEventSource

This term creates an event source that shall monitor a variable's value and fire an event when it changes.
The fired event shall maintain a snapshot of the new value of the monitored variable, which may be
read out later (see GetNewValue term). Event queueing shall start immediately once the event source is
created.

IMPORTANT — Change-monitoring shall be shallow. This means that changes inside of complex
values shall NOT be recognized, e.g. a change of an item in a List or Map, or the removal of items
from a List or Map. Regarding complex data types the only recognized change is when the
variable changes its value, e.g. when another List is assigned to the variable.

IMPORTANT — The case when a value is assigned to a formerly uninitialized variable shall also
be recognized as a change event and shall NOT pose an error.

MonitorChangeEventSource is an EventSourceTerm. Its members have the following semantics:

—	 <variable> : otx:Variable [1]

This represents the variable that shall be monitored. If the variable value changes, the event shall
be fired, causing a blocking WaitForEvent action to exit.

Associated checker rules:

—	 Event_Chk002 – no Path in MonitorChange related terms (see A.3.2);

—	 Event_Chk003 – usage of eventPlus:​DeepMoni​torChangeE​ventSource instead of event:​Moni​
torChangeE​ventSource (see A.3.3).

9.5.3.3.6	 ThresholdExceededEventSource

This term creates an event source that shall monitor the value of a variable and fire an event when the
value goes outside a specified range. If the value is outside of the specified range right from the start,
the event shall be fired, too. The fired event shall maintain a snapshot of the new value that exceeded
the threshold, which may be read out later (see GetNewValue term).

Event queueing shall start immediately once the event source is created.

This event source term shall only be applied for data types on which an order relation is defined. These
are the SimpleType data types as specified in ISO 13209-2.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

80

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

IMPORTANT — A ThresholdExceededEventSource which is applied to an uninitialized variable
shall also count as threshold exceeded event and does NOT pose an error.

ThresholdExceededEventSource is a MonitorChangeEventSource. Its members have the following
semantics:

—	 <variable> : otx:Variable [1] (derived from MonitorChangeEventSource)

This represents the variable that shall be monitored. If the variable value goes outside of the
specified range (see below) or is already outside from the beginning, the event shall be fired,
causing an embedding WaitForEventAction to exit.

—	 <lowerThreshold>: otx:SimpleTerm [1]

This represents a value to compare against. If the value of the monitored variable becomes less that
this value, the event shall be fired.

—	 <upperThreshold>: otx:SimpleTerm [1]

This represents a value to compare against. If the value of the monitored variable becomes greater
than this value, the event shall be fired.

Associated checker rules:

—	 Event_Chk002 – no Path in MonitorChange related terms (see A.3.2);

—	 Event_Chk001 – correct data types of ThresholdExceededEventSource arguments (see A.3.1).

9.5.3.3.7	 TimerExpiredEventSource

This term shall create an event source that produces an event when a specified time expires. If the
specified time expires, the timer expiry event is produced and put into the event source's queue. Event
queueing shall start immediately once the event source is created.

TimerExpiredEventSource is an EventSourceTerm. Its members have the following semantics:

—	 <timeout>: otx:NumericTerm [1]

This element specifies an Integer value that is interpreted as a time in milli-seconds to wait. Once
the given number of milli-seconds has passed, the event shall be fired, causing an embedding
WaitForEventAction to exit. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the timeout value is negative.

9.5.4	 Event property terms

9.5.4.1	 Description

Terms in this category return diverse information on event properties.

9.5.4.2	 Syntax

Figure 42 shows the syntax of the event property terms.

© ISO 2022 – All rights reserved	 ﻿
﻿

81

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 42 — Data model view: Event property terms

9.5.4.3	 Semantics

9.5.4.3.1	 IsEventHasException

IsEventHasException is a BooleanTerm that can be used to determine if an event:Event contains an
exception. Any event source may report an exception by encapsulating it in an exception event.

For example, an attempt to execute a diag:DiagService asynchronously could fail with a
diag:LossOfComException. In this case the event source can generate an event encapsulating the
exception rather than the Result that it would normally return.

Its members have the following semantics:

—	 <event> : EventTerm [1]

This is the Event to be tested for encapsulating an exception.

9.5.4.3.2	 IsMonitorChangeEvent

The IsMonitorChangeEvent term accepts an EventTerm yielding an Event object that has been
raised by the OTX runtime system, because of either using a MonitorChangeEventSource or a
ThresholdExceededEventSource in a WaitForEvent action. The term shall return true if and only if the
Event originates from such a kind of event source. In case an optional Variable is specified, the term
shall return true if and only if the Event was fired because that particular Variable changed. If the
given Variable was not the reason for the event, false shall be returned.

IsMonitorChangeEvent is an otx:BooleanTerm. Its members have the following semantics:

—	 <event> : EventTerm [1]

This represents the Event whose type shall be tested.

—	 <variable> : otx:Variable [0..1]

This optionally specifies the variable which shall be tested for being the reason for the event.

Associated checker rules:

—	 Event_Chk002 – no Path in MonitorChange related terms (see A.3.2).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

82

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

9.5.4.3.3	 IsThresholdExceededEvent

The IsThresholdExceededEvent term accepts an EventTerm yielding an Event object that has been raised
by the OTX runtime, as a result of using a ThresholdExceededEventSource in a WaitForEvent action. The
term shall return true if and only if the Event originates from a ThresholdExceededEventSource.

IsThresholdExceededEvent is an otx:BooleanTerm. Its members have the following semantics:

—	 <event> : EventTerm [1]

This represents the Event whose type shall be tested.

9.5.4.3.4	 IsTimerExpiredEvent

The IsTimerExpiredEvent term accepts an EventTerm term yielding an Event object that has been raised
by the OTX runtime, because of using a TimerExpiredEventSource in a WaitForEvent action. The term
shall return true if and only if the Event originates from a TimerExpiredEventSource.

IsTimerExpiredEvent is an otx:BooleanTerm. Its members have the following semantics:

—	 <event> : EventTerm [1]

This represents the Event whose type shall be tested.

9.5.4.3.5	 GetNewValue

GetNewValue shall only be applied to events which were fired by a MonitorChangeEventSource or one
of its descendants. The term shall return the value which was stored in the given Event; that value
represents a snapshot of the monitored variable's new value at the time when the event was fired. The
term is useful to find out which new value a variable had after it changed.

IMPORTANT — Since it depends on the datatype of the variable which was monitored by
MonitorChangeEventSource, the return type of GetNewValue is in general not known at authoring
time. Therefore, type-safety of this term cannot be checked statically. Runtime exceptions may
occur when results of this term are used in the wrong place, e.g. when using otx:ToInteger on a
value which cannot be converted to integer.

GetNewValue is an otx:Term. Its members have the following semantics:

—	 <event> : EventTerm [1]

This represents the monitor change event from which the new value of the formerly monitored
variable at the time of value change shall be returned.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified event has not been raised by a MonitorChangeEventSource or one of its
descendants.

9.5.5	 Exception terms

9.5.5.1	 Description

Terms in this category return exceptions.

9.5.5.2	 Syntax

Figure 42 shows the syntax of the exception terms.

© ISO 2022 – All rights reserved	 ﻿
﻿

83

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 43 — Data model view: Exception terms

9.5.5.3	 Semantics

9.5.5.3.1	 GetExceptionFromEvent

GetExceptionFromEvent is an ExceptionTerm that returns an exception thrown by an event source. If an
event source fails to complete correctly because of an exception it can be encapsulated in an event and
returned using this term. If this term is used on an event that does not encapsulate an exception, then
a TypeMismatchException shall be thrown. IsEventHasException can be used to determine if the event
contains an exception.

Its members have the following semantics:

—	 <event> : EventTerm [1]

This is the event to get the exception from.

Throws:

—	 otx:TypeMismatchException

It is thrown if the event does not contain an exception.

10	 OTX Flash extension

10.1	 General

The OTX Flash extension provides access to data types, terms and actions for reading data from a flash
session context and creating flash jobs.

IMPORTANT — It is an explicit design goal of the OTX Flash extension that it supports the flash
data acquisition side in the flash process only. There are no actions defined herein which carry
out the actual ECU flashing; this functionality is provided already by the OTX DiagCom extension
as specified in Clause 6.

The OTX Flash extension is designed for flash-data acquisition and flash job creation; downloading to
an ECU shall happen by executing a flash job via ExecuteDiagService as defined by the OTX DiagCom
extension.

The Flash extension assumes that several flash sessions can exist for a communication channel. A flash
session contains several flash blocks and a flash block several flash segments. The segments contain an
arbitrary number of data bytes. Since data can be compressed, size information is supplied. Additionally,
security information is attached to blocks and the session.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

84

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The Flash extension is designed to support use cases from the flash process domain, for example,
choose a flash session and handle low-level functions which are needed inside a flash job to access flash
data and its additional information.

IMPORTANT — It is an explicit design goal of the OTX Flash extension to be usable with any
diagnostic communication kernel. As a design guideline, an ODX/MVCI based system has been
considered; as ODX/MVCI is solving the vehicle communication problem domain on a highly
generic level, the design concepts that have been adopted for this extension should be usable
abstractions for any system that is implementing a solution to the vehicle communication
problem domain.

NOTE	 In an ODX/MVCI based system, the session context is an ODX ECU-MEM container. Therefore,
the examples regarding the usage of the terms and actions of the Flash extension describe ODX scenarios.
Nevertheless, it is possible to use a subset of the nodes to describe download via proprietary protocols and raw
data sources like binary.

NOTE 2	 An additional functionality is specified in the FlashPlus extension.

Figure 44 shows the data structure model of the OTX Flash extension.

Figure 44 — Data structure model of the OTX Flash extension

10.2	 Data types

10.2.1	 Overview

The OTX Flash extension introduces the data types named FlashJob and FlashSession, as well as the
enumeration types FlashFileFormat and Audience.

10.2.2	 Syntax

The syntax of all OTX Flash data type declarations is shown in Figure 45.

© ISO 2022 – All rights reserved	 ﻿
﻿

85

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 45 — Data model view: Flash data types

10.2.3	 Semantics

10.2.3.1	 General

The data types in the OTX Flash extension are based on otx:ComplexType and on otx:SimpleType.

10.2.3.2	 FlashJob

The FlashJob data type represents a diagnostic service that is used for performing the ECU
reprogramming process. Based on the concepts of the ODX/MVCI standard, a FlashJob can be
parameterized with a specific flash session which contains the data to be programmed into the ECU.
This is the interface-level difference between a FlashJob and a diag:DiagService. To parameterize a
FlashJob with a flash session, please refer to the SetFlashSession action (see 10.5.3.3).

10.2.3.3	 FlashSession

The FlashSession data type serves as storage for information regarding the context of a diagnostic
session and the download information (see the ISO 22901 series [8]).

Since FlashSession has no initialization parts, a FlashSession cannot be declared constant.

10.2.3.4	 FlashFileFormat

FlashFileFormat is an enumeration type describing the format of a flash file. It is used by the action
StoreUploadData (see 10.5.3.2).

OTX runtimes should at least support a basic set of flash file formats, which is defined by the following
list of allowed enumeration values:

—	 BINARY: 	 raw binary data:

—	 INTEL: 	 intel hex file:

—	 SREC:	 Motorola S-Record file.

IMPORTANT — FlashFileFormatTerm values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:
BINARY < INTEL < SREC.

IMPORTANT — When applying otx:ToString on a FlashFileFormat value, the resulting string
shall be the name of the enumeration value, e.g. otx:ToString(BINARY)="BINARY". Furthermore,

	 ﻿� © ISO 2022 – All rights reserved
�﻿

86

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

applying otx:ToInteger shall return the index of the value in the FlashFileFormat enumeration
(smallest index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

FlashFileFormat is an otx:SimpleType. Its members have the following semantics:

—	 <init> : FlashFileFormatLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : FlashFileFormats={BINARY|SREC|INTEL} [1]

This attribute shall contain one of the values defined in the FlashFileFormats enumeration.

IMPORTANT — If the FlashFileFormat declaration is not explicitly initialized (omitted <init>
element), the default value shall be BINARY.

10.2.3.5	 Audience

Audience is an enumeration type which is used by the term GetListOfValidFlashSessions (for filtering
flash sessions according to audience property) as well as by the term BlockIsValidForAudience (see
10.6.3.3.3 and 10.6.4.3.7).

The list of allowed enumeration values is defined as follows:

—	 "SUPPLIER";

—	 "DEVELOPMENT";

—	 "MANUFACTURING";

—	 "AFTERSALES";

—	 "AFTERMARKET".

IMPORTANT — AudienceTerm values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
SUPPLIER < DEVELOPMENT < MANUFACTURING < AFTERSALES < AFTERMARKET.

IMPORTANT — When applying otx:ToString on an Audience value, the resulting string shall be the
name of the enumeration value, e.g. otx:ToString(SUPPLIER)="SUPPLIER". Furthermore, applying
otx:ToInteger shall return the index of the value in the audiences enumeration (smallest index is
0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

Audience is an otx:SimpleType. Its members have the following semantics:

—	 <init> : AudienceLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : Audiences={SUPPLIER|DEVELOPMENT|MANUFACTURING|AFTERSALES|AFTERMARKET} [1]

This attribute shall contain one of the values defined in the Audiences enumeration.

IMPORTANT — If the Audience declaration is not explicitly initialized (omitted <init> element),
the default value shall be SUPPLIER.

© ISO 2022 – All rights reserved	 ﻿
﻿

87

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.3	 Exceptions

10.3.1	 Overview

All elements referenced in this subclause are derived from the OTX core Exception type as defined by
ISO 13209-2. They represent the full set of exceptions added by the OTX Flash extension.

10.3.2	 Syntax

The syntax of all OTX Flash exception type declarations is shown in Figure 46.

Figure 46 — Data model view: Flash exceptions

10.3.3	 Semantics

10.3.3.1	 General

Since all OTX Flash exception types are implicit exceptions without initialization parts, they cannot be
declared constant.

10.3.3.2	 FlashException

The FlashException is the super class for all exceptions in the Flash extension. A FlashException shall
be used in case the more specific exception types described in the remainder of this subclause do not
apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

10.3.3.3	 UnsupportedFormatException

The UnsupportedFormatException shall be thrown if the flash file format used by a StoreUploadData
action is not supported by the runtime system.

10.4	Variable access

10.4.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define. All variable access types are derived from the OTX core otx:Variable extension interface. The
following specifies all variable access types defined for the Flash extension.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

88

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.4.2	 Syntax

Figure 47 shows the syntax of the Flash extension's variable access types.

Figure 47 — Data model view: Flash variable access types

10.4.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for details.

10.5	 Actions

10.5.1	 Overview

There are three action types defined for the OTX Flash extension: GetDownloadData, StoreUploadData
as well as SetFlashSession. The types extend the ActionRealisation extension interface as defined by
ISO 13209-2.

10.5.2	 Syntax

Figure 48 shows the syntax of the actions GetDownloadData and StoreUploadData.

Figure 48 — Data model view: Flash actions

10.5.3	 Semantics

10.5.3.1	 GetDownloadData

GetDownloadData shall fill a given otx:ByteField variable with data from the FlashSession context.

© ISO 2022 – All rights reserved	 ﻿
﻿

89

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The members of GetDownloadData have the following semantics:

—	 <session> : FlashSessionTerm [1]

This represents the FlashSession which provides the data that shall be addressed.

—	 <block> : otx:NumericTerm [1]

By this element, a block in the FlashSession context shall be addressed. The value shall be in the
range of the existing blocks. Float values shall be truncated.

—	 <segment> : otx:NumericTerm [1]

This element shall address a segment in the FlashSession context. The value shall be in the range
of the existing segments in the block. Float values shall be truncated.

—	 <size> : otx:NumericTerm [1]

This element defines how much bytes of memory shall be read from the context. It shall be a positive
value. Float values shall be truncated.

—	 <position> : otx:NumericTerm [1]

This element defines the first position which shall be read by the action. Position shall be greater
than or equal to zero and not greater than the size of the segment minus one. Float values shall be
truncated.

—	 <data> : otx:ByteFieldVariable [1]

This element represents the variable into which the read data shall be stored. It shall be of the
type otx:ByteFieldVariable. The size of the ByteField after execution of the action should be
the number of bytes read from the context. If the context does not contain the amount of data
which is requested with the size parameter, then the resulting ByteField is shorter. If the position
parameter overlaps the segment size, the resulting ByteField will be empty.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the block, segment or position number does not exist in the download data or if size
is zero or negative.

10.5.3.2	 StoreUploadData

A StoreUploadData action tells an OTX runtime to store data in a data-storage.

The members of StoreUploadData have the following semantics:

—	 append : xsd:boolean [1]

The truth-value set for this attribute defines whether data shall be appended to existing data (true)
or not (false). If not, the storage shall be cleaned before write access.

—	 <data> : otx:ByteFieldTerm [1]

This element represents the data which shall be stored.

—	 <target> : otx:StringTerm [1]

The element shall provide a data storage. If the target is an URI that describes a file, the data is
stored in that file.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

90

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <address> : otx:NumericTerm [1]

This element shall be used to define the base address of the to-be-stored data. Float values shall be
truncated.

—	 <format> : FlashFileFormatTerm [1]

This element defines the format of the flash data file. The basic set of formats which should be
supported by any runtime system specified by the FlashFileFormat data type (see 10.2.3.4). For
other proprietary formats, proprietary extensions may be used.

Throws:

—	 otx:InvalidReferenceException

It is thrown if the data storage resource given by the <target> element is not available or not
accessible.

—	 UnsupportedFormatException

It is thrown if the runtime system does not support the flash data file format.

10.5.3.3	 SetFlashSession

This action shall set the flash session to be programmed when the FlashJob is executed. Only one
session can be set at a time. If this action is used multiple times, the later call shall overwrite the session
set by a previous call.

The members of SetFlashSession have the following semantics:

—	 <flashJob> : FlashJobVariable [1]

This represents the FlashJob where the session shall be set.

—	 <flashSession> : FlashSessionTerm [1]

This represents the FlashSession to be programmed by the FlashJob.

10.5.4	 Example

The example below shows a GetDownloadData action working on mySession, block 1, segment 1, position
0 and a size request of 64 bytes. The data is assigned to the ByteField-variable "myData".

The second part of the example shows a StoreUploadData action with appends the data contained in a
ByteField-variable named "data" to an INTEL-format storage-file at "file://file.hex".

Sample of FlashActions

 <action id="a1">
 <specification>
 Get 64 bytes of data from mySession, block 1, segment1, position 0 and put it in
myData
 </specification>
 <realisation xsi:type="flash:GetDownloadData">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="1"/>
 <flash:segment xsi:type="IntegerLiteral" value="1"/>
 <flash:position xsi:type="IntegerLiteral" value="0"/>
 <flash:size xsi:type="IntegerLiteral" value="64"/>
 <flash:data xsi:type="ByteFieldVariable" name="myData"/>
 </realisation>
 </action>
 <action id="a2">
 <specification>Store the upload data in file file.hex</specification>
 <realisation xsi:type="flash:StoreUploadData" append="true">

© ISO 2022 – All rights reserved	 ﻿
﻿

91

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 <flash:data xsi:type="ByteFieldValue" valueOf="data"/>
 <flash:target xsi:type="StringLiteral" value="file://file.hex"/>
 <flash:address xsi:type="IntegerLiteral" value="1024"/>
 <flash:format xsi:type="flash:FlashFileFormatLiteral" value="INTEL"/>
 </realisation>
 </action>

10.6	 Terms

10.6.1	 Overview

The terms of the OTX Flash extension are sorted into several categories, depending on whether they
are mainly flash job-, session-, block-, segment-, security- or own ident related. Additionally, there are
auxiliary enumeration-type term categories for describing flash file format types and audiences.

IMPORTANT — For all terms described in the following, it is assumed that the blocks in a flash
session's data will be numbered starting from 0 (first block). The same applies to segment- and
own ident-numbering.

Figure 49 shows an overview of the OTX Flash extension term categories.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

92

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 49 — Data model view: Flash term categories

10.6.2	 Flash job related terms

10.6.2.1	 Description

The following describes the flash job related terms of the OTX Flash extension.

© ISO 2022 – All rights reserved	 ﻿
﻿

93

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6.2.2	 Syntax

Figure 50 shows the syntax of the flash job related terms.

Figure 50 — Data model view: Flash job related terms

10.6.2.3	 Semantics

10.6.2.3.1	 FlashJobTerm

The abstract type FlashJobTerm is a diag:DiagServiceTerm. It serves as a base for all concrete terms
which return a FlashJob. It has no special members.

10.6.2.3.2	 FlashJobValue

This term returns the FlashJob stored in a FlashJob variable. For more information on value-terms and
the syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

10.6.2.3.3	 CreateFlashJob

This term shall create a new FlashJob for the specified FlashSession. The FlashJob can subsequently
be used for initiating an ECU reprogramming session.

CreateFlashJob is a FlashJobTerm. Its members have the following semantics:

—	 <comChannel> : diag:ComChannelTerm [0..1]

This optionally specifies the diag:ComChannel object to which the to-be-created FlashJob belongs
to and will be executed on when the diag:ExecuteDiagService action is used (see 7.6.4.3.1).

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession to be programmed by the FlashJob.

10.6.2.3.4	 CreateFlashJobByName

This term shall create a new FlashJob for the specified ComChannel. The FlashJob can subsequently be
used for initiating an ECU reprogramming session. Optionally a FlashSession can be specified which

	 ﻿� © ISO 2022 – All rights reserved
�﻿

94

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

will be used by the FlashJob for reprogramming (alternatively the SetFlashSession action can be used
to assign a different FlashSession to an already existing FlashJob object).

CreateFlashJobByName is a FlashJobTerm. Its members have the following semantics:

—	 <comChannel> : diag:ComChannelTerm [1]

This specifies the diag:ComChannel object to which the to-be-created FlashJob belongs to and will
be executed on when the diag:ExecuteDiagService action is used (see 7.6.4.3.1).

—	 <name> : otx:StringTerm [1]

This represents the name of the to-be-created FlashJob.

—	 <session> : FlashSessionTerm [0..1]

This optional element represents the FlashSession to be programmed by the FlashJob.

Throws:

—	 UnknownTargetException

It is thrown if no FlashJob with the name provided by the <name> element exists.

10.6.2.3.5	 CreateFlashJobBySemantic

This term shall create a new FlashJob for the specified ComChannel with the semantic attribute provided
as an argument. The FlashJob can subsequently be used for initiating an ECU reprogramming session.
Optionally a FlashSession can be specified which will be used by the FlashJob for reprogramming
(alternatively the SetFlashSession action can be used to assign a different FlashSession to an already
existing FlashJob object).

CreateFlashJobBySemantic is a FlashJobTerm. Its members have the following semantics:

—	 <comChannel> : diag:ComChannelTerm [1]

This specifies the diag:ComChannel object to which the to-be-created FlashJob belongs to and will
be executed on when the diag:ExecuteDiagService action is used (see 7.6.4.3.1).

—	 <semantic> : otx:StringTerm [1]

This represents the semantic attribute of the to-be-created FlashJob.

—	 <session> : FlashSessionTerm [0..1]

This optional element represents the FlashSession to be programmed by the FlashJob.

Throws:

—	 AmbiguousSemanticException

It is thrown in case there are none or more than one FlashJob present at the ComChannel with the
semantic value specified by the <semantic> element.

10.6.3	 Flash session related terms

10.6.3.1	 Description

The following describes the flash session related terms of the OTX Flash extension.

© ISO 2022 – All rights reserved	 ﻿
﻿

95

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6.3.2	 Syntax

Figure 51 shows the syntax of the flash session related terms.

Figure 51 — Data model view: Flash session related terms

10.6.3.3	 Semantics

10.6.3.3.1	 FlashSessionTerm

The abstract type FlashSessionTerm is an otx:Term. It serves as a base for all concrete terms which
return a FlashSession. It has no special members.

10.6.3.3.2	 FlashSessionValue

This term returns the FlashSession stored in a FlashSession variable. For more information on
value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

10.6.3.3.3	 GetListOfValidFlashSessions

The GetListOfValidFlashSessions term shall return an otx:List of otx:String items which identify
the FlashSessions that are valid. The validity of a FlashSession shall be defined by rules which exist
in the respective technological environment. For instance, in an ODX environment the ExpectedIdents
shall be checked. In other environments the rules may differ.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

96

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

IMPORTANT — GetListOfValidFlashSessions shall return the flash sessions in the order of their
session priority. The highest-ranking FlashSession shall be the first item in the resulting List
whereas the lowest-ranking shall be the last. For equally-ranked FlashSessions the order is
unspecified.

NOTE	 In an ODX/MVCI based system, the session priority is a non-negative integer value assigned to a flash
session, where a value of 0 represents the highest possible priority. For flash sessions without an explicit priority
setting a default priority of 100 applies.

GetListOfValidFlashSessions is an otx:ListTerm. Its members have the following semantics:

—	 direction : Directions={UPLOAD|DOWNLOAD} [1]

This attribute defines which kind of FlashSessions shall be returned.

—	 <comChannel> : diag:ComChannelTerm [1]

This element defines a communication channel which is associated to the flash sessions. Please
refer to Clause 6 (OTX DiagCom extension) for details on the diag:ComChannelTerm type.

—	 <audience> : AudienceTerm [0..1]

This optional element defines a filter on a special audience. Only flash sessions with the given
audience shall be returned. If the attribute is omitted, no audience filtering shall be done. Please
refer to 10.2.3.5 for information about the Audience enumeration.

10.6.3.3.4	 GetFlashSession

The GetFlashSession term shall return a FlashSession handle which is identified by a session ID.

GetFlashSession is a FlashSessionTerm. Its members have the following semantics:

—	 <sessionID> : otx:StringTerm [1]

This element shall represent a unique identifier in the environment which is used for identifying a
flash session.

Throws:

—	 UnsupportedFormatException

It is thrown if the runtime system does not support the flash data file format.

10.6.3.3.5	 GetSessionID

The GetSessionID term shall return the identifier of a flash session. The identifier is a string value.

IMPORTANT — In ODX/MVCI based systems, the returned ID string should correspond to the
SHORT-NAME of the session.

GetSessionID is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession to be used.

10.6.3.3.6	 GetFlashKey

The GetFlashKey term shall return the key of a flash session. The key is a string value.

IMPORTANT — In ODX/MVCI based systems, the returned key should correspond to the
PARTNUMBER of the session (SESSION-DESC).

© ISO 2022 – All rights reserved	 ﻿
﻿

97

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetFlashKey is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession to be used.

10.6.3.3.7	 GetSessionPriority

The GetSessionPriority term shall return the priority setting for a flash session. The resulting priority
shall be represented by a non-negative integer value where 0 represents the highest possible priority. If
no priority information is available for a flash session, a default value of 100 shall be returned.

IMPORTANT — In ODX/MVCI based systems, the flash session priority information is given by
a non-negative integer value, where a value of 0 shall represent the highest possible priority.
For proprietary systems using a different priority concept, it should nevertheless be possible
to define a mapping between proprietary priorities and the priority values required by this
document.

GetSessionPriority is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession to be used.

10.6.3.3.8	 GetNumberOfBlocks

The GetNumberOfBlocks term shall return the number of blocks in a FlashSession. If no blocks exist, the
return value shall be zero, otherwise it shall be a positive number.

GetNumberOfBlocks is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession from which the number of blocks shall be returned.

10.6.3.3.9	 IsDownloadSession

The IsDownloadSession term shall return true if and only if the flash session's direction is DOWNLOAD. If
the session's direction is UPLOAD, false shall be returned.

IsDownloadSession is an otx:BooleanTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession from which the direction shall be determined.

10.6.3.4	 Example

The example below shows the flash session related terms, embedded in assignment actions.

Sample of FlashSessionRelatedTerms

 <action id="a1">
 <specification>Get all download session for the after sales department</
specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="ListVariable" name="AllSessions"/>
 <term xsi:type="flash:GetListOfValidFlashSessions" direction="DOWNLOAD">
 <flash:comChannel xsi:type="diag:ComChannelValue" valueOf="cc"/>
 <flash:audience xsi:type="flash:AudienceLiteral" value="AFTERSALES"/>
 </term>
 </realisation>
 </action>

	 ﻿� © ISO 2022 – All rights reserved
�﻿

98

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 <action id="a2">
 <specification>Get the first session from a list</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="flash:FlashSessionVariable" name="mySession"/>
 <term xsi:type="flash:GetFlashSession">
 <flash:sessionID xsi:type="StringValue" valueOf="AllSessions">
 <path>
 <stepByIndex xsi:type="IntegerLiteral" value="0"/>
 </path>
 </flash:sessionID>
 </term>
 </realisation>
 </action>

 <action id="a3">
 <specification>Get the session ID and write it into String variable</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="SessionString"/>
 <term xsi:type="flash:GetSessionID">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 </term>
 </realisation>
 </action>

 <action id="a4">
 <specification>Get the number of blocks in session</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="blocks"/>
 <term xsi:type="flash:GetNumberOfBlocks">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 </term>
 </realisation>
 </action>

10.6.4	 Flash block related terms

10.6.4.1	 Description

The following describes all terms of the OTX Flash extensions by which diverse information on flash
blocks can be retrieved.

10.6.4.2	 Syntax

Figure 52 shows the syntax of all flash block related terms.

© ISO 2022 – All rights reserved	 ﻿
﻿

99

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 52 — Data model view: Flash block related terms

10.6.4.3	 Semantics

10.6.4.3.1	 GetNumberOfSegments

The GetNumberOfSegments term shall return the number of data segments in a block. If no segments
exist, the return value shall be zero, otherwise it shall be a positive number.

GetNumberOfSegments is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block of interest resides.

—	 <block> : otx:NumericTerm [1]

This element provides the number of the block from which the number of data segments shall be
retrieved. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.2	 GetNumberOfOwnIdents

The GetNumberOfOwnIdents term shall return the number of required and to‑be‑fulfilled identifications
of a block.

GetNumberOfOwnIdents is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block of interest resides.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

100

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <block> : otx:NumericTerm [1]

This element provides the number of the block from which the number of identifications shall be
retrieved. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.3	 GetNumberOfSecurities

The GetNumberOfSecurities term shall return the number of security information of a block or session.

GetNumberOfSecurities is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession of interest.

—	 <block> : otx:NumericTerm [0..1]

This optional element defines the block from which the number of security information shall be
retrieved. If the <block> element is omitted, the term returns the number of securities defined for
the flash session. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.4	 GetLogicalBlockID

The GetLogicalBlockID term shall return the unique string identification of a block.

IMPORTANT — In ODX/MVCI based systems, the returned ID string should correspond to the
SHORT-NAME of the block.

GetLogicalBlockID is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.5	 GetCompressionEncryption

The GetCompressionEncryption term shall return the compression and encryption information of a
block (e.g. AES encryption, LZSS compression).

© ISO 2022 – All rights reserved	 ﻿
﻿

101

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

GetCompressionEncryption is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.6	 GetType

The GetType term shall return the type of a block. The type information indicates whether a block is
used for data or for program code.

GetType is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

10.6.4.3.7	 BlockIsValidForAudience

The BlockIsValidForAudience term shall return true if and only if a block is valid for a given audience.

BlockIsValidForAudience is an otx:BooleanTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

—	 <audience> : AudienceTerm [1]

This attribute defines which audience shall be used for the check. Please refer to 10.2.3.5 for
information about the Audience enumeration.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

102

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6.4.4	 Example

The example below shows the flash block related terms, embedded in assignment actions.

Sample of FlashBlockRelatedTerms

 <action id="a1">
 <specification>Get the number of segments in the first block</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="segments"/>
 <term xsi:type="flash:GetNumberOfSegments">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a2">
 <specification>Get the number of own idents of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="ownIdents"/>
 <term xsi:type="flash:GetNumberOfOwnIdents">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a3">
 <specification>Get the number of securities of the session</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="securities"/>
 <term xsi:type="flash:GetNumberOfSecurities">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <!-- omitted block signals session securities -->
 </term>
 </realisation>
 </action>

 <action id="a4">
 <specification>Get identification of a block</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="identification"/>
 <term xsi:type="flash:GetLogicalBlockID">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a5">
 <specification>Get the compression and encryption method of the block 0</
specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="format"/>
 <term xsi:type="flash:GetCompressionEncryption">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a6">
 <specification>Get Type of Block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="type"/>
 <term xsi:type="flash:GetType">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 </term>

© ISO 2022 – All rights reserved	 ﻿
﻿

103

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 </realisation>
 </action>

 <action id="a7">
 <specification>checks if block 0 is valid for audience "AFTERSALES"</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="BooleanVariable" name="isValid"/>
 <term xsi:type="flash:BlockIsValidForAudience">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:audience xsi:type="flash:AudienceLiteral" value="AFTERSALES"/>
 </term>
 </realisation>
 </action>

10.6.5	 Flash block segment related terms

10.6.5.1	 Description

The following describes terms for retrieving information on flash block segments.

10.6.5.2	 Syntax

Figure 53 shows the syntax of all flash block segment related terms.

Figure 53 — Data model view: Flash block segment related terms

10.6.5.3	 Semantics

10.6.5.3.1	 GetStartAddress

The GetStartAddress term shall return the start address of a segment.

GetStartAddress is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block in which the segment resides. Float values shall be truncated.

—	 <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block or segment found with the requested number.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

104

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6.5.3.2	 GetCompressedSize

The GetCompressedSize shall return the number of bytes constituting the compressed data contained
by a segment.

GetCompressedSize is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block in which the segment resides. Float values shall be truncated.

—	 <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block or segment found with the requested number.

10.6.5.3.3	 GetUncompressedSize

The GetUncompressedSize shall return the number of bytes constituting the uncompressed data
contained by a segment.

GetUncompressedSize is an otx:IntegerTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block in which the segment resides. Float values shall be truncated.

—	 <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block or segment found with the requested number.

10.6.5.4	 Example

The example below shows the flash block segment related terms, embedded in assignment actions.

Sample of FlashSegmentRelatedTerms

 <action id="a1">
 <specification>Get start address of segment</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="startAddress"/>
 <term xsi:type="flash:GetStartAddress">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:segment xsi:type="IntegerLiteral" value="0"/>
 </term>

© ISO 2022 – All rights reserved	 ﻿
﻿

105

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 </realisation>
 </action>

 <action id="a2">
 <specification>Get the compressed size of the Block</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="IntegerVariable" name="compressedSize"/>
 <term xsi:type="flash:GetCompressedSize">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:segment xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

10.6.6	 Security related terms

10.6.6.1	 Description

The following describes the security related terms of the OTX Flash extension.

10.6.6.2	 Syntax

Figure 54 shows the syntax of the security related terms.

Figure 54 — Data model view: Security related terms

10.6.6.3	 Semantics

10.6.6.3.1	 GetSignature

The GetSignature shall return the signature information of a block or a session.

GetSignature is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [0..1]

This element represents the number of the block whose signature shall be returned. If the <block>
element is omitted, the signature of the flash session shall be returned instead. Float values shall
be truncated.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

106

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values
shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number or the security is not defined.

10.6.6.3.2	 GetValidity

The GetValidity term shall return the validity information of a block or a session.

GetValidity is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [0..1]

This element represents the block number. If the <block> element is omitted, the security
information of the flash session shall be returned instead. Float values shall be truncated.

—	 <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values
shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number or the security is not defined.

10.6.6.3.3	 GetChecksum

The GetChecksum term shall return the checksum information of a block or a session.

GetChecksum is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [0..1]

This element represents the number of the block whose checksum shall be returned. If the <block>
element is omitted, the checksum of the flash session shall be returned instead. Float values shall
be truncated.

—	 <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values
shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number or the security is not defined.

© ISO 2022 – All rights reserved	 ﻿
﻿

107

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6.6.3.4	 GetSecurityMethod

The GetSecurityMethod shall return the security method information of a block or a session.

GetSecurityMethod is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : NumericTerm [0..1]

This element represents number of the block whose security method shall be returned. If the
<block> element is omitted, the security method of the flash session shall be returned instead.
Float values shall be truncated.

—	 <security> : NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values
shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block found with the requested number or the security is not defined.

10.6.6.4	 Example

The example below shows the security related terms, embedded in assignment actions.

Sample of FlashSecurityRelatedTerms

 <action id="a1">
 <specification>Get signature 0 of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="signature"/>
 <term xsi:type="flash:GetSignature">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:security xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a2">
 <specification>Get validity 0 of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="validity"/>
 <term xsi:type="flash:GetValidity">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:security xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a3">
 <specification>Get checksum 0 of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="checksum"/>
 <term xsi:type="flash:GetChecksum">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:security xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>

	 ﻿� © ISO 2022 – All rights reserved
�﻿

108

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 </action>

 <action id="a4">
 <specification>Get security method 0 of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="method"/>
 <term xsi:type="flash:GetSecurityMethod">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:security xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

10.6.7	 Own ident related terms

10.6.7.1	 Description

The following describes the own ident related terms of the OTX Flash extension.

10.6.7.2	 Syntax

Figure 55 shows the syntax of the own ident related terms.

Figure 55 — Data model view: Own ident related terms

10.6.7.3	 Semantics

10.6.7.3.1	 GetOwnIdentFromEcu

The GetOwnIdentFromEcu term shall return an identification string which shall be read from an ECU.
The environment shall store the information to access this string. The empty string shall be returned, if
the identification string cannot be determined, e.g. because the ECU is unknown.

GetOwnIdentFromEcu is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

—	 <number> : otx:NumericTerm [1]

This element represents the own identification number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block or own ident number found with the requested number.

© ISO 2022 – All rights reserved	 ﻿
﻿

109

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

10.6.7.3.2	 GetOwnIdent

The GetOwnIdent term shall return an identification string which is read from the download data.

GetOwnIdent is an otx:StringTerm. Its members have the following semantics:

—	 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

—	 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

—	 <number> : otx:NumericTerm [1]

This element represents the own identification number. Float values shall be truncated.

Throws:

—	 otx:OutOfBoundsException

It is thrown if there was no block or own identification number found with the requested number.

10.6.7.4	 Example

The example below shows the own ident related terms, embedded in assignment actions.

Sample of FlashOwnIdentRelatedTerms

 <action id="a1">
 <specification>Get the own ident 0 of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="BooleanVariable" name="OwnIdentEcu"/>
 <term xsi:type="flash:GetOwnIdentFromEcu">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:number xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

 <action id="a2">
 <specification>Get the identification 0 of block 0</specification>
 <realisation xsi:type="Assignment">
 <result xsi:type="StringVariable" name="OwnIdent"/>
 <term xsi:type="flash:GetOwnIdent">
 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>
 <flash:block xsi:type="IntegerLiteral" value="0"/>
 <flash:number xsi:type="IntegerLiteral" value="0"/>
 </term>
 </realisation>
 </action>

10.6.8	 Enumeration related terms

10.6.8.1	 Description

The following describes the terms related to the enumerations FlashFileFormat and Audience, as
specified in 10.2.

10.6.8.2	 Syntax

Figure 56 shows the syntax of the enumeration related terms.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 56 — Data model view: Enumeration related terms

10.6.8.3	 Semantics

10.6.8.3.1	 FlashFileFormatTerm

The abstract type FlashFileFormatTerm is an otx:SimpleTerm. It serves as a base for all concrete terms
which return a FlashFileFormat. It has no special members.

10.6.8.3.2	 FlashFileFormatValue

This term returns the FlashFileFormat stored in a FlashFileFormat variable. For more information on
value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

10.6.8.3.3	 FlashFileFormatLiteral

This term shall return a FlashFileFormat value (see 10.2.3.4) from a hard-coded literal.

FlashFileFormatLiteral is a FlashFileFormatTerm. Its members have the following semantics:

—	 value : FlashFileFormats={BINARY|SREC|INTEL} [1]

This attribute shall contain one of the values defined in the FlashFileFormats enumeration.

10.6.8.3.4	 AudienceTerm

The abstract type AudienceTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which
return an Audience. It has no special members.

10.6.8.3.5	 AudienceValue

This term returns the Audience stored in an Audience variable. For more information on value-terms
and the syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

© ISO 2022 – All rights reserved	 ﻿
﻿

111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

10.6.8.3.6	 AudienceLiteral

This term shall return an Audience value (see 10.2.3.4) from a hard-coded literal.

AudienceLiteral is an AudienceTerm. Its members have the following semantics:

—	 value : Audiences={SUPPLIER|DEVELOPMENT|MANUFACTURING|AFTERSALES|AFTERMARKET} [1]

This attribute shall contain one of the values defined in the Audiences enumeration.

11	 OTX HMI extension

11.1	 General

11.1.1	 General considerations

The human machine interface (HMI) extension provides access to data types, terms and actions for
interacting with the user through the display of graphical screens, as well as through additional input
and output devices such as keyboards, etc.

Figure 57 — Different hardware configurations

Due to the multiple possible variations on runtime systems, and the fact that some of the target runtime
systems do not even have a display (see Figure 57), one of the design goals of the HMI extension was
to abstract the details regarding the layout of the screens on the system, concentrating instead on the
communication aspects between the test sequence and the user interface. To achieve this goal, there
are two ways to operate screens: a set of basic dialogs that all systems should provide and customizable
screens that allow extra flexibility.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

112

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.1.2	 Dialogs

The basic dialogs are used to cover the most elemental use cases, such as showing a warning to the user
or asking for simple user input. Dialogs are always modal: it is assumed that the runtime system will
pause execution of the test flow when reaching one of these dialog actions and will provide a way for
the user to dismiss the dialog (normally with an "ok" or "close" button).

Dialogs do not assume any special graphical functionality and shall be supported by all test application
systems. It is possible to implement them in systems without graphical display by using LEDs and
reading static buttons on the device. In this case message information would be ignored.

11.1.3	 Custom screens

Custom screens define an interface to a screen that is externally created. The layout and functionality
of the screen itself is not defined in the OTX file and is only referenced by name, as shown in Figure 58.
The call is similar to a standard procedure call, and it only defines ways to pass parameters in and out
from the screen.

Figure 58 — Separation of concerns

Custom screens are non-modal. The execution of the test sequence continues after the screen is
displayed in the runtime system. For this effect, there are actions and terms that help control the flow
of the screen: a screen event source term by which execution can be stopped until a screen event has
been received and an action to close the screen.

Screen implementation is up to the client: The client can either have a graphical user interface (UI),
a console-based application or a button layout on physical hardware. The screen interface provides a
level of abstraction that decouples the description of the screen from the test sequence.

A screen is connected directly to the model of the test sequence. All input values to the screen are
references to variables and all out parameteres are assigned to variables.

The update of the screen shall be performed automatically by the runtime system. When one of the
referred variables is updated, the runtime system shall update the display on the screen automatically.
It is assumed that the update will happen asynchronously in a UI thread and that the execution of the
main sequence will not be interrupted.

The screen can communicate events back to the system by using screen event objects. These events
can indicate if any of a screen's output parameters has changed, or if the user has performed any other
operation on the screen such as closing, minimizing or dismissing. The usage of the event mechanism
allows building applications with complex user interaction, without transmitting specific look and
feel from the target applications. To monitor changes in the screen parameters, it is possible to use the
terms defined in the OTX EventHandling extension (see Clause 8, MonitorChangeEventSource term).

© ISO 2022 – All rights reserved	 ﻿
﻿

113

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Custom screens should be handled by a separate thread by the runtime system. As such, when handling
events from the screen (i.e. when waiting for user interaction) it is often advisable to create a parallel
lane in the OTX sequence dedicated to listen for these events with a WaitForEvent action in case that
additional processing tasks need to be performed.

11.1.4	 Custom screen usage example

Figure 59 provides a typical usage of the custom screens, represented using an UML activity diagram.

The use case is the following:

—	 present a screen that displays a list of values measured with an "exit" button;

—	 read values from an electronic control unit periodically and refresh the screen;

—	 when the user decides to exit the application, then stop reading values.

To achieve this, two different ways are shown in the example:

The sequence shown to the left represents a solution for simple cases where fine-grained event
evaluation is not necessary. After opening the screen, there is a loop for reading out ECU values which
stops as soon as the screen was closed (see ScreenIsOpen term, as specified in 11.6.3.3).

The sequence to the right shows a solution which opens up the possibility to fine-grained handling
of different kinds of events which may happen on the screen. After opening the screen, there are two
parallel lanes. In one lane, the test sequence continiously reads new values from the ECU as long as a
"finish” flag is false. In the second lane, a WaitForEvent action is used to react on the events fired by the
screen. Once a screen closed event is received, then the sequence terminates (see IsScreenClosedEvent
term in 11.6.3.4). Other event types from the screen might be processed in the event loop also, which is
not exemplified here.

Figure 59 — Custom screen usage example

	 ﻿� © ISO 2022 – All rights reserved
�﻿

114

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

In both solutions, the "exit"-button is not controlled by the OTX sequence; the test applications
presentation layer is responsible for closing the screen as soon as the "exit" button is pressed (note that
there is also an explicit CloseScreen action, see 11.5.3.3.2). Furthermore, the update of the ECU values
on the screen is automatic, since screens can be connected directly to variables of the OTX sequence.
In the given example, reads are interrupted cleanly, as once the last read is complete the sequence will
finish.

11.2	 Data types

11.2.1	 Overview

The OTX HMI extension introduces the Screen data type required for the custom screen handling as
well as the MessageType and ConfirmationType enumeration types used for dialogs.

11.2.2	 Syntax

The syntax of the datatype declarations of the OTX HMI extension is shown in Figure 60.

Figure 60 — Data model view: HMI data types

11.2.3	 Semantics

11.2.3.1	 General

The data types in the OTX HMI extension are based on otx:ComplexType and on otx:SimpleType.

11.2.3.2	 Screen

The Screen data type is a handle to a complex screen resource on the runtime system. Screen handles
represent an interface through which an OTX sequence can display data and receive user input. The
current status of a screen can be checked by using the accessor terms associated to the Screen data
type.

Since screens are also sources of screen closed events, they can be used as an argument of the term
ScreenCloseEventSource, as specified 11.6.3.3 (see Clause 8, OTX EventHandling extension).

Since Screen has no initialization parts, a Screen cannot be declared constant.

NOTE	 It is an explicit design goal of the OTX HMI extension not to make assumptions regarding the layout,
positioning or visualization style of a screen in a specific test application. These presentation layer details are
left to the runtime systems.

© ISO 2022 – All rights reserved	 ﻿
﻿

115

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.2.3.3	 MessageType

MessageType is an enumeration type describing the characteristics of a message shown in a
ConfirmDialog. The type of message also controls which buttons are available in a ConfirmDialog (see
11.5.2.3.2).

The list of allowed enumeration values is defined as follows:

—	 INFO:	 displayed message is just for information;

—	 WARNING:	 displayed message is a warning;

—	 ERROR:	 displayed message describes an error;

—	 YESNO_QUESTION: 	 displayed message represents a question answerable by "yes" or "no";

—	 YESNOCANCEL_QUESTION:	 displayed message is a question which does not require a response.

IMPORTANT — MessageType values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
INFO < WARNING < ERROR < YESNO_QUESTION < YESNOCANCEL_QUESTION.

IMPORTANT — When applying otx:ToString on a MessageType value, the resulting string shall
be the name of the enumeration value, e.g. otx:ToString(INFO)="INFO". Furthermore, applying
otx:ToInteger shall return the index of the value in the MessageTypes enumeration (smallest
index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

MessageType is an otx:SimpleType. Its members have the following semantics:

—	 <init> : MessageTypeLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : MessageTypes={INFO|WARNING|ERROR|YESNO_QUESTION|YESNOCANCEL_QUESTION} [1]

This attribute shall contain one of the values defined in the MessageTypes enumeration.

IMPORTANT — If the MessageType declaration is not explicitly initialized (omitted <init>
element), the default value shall be INFO.

11.2.3.4	 ConfirmationType

ConfirmationType is an enumeration type describing the button-choice of a user dismissing a
ConfirmDialog (see 11.5.2.3.2). The information may later be used to find out which button was clicked
for confirmation of the dialog.

The list of allowed enumeration values is defined as follows:

—	 YES: 	 confirmation by "Yes" button or "OK" button;

—	 NO: 	 confirmation by "No" button;

—	 CANCEL: 	 confirmation by "Cancel" button.

IMPORTANT — ConfirmationType values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
YES < NO < CANCEL.

IMPORTANT — When applying otx:ToString on a ConfirmationType value, the resulting string
shall be the name of the enumeration value, e.g. otx:ToString(YES)="YES". Furthermore, applying
otx:ToInteger shall return the index of the value in the ConfirmationTypes enumeration (smallest
index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

116

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

ConfirmationType is an otx:SimpleType. Its members have the following semantics:

—	 <init> : ConfirmationTypeLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : ConfirmationType = {YES|NO|CANCEL} [1]

This attribute shall contain one of the values defined in the ConfirmationTypes enumeration.

IMPORTANT — If the ConfirmationType declaration is not explicitly initialized (omitted <init>
element), the default value shall be YES.

11.3	 Exceptions

11.3.1	 Overview

All exceptions specified in the following are derived from the otx:Exception type as defined by
ISO 13209-2. They represent the full set of exceptions added by the OTX HMI extension.

11.3.2	 Syntax

The syntax of all OTX HMI exception type declarations is shown in Figure 61.

Figure 61 — Data model view: HMI exceptions

11.3.3	 Semantics

11.3.3.1	 General

Since all OTX HMI exception types are implicit exceptions without initialization parts, they cannot be
declared constant.

11.3.3.2	 HmiException

The HmiComException is the super class for all exceptions in the HMI extension. An HmiException shall
be used in case the more specific exception types described in the remainder of this subclause do not
apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

© ISO 2022 – All rights reserved	 ﻿
﻿

117

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.3.3.3	 ScreenException

A ScreenException will be thrown by the runtime system in case that there are problems while
processing custom screens.

Situations where a ScreenException will be thrown include:

—	 non-existing screen definition in the runtime;

—	 parameters of the called screen do not match to the signature of the screen;

—	 errors while updating the screen.

11.4	Variable access

11.4.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following specifies all variable access types defined for the HMI extension.

11.4.2	 Syntax

Figure 62 shows the syntax of the HMI extension's variable access types.

Figure 62 — Data model view: HMI variable access types

11.4.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for details.

11.5	 Actions

11.5.1	 Overview

All of the elements described in the following extend the otx:ActionRealisation extension interface as
defined by ISO 13209-2.

As shown in Figure 63 there are two groups of actions: the dialog actions which serve for opening
different kinds of modal dialogs as well as the custom screen actions for opening and closing custom
screens.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

118

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 63 — Data model view: HMI actions overview

11.5.2	 Dialog related actions

11.5.2.1	 Description

The dialog related actions described in this subclause provide simple message dialogs, input dialogs,
menu-like choice dialogs as well as displaying static documents. For a general description of dialogs,
please refer to 11.1.2.

11.5.2.2	 Syntax

Figure 64 shows the syntax of all modal dialog actions of the HMI extension.

© ISO 2022 – All rights reserved	 ﻿
﻿

119

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 64 — Data model view: Dialog related actions

11.5.2.3	 Semantics

11.5.2.3.1	 Dialog

The abstract type Dialog is the base type for all the dialogs used as a part of the dialog usage pattern.
It represents a modal display that blocks the execution of the test sequence until the user has provided
an input. Dialogs are meant to be simple and well suited for basic interactions with the user, such as
confirmations and single inputs.

The members of the Dialog action have the following semantics:

—	 <title> : otx:StringTerm [0..1]

If the runtime system contains the capability to show a dialog box with a title bar, the title string
given by this element shall be shown. The title should be shown with more prominence than the
message parameter (see below).

—	 <message> : otx:StringTerm [0..1]

If the runtime system contains the capability to show a message as part of the display, the message
string given by this element shall be shown.

11.5.2.3.2	 ConfirmDialog

The ConfirmDialog action shows a dialog asking for user confirmation. The choices of buttons and the
decorations shown to the user can be configured by a parameter. Once one of the confirmation options
is selected, the result field will contain the selected index of the options.

Confirmation dialogs are typically used to ask the user for acceptance before performing a procedure.
Depending on the type of procedure to execute, it is possible to select different levels of severity.

Figure 65 shows a possible layout of a ConfirmDialog instance on a graphical user interface.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

120

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 65 — Sample ConfirmDialog layout

ConfirmDialog is a Dialog. Its members have the following semantics:

—	 <messageType> : MessageTypeTerm [0..1]

This optional element defines the type of message and the buttons that shall be shown to the user
to confirm the action. If the element is omitted, the default MessageType value INFO shall apply.
Please refer to 11.2.3.3 for information about the MessageType enumeration.

The number of buttons displayed depends on the message type:

—	 INFO, WARNING, ERROR: 	 show "OK" button;

—	 YESNO_QUESTION: 	 show "Yes" and "No" buttons;

—	 YESNOCANCEL_QUESTION: 	 show "Yes", "No" and "Cancel" buttons.

NOTE	 Since button labels usually get localized automatically according to test application locale
settings, this document does not force button labels to be "OK", "Yes", "No" or "Cancel". Any semantically
equivalent labels are allowed.

—	 <result> : ConfirmationTypeVariable [0..1]

This element represents the variable where the selection from the user will be stored. The element
can be omitted in cases when the result is nonrelevant (this especially applies to message types
INFO, WARNING and ERROR which do only provide a single "OK" button).

Result values shall be one of the following:

—	 YES: 	 "OK" or "Yes" button was pressed;

—	 NO: 	 "No" button was pressed;

—	 CANCEL: 	 "Cancel" button was pressed.

11.5.2.3.3	 InputDialog

The InputDialog action opens a dialog requesting string input from the user. If needed, an initial value
can be passed to the dialog which shall be shown initially in the input field. Additionally, an input
restriction can be passed to the dialog; this shall be used by runtime systems to pre-validate inputs
before they are passed back to the test sequence. Finally, the entered value is assigned to a string
variable for later use in the test sequence.

InputDialog can only handle one line as simple string. There are no facilities provided for number
parsing, etc. It is assumed that the OTX sequence will perform these actions upon receiving the value.

Figure 66 shows a possible layout of an InputDialog instance on a graphical user interface.

© ISO 2022 – All rights reserved	 ﻿
﻿

121

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 66 — Sample InputDialog layout

InputDialog is a Dialog. Its members have the following semantics:

—	 <initialValue> : otx:StringTerm [0..1]

This optional element represents the string value that shall be used to initialize the dialog's input
field. Runtime systems should pre-populate the input field with this text, providing an option to the
user to overwrite this value.

—	 <instruction> : otx:StringTerm [0..1]

The instruction is an additional message that can be shown on the input dialog to provide
information regarding the expected value that should be introduced.

—	 <restriction> : otx:StringTerm [0..1]

This optional element represents a restriction onto the set of allowed input values. The restriction
shall be formulated by a regular expression which shall be used by runtime systems to pre-validate
the input data. The runtime system should not allow test sequence control to proceed until the
input string matches the given regular expression. The regular expression should follow the same
syntax as defined for string:MatchToRegularExpression.

—	 <result> : otx:StringVariable [1]

After the user dismisses the input dialog, the entered value shall be assigned to the string variable
given by this element.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the regular expression does not follow the supported syntax of the runtime system.

11.5.2.3.4	 ChoiceDialog

The ChoiceDialog shall present a list of options to the user. It shall be possible for the user to select one
of the options and to dismiss the dialog (e.g. by double-clicking an option or by clicking an "OK" button).
Once the dialog is dismissed, the chosen option's index shall be assigned to a result variable. It shall not
be possible to dismiss the dialog unless a choice has been made.

The test sequence author may also preselect one of the options by using the dialog's optional default-
selection property.

For the options, ChoiceDialog accepts a dynamic list of strings as argument. This is useful as the
strings that will be shown can both be defined by the OTX author statically or they can be generated
dynamically (e.g. by reading a list of values from an ECU).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

122

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

The ChoiceDialog visual implementation is up to the runtime system. Suggested visualizations are:

—	 a combination of a combo box with an "OK" button:

—	 a list component with an "OK" button;

—	 a list component which allows dismissing the dialog by double-clicking an option;

—	 a ring menu.

Figure 67 shows a possible layout of a ChoiceDialog instance on a graphical user interface. The sample
dialog contains three options which are rendered as a list. The user can select one of the options and
then press the "OK" button commit her/ his choice and continue. The "OK" button should stay disabled
as long as no choice has been made.

Figure 67 — Sample ChoiceDialog layout

ChoiceDialog is a Dialog. Its members have the following semantics:

—	 <options> : otx:ListTerm [1]

This element specifies a list of strings which contains the possible options that shall be displayed.

Associated checker rules:

—	 HMI_Chk001 – correct list type for ChoiceDialog options (see A.5.1).

—	 <default> : otx:IntegerTerm [0..1]

This optional element represents the index of the option which shall be preselected in the dialog.

—	 <result> : otx:IntegerVariable [1]

This element indicates the integer variable where the chosen option's index shall be assigned to:

—	 0	 the 1st option was selected;

—	 n-1	 the nth option was selected.

Throws:

—	 otx:OutOfBoundsException

It is thrown if the list of options is empty (nothing to choose from) or if the preselection index is not
within the range [0,n-1], where n is the size of the list of options.

© ISO 2022 – All rights reserved	 ﻿
﻿

123

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.5.2.3.5	 ShowDocumentDialog

The ShowDocumentDialog action will open a dialog that can display a document which is identified by,
e.g. a URI. The document can be any resource. The call will block until the user has confirmed reading
the document.

Typical usage of this node is to show additional documentation to the users, such as repair guides and
schematics, or lengthy security information that the user shall read before proceeding with a potentially
dangerous operation. If possible, tester applications should display the document in a maximized way,
for best readability. Dismissing the dialog will close the document.

The set of supported document types is tester application specific. However, runtime systems should
be able to display at least basic HTML 2.0 according to RFC 1866. Formatting, style and fonts can be
stripped from display if the runtime system does not support advanced formatting capabilities (i.e.
if only a single type, monospace font is used). Furthermore, popular image formats such as JPEG, GIF
and PNG as well as document formats like plain text, rich text and PDF should be supported by tester
applications also.

In case that a document type cannot be opened and displayed by the test application itself, the runtime
may delegate the opening of the document to the application which is registered for that document
type on the operating system. If a tester application uses delegation, a dialog window shall pop up in
the application, blocking execution and asking for confirmation from the user that the application can
continue. Once the user confirms, the execution of the test sequence shall continue even if the external
viewer is not closed.

Ultimately, if a document type is supported neither by the test application nor by any external viewer,
then the test application shall show a suitable error message indicating that the document type is not
supported and can therefore not be displayed.

ShowDocumentDialog is a Dialog. Its members have the following semantics:

—	 <document> : otx:StringTerm [1]

This element identifies the external document that should be shown.

Throws:

—	 otx:InvalidReferenceException

It is thrown if the document resource given by the <document> element is not available or not
accessible.

11.5.2.4	 Example

The OTX fragment below shows uses of the ConfirmDialog, InputDialog and ShowDocumentDialog.
Please compare this to Figure 65 and Figure 66 which show graphical equivalents of the dialog actions.

Sample of HmiDialogs

 <action id="a1">
 <specification>Ask user for confirmation that ignition is turned on.</specification>
 <realisation xsi:type="hmi:ConfirmDialog">
 <hmi:title xsi:type="StringLiteral" value="Check Ignition"/>
 <hmi:message xsi:type="StringLiteral" value="Please make sure that ignition is
turned ON."/>
 <hmi:messageType xsi:type="hmi:MessageTypeLiteral" value="WARNING"/>
 </realisation>
 </action>

 <action id="a2">
 <specification>Get VIN from user and store in variable "Vin"</specification>
 <realisation xsi:type="hmi:InputDialog">
 <hmi:title xsi:type="StringLiteral" value="Enter VIN"/>
 <hmi:message xsi:type="StringLiteral" value="Please enter VIN"/>

	 ﻿� © ISO 2022 – All rights reserved
�﻿

124

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 <hmi:instruction xsi:type="StringLiteral"
 value="Please note: VIN must contain 17 characters, only letters and numbers"/>
 <hmi:result name="Vin"/>
 </realisation>
 </action>

 <action id="a3">
 <specification>Show a wiring diagram to user.</specification>
 <realisation xsi:type="hmi:ShowDocumentDialog">
 <hmi:document xsi:type="StringLiteral" value="http://www.myCompany.com/
WiringDiagram.svg"/>
 </realisation>
 </action>

11.5.3	 Custom screen related actions

11.5.3.1	 Description

In contrast to the dialog actions described above, the actions below support the handling of custom
screens, as described in 11.1.3. In particular, there are the actions, OpenScreen, CloseScreen as well as
HighlightScreen which allow controlling GUI output and input to and from the user and the opening
and closing of screens. Custom screens are also related to so-called screen signatures which define the
interface to application-specific screen definitions (see 11.7).

11.5.3.2	 Syntax

Figure 68 shows the syntax of all custom screen related actions of the HMI extension.

Figure 68 — Data model view: Custom screen related actions

© ISO 2022 – All rights reserved	 ﻿
﻿

125

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.5.3.3	 Semantics

11.5.3.3.1	 OpenScreen

The OpenScreen action creates and displays a custom screen at runtime. The screen shall be displayed
immediately, and it can accept user input. If other screens are already open when the new screen is
opened, the test application shall ensure that the new screen is not hidden by other screens.

IMPORTANT — In systems where screens are shown in separate GUI windows, the new screen
should be sent on top of all other windows.

A screen shall remain opened until the user dismisses the screen via some UI control or a CloseScreen
action is executed explicitly on its screen handle. Also, when there are unclosed screens at the moment
when the procedure which opened the screens exits, only those screens on which at least one screen
handle exists shall remain opened; all other screens shall be disposed of (see <screenHandle> element
specified below).

When a screen is opened, the runtime system will internally locate a screen definition linked to the
given screen signature name (see 11.7.3.2), or create a screen from scratch that allows displaying
the given values to the user. If the screen cannot be opened or the open action is not supported, a
ScreenException shall be thrown.

IMPORTANT — It is an explicit design goal of OTX not to describe the graphical layout of screens.
Layout and look and feel of screens should be described by specific screen definitions used by
a runtime system. Since these features are highly application-specific and do not represent
semantically relevant information concerning the "pure" test sequence logic, screen definitions
are not part of this document.

IMPORTANT — Execute service (open screen, excute device service) action usage inside parallel
lanes should be threadsafe.

The members of the OpenScreen action have the following semantics:

—	 screen : otx:OtxLink [1]

This attribute contains a name which points to a ScreenSignature which contains a parameter
description for the screen that shall be opened (it is the interface description to a specific
screen definition, see 11.7.3.2). The arguments of OpenScreen shall match the definitions in the
corresponding signature. It is the task of the runtime system to provide a mapping from screen
signatures to a runtime-specific screen definition (see Figure 57) which provides the actual screen
layout.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2);

—	 HMI_Chk002 – correct target for OpenScreen (see A.5.2).

—	 modal : xsd:boolean={false|true} [0..1]

This option tells the runtime system to make this screen modal or non-modal. This means that if
modal is false (the default), the OTX execution flow will immediately move on to the next Action,
without waiting for the screen to close (see Figure 59 for usage examples of non-modal screens).
Otherwise, if modal is true, the screen behaves like the dialog actions; it shall block the execution
flow until the screen was closed (by a user action or a CloseScreen action, e.g. in another parallel
lane).

NOTE	 Non-modal screens are well suited for dynamic cases where the test sequence needs to react on
and process input from the screen, or needs to update values shown on the screen, where modal screens are
better suited for the cases where static information is presented to the user.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

126

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <screenHandle> : ScreenVariable [0..1]

This optional element represents the variable which shall be the handle for the opened screen. This
can be later used to query the status of the screen, highlighting the screen or closing the screen
explicitly (see ScreenIsOpen term, HighlightScreen or ScreenClose actions below).

—	 <arguments> : ScreenArguments [0..1]

This simple container element represents a list of arguments for an open screen call. The content-
type of ScreenArguments is <xsd:choice> [1..*] which allows an arbitrary-length list of different
screen argument elements. The given arguments shall correspond to the parameters described in
the screen signature (linked by the screen attribute). There are different argument types:

—	 <termArg> : ScreenTermArgument

This argument type allows setting a calculated value into the screen. The value passed is
always an input-value to the screen. It shall be calculated exactly once upon opening the screen,
no later recalculations of the term value shall happen.

This type of arguments can be used, when a value that is passed to a screen is not expected
to change during the execution of the test sequence. Hence, it is not required that the runtime
system keeps a "watch" on the value. Because it accepts a term, it becomes possible to calculate
the value that should be set for a screen. For example, it might be desired to show a translated
title that additionally contains a concatenated extra string.

A term argument may be omitted if and only if there is an explicit initial value defined for the
corresponding parameter in the screen signature. In that situation, the initial value shall be
used instead of the omitted argument.

The counterpart to a <termArg> shall be defined in the corresponding screen signature by a
<termParam>.

—	 param : otx:OtxName [1]

This attribute indicates a unique parameter of the screen that shall receive the to-be-
displayed value. The indicated parameter shall be defined in the corresponding screen
signature. The screen definition should then contain a widget that will be fed with this
value.

—	 <term> : otx:Term [1]

This element represents the term that shall be evaluated once and set as a value into the
screen.

—	 <inArg> : ScreenInArgument

This argument type shall bind a variable to a parameter of the screen. Changes to the variable
shall be automatically reflected on the screen.

An input argument may be omitted if and only if there is an explicit initial value defined for
the corresponding parameter in the screen signature. In that situation, the initial value shall be
used instead of the omitted argument.

The counterpart to an <inArg> shall be defined in the corresponding screen signature by an
<inParam>.

—	 param : otx:OtxName [1]

This attribute indicates a unique input-parameter of the screen that shall be bound to a
variable.

© ISO 2022 – All rights reserved	 ﻿
﻿

127

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <variable> : otx:Variable [1]

This element represents the to-be-bound variable whose value shall be monitored and
whose current value shall be fed into the screen. The screen definition should then contain
a widget that will be fed with this variable's current value.

—	 <inoutArg> : ScreenInOutArgument

This argument type shall bind a variable to a parameter of the screen, in a bidirectional fashion:
changes to the variable from the test sequence model shall be automatically reflected on the
screen. Vice versa, changes triggered from the screen (e.g. by user actions) shall automatically
change the value of the variable.

An input/output argument may be omitted if and only if there is an explicit initial value
defined for the corresponding parameter in the screen signature. In that situation, the initial
value shall be used instead of the omitted argument.

The counterpart to an <inoutArg> shall be defined in the corresponding screen signature by an
<inoutParam>.

—	 param : otx:OtxName [1]

This attribute indicates a unique input/output parameter that shall be bound to a variable.

—	 <variable> : otx:Variable [1]

This element represents the to-be-bound variable whose value shall be monitored and
whose current value shall be fed into the screen. The variable shall also reflect changes
triggered from the screen, vice versa. The screen definition should then contain a widget
that will be fed with this variable's current value and that also allows for the user to change
the value.

—	 <outArg> : ScreenOutArgument

This argument type shall bind a variable to an output parameter of the screen. Changes on the
screen shall trigger an update of the bound variable's value.

Output arguments may be omitted freely (e.g. in the case when there is no interest in one of
the screen data).

The counterpart to the <outArg> shall be defined in the corresponding screen signature by a
<outParam>.

—	 param : otx:OtxName [1]

This attribute indicates a unique output-parameter that shall be bound to a variable.

—	 <variable> : otx:Variable [1]

This element represents the to-be-bound variable which shall reflect the value set on the
screen (e.g. entered by the user). The screen definition should then contain an input widget
that allows for the user to change the value.

Associated checker rules:

—	 HMI_Chk003 – correct OpenScreen arguments (see A.5.3);

—	 HMI_Chk004 – OpenScreen term, input and input/output argument omission (see A.5.4);

—	 HMI_Chk005 – no Path in connected OpenScreen arguments (see A.5.5).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

128

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 ScreenException

It is thrown if the screen definition cannot be found, if the assigned parameters are incorrect or if
the runtime system cannot support a screen open operation.

11.5.3.3.2	 HighlightScreen

The HighlightScreen action shall highlight a given screen in a way appropriate for drawing the user's
attention to the screen. This supports use cases where user attention is required, for example, when a
situation occurs which immediately requires user input on a particular screen, or when a screen displays
important information which tells the user which actions to take to solve, e.g. a critical situation.

IMPORTANT — In systems where screens are shown in separate GUI windows, highlighting a
screen should bring the screen on top of any other windows. For systems where screens are
shown, for example, in one partitioned GUI window, highlighting may be done for instance by
making the new screen's portion of the window blink for some time, or similar. Non-GUI systems
may use, for example, warning LEDs to draw user attention.

The members of the HighlightScreen action have the following semantics:

—	 <screen> : ScreenVariable [1]

This element represents the screen handle of the screen that shall be highlighted.

Throws:

—	 InvalidReferenceException

It is thrown if the screen variable is uninitialized or if the screen has already been closed.

11.5.3.3.3	 CloseScreen

The CloseScreen action shall cause the runtime system to dismiss the screen and release all resources
associated to the screen.

After the execution of the CloseScreen action, the screen shall not send any more events for processing
to the OTX sequence and shall not allow any more user interaction to be performed.

Closing an uninitialized or already closed screen shall perform no operation and report no errors. It
shall be for all effects a NOP.

The members of the CloseScreen action have the following semantics:

—	 <screen> : ScreenVariable [1]

This element represents the screen handle of the screen that shall be closed.

11.6	 Terms

11.6.1	 Overview

The terms of the OTX HMI extension are mainly related to custom screen handling and the events
which may be fired by screens. Furthermore, there are simple enumeration type terms related to the
ConfirmDialog action 11.5.2.3.2).

Figure 69 provides an overview about the different term categories.

© ISO 2022 – All rights reserved	 ﻿
﻿

129

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 69 — Data model view: HMI term categories

11.6.2	 Syntax

Figure 70 shows the syntax of all terms in the OTX HMI extension.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

130

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 70 — Data model view: HMI terms

11.6.3	 Semantics

11.6.3.1	 ScreenTerm

ScreenTerm is an otx:Term. It serves as the abstract base type for all concrete terms which return a
Screen. It has no further members.

11.6.3.2	 ScreenValue

This term returns the Screen stored in a Screen variable. For more information on value-terms and the
syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

© ISO 2022 – All rights reserved	 ﻿
﻿

131

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.6.3.3	 ScreenClosedEventSource

The ScreenClosedEventSource term accepts a Screen object that is to be made an event source. This term
enables an OTX sequence to use a Screen as a source for events in the context of the OTX EventHandling
extension (please refer to Clause 8). A Screen shall trigger an event every when the specified screen is
closed. This can be used within an event:WaitForEventAction to continue execution after a screen was
closed.

NOTE	 Other events that may happen on a screen (e.g. button presses, values entered into an input field) can be
identified by using the event source terms MonitorChangeEventSource or ThresholdExceededEventSource,
as specified by the OTX EventHandling extension (see Clause 9). As screens are executed on an asynchronous
thread, user interaction can be received at any time. Therefore, the value monitoring event sources are especially
useful with respect to non-modal custom screens (see Figure 59) in order to react on different user actions.

ScreenClosedEventSource is an event:EventSource. Its members have the following semantics:

—	 <screen> : ScreenTerm [1]

This represents the Screen that shall be connected to the event source.

11.6.3.4	 IsScreenClosedEvent

The IsScreenClosedEvent term accepts an EventValue term yielding an Event object that has been
raised by the OTX runtime, as a result of declaring a Screen object as an event source by using the
term ScreenClosedEventSource. The term shall return true if and only if the Event originates from a
ScreenClosedEventSource term. In case an optional ScreenVariable is specified, the term shall return
true if and only if the Event was fired because that particular Screen was closed.

This term exists because closing a screen is a very common event and many times the execution flow
shall continue only when a screen is dismissed. To simplify writing test sequences, it is thus simpler to
write a WaitForEvent node that only listens for this event type, and without requiring additional code
to analyse the type of even as required with a regular screen event.

IsScreenClosedEvent is an otx:BooleanTerm. Its members have the following semantics:

—	 <event> : event:EventValue [1]

This represents the Event whose type shall be tested.

—	 <screen> : ScreenVariable [0..1]

This optionally specifies the particular Screen which fired the event.

Throws:

InvalidReferenceException

It is thrown if a ScreenVariable is specified and it is uninitialized.

11.6.3.5	 ScreenIsOpen

This is a term used to verify that a Screen is open and active. A Screen is open and active if it has been
opened by using an OpenScreen action, it has not been dismissed by the user and it has not been closed
by using a CloseScreen action.

IMPORTANT — Due to the fact that there may be multiple parallel lanes, and that a screen engine
normally works in a different thread, if the ScreenIsOpen term returns true there is actually no
guarantee that the screen is still open on the next step.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

132

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

ScreenIsOpen is an otx:BooleanTerm. Its members have the following semantics:

—	 <screen> : ScreenVariable [1]

This element represents the variable which is a handle to the screen that shall be checked.

ScreenIsOpen shall return false, if variable is unitialized.

11.6.3.6	 MessageTypeTerm

The abstract type MessageTypeTerm is an otx:SimpleTerm. It serves as a base for all concrete terms
which return a MessageType value (see 11.2.3.3). It has no special members.

11.6.3.7	 MessageTypeValue

This term returns the MessageType stored in a MessageType variable. For more information on value-
terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

11.6.3.8	 MessageTypeLiteral

This term shall return a MessageType value (see 11.2.3.3) from a hard-coded literal.

MessageTypeLiteral is a MessageTypeTerm. Its members have the following semantics:

—	 value : MessageTypes={INFO|WARNING|ERROR|YESNO_QUESTION|YESNOCANCEL_QUESTION} [1]

This attribute shall contain one of the values defined in the MessageTypes enumeration.

11.6.3.9	 ConfirmationTypeTerm

The abstract type ConfirmationTypeTerm is an otx:SimpleTerm. It serves as a base for all concrete terms
which return a ConfirmationType value (see 11.2.3.4). It has no special members.

11.6.3.10	 ConfirmationTypeValue

This term returns the ConfirmationType stored in a ConfirmationType variable. For more information
on value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer
to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

© ISO 2022 – All rights reserved	 ﻿
﻿

133

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

11.6.3.11	 ConfirmationTypeLiteral

This term shall return a ConfirmationType value (see 11.2.3.4) from a hard-coded literal.

ConfirmationTypeLiteral is a ConfirmationTypeTerm. Its members have the following semantics:

—	 value : ConfirmationTypes={YES|NO|CANCEL} [1]

This attribute shall contain one of the values defined in the ConfirmationTypes enumeration.

11.7	 Signatures

11.7.1	 Overview

As specified by ISO 13209-2, OTX extensions may define new specialialized types of signatures by
extending otx:SignatureRealisation. The OTX HMI extension uses this extensibility by adding
the ScreenSignature type which allows in-document, high-level interface specifications to screen
definitions which are used by the OpenScreen action, as specified in 11.5.3.3.1.

11.7.2	 Syntax

Figure 71 shows the syntax of the HMI extension's signature types.

Figure 71 — Data model view: HMI signatures

IMPORTANT — The XSD complex type ScreenParameterDeclarations is of <xsd:choice> [1..*]
content-type, which is not explicitly shown in Figure 71.

11.7.3	 Semantics

11.7.3.1	 General

The basic semantics common to all kinds of signatures are specified in ISO 13209-2.

11.7.3.2	 ScreenSignature

The ScreenSignature is a specialisation of the OTX core type otx:SignatureRealisation that adds
additional interface description functionality along with the OTX core type otx:ProcedureSignature. A
ScreenSignature represents the interface between OpenScreen actions and the runtime specific screen
definitions.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

134

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Typically, all screens supported by a runtime system should be described in a dedicated set of OTX
documents, "screen description documents", which contain the signatures of all screen definitions
available for the OTX author. This allows the author to create test sequences that use a pre-established
UI.

Screen signatures shall also be used to verify that the arguments given by an OpenScreen action are
complete.

Since ScreenSignature is an otx:SignatureRealisation, screen signatures have to be globally defined
in OTX documents. They are located under the <signatures> element right below the root element
<otx>, as defined by ISO 13209-2.

The members of ScreenSignature have the following semantics:

—	 <parameters> : ScreenParameterDeclarations [0..1]

This contains a list of parameters of different types. They describe which input- and output-
values a certain screen needs or provides. The parameters of a specific screen signature are the
counterparts of the arguments of a ScreenOpen action (see 11.5.3.3.1). Since all parameter types are
derived from the otx:Declaration type as defined in ISO 13209-2, the parameters have a name, a
specification and a data type declaration (not specified here).

ScreenParameters is of <xsd:choice> [1..*] content-type which allows an arbitrary-length list of
parameter sub-elements of the following types:

—	 <termParam> : ScreenTermParameter

This represents the counterpart to the <termArg> type of the OpenScreen action (see 11.5.3.3.1).
It declares an input parameter for a screen whose value shall be computed once out of a term
given in a corresponding term argument of an OpenScreen action. The value shall be shown by
a suitable widget on the screen.

—	 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

—	 <inParam> : ScreenInParameter

This represents the counterpart to the <inArg> type of the OpenScreen action (see 11.5.3.3.1).
It declares an input parameter which shall be linked to an OTX variable (by executing an
OpenScreen action at runtime). Value changes of the variable shall automatically trigger an
update of the respective widget on the screen.

—	 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

—	 <inoutParam> : ScreenInOutParameter

This represents the counterpart to the <inoutArg> type of the OpenScreen action (see
11.5.3.3.1). It declares a bidirectional input/output parameter which shall be linked to an OTX
variable (by executing an OpenScreen action at runtime). Value changes in the variable shall
automatically trigger an update of the respective widget on the screen and vice versa, if the
user changes the value on the screen, the new value shall be reflected in the linked variable.

—	 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

—	 <outParam> : ScreenOutParameter

This represents the counterpart to the <outArg> type of the OpenScreen action (see 11.5.3.3.1).
It declares an output parameter of the screen which shall be linked to an OTX variable (by

© ISO 2022 – All rights reserved	 ﻿
﻿

135

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

executing an OpenScreen action at runtime). If the user changes the value on the screen via the
corresponding input widget, the new value shall be reflected in the linked variable.

—	 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

As specified above, each of the parameter types contains an additional category attribute. It is an
optional hint to the runtime system regarding the usage of the associated parameter. Some runtime
systems might not have a specific screen definition corresponding to a given screen signature, or do not
support the concept of screen definitions at all. Such systems can use the category to attach semantic
meaning to certain arguments of an OpenScreen action and choose an appropriate representation for
the values.

Runtime systems are not required to implement this functionality. Any text can be used; however, the
following have standardized meanings:

—	 TITLE: parameter should be rendered as a title;

—	 MESSAGE: parameter should be rendered as a message;

—	 GRAPH: parameter should be displayed with a visual graphical representation;

—	 WARNING: parameter should be displayed as a warning;

—	 BUTTON: parameter should be rendered as a button;

—	 CHECKBOX: parameter should be rendered as a checkbox;

—	 INPUT: parameter should be rendered as input mask;

—	 CHOICE: parameter should be rendered as a choice (applies to otx:List and otx:Map only).

12	 OTX i18n extension

12.1	 General

The OTX i18n (Internationalization) extension provides access to data types, terms and actions for
translating strings, quantity units and values to the language and unit system of the locale of the
runtime system.

Due to the international reach of vehicle manufacturers and the existence of research labs, production
plants and repair shops across the globe, it is necessary to provide an API that will make a test sequence
agnostic of the particularities of the language and the system present on the target region. Thus, all
strings that will be presented to the user shall be stored in a common format, referenced by keys and
translated on the fly.

12.2	 Data types

12.2.1	 Overview

The OTX i18n extension introduces a single data type named TranslationKey, as described in the
following.

12.2.2	 Syntax

The syntax of the TranslationKey datatype declaration of the OTX i18n extension is shown in Figure 72.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

136

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 72 — Data model view: i18n data types

12.2.3	 Semantics

12.2.3.1	 General

The data types in the OTX i18n extension are derived from otx:SimpleType.

12.2.3.2	 TranslationKey

A TranslationKey is a reference to a unique string message which can be internationalized (e.g. by
corresponding entries in a thesaurus database). The concept used in OTX is similar to the concept used
in many programming languages, where all messages that shall be shown to the user are externalized
and referenced by keys.

The actual retrieval procedure is defined by the runtime system.

TranslationKey is an otx:SimpleType. Its members have the following semantics:

—	 <init> : TranslationKeyLiteral [0..1]

This optional element stands for the initialization of the identifier at declaration time. Initialization
is done by a hard-coded text ID in the OTX document.

—	 value : xsd:string [1]

This attribute contains the text ID value.

IMPORTANT — If the TranslationKey declaration is not explicitly initialized (omitted <init>
element), the default value shall be the empty string.

12.3	 Exceptions

12.3.1	 Overview

All elements referenced in this subclause are derived from the OTX core Exception type as defined by
ISO 13209-2. They represent the full set of exceptions added by the OTX i18n extension.

12.3.2	 Syntax

The syntax of all OTX i18n exception type declarations is shown in Figure 73.

© ISO 2022 – All rights reserved	 ﻿
﻿

137

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 73 — Data model view: i18n exceptions

12.3.3	 Semantics

12.3.3.1	 General

Since all OTX i18n exception types are implicit exceptions without initialization parts, they cannot be
declared constant.

12.3.3.2	 i18nException

The i18nException is the super class for all exceptions in the i18n extension. An i18nException shall
be used in case the more specific exception types described in the remainder of this subclause do not
apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

12.3.3.3	 UnsupportedLocaleException

The UnsupportedLocaleException shall be thrown when a locale related operation fails because the
runtime system does not support the target locale.

12.4	Variable access

12.4.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following specifies all variable access types defined for the i18n extension.

12.4.2	 Syntax

Figure 74 shows the syntax of the i18n extension's variable access types.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

138

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 74 — Data model view: i18n variable access types

12.4.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for further
details.

12.5	 Terms

12.5.1	 Overview

All of the i18n terms shown in Figure 75 extend the otx:Term extension interface (directly and
indirectly), as defined by ISO 13209-2.

The i18n extension introduces the abstract type TranslationKeyTerm which serves as the base type
for all i18n terms yielding TranslationKey values. TranslationKeyTerm itself is based on the abstract
OTX core term otx:StringTerm. Therefore, a TranslationKeyTerm can be applied in any place where an
otx:StringTerm is required.

Other i18n terms extend the abstract OTX core terms otx:ListTerm, otx:StringTerm and
otx:BooleanTerm, furthermore quant:QuantityTerm is used for the localisation of quantities (please
refer to Clause 16).

The i18n terms are assigned to the following categories:

—	 Locale settings: terms in this category are related to locale settings of diagnostic applications;

—	 Translation related: this category is for terms which represent diverse translation functionality;

—	 Quantity related: these are terms used for localizing quantities.

© ISO 2022 – All rights reserved	 ﻿
﻿

139

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 75 — Data model view: i18n term categories

12.5.2	 Locale settings related terms

12.5.2.1	 Description

The terms in this category are designed for retrieving locale settings of diagnostic applications.

12.5.2.2	 Syntax

Figure 76 shows the syntax of all locale setting related terms of the i18n extension.

Figure 76 — Data model view: Locale setting related terms

12.5.2.3	 Semantics

12.5.2.3.1	 GetCurrentLocale

The GetCurrentLocale term shall retrieve the current locale code in use by the runtime system. The
returned locale code shall be a combination of the ISO 639-1 two-letter language code followed by a
hyphen, and then the uppercase two letter country code as defined by ISO 3166-1. Optionally, a variant
code may be added in case of additional customizations (headed by another hyphen). The variant codes
are not defined by this document.

If no current locale is selected, the system shall return the default locale.

EXAMPLE	 Following the rules above, a returned locale is formed like, e.g. "de-CH-1901" (for the variant of
German orthography dating from the 1901 reforms, as seen in Switzerland).

GetCurrentLocale is an otx:StringTerm. It has no members.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

140

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

12.5.2.3.2	 GetAllLocales

The term GetAllLocales should retrieve all available locales from the runtime system that are
supported and for which translations are available.

The fact that a runtime system returns a locale does not guarantee that all translations and units are
available. Rather, this method returns the locales that can be used, regardless of data availability. It is
however recommended that runtime systems consult their translation data store before returning the
list of locales, so the results should be close to the actual available data.

The returned value shall be a list of strings using the same locale format as specified for the
GetCurrentLocale term (see above).

This term allows querying some of the capabilities of the underlying runtime system. It is useful
information, for example, for the TranslateToLocale term, as it is known beforehand what can be used
as valid locale input.

GetAllLocales is an otx:ListTerm without any further members.

12.5.3	 Translation related terms

12.5.3.1	 Description

The terms in this category are designed for managing, translating and comparing TranslationKey
values.

12.5.3.2	 Syntax

Figure 77 shows the syntax of all translation related terms of the i18n extension.

Figure 77 — Data model view: Translation related terms

12.5.3.3	 Semantics

12.5.3.3.1	 TranslationKeyTerm

The abstract type TranslationKeyTerm is an otx:StingTerm. It serves as a base for all concrete terms
which return a TranslationKey. It has no special members.

IMPORTANT — If the OTX core conversion term otx:ToString is applied to a TranslationKey, the
internal text ID string value contained in the TranslationKey shall be returned.

© ISO 2022 – All rights reserved	 ﻿
﻿

141

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

12.5.3.3.2	 TranslationKeyValue

This term returns the TranslationKey stored in a TranslationKey variable. For more information on
value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

12.5.3.3.3	 TranslationKeyLiteral

This term shall be used to create a TranslationKey data object based on a hard-coded text ID. The text
ID is a reference to an external thesaurus system. It is assumed that the runtime system contains a data
storage that knows how to create a TranslationKey data based on the literal.

IMPORTANT — The creation of the object should always work, as the data should not be loaded
from the runtime system.

TranslationKeyLiteral is a TranslationKeyTerm. Its members have the following semantics:

—	 value : xsd:string [1]

The text ID represents a simple string that is used by the runtime system as a reference to its
internal storage of localized string translations. The exact usage and translation is not defined in
the this document.

12.5.3.3.4	 CreateTranslationKey

The CreateTranslationKey term creates a TranslationKey out of a given string. The string is used as
the text ID that will be used to create the TranslationKey.

This term allows dynamically creating translation keys as a result of, for example, accessing specific
parts of ODX data sources.

CreateTranslationKey is a TranslationKeyTerm. Its members have the following semantics:

—	 <textId> : otx:StringTerm [1]

The string term value provided that will be used to generate a translation key.

12.5.3.3.5	 Translate

The Translate term accepts a TranslationKey which may be supplemented by additional translation
arguments for message parameter substitution (if required by the associated thesaurus entry). It shall
return a localized string in the current user language.

It is assumed that the runtime system contains a user or system selected locale which will be used to
automatically perform the translation.

Recommendation: If no translation is available in the current locale, the runtime system may use a
fall-back strategy that consists on consulting a family that share a common base language. Otherwise,
the default language may be used. This fallback strategy is out of scope of the specification.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

142

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

In case that the translation is unknown by the runtime system, the translation key itself shall be
returned as the translation. This is to avoid error conditions in the system due to incorrect translations.

IMPORTANT — It is not in the scope of this document to specify or expect a certain kind of
thesaurus database structure. However, concerning compound thesaurus entries (messages
with parameters), thesaurus entries should be formed in a similar way like the string
patterns specified by the Java class MessageFormat (java.text.MessageFormat). This allows
identifying parameters in the pattern unambiguously, e.g. the parameters {0} and {1} in "The
resistance of injector {0} is {1}". This provided, Translate shall function like MessageFormat.
format(String pattern, Object[] arguments), where the arguments substitute the message
parameters according to their position in the arguments array.

Translate is an otx:StringTerm. Its members have the following semantics:

—	 <translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database for
a translation. Once a translation is found and parameter substitution has taken place, the resulting
message string shall be returned.

—	 <arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments for the translation. The arguments shall
be evaluated first before being inserted into the translated message. The order of arguments is
important; the first argument shall substitute message parameter {0}, the second parameter {1},
and so on.

—	 <arg> : Term [1..*]

This represents an argument which will be substituted in the resulting messages at the
corresponding parameter's position. Non-String arguments shall be converted automatically
to String prior to parameter substitution.

EXAMPLE	 Consider a thesaurus entry in English ID1: "The resistance of injector {0} is {1}" or
similar, in German ID1: "Der Widerstand des Injektors {0} ist {1}". Also consider a quantity Q which
represents 10 Ohm. If the current locale is English, applying Translate(ID1, [3, Q]) will produce the English
output "The resistance of injector 2 is 10 Ohm." or likewise, if the current locale is German, the output
"Der Widerstand des Injektors 2 ist 10 Ohm.".

IMPORTANT — If the format message is invalid, or if an argument in the arguments element is
not of the type expected by the format element(s) that uses it, an i18nException shall be thrown.

12.5.3.3.6	 TranslateToLocale

The TranslateToLocale term shall perform a similar function to the Translate term, but instead of
using the current locale it shall use a target locale that is given as an argument to the call, formed after
the rules of ISO 639-1.

NOTE	 Using this term forces a translation to a specific language. This can be desirable for specific situations
such as feedback sent to a support desk.

TranslateToLocale is an otx:StringTerm. Its members have the following semantics:

—	 <locale> : otx:StringTerm [1]

The translation process shall use this string as the target locale for the translation. The locale is
expected to be formed after the rules of ISO 639-1, as explained for the GetCurrentLocale term (see
12.5.2.3.1).

© ISO 2022 – All rights reserved	 ﻿
﻿

143

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database for
a translation. Once a translation is found and parameter substitution has taken place, the resulting
message string shall be returned.

—	 <arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments for the translation. The arguments shall
be evaluated first before being inserted into the translated message. The order of arguments is
important; the first argument shall substitute message parameter {0}, the second parameter {1},
and so on.

—	 	 <arg> : Term [1..*]

This represents an argument which will be substituted in the resulting messages at the
corresponding parameter's position. Non-String arguments shall be converted automatically
to String prior to parameter substitution.

Throws:

—	 UnsupportedLocaleException

It is thrown if the runtime system does not support the given locale.

IMPORTANT — If the format message is invalid, or if an argument in the arguments element is
not of the type expected by the format element(s) that uses it, an i18nException shall be thrown.

12.5.3.3.7	 CompareUntranslatedString

The CompareUntranslatedString term compares whether an untranslated string equals at least one of
the translations of a given translation key. While searching for a match, each available locale shall be
considered by the runtime. The term shall return true if and only if a matching translation can be found.

EXAMPLE	 The CompareUntranslatedString term is useful in cases where, for example, an ECU
responds in the form of a hard-coded string, e.g. "OFFEN" (German for "OPEN"). CompareUntranslatedString
may now be used by an OTX author to find out if whether this is a translation for a given translation key
and use that information for further purposes. This is also important at authoring time since OTX editor
tools might show the key translation in the current locale of the editor, thus making comparisons like
myOpenCloseResponseGerman=="OPEN" possible/visible, and therefore, localizing the editor tool.

CompareUntranslatedString is an otx:BooleanTerm. Its members have the following semantics:

—	 <translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database
for a matching translation which matches the untranslated string. If message parameters exist,
argument substitution shall be performed first, prior to comparison.

—	 <arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments for the translation (see Translate term). The
arguments shall be evaluated first before being inserted into the translated message. The order of
arguments is important; the first argument shall substitute message parameter {0}, the second
parameter {1}, and so on.

—	 <arg> : Term [1..*]

This represents an argument which will be substituted in the resulting messages at the
corresponding parameter's position. Non-String arguments shall be converted automatically
to String prior to parameter substitution.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

144

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <untranslatedString> : otx:StringTerm [1]

This represents the string which shall be tested for a match.

12.5.4	 Quantity related terms

12.5.4.1	 Description

The terms in this category are designed for managing quantities with respect to locale settings.

12.5.4.2	 Syntax

Figure 78 shows the syntax of all quantity related terms of the i18n extension.

Figure 78 — Data model view: Quantity related terms

12.5.4.3	 Semantics

12.5.4.3.1	 Referring to unit group definitions

The LocalizeQuantityToUnitGroup term uses the UnitGroup type in order to refer to unit group
definitions located in an external resource. The OTX i18n extension reuses the unit definition data
model specified by the ODX standard (see UNIT-SPEC data type in ISO 22901-1:2008, 7.3.6.7). Concerning
references from OTX to UNIT-SPEC entries, the rules below shall apply.

IMPORTANT — Any elements of the OTX i18n terms that work with unit groups shall link to
required ODX unit group definitions by using simple XLinks only, as specified by W3C XLink. This
means that the xlink:type attribute shall always be set to "simple". Furthermore, the xlink:href
attribute should follow the pattern "{URI}#{SHORT-NAME}", where {URI} represents the UNIT-SPEC
resource and {SHORT-NAME} identifies the unit group definition by its ODX SHORT-NAME property.
The pattern corresponds to a shorthand notation XPointer, as specified by Reference [10].
However, in case the shorthand notation is not sufficient to address unit group definitions, the
full XPointer notation may be used (e.g. when one ODX-document contains more than one UNIT-
SPEC container).

EXAMPLE	 For linking to the unit definition for "EU_Metric" given in the exemplary UNIT-SPEC in 16.1, the
element has the form of <unit xlink:type="simple" xlink:href="unit-spec.xml#EU_Metric"/>.

This is related to the OTX quantities extension, please refer to Clause 16 for further details.

12.5.4.3.2	 LocalizeQuantity

The LocalizeQuantity term is used to create a localized version of a given Quantity.

A Quantity contains a value and display unit information. However, the display unit might be unsuitable
for the current locale (e.g. when a distance-type quantity with a display unit of miles should be displayed
to a user who is used to dealing with metric units). Because OTX test sequences should remain agnostic
of localisation details, it is necessary to express conversions in such a way that both the display unit
and the value of a Quantity can be localized in a consistent way.

© ISO 2022 – All rights reserved	 ﻿
﻿

145

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

IMPORTANT — The conversion shall consider factors such as the unit groups, known units and
physical dimensions known to the system. From the point of view of the OTX sequence, quantities
are just data containers and the whole conversion process happens in the background. For native
implementations, it is acceptable that the returned value is exactly the same as the given value.

Localization in the LocalizeQuantity term shall always be performed using the current locale.

LocalizeQuantity is a quant:QuantityTerm. Its members have the following semantics:

—	 <quantity> : quant:QuantityTerm [1]

This represents the Quantity that shall be localized to the current locale.

Throws:

—	 quant:InvalidConversionException

It is thrown if the Quantity cannot be converted for any reason.

12.5.4.3.3	 LocalizeQuantityToUnitGroup

The LocalizeQuantityToUnitGroup term shall create a version of a Quantity localized to a specific unit
group.

There are two different types of unit groups: country and equivalent unit groups. This term shall create
a new Quantity containing the display unit given by the new group that is equivalent to the display unit
of the original Quantity.

NOTE	 It is assumed that the runtime system contains a list of known and valid equivalent unit groups. In
case that the runtime system decides to implement a naïve solution, it is valid to return the same quantity as the
one that has been received.

LocalizeQuantityToUnitGroup is a quant:QuantityTerm. Its members have the following semantics:

—	 <quantity> : quant:QuantityTerm [1]

This represents the quantity that shall be localized using the given country unit group name.

—	 <equivalentUnitGroup> : UnitGroupDefinition [1]

This represents the UNIT-GROUP definition that shall be used as the target for unit localization.

The element allows all attributes from the namespace "http://www.w3.org/1999/xlink", as defined
by W3C XLink. For the usage of the attributes, the rules given in 12.5.4.3.1 shall apply.

Throws:

—	 quant:UnknownUnitException

It is thrown if the target unit group is unknown by the runtime system.

—	 quant:InvalidConversionException

It is thrown if the conversion is physically not possible (i.e. conversion from a length to a voltage
measurement).

Associated checker rules:

—	 Quantities_Chk001 – correct unit linking (see A.6.1).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

146

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

13	 OTX Logging extension

13.1	 General

The OTX Logging extension provides functionality which allows for explicitly writing log-messages to a
logging-resource.

For reasons of interoperability and exchangeability, the usage of relative paths is recommended (see
ISO 13209-2, OTX home directory).

Following the approach of the de-facto-standard log4j (which is a Java™-based logging framework), the
extension uses so-called severity-levels which are associated to log-messages, and log-levels which
can be set in the logging framework. Depending on the currently set log-level and the severity-level of a
log-message fired by an OTX sequence, the message gets logged or is discarded. For that reason, a log-
level represents a certain threshold which shall be exceeded by the severity-level of a log-message in
order to be written into the logging‑resource.

The severity-levels for log-messages are shown in Table 6 (in decreasing order of severity).

Table 6 — Severity-levels

Severity Description
FATAL Severe errors that cause premature termination
ERROR Other runtime errors or unexpected conditions
WARN Other runtime situations that are undesirable or unexpected, but not necessarily "wrong"
INFO Interesting runtime events
DEBUG Detailed information on the flow through the sequence
TRACE Even more detailed information

Available log-levels are shown in Table 7 (in increasing order of logging verbosity).

Table 7 — Log-levels

Thresold Description
OFF Nothing will be logged.
FATAL Messages with severity FATAL will be logged.
ERROR Messages with severity ERROR or above will be logged.
WARN Messages with severity WARN or above will be logged.
INFO Messages with severity INFO or above will be logged.
DEBUG Messages with severity DEBUG or above will be logged.
TRACE Messages with severity TRACE or above will be logged.
ALL All messages will be logged (this is the default setting).

OTX authors may control which kind of log-messages make it into the logfile and which not by simply
setting the log-level to the desired threshold value. For instance, if the current log-level is set to ERROR,
a log-message with a severity of FATAL passes the log-level threshold, whereas a log-message with a
rather uninteresting severity of TRACE will not pass the threshold.

NOTE	 The OTX Logging extension makes no assumptions, nor does it define any rules concerning the
resource into which log-messages are written. It is entirely up to the specific OTX application whether the
messages are written to a text-file, a log-queue or a database, etc. Also the extension does not define any actions
for the handling of the log-resource, e.g. clearing the log. OTX applications may provide a specific functionality
for such use cases.

© ISO 2022 – All rights reserved	 ﻿
﻿

147

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

13.2	 Data types

13.2.1	 Overview

The OTX Logging extension defines two data types. These are the enumerations LogLevel and
SeverityLevel.

13.2.2	 Syntax

The syntax of the datatype declarations of the OTX Logging extension is shown in Figure 79.

Figure 79 — Data model view: Logging data types

13.2.3	 Semantics

13.2.3.1	 General

The enumeration types in the OTX Logging extension are based on otx:SimpleType.

13.2.3.2	 LogLevel

LogLevel is an enumeration type describing log thresholds used by the SetLogLevel action (see 13.4.3.1).
The allowed enumeration values are specified in Table 7.

IMPORTANT — LogLevel values may occur as operands of comparisons (see ISO 13209-2,
relational operations). For this case, the following order relation shall apply:	
ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF.

IMPORTANT — When applying otx:ToString on a LogLevel value, the resulting string shall be
the name of the enumeration value, e.g. otx:ToString(TRACE)="TRACE". Furthermore, applying
otx:ToInteger shall return the index of the value in the LogLevels enumeration (smallest index is
0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

LogLevel is an otx:SimpleType. Its members have the following semantics:

—	 <init> : LogLevelLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : LogLevels={ALL|TRACE|DEBUG|INFO|WARN|ERROR|FATAL|OFF} [1]

This attribute shall contain one of the values defined in the LogLevels enumeration.

IMPORTANT — If the LogLevel declaration is not explicitly initialized (omitted <init> element),
the default value shall be ALL.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

148

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

13.2.3.3	 SeverityLevel

SeverityLevel is an enumeration type describing the severity of a log message written by a WriteLog
action (see 13.4.3.2). The allowed enumeration values are specified in Table 6.

IMPORTANT — SeverityLevel values may occur as operands of comparisons (see
ISO 13209-2, relational operations). For this case, the following order relation shall apply:	
TRACE < DEBUG < INFO < WARN < ERROR < FATAL.

IMPORTANT — When applying otx:ToString on a SeverityLevel value, the resulting string shall
be the name of the enumeration value, e.g. otx:ToString(TRACE)="TRACE". Furthermore, applying
otx:ToInteger shall return the index of the value in the SeverityLevels enumeration (smallest
index is 0). The behaviour is undefined for other conversion terms (see ISO 13209-2).

SeverityLevel is an otx:SimpleType. Its members have the following semantics:

—	 <init> : SeverityLevelLiteral [0..1]

This optional element stands for the hard-coded initialization value of the identifier at declaration
time.

—	 value : SeverityLevels={TRACE|DEBUG|INFO|WARN|ERROR|FATAL} [1]

This attribute shall contain one of the values defined in the SeverityLevels enumeration.

IMPORTANT — If the SeverityLevel declaration is not explicitly initialized (omitted <init>
element), the default value shall be TRACE.

13.3	Variable access

13.3.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following specifies all variable access types defined for the Logging extension.

13.3.2	 Syntax

Figure 80 shows the syntax of the Logging extension's variable access types.

Figure 80 — Data model view: Logging variable access types

13.3.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for details.

© ISO 2022 – All rights reserved	 ﻿
﻿

149

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

13.4	 Actions

13.4.1	 Overview

There are two complementary action types defined for the OTX Logging extension: SetLogLevel
for setting the log-level and WriteLog for writing a log-message to a file. Both types extend the
ActionRealisation extension interface as defined by ISO 13209-2.

13.4.2	 Syntax

Figure 81 shows the syntax of all actions in the OTX Logging extension.

Figure 81 — Data model view: Logging actions

13.4.3	 Semantics

13.4.3.1	 SetLogLevel

As outlined in 13.1, the SetLogLevel action shall cause the OTX runtime system to set the log-level
threshold to a given value.

The members of SetLogLevel have the following semantics:

—	 <level> : LogLevelTerm [1]

This element represents the log-level which shall be set in the OTX runtime's logging framework
(see 13.2.3.2 for LogLevel values).

13.4.3.2	 WriteLog

As outlined in 13.1, the WriteLog action shall cause the OTX runtime system to write a log-message into
a logging-resource provided that the severity-level of that message is higher or equal than the currently
set log-level threshold. The particular logging-resource to which the log-message shall be written may
be identified by the optional <target> element. Otherwise (if no explicit target is given), the location of
the logging-resource depends on the specific runtime system settings.

The members of WriteLog have the following semantics:

—	 <level> : SeverityLevelTerm [1]

This element represents the severity-level of the log-message (see 13.2.3.3 for SeverityLevel
values).

—	 <target> : otx:StringTerm [0..1]

The optional element shall be used for locating the resource to which the message shall be written.
The target should be defined by a URI. Other resource-location mechanisms may also be used.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

150

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <message> : otx:StringTerm [1]

This string value represents the log-message. The OTX runtime shall compare the severity-level of
the message to the current log-level after the rules given in Table 7. If the conditions for writing the
message hold, the log-message shall be appended to the logging-resource.

Throws:

—	 otx:InvalidReferenceException

It is thrown if the log-resource given by the <target> element is not available or not accessible.

13.4.4	 Example

The usage of SetLogLevel and WriteLog is shown below. First, the log-level is set to "ERROR", then two
log-messages with severity-level "INFO" resp. "FATAL" are triggered. The first message's severity does
not pass the log-level threshold, so only the latter message will be logged.

Sample of Logging

 <?xml version="1.0" encoding="UTF-8"?>
 <otx name="LoggingExample" package="org.iso.otx.examples" id="otx1"
 version="1.0" timestamp="2010-03-18T14:40:10"
 xmlns="http://iso.org/OTX/1.0.0"
 xmlns:log="http://iso.org/OTX/1.0.0/Logging"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://iso.org/OTX/1.0.0Core/otx.xsd
 http://iso.org/OTX/1.0.0/LoggingStandardInterface/otxIFD_Logging.xsd">

 <procedures>
 <procedure name="main" visibility="PUBLIC" id="p1">
 <specification>Demonstration of OTX Logging extension capabilities</
specification>
 <realisation>
 <flow>
 <action id="a1">
 <specification>Set log-level to ERROR</specification>
 <realisation xsi:type="log:SetLogLevel">
 <log:level xsi:type="log:LogLevelLiteral" value="ERROR"/>
 </realisation>
 </action>

 <action id="a2">
 <specification>Trigger a INFO log-message</specification>
 <realisation xsi:type="log:WriteLog">
 <log:level xsi:type="log:SeverityLevelLiteral" value="INFO"/>
 <log:target xsi:type="StringLiteral" value="file:///c:/myLog.txt"/>
 <log:message xsi:type="StringLiteral" value="This will not be logged."/>
 </realisation>
 </action>

 <action id="a3">
 <specification>Trigger a FATAL log-message</specification>
 <realisation xsi:type="log:WriteLog">
 <log:level xsi:type="log:SeverityLevelLiteral" value="FATAL"/>
 <log:target xsi:type="StringLiteral" value="file:///c:/myLog.txt"/>
 <log:message xsi:type="StringLiteral" value="Houston, we have a
problem."/>
 </realisation>
 </action>
 </flow>
 </realisation>
 </procedure>
 </procedures>
 </otx>

© ISO 2022 – All rights reserved	 ﻿
﻿

151

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

13.5	 Terms

13.5.1	 Overview

The terms of the OTX Logging extension are related to the handling of the enumerations LogLevel and
SeverityLevel (see 13.2).

13.5.2	 Syntax

Figure 82 shows the syntax of all terms in the OTX Logging extension.

Figure 82 — Data model view: Logging terms

13.5.3	 Semantics

13.5.3.1	 LogLevelTerm

The abstract type LogLevelTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which
return a LogLevel value (see 13.2.3.2). It has no special members.

13.5.3.2	 LogLevelValue

This term returns the LogLevel stored in a LogLevel variable. For more information on value-terms and
the syntax and semantics of the valueOf attribute and <path> element, refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

152

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

13.5.3.3	 LogLevelLiteral

This term shall return a LogLevel value (see 13.2.3.2) from a hard-coded literal.

LogLevelLiteral is a LogLevelTerm. Its members have the following semantics:

—	 value : LogLevels={ALL|TRACE|DEBUG|INFO|WARN|ERROR|FATAL|OFF} [1]

This attribute shall contain one of the values defined in the LogLevels enumeration.

13.5.3.4	 SeverityLevelTerm

The abstract type SeverityLevelTerm is an otx:SimpleTerm. It serves as a base for all concrete terms
which return a SeverityLevel value (see 13.2.3.3). It has no special members.

13.5.3.5	 SeverityLevelValue

This term returns the SeverityLevel stored in a SeverityLevel variable. For more information on
value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to
ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

13.5.3.6	 SeverityLevelLiteral

This term shall return a SeverityLevel value (see 13.2.3.3) from a hard-coded literal.

SeverityLevelLiteral is a SeverityLevelTerm. Its members have the following semantics:

—	 value : SeverityLevels={TRACE|DEBUG|INFO|WARN|ERROR|FATAL} [1]

This attribute shall contain one of the values defined in the SeverityLevels enumeration.

14	 OTX Math extension

14.1	 General

This OTX extension provides a collection of mathematical terms which are not covered by the OTX core
but may be required for some use cases.

NOTE	 An additional functionality is specified in the Util extension.

IMPORTANT — The XML schema of this extensions contains an undocumented term Abs. This
term should not be used; the otx:AbsoluteValue term should be used instead.

© ISO 2022 – All rights reserved	 ﻿
﻿

153

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

14.2	 Terms

14.2.1	 Overview

The OTX Math extension provides terms which OTX authors may use for trigonometric, logarithmic and
exponential calculations. Since all terms specified here return Float type values they are derived from
the otx:FloatTerm type as defined by ISO 13209-2.

14.2.2	 Syntax

Figure 83 shows the syntax of all terms of the Math extension.

Figure 83 — Data model view: Math terms

14.2.3	 Semantics

14.2.3.1	 Abs

Abs is a FloatTerm which returns the value of the operand without regard to its sign. Its members have
the following semantics:

—	 <numeral> : NumericTerm [1]

The numeric term whose absolute value shall be returned.

IMPORTANT — This term was listed in the XML schema, but was not specified in ISO 13209-3:2012.

DEPRECATED	 Use otx:​AbsoluteValue instead.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

154

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

14.2.3.2	 Power

The Power term shall be used for calculating the power of a given number using a given exponent.

Power is an otx:FloatTerm. Its members have the following semantics:

—	 <numeral> : otx:NumericTerm [1]

This represents the numeric value on which the power shall be calculated.

—	 <exponent> : otx:NumericTerm [1]

This represents the numeric value which shall serve as the exponent in the calculation.

IMPORTANT — Special cases concerning the <numeral> and <exponent> arguments shall be taken
into account (e.g. special Float values like 0, -0, INF, -INF and NaN as well as special argument
combinations). The reference implementation for these special cases is the Java method java.
lang.Math.pow(double a, double b). There shall be no deviation from this implementation.

14.2.3.3	 Log

The Log term shall be used for calculating the logarithm of a given number to a given base.

Log is an otx:FloatTerm. Its members have the following semantics:

—	 <numeral> : otx:NumericTerm [1]

This represents the numeric value on which the logarithm shall be calculated. If the value is
Integer, it shall be automatically promoted to Float.

—	 <base> : otx:NumericTerm [1]

This represents the numeric value which shall serve as the logarithmic base of the calculation. If
the value is Integer, it shall be automatically promoted to Float.

IMPORTANT — Special cases concerning the <numeral> and <base> arguments shall be taken into
account (e.g. special Float values like 0, -0, INF, -INF and NaN as well as special argument
combinations). The reference implementation for these special cases is the Java method java.
lang.Math.log(double a) in combination with the Java /-operator (since java.Math only provides
the natural logarithm, the OTX Log(base,numeral) equals Java log(numeral)/log(base)). There
shall be no deviation from this implementation.

14.2.3.4	 Ln

The Ln term shall be used for calculating the natural logarithm of a given number.

Ln is an otx:FloatTerm. Its members have the following semantics:

—	 <numeral> : otx:NumericTerm [1]

This represents the numeric value on which the logarithm shall be calculated.

IMPORTANT — Special cases concerning the <numeral> argument shall be taken into account
(e.g. special Float values like 0, -0, INF, -INF and NaN). The reference implementation for these
special cases is the Java method java.lang.Math.log(double a). There shall be no deviation from
this implementation.

14.2.3.5	 Sin

The Sin term shall be used for calculating the sine of a given angle (in radians).

© ISO 2022 – All rights reserved	 ﻿
﻿

155

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Sin is an otx:FloatTerm. Its members have the following semantics:

—	 <rad> : otx:NumericTerm [1]

This represents the angle from which the sine shall be calculated (radian interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g.
special Float values like 0, -0, INF, -INF and NaN). The reference implementation for these
special cases is the Java method java.lang.Math.sin(double a). There shall be no deviation from
this implementation.

14.2.3.6	 Cos

The Cos term shall be used for calculating the cosine of a given angle (in radians).

Cos is an otx:FloatTerm. Its members have the following semantics:

—	 <rad> : otx:NumericTerm [1]

This represents the angle from which the cosine shall be calculated (radian interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g.
special Float values like 0, -0, INF, -INF and NaN). The reference implementation for these
special cases is the Java method java.lang.Math.cos(double a). There shall be no deviation from
this implementation.

14.2.3.7	 Tan

The Tan term shall be used for calculating the tangent of a given angle (in radians).

Tan is an otx:FloatTerm. Its members have the following semantics:

—	 <rad> : otx:NumericTerm [1]

This represents the angle from which the tangent shall be calculated (radian interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g.
special Float values like 0, -0, INF, -INF and NaN). The reference implementation for these
special cases is the Java method java.lang.Math.tan(double a). There shall be no deviation from
this implementation.

15	 OTX Measure extension

15.1	 General

The OTX Measure extension provides actions, terms and data types for basic measurement and control
operations. Its purpose is to extend OTX to the requirements of vehicle manufacturing.

In manufacturing a significant amount of the overall test steps are electric and electronic measurement
and control actions that are not related to a standardised diagnostic ECU-communication as it is
described in the OTX DiagCom extension. The OTX Measure extension shall serve as a simple interface
to describe these electronic and electric measurement and control actions.

NOTE	 The Measure extension is not multi-instance capable. This means a device signature can be mapped to
only one physical device.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

156

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

15.2	 Data types

15.2.1	 Overview

The OTX Measure extension introduces a single data type named Measurement, as described in the
following.

15.2.2	 Syntax

The syntax of the Measurement datatype declaration of the OTX Measure extension is shown in Figure 84.

Figure 84 — Data model view: Measure data types

15.2.3	 Semantics

15.2.3.1	 General

Since the OTX Measure data types have no initialization parts, they cannot be declared constant.

15.2.3.2	 Measurement

Measurement serves as container for a specific measurement. It includes a timestamp of the
measurement, the status of the measurement and the measured quantity.

The internal properties of a measurement can be acquired by the terms GetMeasurementQuantity,
GetMeasurementTimestamp, GetMeasurementStatus, IsValidMeasurement as well as GetMeasurementValue.

Since the Measurement data type has no initialization parts, a Measurement cannot be declared constant.

15.3	 Exceptions

15.3.1	 Overview

All elements referenced in this subclause are derived from the OTX core Exception type as defined by
ISO 13209-2. They represent the full set of exceptions added by the OTX Measure extension.

15.3.2	 Syntax

The syntax of all OTX Measure exception type declarations is shown in Figure 85.

© ISO 2022 – All rights reserved	 ﻿
﻿

157

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 85 — Data model view: Measure exceptions

15.3.3	 Semantics

15.3.3.1	 General

Since all OTX Measure exception types are implicit exceptions without initialization parts, they cannot
be declared constant.

15.3.3.2	 MeasureException

The MeasureException is the super class for all exceptions in the Measure extension. A MeasureException
shall be used in case the more specific exception types described in the remainder of this subclause do
not apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

15.3.3.3	 ConfigurationException

A ConfigurationException is thrown if there is a configuration problem, e.g. if a channel is not a legal
channel for an intended operation.

15.3.3.4	 CommunicationException

A CommunicationException is thrown in case the communication to a device did not succeed, e.g. there
is no answer from the device or an error occurred in the communication infrastructure.

15.3.3.5	 DeviceException

A DeviceException is thrown if there is a measurement device problem. The physical device is reachable
but has problems and sends a hint, e.g. that a contact is broken.

15.3.3.6	 ServicePreconditionException

The ServicePreconditionException is thrown if a precondition is not met which is vital for the
execution of the demanded device service. This may happen, for example, if the minimal speed is not yet
reached for a break test.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

158

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

15.3.3.7	 InvalidMeasurementException

The InvalidMeasurementException shall be thrown when an invalid measurement is received
from a measurement device. By contrast to ServicePreconditionException (see above), a thrown
InvalidMeasurementException means that the measurement device is fine, but the measured value
is nevertheless regarded as invalid by the device. Since there are cases where invalid measurements
pose to exceptional situation or the production of additional return values shall not be hindered, the
throw of this exception can be controlled by the optional suppressInvalidMeasurementException flag
of ExecuteDeviceService action (see 15.6.3.2).

15.4	Variable access

15.4.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following specifies all variable access types defined for the i18n extension.

15.4.2	 Syntax

Figure 86 shows the syntax of the Measure extension's variable access types.

Figure 86 — Data model view: Measure variable access types

15.4.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for further
details.

15.5	 Signatures

15.5.1	 Overview

As specified by ISO 13209-2, OTX extensions may define new specialized types of signatures by
extending otx:SignatureRealisation. The OTX Measure extension uses this extensibility by adding the
DeviceSignature type which allows in-document, high-level interface specifications of measurement
devices and their capabilities.

15.5.2	 Syntax

Figure 87 shows the syntax of the Measure extension's signature types.

© ISO 2022 – All rights reserved	 ﻿
﻿

159

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 87 — Data model view: Measure signatures

IMPORTANT — The XSD complex type DeviceServiceParameterDeclarations is of
<xsd:choice> [1..*] content-type, which is not explicitly shown in Figure 87.

15.5.3	 Semantics

15.5.3.1	 General

The basic semantics common to all kinds of signatures are specified in ISO 13209-2.

15.5.3.2	 DeviceSignature

Each measurement device which is attached to a diagnostic application, and which is used by an OTX
test sequence shall be described by a device signature.

The device ids (the signature's name attribute) are symbolic and shall be mapped by some runtime
configuration to the concrete measurement and control device drivers. For the mapping, the use of a
signature's meta data element is recommended by this document.

A DeviceSignature describes the measurement and control interface of a measurement device or
probe. It comprises a collection of (sub-)signatures for each device service that can be called by an
ExecuteDeviceService action (see 15.6.3.2). The parameters described for such a service serve as a
blueprint for the arguments of an ExecuteDeviceService action.

DeviceSignature is an otx:SignatureRealisation. Its members have the following semantics:

—	 <services> : DeviceServices [0..1]

This container element holds a collection of device service signatures describing the set of services
available for a measurement device.

—	 <service> : DeviceServiceSignature [1..*]

This describes a measurement device's service that can be called by an ExecuteDeviceService.

—	 name : otx:OtxName [0..1] (derived from otx:NamedAndSpecified)

This represents the service's name. ExecuteDeviceService actions shall identify the to-be-
executed device service by using this.

—	 <specification> : xsd:string [0..1] (derived from otx:NamedAndSpecified)

This optional string should be used by OTX authors to specify the purpose and properties/
parameters of a device service for human readers.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

160

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <metadata> : otx:MetaData [0..1] (derived from otx:NamedAndSpecified)

In case that a diagnostic application needs to associate any further (tool-specific) information
to a device service, this element shall be used.

—	 <realisation> : DeviceServiceRealisation [0..1]

This is the formal counterpart of the <specification>. It contains a list of parameter
descriptions adhering to a device service.

—	 <parameters> : DeviceServiceParameterDeclarations [0..1]

This simple container element represents the list of arguments for a device service call.
The content-type of DeviceServiceParameterDeclarations is <xsd:choice> [1..*] which
allows an arbitrary-length list of in- and output parameters of a device service.

	 NOTE	 While it might be pretty seldom that more than one out parameter is described,
there are cases in which the device serves as a kind of gateway or is a complex device like an
ECOS measurement device which is able to return a variety of return values like, for instance,
numberOfUpperLimitViolations, MeasurementsAfterStopTrigger, etc.

—	 <inParam> : DeviceServiceInParameterDeclaration

	 This describes an input parameter for a service. This is needed for measurement
services which require additional arguments for parametrizing their execution.

	 DeviceServiceInParameterDeclaration is based on type otx:Declaration.
Therefore, an <inParam> element has a name, a specification and a data type
declaration (please refer to ISO 13209-2 for details about declarations).

—	 <outParam> : DeviceServiceOutParameterDeclaration

	 Describes an output parameter for the requested service.

	 DeviceServiceOutParameterDeclaration is based on type otx:Declaration.
Therefore, an <outParam> element has a name, a specification and a data type
declaration (please refer to ISO 13209-2 for details about declarations).

—	 <throws> : Throws [0..1]

This shall declare an arbitrary-length list of measure exception types which this device
service may potentially throw.

—	 <exception> : MeasureException [1..*]

	 This describes an exception type which may possibly be thrown by the enclosing
device service.

15.6	 Actions

15.6.1	 Overview

The OTX Measure extension introduces one action named ExecuteDeviceService, as described in the
following subclauses.

15.6.2	 Syntax

Figure 88 shows the syntax of the Measure extension's signature types.

© ISO 2022 – All rights reserved	 ﻿
﻿

161

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 88 — Data model view: Measure actions

IMPORTANT — The XSD complex type DeviceServiceArguments is of <xsd:choice> [0..*] content-
type, which is not explicitly shown in Figure 88.

15.6.3	 Semantics

15.6.3.1	 General

The basic semantics common to all kinds of OTX actions are specified in ISO 13209-2.

15.6.3.2	 ExecuteDeviceService

The ExecuteDeviceService action shall execute a service provided by a measurement device. The
action connects to physical devices from where it retrieves measurements. The OTX author may choose
which of the retrieved measurements shall be assigned to OTX variables. The devices to which the
ExecuteDeviceService action connects shall be described by device signatures, as specified in 15.5
(DeviceSignature type).

IMPORTANT — There are devices which need to be configured prior to execution of a specific
service. Configuration should be done by previously executing the respective configuration
services (triggered also by ExecuteDeviceService actions). This allows, for example, setting
parameters of the test equipment or controlling the object under test (e.g. setting the speed on
a roller test bench). Execute service (open screen, excute device service) action usage inside
parallel lanes should be threadsafe.

The members of the ExecuteDeviceService type have the following semantics:

—	 executeAsync : xsd:boolean={false|true} [0..1]

This option tells the communication backend to make this device service execution non-blocking.
This means that if executeAsync is set to true, the OTX execution flow will immediately move on
to the next Action, without waiting for the result of the ExecuteDeviceService action. An OTX
sequence can make use of the DeviceEventSource term (refer to 15.7.3.3.1) to be notified when a
new result from an asynchronously executed device service has arrived. When this happens, the
OTX variable(s) which are linked to a service's output parameter(s) will potentially contain a new
value.

—	 suppressInvalidMeasurementException : xsd:boolean={false|true} [0..1]

This flag shall affect only those device services which declare InvalidMeasurementException in
their <throws> block. For other device services, it shall have no effect.

When the flag is set to false (the default), any InvalidMeasurementException produced by the
executed device service will be passed on to the OTX sequence by the ExecuteDeviceService action.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

162

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

This supports the most common use case when it is senseless to continue a test sequence if no valid
measurement could be produced. This ensures that later uses of the term isValidMeasurement will
always return true, therefore the OTX author does not have to check each measurement if it is
valid, and he or she can treat exceptional cases of invalid measurements by using ordinary OTX
exception handling mechanisms.

Otherwise, if the flag is set to true, the action shall hand over invalid-state Measurement values to
the OTX sequence and suppress any throw of an InvalidMeasurementException. An example for
the use of invalid measurements is: an embedded system that measures a measurement profile at
a fixed rate or in a loop might produce a few invalid measurements as well (because the measuring
situation for these measurements was bad) but the measurement process should not be interrupted
by an exception. In this case, it may be important to know nevertheless which measurements were
invalid and which were not.

An invalid measurement does return a quantity, but the value can be arbitrary. The unit (if any) is
defined by the measuring device and its configuration at measuring time.

—	 device : otx:OtxLink [1]

This attribute identifies the measurement device to execute the service on. The link shall point to
the corresponding DeviceSignature for that device.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2);

—	 Measure_Chk001 – correct target for ExecuteDeviceService and DeviceEventSource (see A.4.1).

—	 service : otx:OtxName [1]

This identifies the service which shall be executed. The service name shall be defined within the
corresponding service declaration within the DeviceSignature.

Associated checker rules:

—	 Measure_Chk002 – executed device service is declarated in device signature (see A.4.2).

—	 <arguments> : DeviceServiceArguments [0..1]

The content-type of this simple container element is <xsd:choice> [1..*] which allows an arbitrary-
length list of in- and output arguments for the to-be-executed device service's parameters.

—	 <inArgument> : DeviceServiceInArgument

This represents an input argument for an input parameter of the to-be-executed device service.
An input argument may be omitted if and only if there is an explicit initial value defined for
the corresponding parameter. This initial value applies in place of the missing argument. The
parameter for the argument is identified by name; the value that shall be passed into that
parameter is described by a term:

—	 parameter : otx:OtxName [1]

This attribute represents the target parameter to which the argument shall be assigned.

—	 <term> : otx:Term [1]

This represents the value to be used as input argument for the service parameter. The
value data type shall match to the parameter data type as declared in the corresponding
device’s signature.

© ISO 2022 – All rights reserved	 ﻿
﻿

163

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <outArgument> : DeviceServiceOutArgument

This represents an ouput argument for an output parameter of the to-be-executed device
service. Output arguments may be omitted freely (e.g. in the case when there is no interest in
one of the returned data). The parameter is identified by name, the argument is a variable:

—	 parameter : otx:OtxName [1]

This attribute represents the output parameter whose value shall be assigned to the target
OTX variable.

—	 <target> : otx:Variable [1]

This represents the OTX variable to hold the value of the output parameter of the device
service. The variable's data type shall match to the parameter data type as declared in the
corresponding device’s signature.

Associated checker rules:

—	 Measure_Chk003 – correct ExecuteDeviceService arguments (see A.4.3);

—	 Measure_Chk004 – ExecuteDeviceService input argument omission (see A.4.4);

—	 Measure_Chk005 – no Path in ExecuteDeviceService ouput arguments (see A.4.5).

Throws:

The exceptions that this action may throw depend on the <throws> declarations defined for the
executed device service in the corresponding device signature (this is similar to otx:ProcedureCall
which throws exceptions according to the called procedure).

15.7	 Terms

15.7.1	 Overview

The OTX Measure extension introduces two categories of terms, the first of which describes terms
that allow measurement value handling while the other supports the handling of events fired from
measurement devices. Figure 89 provides an overview of the OTX Measure term categories.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

164

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 89 — Data model view: Measurement term categories

15.7.2	 Measurement related terms

15.7.2.1	 Description

The primary purpose of the measurement related terms is to get information out of Measurement objects
which have been retrieved from a measurement device by executing an ExecuteDeviceService action.

15.7.2.2	 Syntax

Figure 90 shows the syntax of the measurement related terms of the Measure extension.

Figure 90 — Data model view: Measurement related terms

© ISO 2022 – All rights reserved	 ﻿
﻿

165

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

15.7.2.3	 Semantics

15.7.2.3.1	 MeasurementTerm

The abstract type MeasurementTerm is an otx:Term. It serves as a base for all concrete terms which
return a Measurement. It has no special members.

15.7.2.3.2	 MeasurementValue

This term returns the Measurement stored in a Measurement variable. For more information on value-
terms and the syntax and semantics of the valueOf attribute and <path> element, refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

—	 otx:InvalidReferenceException

It is thrown if the variable value is not valid (no value was assigned to the variable before).

15.7.2.3.3	 GetMeasurementTimestamp

Get the timestamp of a measurement, expressed in milliseconds elapsed since 1970-01-01 00:00:00
UTC (see time:GetTimestamp as specified in the OTX DateTime extension in Clause 6). If no timestamp
exists, the measurement is not valid and an exception shall be thrown.

GetMeasurementTimestamp is an otx:IntegerTerm. Its members have the following semantics:

—	 <measurement> : MeasurementTerm [1]

This represents the measurement whose timestamp shall be acquired.

Throws:

—	 measure:InvalidMeasurementException

It is thrown if the measurement contains no timestamp (invalid measurement).

15.7.2.3.4	 GetMeasurementStatus

Get the status of a measurement. The status of the measurement does reflect the situation of its
generation. The returned status shall be a string. This document does not specify a set of allowed values
for the returned status strings; however, a listing of commonly used status strings is recommended
below.

The following are recommendations for common status values.

—	 Status "ok": this state is used for ordinarily measured values (the normal case).

—	 Status "generated": this state is commonly used for measurements whose value was generated
during an invalid state of the system under test. This state applies only to measurement devices which
return a (fake) value despite the invalid machine state (for other devices, the ExecuteDeviceService
action would have thrown a ServicePreconditionException). This situation may occur, for example,
when the rpm of an engine shall be measured but the engine is not running and does not provide the
rpm signal; therefore, the measurement device assumes at this point that the rpm is 0, thus it fakes

	 ﻿� © ISO 2022 – All rights reserved
�﻿

166

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

a 0 measurement. Other than that this state may also be used for measurements whose value was
not measured but generated, e.g. when a measurement device is running in a simulation mode.

—	 Status "interpolated": commonly used for measurements whose value was not directly measured
but calculated.

—	 Status "invalid": commonly used for measurements whose value could neither be measured
correctly nor interpolated or faked, etc.

—	 Status "normalized": commonly used for measurements whose value has been normalized, e.g. if a
filter in the measurement device or driver has cut off outliers in a frequency measurement.

—	 Status "outdated": commonly used for measurements whose value is outdated. This is the case if
the value is present but not current enough for the used service.

GetMeasurementStatus is an otx:StringTerm. Its members have the following semantics:

—	 <measurement> : MeasurementTerm [1]

This represents the measurement whose status shall be acquired.

15.7.2.3.5	 GetMeasurementQuantity

Get the measured quantity value from a measurement (see Clause 16 about quantities).

GetMeasurementQuantity is a quant:QuantityTerm. Its members have the following semantics:

—	 <measurement> : MeasurementTerm [1]

This is the measurement whose quantity value shall be acquired.

Throws:

—	 measure:InvalidMeasurementException

It is thrown if the measurement is invalid.

15.7.2.3.6	 GetMeasurementFloatValue

Get the raw float value of a measurement as it has been received from the measurement device,
disregarding any physical unit information.

GetMeasurementValue is an otx:FloatTerm. Its members have the following semantics:

—	 <measurement> : Measurement [1]

This is the measurement whose raw float value shall be acquired.

Throws:

—	 measure:InvalidMeasurementException

It is thrown if the measurement is invalid.

15.7.2.3.7	 IsValidMeasurement

IsValidMeasurement evaluates the status of a measurement. As the status constants are not fixed by
this document (see listing of recommended states given for GetMeasurementStatus term in 15.7.2.3.4)
this action can be used to determine whether the measurement can be used or not.

A measurement shall be considered valid if it contains at least a quantity and a timestamp. Furthermore,
the status of the measurement should correspond to the above: if the status is "invalid", "outdated" or

© ISO 2022 – All rights reserved	 ﻿
﻿

167

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

has a value with equivalent semantics, this action should return false. If the status is "generated" or
equivalent, it is application-specific whether the measurement is to be considered valid or not.

IsValidMeasurement is an otx:BooleanTerm. Its members have the following semantics:

—	 <measurement> : MeasurementTerm [1]

This is the measurement whose status shall be evaluated.

15.7.3	 Event related terms

15.7.3.1	 Description

The terms introduced in the following subclauses support the event handling mechanisms as described
for the OTX EventHandling extension in Clause 8. The terms can be used for creating event sources
listening for events fired by measurement device (DeviceEventSource), for querying the type of
event (IsDeviceEvent) and for identifying the particular device and service which fired an event
(GetDeviceServiceFromEvent).

15.7.3.2	 Syntax

Figure 91 shows the syntax of the event related terms of the Measure extension.

Figure 91 — Data model view: Event related terms

15.7.3.3	 Semantics

15.7.3.3.1	 DeviceEventSource

The DeviceEventSource term accepts a link to a DeviceSignature of a device that is to be made an event
source. This term enables an OTX sequence to use a measurement device as a source for events in the
context of the OTX EventHandling extension (please refer to Clause 8). A measurement device (driver)
shall trigger an event every time a new output parameter from one of its services has arrived. The
DeviceEventSource term is the complementary functionality to the asynchronous execution feature of
the ExecuteDeviceService action: when ExecuteDeviceService is used with executeAsync attribute set
to true, the only way to be notified of incoming measurement values for the executed device service is
to use it as an event source through the DeviceEventSource term.

DeviceEventSource is an event:EventSourceTerm. Its members have the following semantics:

—	 device : otx:OtxLink [1]

This represents the to-be-monitored device. If an output parameter of an earlier triggered device
service becomes available, the event shall be fired, causing an embedding event:WaitForEventAction
to exit.

Associated checker rules:

—	 Measure_Chk001 – correct target for ExecuteDeviceService and DeviceEventSource (see A.4.1).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

168

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

15.7.3.3.2	 IsDeviceEvent

The IsDeviceEvent term accepts an EventValue term yielding an Event object that has been raised
by the OTX runtime, as a result of declaring a measurement device as an event source by using the
term DeviceEventSource. The term shall return true if and only if the Event originates from a
DeviceEventSource term.

IsDeviceEvent is an otx:BooleanTerm. Its members have the following semantics:

—	 <event> : event:EventValue [1]

This represents the Event whose type shall be tested.

15.7.3.3.3	 GetDeviceServiceNameFromEvent

The GetDeviceServiceNameFromEvent term accepts an EventValue term yielding an Event object that
has been raised by the OTX runtime, as a result of declaring a measurement device as an event source
by using the term DeviceEventSource. It shall return a string which contains the device and service
name of the device and service that caused the event. By using this term, an OTX sequence can wait for
an Event raised by a device receiving a new result and then evaluate which service of that device caused
the event.

The returned string value shall be composed out of two parts: "devicename.servicename", where
“devicename” is the fully qualified name of the DeviceSignature, and “servicename” is the OtxName of
the DeviceServiceSignature.

GetDeviceServiceNameFromEvent is an otx:StringTerm. Its members have the following semantics:

—	 <event> : event:EventValue [1]

This represents the event that was raised after executing a device service.

Throws:

—	 otx:TypeMismatchException

It is thrown if the specified event has not been raised by a DeviceEventSource.

16	 OTX quantities extension

16.1	 General

The Quantity data types specified in this extension offer an additional layer of abstraction on top of the
numeric data types provided by the OTX core as specified by ISO 13209-2. The Quantity type contains
additional information about a value’s physical unit, allowing it to describe actual measurement values.
This allows, for example, the OTX DiagCom extension (see Clause 6) to use quantities for getting data in
and out of diagnostic services.

A Quantity, as mentioned, contains information about a physical unit besides the actual value. To do
this, OTX quantities reuses the unit definition data model specified by the ODX standard (see UNIT-SPEC
data type in ISO 22901-1:2008, 7.3.6.7). The intention is to use ODX for defining a set of units that can
then be referenced by elements of the OTX quantities extension. Please note that the ODX UNIT-SPEC can
be used separately from the rest of the ODX standard. As an example, a minimal UNIT-SPEC definition is
provided in the EXAMPLE in this subclause.

The way an ODX UNIT-SPEC is defined allows an OTX runtime system to automatically convert Quantity
values into different units, as long as these are defined as equivalent units in ODX. Thus, an OTX runtime
is able to automatically perform basic arithmetic operations on Quantity operands, so for example, an
addition operation on a Quantity containing a ‘km/h’ value with another Quantity containing a value in
‘m/h’. To achieve this, an OTX runtime is expected to perform any arithmetic involving quantities using

© ISO 2022 – All rights reserved	 ﻿
﻿

169

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

an internal presentation of the quantities’ values that is normalized to the SI base unit(s) underlying the
unit of the Quantity. For example, to add a Quantity with a unit of “miles per hour” to another Quantity
with a unit of “kilometres per hour”, the OTX runtime should convert both quantities’ values to the
underyling base SI dimensions (in this case “meters per second”) before adding both quantities' values.
In subsequent subclauses, the user-assigned unit of a Quantity is referred to as a display unit, while
the corresponding SI-dimensioned unit is called base unit. Accordingly, the quantities' value in display
units is called physical or display value, while the value in base SI dimensions is referred to as internal
or normalized value.

EXAMPLE	 An XML instance of the ODX UNIT-SPEC.

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <ODX MODEL-VERSION="2.2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <DIAG-LAYER-CONTAINER ID="UNIT-SPEC-DLC">
 <SHORT-NAME>DLC_UnitSpec</SHORT-NAME>
 <LONG-NAME>DLCUnitSpec</LONG-NAME>
 <ECU-SHARED-DATAS>
 <ECU-SHARED-DATA ID="UNIT-SPEC-ESD">
 <SHORT-NAME>ESD_UnitSpec</SHORT-NAME>
 <DIAG-DATA-DICTIONARY-SPEC>

 <UNIT-SPEC>

 <UNIT-GROUPS>
 <UNIT-GROUP OID="EU_Metric">
 <SHORT-NAME>EU_Metric</SHORT-NAME>
 <CATEGORY>COUNTRY</CATEGORY>
 <UNIT-REFS>
 <UNIT-REF ID-REF="km"/>
 <UNIT-REF ID-REF="m"/>
 <UNIT-REF ID-REF="mm"/>
 </UNIT-REFS>
 </UNIT-GROUP>

 <UNIT-GROUP OID="UK_Imperial">
 <SHORT-NAME>UK_Imperial</SHORT-NAME>
 <CATEGORY>COUNTRY</CATEGORY>
 <UNIT-REFS>
 <UNIT-REF ID-REF="mi"/>
 <UNIT-REF ID-REF="ft"/>
 <UNIT-REF ID-REF="in"/>
 </UNIT-REFS>
 </UNIT-GROUP>

 <UNIT-GROUP OID="TravelDistance">
 <SHORT-NAME>TravelDistance</SHORT-NAME>
 <CATEGORY>EQUIV-UNITS</CATEGORY>
 <UNIT-REFS>
 <UNIT-REF ID-REF="mi"/>
 <UNIT-REF ID-REF="km"/>
 </UNIT-REFS>
 </UNIT-GROUP>
 </UNIT-GROUPS>

 <UNITS>
 <UNIT ID="km">
 <SHORT-NAME>km</SHORT-NAME>
 <LONG-NAME>kilometers</LONG-NAME>
 <DISPLAY-NAME>km</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>.001</FACTOR-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>
 </UNIT>

 <UNIT ID="s">
 <SHORT-NAME>s</SHORT-NAME>
 <LONG-NAME>seconds</LONG-NAME>
 <DISPLAY-NAME>s</DISPLAY-NAME>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-s"/>

	 ﻿� © ISO 2022 – All rights reserved
�﻿

170

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 </UNIT>

 <UNIT ID="km_h">
 <SHORT-NAME>km_h</SHORT-NAME>
 <LONG-NAME>kilometers per hour</LONG-NAME>
 <DISPLAY-NAME>km/h</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>3.6</FACTOR-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m_s"/>
 </UNIT>
 <UNIT ID="min">
 <SHORT-NAME>min</SHORT-NAME>
 <LONG-NAME>minutes</LONG-NAME>
 <DISPLAY-NAME>min</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>60</FACTOR-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-s"/>
 </UNIT>

 <UNIT ID="m">
 <SHORT-NAME>m</SHORT-NAME>
 <LONG-NAME>meters</LONG-NAME>
 <DISPLAY-NAME>m</DISPLAY-NAME>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>
 </UNIT>
 <UNIT ID="mm">
 <SHORT-NAME>mm</SHORT-NAME>
 <LONG-NAME>millimeters</LONG-NAME>
 <DISPLAY-NAME>mm</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>0.001</FACTOR-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>
 </UNIT>

 <UNIT ID="mi">
 <SHORT-NAME>mi</SHORT-NAME>
 <LONG-NAME>mile</LONG-NAME>
 <DISPLAY-NAME>mi</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>6.213712E-4</FACTOR-SI-TO-UNIT>
 <OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>
 </UNIT>

 <UNIT ID="ft">
 <SHORT-NAME>ft</SHORT-NAME>
 <LONG-NAME>foot</LONG-NAME>
 <DISPLAY-NAME>ft</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>3.28084</FACTOR-SI-TO-UNIT>
 <OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>
 </UNIT>

 <UNIT ID="in">
 <SHORT-NAME>in</SHORT-NAME>
 <LONG-NAME>inch</LONG-NAME>
 <DISPLAY-NAME>in</DISPLAY-NAME>
 <FACTOR-SI-TO-UNIT>39.37008</FACTOR-SI-TO-UNIT>
 <OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>
 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>
 </UNIT>
 </UNITS>

 <PHYSICAL-DIMENSIONS>
 <PHYSICAL-DIMENSION ID="PD-m">
 <SHORT-NAME>km</SHORT-NAME>
 <LENGTH-EXP>1</LENGTH-EXP>
 </PHYSICAL-DIMENSION>

 <PHYSICAL-DIMENSION ID="PD-s">
 <SHORT-NAME>s</SHORT-NAME>
 <TIME-EXP>1</TIME-EXP>
 </PHYSICAL-DIMENSION>

 <PHYSICAL-DIMENSION ID="PD-m_s">

© ISO 2022 – All rights reserved	 ﻿
﻿

171

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

 <SHORT-NAME>m_s</SHORT-NAME>
 <LENGTH-EXP>1</LENGTH-EXP>
 <TIME-EXP>-1</TIME-EXP>
 </PHYSICAL-DIMENSION>

 <PHYSICAL-DIMENSION ID="PD-m_ss">
 <SHORT-NAME>km_h</SHORT-NAME>
 <LENGTH-EXP>1</LENGTH-EXP>
 <TIME-EXP>-2</TIME-EXP>
 </PHYSICAL-DIMENSION>
 </PHYSICAL-DIMENSIONS>

 </UNIT-SPEC>
 </DIAG-DATA-DICTIONARY-SPEC>
 </ECU-SHARED-DATA>
 </ECU-SHARED-DATAS>
 </DIAG-LAYER-CONTAINER>
 </ODX>

16.2	 Data types

16.2.1	 Overview

The OTX quantities extension introduces the data types Quantity and Unit, as described in the following
subclauses.

16.2.2	 Syntax

The syntax of the datatype declarations of the OTX quantities extension is shown in Figure 92.

Figure 92 — Data model view: Quantities data types

16.2.3	 Semantics

16.2.3.1	 General

The following subclauses describe the runtime semantics of the OTX quantities data types.

16.2.3.2	 Quantity

A Quantity represents a numeral value which has a display unit associated with it. For instance, the
value "5" is described more specifically by a Quantity that also contains information about the unit of
the value, e.g. "5 km/h". Furthermore, a Quantity has an optional display precision property which has
an effect on the otx:ToString conversion of a Quantity (16.5.3.3.1).

A Quantity can be initialized at declaration time.

The members of Quantity have the following semantics:

—	 <init> : QuantityLiteral [0..1]

This optional element represents the hard-coded value from which the declared Quantity shall be
created. The literal includes a float-value, a display unit name and a display precision; when the
Quantity is created, the float value shall be interpreted according to the display unit:

	 ﻿� © ISO 2022 – All rights reserved
�﻿

172

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <numeral> : otx:FloatLiteral [1]

This represents the hard-coded float-value from which the Quantity shall be created.

—	 <displayUnit> : UnitLiteral [1]

This represents the hard-coded display unit of the QuantityLiteral.

—	 <displayPrecision> : otx:IntegerLiteral [0..1]

This optionally represents the hard-coded display precision of the Quantity declaration
(16.5.3.3.1).

See 16.5.2.3.4 for further details on term QuantityLiteral.

IMPORTANT — If a Quantity declaration is not explicitly initialized (omitted <init> element), the
default value shall be a Quantity with a base value of 0.0 and a dimensionless unit.

16.2.3.3	 Unit

A Unit represents a physical unit which is defined in a UNIT-SPEC (see 16.1). A Unit can be associated to
a physical value when creating a Quantity, but it can also be used stand-alone, e.g. when comparing the
display Unit of a Quantity to another Unit object.

A Unit can be initialized at declaration time.

The members of Unit have the following semantics:

—	 <init> : UnitLiteral [0..1]

This optional element describes the initialization value from which the Unit shall be created:

—	 <value> : UnitDefinition [1]

This element represents the hard-coded link to the appropriate UNIT definition in a UNIT-SPEC
which shall be associated to the declared Unit. For linking, the element allows all attributes
from the namespace "http://www.w3.org/1999/xlink", as defined by W3C XLink. For the usage
of the attributes, the rules given in 16.5.2.3.1 shall apply.

See 16.5.2.3.8 for further details on term UnitLiteral.

IMPORTANT — If a Unit declaration is not explicitly initialized (omitted <init> element), the
default value shall be a dimensionless unit.

16.3	 Exceptions

16.3.1	 Overview

All elements referenced in this subclause are derived from the OTX core Exception type as defined by
ISO 13209-2. They represent the full set of exceptions added by the OTX quantities extension.

16.3.2	 Syntax

The syntax of all OTX quantities exception type declarations is shown in Figure 93.

© ISO 2022 – All rights reserved	 ﻿
﻿

173

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 93 — Data model view: Quantities exceptions

16.3.3	 Semantics

16.3.3.1	 General

Since all OTX quantities exception types are implicit exceptions without initialization parts, they cannot
be declared constant.

16.3.3.2	 QuantityException

The QuantityException type is the base type for all exceptions in the OTX quantities extension. A
QuantityException shall be used in case the more specific exception types described in the remainder
of this subclause do not apply to the problem at hand.

IMPORTANT — All terms and action realisations in this extension may potentially throw this
exception.

16.3.3.3	 UnknownUnitException

An UnknownUnitException shall be thrown if a referenced unit is not known by the runtime system.
This exception can for instance occur when using the UnitLiteral term and passing a unit reference
that does not exist in the system’s UNIT-SPEC.

16.3.3.4	 InvalidConversionException

An InvalidConversionException shall be thrown if the physical dimensions of Quantity operands in
arithmetic operations are incompatible, e.g. if a speed is added to a voltage.

16.4	Variable access

16.4.1	 Overview

As specified in ISO 13209-2, OTX extensions shall define a variable access type for each datatype they
define (exception types inclusively). All variable access types are derived from the OTX core Variable
extension interface. The following subclauses specify all variable access types defined for the OTX
quantities extension.

16.4.2	 Syntax

Figure 94 shows the syntax of the quantities extension's variable access types.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

174

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 94 — Data model view: Quantities variable access types

16.4.3	 Semantics

The general semantics for all variable access types shall apply. Please refer to ISO 13209-2 for further
details.

16.5	 Terms

16.5.1	 Overview

All of the OTX quantities terms shown in Figure 95 extend the Term extension interface as defined by
ISO 13209-2. Information about the specific super class of a term is provided in the individual term
description subclauses below.

As shown in Figure 95, there are three OTX Quantity term categories.

—	 The first category contains terms yielding Quantity values; these are all based on the abstract term
QuantityTerm.

—	 The second category contains terms which allow accessing various properties of a Quantity, such as
the display value, base unit and display unit.

—	 The third category contains basic terms for Unit handling.

© ISO 2022 – All rights reserved	 ﻿
﻿

175

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Figure 95 — Data model view: Quantities term categories

16.5.2	 Quantity and unit related terms

16.5.2.1	 Description

The following subclauses specify the terms for creating and accessing Quantity and Unit values.

16.5.2.2	 Syntax

Figure 96 shows the syntax of all Quantity related terms of the quantities extension.

Figure 96 — Data model view: Quantity related terms

	 ﻿� © ISO 2022 – All rights reserved
�﻿

176

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

16.5.2.3	 Semantics

16.5.2.3.1	 Referring to unit definitions

Several terms in the OTX quantities extension use the Unit type in order to refer to unit or unit group
definitions located in an external resource. The extension reuses the unit definition data model specified
by the ODX standard (see UNIT-SPEC data type ISO 22901-1:2008, 7.3.6.7). Concerning references from
OTX to UNIT-SPEC entries, the rules below shall apply.

IMPORTANT — Any elements of the OTX quantities terms that work with units shall link to
the required ODX unit definitions by using simple XLinks only, as specified by W3C XLink. This
means that the xlink:type attribute shall always be set to "simple". Furthermore, the xlink:href
attribute value should follow the pattern of "{URI}#{SHORT-NAME}", where {URI} represents
the UNIT-SPEC resource and {SHORT-NAME} identifies the unit definition by its ODX SHORT-NAME
property. The pattern corresponds to a shorthand notation XPointer, as specified by Reference
[10]. However, in case the shorthand notation is not sufficient to address unit definitions, the full
XPointer notation may be used (e.g. when one ODX-document contains more than one UNIT-SPEC
container).

EXAMPLE	 For linking to the unit definition for "mm" given in the exemplary UNIT-SPEC in 16.1, the element
has the form of <unit xlink:type="simple" xlink:href="unit-spec.xml#mm"/>.

16.5.2.3.2	 QuantityTerm

The abstract type QuantityTerm is an otx:FloatTerm. It serves as a base for all concrete terms which
return a Quantity. It has no special members.

16.5.2.3.3	 QuantityValue

This term returns the Quantity stored in a Quantity variable. For more information on value-terms and
the syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

16.5.2.3.4	 QuantityLiteral

This term shall be used to create a Quantity object based on a hard-coded float value and a display unit.
The provided float value shall be interpreted as a display value (i.e. the value of the Quantity in given
display units). Furthermore, the term optionally allows specifying a precision property which has an
effect on the otx:ToString conversion of the resulting Quantity (16.5.3.3.1).

QuantityLiteral is a QuantityTerm. Its members have the following semantics:

—	 <numeral> : otx:FloatLiteral [1]

This represents the hard-coded value from which the Quantity shall be created. The value shall be
interpreted in display units.

—	 <displayUnit> : UnitLiteral [1]

This represents the display unit of the Quantity. See 16.5.2.3.8 for further details on term
UnitLiteral.

© ISO 2022 – All rights reserved	 ﻿
﻿

177

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

—	 <displayPrecision> : otx:IntegerLiteral [0..1]

This represents the hard-coded display precision of the QuantityLiteral (16.5.3.3.1).

16.5.2.3.5	 CreateQuantity

The CreateQuantity term is the constructor for a Quantity. The provided numeric value shall be
interpreted as a display value (i.e. the value of the Quantity in given display units). Furthermore,
the term optionally allows specifying a precision property which has an effect on the otx:ToString
conversion of the resulting Quantity (16.5.3.3.1).

The exact behaviour of CreateQuantity depends on the type of the passed numeric value:

—	 Integer or Float type: the value shall be interpreted according to the given display unit.
Furthermore, the resulting internal value shall be Float, even for an Integer type argument. If
a display precision is given, the property shall be set in the created Quantity; otherwise it shall
remain unset (16.5.3.3.1).

—	 Quantity type: this is the copy-constructor-case which shall only work if the physical dimensions
of both original and new Quantity match. Otherwise, an InvalidConversionException shall be
thrown. If the physical dimensions match, the internal value of the original Quantity shall be copied
into the new Quantity. Neither the original display unit nor the display precision shall be copied—
instead, the new display unit and display precision specified in the term shall apply. If no display
precision is given, the property shall remain unset (16.5.3.3.1).

CreateQuantity is a QuantityTerm. Its members have the following semantics:

—	 <numeral> : NumericTerm [1]

This represents the numeric value from which the Quantity shall be created (in display units). The
value can be either an Integer, a Float or another Quantity.

—	 <displayUnit> : UnitTerm [1]

This represents the display unit of the to-be-created Quantity. See 16.5.2.3.6 for details on
UnitTerm.

—	 <displayPrecision> : otx:NumericTerm [0..1]

This optionally represents the display precision of the to-be-created Quantity (16.5.3.3.1). Float
values shall be truncated.

Throws:

—	 InvalidConversionException

It is thrown if <numeral> is a Quantity and its physical dimension does not match the physical
dimension given by <displayUnit>.

16.5.2.3.6	 UnitTerm

The abstract type UnitTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which return
a Unit. It has no special members.

16.5.2.3.7	 UnitValue

This term returns the Unit stored in a Unit variable. For more information on value-terms and the
syntax and semantics of the valueOf attribute and <path> element, please refer to ISO 13209-2.

Associated checker rules:

—	 Core_Chk053 – no dangling OtxLink associations (see ISO 13209-2).

	 ﻿� © ISO 2022 – All rights reserved
�﻿

178

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

Throws:

—	 otx:OutOfBoundsException

It is thrown only if a <path> is set: the <path> points to a location which does not exist (like a list
index exceeding list length, or a map key which is not part of the map).

16.5.2.3.8	 UnitLiteral

This term shall be used to create a Unit object based on a unit definition contained in UNIT-SPEC
document. UnitLiteral allows referencing the unit definition by using W3C XLink methodology.

UnitLiteral is a UnitTerm. Its members have the following semantics:

—	 <value> : UnitDefinition [1]

This element represents the link to the UNIT definition in a UNIT-SPEC which shall be associated to
the Unit. The element allows all attributes from the namespace "http://www.w3.org/1999/xlink"
for linking, as defined by W3C XLink. For the usage of the attributes, the rules given in 16.5.2.3.1
shall apply.

Throws:

—	 UnknownUnitException

It is thrown if the given unit is not defined in the runtime system's unit specification.

Associated checker rules:

—	 Quantities_Chk001 – correct unit linking (see A.6.1);

—	 Quantities_Chk002 – no dangling unit definition links (see A.6.2).

16.5.2.3.9	 GetDisplayValue

The GetDisplayValue term shall return the (dimensionless) Float value of a Quantity according to the
Quantity's display unit. Compare the otx:ToFloat term which, when applied to a Quantity, will result
in the Quantity's value in normalized SI-unit representation.

This term disregards the display precision.

GetDisplayValue is an otx:FloatTerm. Its members have the following semantics:

—	 <quantity> : QuantityTerm [1]

This represents the Quantity from which the numeral value shall be extracted.

16.5.2.3.10	 GetDisplayUnit

The GetDisplayUnitName term shall extract the display unit out of a Quantity value (e.g. "mp/h",
"km/h", "h", "sec").

GetDisplayUnit is a UnitTerm. Its members have the following semantics:

—	 <quantity> : QuantityTerm [1]

This represents the Quantity from which the display unit shall be extracted.

Throws:

—	 UnknownUnitException

It is thrown if the unit associated with the quantity is not defined in the system's unit specification.

© ISO 2022 – All rights reserved	 ﻿
﻿

179

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

16.5.2.3.11	 GetBaseUnit

The GetBaseUnit term shall return the base unit of a Quantity value, according to its physical dimension
(e.g. "m", "m/s", "s").

GetBaseUnit is a UnitTerm. Its members have the following semantics:

—	 <quantity> : QuantityTerm [1]

This represents the Quantity from which the base unit shall be extracted.

Throws:

—	 UnknownUnitException

It is thrown if the base unit cannot be obtained from the system's unit specification.

16.5.3	 Overloading semantics

16.5.3.1	 Description

Since QuantityTerm is based on OTX core FloatTerm, Quantity values may be used in all places where
FloatTerm or NumericTerm arguments are allowed. This is, for example, the OTX core arithmetic terms,
comparison terms and conversion terms, for which special rules shall apply when the operands are
Quantity values. There are also places where general rules apply, e.g. where a display value can be used,
discarding unit-information.

WARNING — Special care shall be taken by OTX authors when arithmetic operations are applied
on Quantity values with display units involving an offset to the corresponding SI base unit. For
instance, consider the operation 50 °C - 10 °C which yields 40 °K (which is -233,15 °C). Physically
this is correct because the OTX runtime treats the operand 10 °C as an absolute temperature
quantity, not as a temperature difference. However, OTX authors unaware of the influence of
unit offsets might expect a different result (40 °C). To facilitate the handling of unit offsets, it is
strongly recommended to use separate units for absolute values and difference values, where
differerence values do not have an offset to the SI base unit. In the example above, the first
operand should use an absolute temperature unit T[°C], while the second operand should use a
difference temperature unit ΔT[°C]. With this, the operation 50 °C - 10 °C yields 313,15 °K (40 °C),
which is the expected result.

16.5.3.2	 Syntax

The syntax of the OTX core arithmetic terms, comparison terms and conversion terms is specified in
ISO 13209-2.

16.5.3.3	 Semantics

16.5.3.3.1	 Conversions

When applied to a Quantity, the otx:ToFloat term shall return the value of the Quantity normalized to
the SI base units correlated to its display unit. For example, a Quantity representing a speed value of
12,4 kilometres per hour will return a float value of 3.44 (as 12,4 km/h equal 3,44 m/s).

When applied to a Quantity, the otx:ToString term shall return a String containing the Quanitity's
display value followed by a space (Unicode character U+0020) followed by the DISPLAY-NAME of the unit
definition of its display unit. For computing the string representation of the display value, the same
rules as specified for otx:ToString(Float) shall apply. However, if the display precision property of the
Quantity is set, the fixed-point-part shall be rounded to the decimal place given by the display precision
property. Negative precision values are also allowed (expressing decimal positions to the left of the
point). For instance, a Quantity representing a speed value of 12,35 kilometres per hour with a display

	 ﻿� © ISO 2022 – All rights reserved
�﻿

180

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

precision of 1 will be rendered as "12,4 km/h", whereas a Quantity of 1 234,5 kilometres and a precision
of -2 shall be rendered as "1 200 km", etc. For very large or very small values where otx:ToString yields
a representation in scientific notation, the same rules shall apply, so for instance a Quantity of 1,123*105
milliseconds with a display precision of 2 shall be rendered as "1,12E5 ms". Furthermore, if the display
precision is greater than the number of decimal digits representing the fractional part, the string shall
be stuffed by zero, e.g. a Quantity of 100,1 metres with a display precision of 3 yields "100,100 m".

When applied to a Unit, the otx:ToString term shall return a String containing the DISPLAY-NAME of the
corresponding unit definition. For example, a Quantity representing a speed value of 12,4 kilometres
per hour will be rendered as "12,4 km/h".

IMPORTANT — For all other OTX core conversion terms, the behaviour when applied to Quantity
or Unit values is unspecified. However, OTX applications may provide custom implementations
of the conversion terms for Quantity or Unit arguments, if required. Please refer to ISO 13209-2
for further information and restrictions on conversion terms.

16.5.3.3.2	 Addition/Subtraction

When Quantity values are added or subtracted, the physical dimensions of the display unit of all
Quantity operands shall be identical. That means that, for example, a distance Quantity shall only be
added to another distance Quantity (or a scalar). Otherwise an InvalidConversionException shall be
thrown, e.g. when a distance is added to a time.

If scalar operands exist, they shall be interpreted as normalized values according to the physical
dimension of the Quantity operands. This allows, for example, the addition of 2 km + 1 m + 11 which
will result in a Quantity of 2 012 m.

The display unit of the resulting Quantity should be set to the SI base unit corresponding to the
Quantity's physical dimension. Furthermore, the display precision of the resulting Quantity shall be
the maximum of the display precisions of the operands. If the base unit is not defined in the UNIT-SPEC,
an InvalidConversionException shall be thrown.

16.5.3.3.3	 Multiplication, Division and Modulo

When Quantity values are multiplied or divided, a definition of the physical dimension of the resulting
Quantity has to exist in the UNIT-SPEC available to the OTX system. That means that, for example, a
distance Quantity can only be divided by a time Quantity if a distance/time base unit is known to the
system (e.g. 72 km divided by 2 h equals 10 m/s). Otherwise an InvalidConversionException shall be
thrown.

Scalar operands shall be interpreted "as is"; this allows, for example, the multiplication of 2 * 2 km
which will result in a Quantity of 4 000 m.

The display unit of the resulting Quantity should be set to the SI base unit corresponding to the physical
dimension resulting from the operation. Furthermore, the display precision of the resulting Quantity
shall be the maximum of the display precisions of the operands.

16.5.3.3.4	 Absolute Value and Negation

When the absolute value or the negation is computed from a Quantity, the display unit of the resulting
Quantity should be set to the SI base unit corresponding to the physical dimension of the original
Quantity. Furthermore, the display precision of the resulting Quantity shall be equal to the display
precision of the original Quantity. First the computation to SI Unit is done, and secondly the math
function is calculated.

EXAMPLE	 |-10 °C| transform to SI |263 K| Result: 263 K (this is equal to -10 °C).

© ISO 2022 – All rights reserved	 ﻿
﻿

181

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

ISO 13209-3:2022(E)

16.5.3.3.5	 Relational operations

When Quantity values are compared using relational operators, an OTX runtime shall use the
quantities' normalized values for comparison. So if, for example, a Quantity of 8 km is to be compared
with a Quantity of 10 mi., the runtime system shall convert both values into metres before doing the
comparison.

Furthermore, the physical dimensions of the display unit of the Quantity values being compared shall
be identical, for example, it is allowed to compare distances with each other, but it is illegal to compare
a distance to a time, in that case an InvalidConversionException shall be thrown.

If scalar operands exist, they shall be interpreted as normalized values according to the physical
dimension of the Quantity operands. This allows, for example, the comparison of 2 km < 11 which will
result in false (because the comparison is equivalent to comparing 2 km < 11 m).

16.5.3.3.6	 Other operations

Generally whenever Quantity values are used in OTX actions or terms for which no specific definition
is provided regarding the behaviour in the case of Quantity arguments, an OTX runtime shall use the
Quantity's otx:ToFloat value for computation. For instance, if a Quantity is used as an operand to the
math:Sin term, the Float value (that is, the Quantity’s normalized value) shall be used as input for the
operation.

17	 OTX StringUtil extension

17.1	 General

This OTX extension provides a collection of data types and terms which operate on strings.

NOTE	 An additional functionality is specified in the Util extension.

17.2	 Data types

17.2.1	 Overview

The OTX StringUtil extension defines one enumeration type named Encoding.

17.2.2	 Syntax

The syntax of the Encoding declaration is shown in Figure 97.

Figure 97 — Data model view: StringUtil data types

17.2.3	 Semantics

17.2.3.1	 General

The Encoding enumeration type of the OTX StringUtil extension is based on otx:SimpleType.

	 ﻿� © ISO 2022 – All rights reserved
�﻿

182

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
22

https://standardsiso.com/api/?name=3e16cd24276d3ba1719ca3f384ce99f8

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Requirements and recommendations
	4.1 Basic principles for requirements and recommendations definition
	4.2 Entries priorities
	4.3 Requirement listing

	5 Extension overview
	5.1 General
	5.2 Dependencies
	5.3 Basic characteristics of the OTX extensions

	6 OTX DateTime extension
	6.1 General
	6.2 Terms
	6.2.1 Overview
	6.2.2 Syntax
	6.2.3 Semantics

	7 OTX DiagCom extension
	7.1 General
	7.2 General considerations
	7.2.1 Communication channels
	7.2.2 Diagnostic services
	7.2.3 Diagnostic communication patterns
	7.2.4 Special-purpose diagnostic data types

	7.3 Data types
	7.3.1 Overview
	7.3.2 Syntax
	7.3.3 Semantics

	7.4 Exceptions
	7.4.1 Overview
	7.4.2 Syntax
	7.4.3 Semantics

	7.5 Variable access
	7.5.1 Overview
	7.5.2 Syntax
	7.5.3 Semantics

	7.6 Actions
	7.6.1 Overview
	7.6.2 ComChannel related actions
	7.6.3 ComParameter related actions
	7.6.4 DiagService related actions

	7.7 Terms
	7.7.1 Overview
	7.7.2 ComChannel related terms
	7.7.3 DiagService related terms
	7.7.4 Request related terms
	7.7.5 Result related terms
	7.7.6 Response related terms
	7.7.7 Parameter related terms
	7.7.8 ComParam related terms
	7.7.9 Event related terms

	8 OTX DiagDataBrowsing extension
	8.1 General
	8.2 Data types
	8.2.1 Overview
	8.2.2 Syntax
	8.2.3 Semantics

	8.3 Variable access
	8.3.1 Overview
	8.3.2 Syntax
	8.3.3 Semantics

	8.4 Terms
	8.4.1 Overview
	8.4.2 Syntax
	8.4.3 Semantics

	9 OTX EventHandling extension
	9.1 General
	9.2 Data types
	9.2.1 Overview
	9.2.2 Syntax
	9.2.3 Semantics

	9.3 Variable access
	9.3.1 Overview
	9.3.2 Syntax
	9.3.3 Semantics

	9.4 Actions
	9.4.1 Overview
	9.4.2 Syntax
	9.4.3 Semantics
	9.4.4 Example

	9.5 Terms
	9.5.1 Overview
	9.5.2 Event terms
	9.5.3 Event source terms
	9.5.4 Event property terms
	9.5.5 Exception terms

	10 OTX Flash extension
	10.1 General
	10.2 Data types
	10.2.1 Overview
	10.2.2 Syntax
	10.2.3 Semantics

	10.3 Exceptions
	10.3.1 Overview
	10.3.2 Syntax
	10.3.3 Semantics

	10.4 Variable access
	10.4.1 Overview
	10.4.2 Syntax
	10.4.3 Semantics

	10.5 Actions
	10.5.1 Overview
	10.5.2 Syntax
	10.5.3 Semantics
	10.5.4 Example

	10.6 Terms
	10.6.1 Overview
	10.6.2 Flash job related terms
	10.6.3 Flash session related terms
	10.6.4 Flash block related terms
	10.6.5 Flash block segment related terms
	10.6.6 Security related terms
	10.6.7 Own ident related terms
	10.6.8 Enumeration related terms

	11 OTX HMI extension
	11.1 General
	11.1.1 General considerations
	11.1.2 Dialogs
	11.1.3 Custom screens
	11.1.4 Custom screen usage example

	11.2 Data types
	11.2.1 Overview
	11.2.2 Syntax
	11.2.3 Semantics

	11.3 Exceptions
	11.3.1 Overview
	11.3.2 Syntax
	11.3.3 Semantics

	11.4 Variable access
	11.4.1 Overview
	11.4.2 Syntax
	11.4.3 Semantics

	11.5 Actions
	11.5.1 Overview
	11.5.2 Dialog related actions
	11.5.3 Custom screen related actions

	11.6 Terms
	11.6.1 Overview
	11.6.2 Syntax
	11.6.3 Semantics

	11.7 Signatures
	11.7.1 Overview
	11.7.2 Syntax
	11.7.3 Semantics

	12 OTX i18n extension
	12.1 General
	12.2 Data types
	12.2.1 Overview
	12.2.2 Syntax
	12.2.3 Semantics

	12.3 Exceptions
	12.3.1 Overview
	12.3.2 Syntax
	12.3.3 Semantics

	12.4 Variable access
	12.4.1 Overview
	12.4.2 Syntax
	12.4.3 Semantics

	12.5 Terms
	12.5.1 Overview
	12.5.2 Locale settings related terms
	12.5.3 Translation related terms
	12.5.4 Quantity related terms

	13 OTX Logging extension
	13.1 General
	13.2 Data types
	13.2.1 Overview
	13.2.2 Syntax
	13.2.3 Semantics

	13.3 Variable access
	13.3.1 Overview
	13.3.2 Syntax
	13.3.3 Semantics

	13.4 Actions
	13.4.1 Overview
	13.4.2 Syntax
	13.4.3 Semantics
	13.4.4 Example

	13.5 Terms
	13.5.1 Overview
	13.5.2 Syntax
	13.5.3 Semantics

	14 OTX Math extension
	14.1 General
	14.2 Terms
	14.2.1 Overview
	14.2.2 Syntax
	14.2.3 Semantics

	15 OTX Measure extension
	15.1 General
	15.2 Data types
	15.2.1 Overview
	15.2.2 Syntax
	15.2.3 Semantics

	15.3 Exceptions
	15.3.1 Overview
	15.3.2 Syntax
	15.3.3 Semantics

	15.4 Variable access
	15.4.1 Overview
	15.4.2 Syntax
	15.4.3 Semantics

	15.5 Signatures
	15.5.1 Overview
	15.5.2 Syntax
	15.5.3 Semantics

	15.6 Actions
	15.6.1 Overview
	15.6.2 Syntax
	15.6.3 Semantics

	15.7 Terms
	15.7.1 Overview
	15.7.2 Measurement related terms
	15.7.3 Event related terms

	16 OTX quantities extension
	16.1 General
	16.2 Data types
	16.2.1 Overview
	16.2.2 Syntax
	16.2.3 Semantics

	16.3 Exceptions
	16.3.1 Overview
	16.3.2 Syntax
	16.3.3 Semantics

	16.4 Variable access
	16.4.1 Overview
	16.4.2 Syntax
	16.4.3 Semantics

	16.5 Terms
	16.5.1 Overview
	16.5.2 Quantity and unit related terms
	16.5.3 Overloading semantics

	17 OTX StringUtil extension
	17.1 General
	17.2 Data types
	17.2.1 Overview
	17.2.2 Syntax
	17.2.3 Semantics

	17.3 Exceptions
	17.3.1 Overview
	17.3.2 Syntax
	17.3.3 Semantics

	17.4 Variable access
	17.4.1 Overview
	17.4.2 Syntax
	17.4.3 Semantics

	17.5 Terms
	17.5.1 Overview
	17.5.2 Syntax
	17.5.3 Semantics

	Annex A (normative) Comprehensive checker rule listing
	Annex B (normative) OTX DiagCom extension data type mappings
	Annex C (normative) OTX DiagMetaData auxiliary for the OTX DiagCom extension
	Annex D (informative) OTX DiagComRaw extension for resource-restrained systems
	Annex E (informative) OTX job extension
	Bibliography

