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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other

international organizations, governmental and non-governmental, in liaison with ISO and IE

C, also

take partin the work.

The procedures used to develop this document and those intended for its further maintenance are

described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria nee
the different types of document should be noted. This document was.drafted in accerdance w
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the
of patent rights. ISO and IEC shall not be held responsible for identifyiftg“any or all such
rights. Details of any patent rights identified during the development of)thie’document will bd
Introduction and/or on the ISO list of patent declaratioris received (see wi#w.iso.org/patents) or
list of patent declarations received (see patents.iec.ch): XN

Any trade name used in this document is information given for</t-h’e convenience of users and d

constitute an endorsement. N\ \

For an explanation of the voluntary nature of standa(&s, the meaning of ISO specific tery
expressions related to conformity assessment, as wg}:}\ as information about ISO's adherence
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.i
iso/foreword.html. %,

This document was prepared by Joint Teghiical Committee |ISO/IEC JTC 1, Information tech
Subcommittee SC 7, Software and systemsgngineering.

A list of all parts in the ISO/IEC/IEEE§29~119 series can be found on the ISO website.

Any feedback or.questions on this“dbcument should bedirected to the user’s national standards
complete listing-of these bodie\g’can be found at www.iso.org/members.html.
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Introduction

The testing of traditional systems is well-understood, but Al-based systems, which are becoming more
prevalent and critical to our daily lives, introduce new challenges. This document has been created to
introduce Al-based systems and provide guidelines on how they might be tested.

Annex A provides an introduction to machine learning.

This d

be usef
of Al-b

As aTd
an Inte

cument is primarily provided for those testers who are new to Al-hased systems but it can also
ul for more experienced testers and other stakeholders working on the development and testifig
hsed systems.

chnical Report, this document contains data of a different kind from that-normally published as
rnational Standard or Technical Specification, such as data on the “state of the art”.

Vi
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Software and systems engineering — Software testing —

Part 11:
Guidelines on the testing of Al-based systems

1 Scope

This document provides an introduction to Al-based systems. These systems are typically c
(e.g. deep neural nets), are sometimes based on big data, can be poorly specified’and can 1
deterministic, which creates new challenges and opportunities for testing them.

bmplex
e non-

This document explains those characteristics which are specific to Al-based\systems and explalins the

corresponding difficulties of specifying the acceptance criteria for such systems.

¥ ~

4
This document presents the challenges of testing Al-based systems fhe main challenge being the test

oracle problem, whereby testers find it difficult to-determine expected results for testing and th
whether tests have passed or failed. It covers testing of these/systems across the life cycle an
guidelines on how Al-based systems in general can be tested usig/g black-box approaches and intr

brefore
d gives
oduces

white-box testing specifically for neural networks. It describes options for the test environments and

test scenarios used for testing Al-based systems. N~

\

In this document an Al-based system is a system that ificludes at least one Al component.
X
2 Normative references N

Q)

There are no normativereéferences in thisdocument.
\
N,

8

\

3 Terms, definitions and g{i-breviated terms
s,

3.1 Termsand definitjgns

For the purposes of this‘document, the following terms and definitions apply.
*
1SO.and IEC maintain terminological databases for use in standardization at the following addre|

— ISO Online browsing platform: available at https://www.iso.org/obp

— IECAElectropedia: available at http://www.electropedia.org/

3.14
Aj/Btesting

SSes:

3 .
S PHUTUITN LES LIS

statistical testing approach that allows testers to determine which of two systems or components

performs better

3.1.2
accuracy

<machine learning (3.1.43)> performance metric used to evaluate a classifier (3.1.21), which measures

the proportion of classifications (3.1.20) predictions (3.1.56) that were correct

© ISO/IEC 2020 - All rights reserved
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3.1.3

activation function

transfer function

<neural network (3.1.48)> formula associated with a node in a neural network that determines the
output of the node (activation value (3.1.4)) from the inputs to the neuron

3.1.4
activation value
<neural network (3.1.48)> output of an activation function (3.1.3) of a node in a neural network

3.1.5
adaptgbility

ability |of a system to react to changes in its environment in order to continue meeting both functional
and nop-functional requirements

3.1.6
adversgarial attack

deliberjate use of adversarial examples (3.1.7) to cause a ML model (3:1.46) to fail N

\\

s
‘I

Note 1 fo entry: Typically targets ML models in the form of a neural network (3.1.48).
AV
3.1.7 N
advergarial example O
input tp an ML model (3.1.46) created by applying small perturbations gﬁ/a working example that results
in the model outputting an incorrect result with high-confidence

\’f\

Note 1 fo entry: Typically applies to ML models in/the form of a neural r}gtwork (3.1.48).
\

3.1.8 \

advergarial testing \

testing approach based on the attempted creatlon‘and execution of.adversarial examples (3.1.7) to
identify defects in an ML model (3:1.46)

(7;
s

Note 1 fo entry: Typically applied to ML models in the form of a neural network (3.1.48).
A

3.19 Lo

Al-based system G >

systen] including one‘or more compol’lents implementing Al (3.1.13)
3.1.10 3

Al effect N

situatipn when a previousl'y’labelled Al (3.1.13) system is no longer considered to be Al as technology
advandes

3.1.11
Al quallity metamodel
metamlodel intended to ensure the quality of Al-based systems (3.1.9)

Note 1 §o €ntry: This metamodel is defined in detail in DIN SPEC 92001.

3.1.12

algorithm

ML algorithm

<machine learning (3.1.43)> algorithm used to create an ML model (3.1.46) from the training data
(3.1.80)

EXAMPLE ML algorithms include linear regression, logistic regression, decision tree (3.1.25), SVM, Naive
Bayes, kNN, K-means and random forest.

2 © ISO/IEC 2020 - All rights reserved
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3.1.13

artificial intelligence

Al

capability of an engineered system to acquire, process and apply knowledge and skills

3.1.14
autonomous system
system capable of working without human intervention for sustained periods

2 14 14

Ja Al LJ

autonomy

ability of a system to work for sustained periods without human intervention

3.1.16

back-to-back testing

differential testing

approach to testing whereby an alternative version of the system is used as a-pséudo-oracle (3.]

generate expected results for comparison from the same test.inputs N
N

.59) to

EXAMPLE The pseudo-oracle may be a system that already exists, a systémt-developed by an independent

team or a system implemented using a different programming language. (/=

.,

3.1.17 O

backward propagation

<neural network (3.1.48)> method used in-artificial neural hetworks to determine the weight]
used on the network connections based onthe computed\efror at the output of the network

Note 1 to entry: It is used to train deep neural networks (3.1527).
N

3.1.18 <\

benchmark suite N

collection of benchmarks,-where a benchmark is a set of tests used to compare the perform
alternatives )

\\

8

3.1.19 \

bias -

<machine learning (3.1.43)> m s}sﬁre of the distanee between the predicted value provided by
model (3.1.46)-and a desiredﬂfziir prediction (3.1.56)

¢,
3.1.20 C
classification «
<machine learning{3:1.43)> machine learning function that predicts the output class for a given
3.1.21
classifier

<machineJearning (3.1.43)> ML model (3.1.46) used for classification (3.1.20)

3.122
clustering

H £ £ aof ol 'S Lot ot ol o £l L ] faia) 4 |
61 Uul)llls Ul da oSCl Ul UUJC\,LD ouullIll tIidat UUJCLLD I LIIC SdlIlIv 51 UUP LI-C. d \.luDLClJ dlI U ITIUT U STIIITIdl

other than to those in other clusters

3.1.23

combinatorial testing

black-box test design technique in which test cases are designed to execute specific combinat
values of several parameters (3.1.53)

EXAMPLE Pairwise testing (3.1.52), all combinations testing, each choice testing, base choice testing.

© ISO/IEC 2020 - All rights reserved
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3.1.24

confusion matrix

table used to describe the performance of a classifier (3.1.21) on a set of test data (3.1.75) for which the
true and false values are known

3.1.25

decision tree

<machine learning (3.1.43)> supervised-learning model (3.1.46) for which inference can be represented
by traversing one or more tree-like structures

3.1.26
deep learning

appro:lch to creating rich hierarchical representations through the training of neural networks (3\1.48)
with ofie or more hidden layers

Note 1 fo entry: Deep learning uses multi-layered networks of simple computing units (or “neurons”). In these
neural petworks each unit combines a set of input values to produce an outputvalue, which in turn is passed on
to othey neurons downstream.

3.1.27 ¥
deep neural net RO
neural petwork (3.1.48) with more than two layers N

3.1.28 \
deterministic system D)
systemn] which, given a particular set of inputs ahd-starting statefwill always produce the same set off

outputk and final state S -
3.1.29 )
distrijutional shift ’S)

datasef shift N\

<machine learning (3.1.43)> distance between th/eﬂtr:aining data (3.1.80) distribution and the desired

data distribution

N\

Note 1 fo entry: The effect of distributional shift%ften increases as'the users’ interaction with the system (and so
the desjred data distribution)changes over tihie.

3.1.30 SR
drift GO
degradation

stalengss &l
<machinelearning (3.1.43J>¢hanges to ML model (3.1.46) behaviour that occur over time

~

Note 1.{o entry: These changes typically make predictions (3.1.56) less accurate and may require the model to be
re-trairjed with newdata.

3.1.31
explaipability
<Al (3.1L.13)> level of understanding how the Al-based system (3.1.9) came up with a given result

3.1.32

exploratory testing

experience-based testing in which the tester spontaneously designs and executes tests based on the
tester's existing relevant knowledge, prior exploration of the test item (including the results of previous
tests), and heuristic "rules of thumb" regarding common software behaviours and types of failure

Note 1 to entry: Exploratory testing hunts for hidden properties (including hidden behaviours) that, while quite

possibly benign by themselves, could interfere with other properties of the software under test, and so constitute
arisk that the software will fail.

4 © ISO/IEC 2020 - All rights reserved
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3.1.33
F1-score

<machine learning (3.1.43)> performance metric used to evaluate a classifier (3.1.21), which provides a

balance (the harmonic average) between recall (3.1.61) and precision (3.1.55)

3.1.34
false negative
incorrect reporting of a failure when in reality it is a pass

Noad

1+ i e 1 1 Lol 1L
INULT 1 LU Clltl)’. IS5 15 AdlIoU [NIUWII dSs d l)’}JC IT'CITUIL.

EXAMPLE The referee awards an offside when it was a goal and so reports a‘failure to score a-goal
goal was scored.

3.1.35
false positive
incorrect reporting of a pass when in reality it is a failure

»

\\

EXAMPLE The referee awards a goal that was offside and so should not havé been awarded.
< XN\

.,

Note 1 to entry: This is also known as a Type I error.

3.1.36

feature engineering &
feature selection N
<machine learning (3.1.43)> activity in whichthose attriputes in the raw data that best repres

underlying relationships that should appear in the mog@l{f3.1.46) are identified for use in the ¢
data (3.1.80) Q

3.1.37 %,

flexibility X

ability of a system to work incontexts outsidé’its initial specification (i.e. change its behaviour acg
to its actual situation to satisfy its objectiyes)

\
3.1.38 )
fuzz testing &
software testing\approach in which high volumes of random (or near random) data, called fu

used to generate inputs to theitest item

S
3.1.39 RS
general Al A

*
strong Al <

AT(3.1.13) that exhibits intelligent behaviour comparable to a human across the full range of co
abilities

3.1.40

graphical processing unit

GPU

application-specific integrated circuit (ASIC) specialized for display functions such as rendering

when a

ent the
raining

ording

77, are

onitive

jmages

Note 1 to entry: GPUs are designed for parallel data processing of images with a single function, but this parallel

processing is also useful for executing Al-based software, such as neural networks (3.1.48).

3.1.41
hyperparameter

<neural network (3.1.48)> variable used to define the structure of a neural network and how it is trained

Note 1 to entry: Typically, hyperparameters are set by the developer of the model (3.1.46) and may
referred to as a tuning parameter (3.1.53).

© ISO/IEC 2020 - All rights reserved
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3.1.42
interpretability
<Al (3.1.13)> level of understanding how the underlying (Al) technology works

3.1.43

machine learning

ML

process using computational techniques to enable systems to learn from data or experience

3.1.44
metantorphic relation

description of how a change in the test inputs from the source test case to the follow-up test case affects
a change (or not) in the expected outputs from the source test case to the follow-up test case

3.1.45
metamorphic testing
testingwhere the expected results are not based on the specification butare instead extrapolated from

previofis actual results N
N \

3.1.46 Js

model S

ML mddel \

<machine learning (3.1.43)> output of a ML algorithm (3.1.12) traingf{/vith a training dataset that
generales predictions (3.1.56) using patterns in the input data

\‘ A
3.1.47 X%,
narrowy Al \:\
weak Al

Al (3.1{13) focused on a single well-defined task to addrgss‘a specific problem

3.1.48 Q)
neural network
artificjal neural network \
network of primitive processing elements goﬁnected by weighted links with adjustable weights, in
which gach element produces a value by applying a nonlinear function to its input values, and transmits
it to other elements or presents it as an,'output value

<\

Note 1 tpo entry: Whereas some neuralhetworks are intended to simulate the functioning of neurons in the nervous
system|most neural networks are-tige@-in artificial intelligence (3.1.13) as realizations of the connectionist model
(3.1.46]. e

(7;
s

*
Note 2 fo-éntry: Examples-effionlinear functions are a threshold function, a sigmoid function, and a polynomial
functiof,

[SOURCE: ISO/IEG,2382:2015, 2120625, modified — The admitted term "neural net" has been removed;
notes 3 to 5 to enfry have been removed.]

3.1.49
neuron.coverage

proportiomof activated reurorns divided by thetotat mumber of meurons i the rreurat retwork (3-148)
(normally expressed as a percentage) for a set of tests

Note 1 to entry: A neuron is considered to be activated if its activation value (3.1.4) exceeds zero.

3.1.50

non-deterministic system

system which, given a particular set of inputs and starting state, will not always produce the same set
of outputs and final state

6 © ISO/IEC 2020 - All rights reserved
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3.1.51

overfitting

<machine learning (3.1.43)> generation of a ML model (3.1.46) that corresponds too closely to the
training data (3.1.80), resulting in a model that finds it difficult to generalize to new data

3.1.52

pairwise testing

black-box test design technique in which test cases are designed to execute all possible discrete
combinations of each pair of input parameters (3.1.53)

Note 1 to entry: Pairwise testing is the most popular form of combinatorial testing (3:1.23).

3.1.53

parameter
<machine learning (3.1.43)> parts of the model (3.1.46) that are learnt from applying the training data
(3.1.80) to the algorithm (3.1.12)

EXAMPLE Learnt weights in a neural net.
Note 1 to entry: Typically, parameters are not set by the developer of the model“:.:

3.1.54 QB
performance metrics
<machine learning (3.1.43)> metrics used to evaluate ML modeld‘a}l 46) that are used for classification

(3.1.20) W
e
EXAMPLE Typical metrics include accuracy (3.1.2), preqi\sf&ﬁ (3.1.55), recall (3.1.61) and F1-score (3.1.33).
3.1.55
precision )

<machine learning (3.1.43)> performance metrigused to evaluate a classifier (3.1.21), which mgasures
the proportion of predicted positives that wepe correct

4

3.1.56 A\
prediction 0
<machine learning'(3.1.43)> mach{ne learning funetion that results in a predicted target valye for a
given input y
NS

EXAMPLE Includes classjfication (3.1.20) and regression (3.1.62) functions.
g

3.1.57 \,
pre-processing _t. '

<machine learning B 1.43)> part of the ML workflow that transforms raw data into a state ready|for use
by the ML algofithm (3.1.12) to create the ML model (3.1.46)

Note 1 to efithy: Pre-processing can include analysis, normalization, filtering, reformatting, imputation, femoval
of outliefs'and duplicates, and ensuring the completeness of the dataset.

3.158

probabilistic system
system whose behaviour is described 1n terms of probabilities, such that its outputs cannot be perfectly
predicted

3.1.59

pseudo-oracle

derived test oracle

independently derived variant of the test item used to generate results, which are compared with the
results of the original test item based on the same test inputs

Note 1 to entry: Pseudo-oracles are a useful alternative when traditional test oracles (3.1.76) are not available.

© ISO/IEC 2020 - All rights reserved 7
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3.1.60

reasoning technique
<AI (3.
such as deduction and induction

3.1.61
recall

1.13)> form of Al that generates conclusions from available information using logical techniques,

sensitivity
<machine learning (3.1.43)> performance metric used to evaluate a classifier (3.1.21), which measures
the prdportion of actual posItives that were predicted correctly

3.1.62

regregsion

<mach
value f

3.1.63
regul
standa

3.1.64
reinfo
<mach

achiev¢ an objective

Note 1
supervi

ne learning (3.1.43)> machine learning function that results in a numerical or continuéus output
pr a given input

ory standard N
d promulgated by a regulatory agency N

rcement learning
ne learning (3.1.43)> task of building a ML model (3.1.46) using&p)rocess of trial and reward to

\'\

to entry: A reinforcement learning task can include the tra'\fﬁng of a ML model in a way similar to
bed learning (3.1.74) plus training on unlabelled inputs gatheréd during the operation phase of the Al

(3.1.13) system. Each time the model makes a prediction (3.1.56),§"reward is calculated, and further trials are
run to gptimize the reward. >

Note 2

designdr.

\"

fo entry: In reinforcement learning, the objectiveyor definition of success, can be defined by the system

(7;

Note 3 fo entry: In reinforcement learning, the reward can be a calculated number that represents how close the
Al syst¢m is to achieving the.objective for a giveR'trial.

3.1.65 P\
rewarfl hacking R s
activity performed by an agent to piaximise its reward function to the detriment of meeting the original
objectiyve \
. ~
3.1.66 O
robot

prograimmed actuated.rhechanism with a degree of autonomy (3.1.15), moving within its environment,
to perfprm intended\tasks

Note 1 o entry:< A robot includes the control system and interface of the control system.

Note 2

o.éntry: The classification (3.1.20) of robot into industrial robot or service robot is done according to its

intended application.

3.1.67
safety
expect

ation that a system does not, under defined conditions, lead to a state in which human life, health,

property, or the environment is endangered

[SOURCE: ISO/IEC/IEEE 12207:2017, 3.1.48]

3.1.68

search algorithm
<Al (3.1.13)> algorithm (3.1.12) that systematically visits a subset of all possible states (or structures)
until the goal state (or structure) is reached

8
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3.1.69
self-learning system
adaptive system that changes its behaviour based on learning from the practice of trial and error

3.1.70

sign change coverage

proportion of neurons activated with both positive and negative activation values (3.1.4) divided by the
total number of neurons in the neural network (3.1.48) (normally expressed as a percentage) for a set
of tests

Note 1 to entry: An activation value of zero is considered to be a negative activation.value.

3.1.71

sign-sign coverage
coverage level achieved if by changing the sign of each neuron it can'be shown to individually calise one
neuron in the next layer to change sign while all other neurons in the next layer stay the same (ife. they
do not change sign)

3.1.72 Ve
simulator 7
<testing> device, computer program or system used'during testingiavhich behaves or operatef like a

given system when provided with a set of controlledinputs.

“

3.1.73 W\
software agent D,
digital entity that perceives its environment and takes acp?)ns that maximize its chance of succgssfully

achieving its goals Q

3.1.74 )
. . \$

supervised learning

<machine learning (3.1.43)> task of learning a-finction that mapsan input to an output based on labelled

example input-output pairs

\

3.1.75 o~
test data )
<machine learning (3.1.43)> indepéndent dataset(used to provide an unbiased evaluation of thie final,
tuned ML model (3.1.46) QO

3.1.76 s

test oracle \(

source of informati\o"n/for determining whether a test has passed or failed

Note 1 to entry: Thetest oracle is often a specification used to generate expected results for individual tegt cases,
but other sourgesay be used, such as comparing actual results with those of another similar program or{system
or asking ahtiman expert.

3.1.77
test oracle problem
chialenge of determining whether a test has passed or failed for a given set of test inputs and state

3.1.78
test scenario
situation or setting for a test item used as the basis for generating test cases

3.1.79

threshold coverage

<neural network (3.1.48)> proportion of neurons exceeding a threshold activation value (3.1.4) divided by
the total number of neurons in the neural network (normally expressed as a percentage) for a set of tests

Note 1 to entry: A threshold activation value between 0 and 1 is chosen as the threshold value.
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3.1.80

training data
<machine learning (3.1.43)> dataset used to train an ML model (3.1.46)

3.1.81

transparency
<Al (3.1.13)> level of accessibility to the algorithm (3.1.12) and data used by the Al-based system (3.1.9)

3.1.82

truen
correc

r
-sal.lvc

reporting of a failure when it is a failure

EXAMPLE The referee correctly awards an offside and so reports a failure to score'a'goal.

3.1.83
true p
correc

EXAMPLE The referee correctly awards a goal.

3.1.84
under
<mach
of the

(3.1.56

3.1.85
unsup
<mach
repres

3.1.86
valida
<mach

3.1.87
value ¢
propor

psitive
reporting of a pass when it is a pass
»
P

.

fitting QN
ne learning (3.1.43)> generation of a ML model (3.1.46) that does ncbt reflect the underlying trend
training data (3.1.80), resulting in a model that finds it difficu{lf to make accurate predictions

) W
N
prvised learning Q
ne learning (3.1.43)> task of learning a function-that maps unlabelled input data to a latent
bntation <\
tion data Vi
ne learning (3.1.43)> dataset used to evakuate a candidate ML model (3.1.46) while tuning it
A\
-
change coverage O,

tion of neurohis activated wHere their activation values (3.1.4) differ by more than a change

amounE divided by the total numbgeF of neurons in the neural network (3.1.48) (normally expressed as a

percen|

3.1.88

age) for a.set of tests

*
N A

virtual] test environmeént

testen

3.2

ASIC

Vironment where' one or more parts are digitally simulated
\bbreviated terms

application-specific integrated circuit

API
CEN
Cl/CD
CPU
CENEL
DNN

10

application programming interface
European Committee for Standardization
continuous integration and continuous delivery
central processing unit
EC  European Committee for Electrotechnical Standardization

deep neural network

© ISO/IEC 2020 - All rights reserved


https://iecnorm.com/api/?name=111733f32f73788a2513ebdda76890dd

ISO/IEC TR 29119-11:2020(E)

ETSI European Telecommunications Standards Institute
GDPR General Data Protection Regulation

IEEE Institute of Electrical and Electronics Engineers
[oT internet of things

RAM random access memory

SOTIF safety of the intended functionality

4 Introduction to Al and testing

4.1 Overview of Al and testing

This clause introduces artificial intelligence (Al) and then(explains testing in the context of A

systems. .
4

Artificial intelligence is initially defined, typical Al-uses cases are provided, and figures

expanding market for Al-based systems are presented. The rangeoftechnologies used to implen

based systems are listed and options for the hardware and deve@}frfnent frameworks used to im

these systems are provided. The implementation levels of nasfow Al and general Al are then co

Ve
The importance of testing for Al-based systems is themintroduced, and the use of such syst
safety-related domains is considered-before the use ofiStandards for Al-based systems is introdu

9

4.2 Artificial intelligence (AR ’S)

N\

R[V'y

4.2.1 Definition of ‘artificial intelligence’

\
To understand the term ‘artificial ingelhgence’, ‘intelligence’ first needs to be understood. The
Dictionaries providea suitable defjition:

the ability to-acquire and apply knowledge and skills

Artificial‘intelligence (Al)d's}mtelligence that does not occur naturally, i.e. as exhibited by hum4
animals: The following'définition captures this concept:

*
capability of aféngineered system to acquire, process and apply knowledge and skills
Artificial intelligence can also be considered as a discipline, leading to a second definition:

discipline which studies the engineering of systems with the capability to acquire, process an
knewledge and skills (ISO/IEC 22989)

ISO/IEC 2298911 introduces the concepts of Al and includes a comprehensive terminology.

-based

for the
ent Al-
lement
pared.

ems in
iced.

Oxford

ns and

l apply

In practice, people’s understanding of what is meant by Al changes over time - this is often known as
the Al effectl2]. A strict interpretation of the above definitions may allow what we would now consider
basic (non-Al) computer systems to be labelled as Al. For instance, in the 1980s an expert system based

on fixed rules that performed activities traditionally carried out by bank clerks was considere

d to be

Al, but today such systems are often considered too simple to be Al. Similarly, the Deep Blue system

that beat Garry Kasparov at chess in 1997 is now derided by some as a brute force approach -

and so

not true Al It is likely that today’s state-of-the-art Al will also be considered ‘too simple to be AI’ in 20

years’ time.

© ISO/IEC 2020 - All rights reserved
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4.2.2 Al use cases

Al can be used for a wide variety of application areas, such as:

— Anomaly detection systems (e.g. fraud detection, health monitoring, and security)
— Autonomous systems (e.g. vehicles and trading systems)

— Computer vision systems (e.g. image classification)

— Digital assistants (e.g. Sir], Cortana)

— Enpail systems (e.g. spam filters)

— Intelligent speech systems (e.g. speech recognition and speech synthesis)

— Natural language processing (NLP) (e.g. deriving meaning from human‘language)

— Refcommender systems (e.g. for purchases, films and music)

»
\
— Segrch engines (e.g. for searches and marketing) ":.:
— Sefurity systems (e.g. face ID) NN
— Snjart home devices (e.g. thermostats) </‘)

— Sofial media (e.g. feed personalization)

More detail on Al use cases is available in theISO/IEC TR 2403%1[3]. A comprehensive list of Al use cases

from afnon-standard perspective can be found at Referencé [4.}\]'.

>
\ "

4.2.3 | Al usage and market N X

<Q\

Al technologies are widely used in.real-world applications, such as reecommending, prediction, decision
making and statistical reporting. The apphcatlons are deployed-in a variety of systems including
autonomous driving vehicles, robot-controlled' warehouses;: financial forecasting applications, and
securitly enforcement.and are increasingly integrated-with cloud computing, big data analytics,
robotigs, internet of things, mobile Con\mpﬁting, smart cities,smart homes, intelligent healthcare, etc.

)

Al-bas¢d systemsare becoming eygt more widespread:
\,

— Thle perception is that Al'is the most significant technology of this time as 69 % of technology
exgcutives ranked it ig'shé top three most significant technologies over the next 5 to 10 years[3l.

— 91|%of technology eXecutives believe Al will be at the centre of the next technological revolution(=],

— The share ofjobs requiring Al skills has grown by a factor of 4.5 since 2013lel.

— Glgbal revenues from Al for enterprise applications is projected to grow from $1.62B in 2018 to
$3[L.2B.in 2025!7.

— 22 % of IT budgets are allocated to Al projects(2l.

— 64 % of companies had Al projects in place or planned for next 12 months[2l.
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4.2.4 Al technologies

4.2.4.1 General

Al can be implemented using a wide range of approaches or technologies. These can be grouped in
different ways including:

— Search algorithms

—Reagsoming techmiques
— Logic programs
— Rule engines
— Deductive classifier

— Case-based reasoning

»
— Procedural reasoning Q N
4
— Machine learning techniques (see Annex A for more detail) XN
— Artificial neural networks (/»)
A\
— Feed forward neural networks )
)
— Deep learning &
S,
— Recurrent neural networks \

— Convolutional neural networks X

Q)

— Bayesian network ?;

— Decision tree o

-

— Reinforcement learning -\
O
. )
— Transfer learning -
N
—Genetic algorithnis

*
) Support vector machine

Some of the maost effective Al-based systems can be considered as Al hybrids, using a mix of these
technologies.

ISO/IEC.22989[1] provides more details on Al concepts and on the above technologies.

4.2,4.2 Robots and software agents

Autonomous robots with electronic systems were first developed at a similar time to Alan Turing’s
work on machine intelligence, and robots are now widely used in factories, although the use of Al in
such robots is limited[10],

A software agent is a software system that acts upon information available to it to achieve a goal. For Al,
we are more often interested in intelligent software agents that are software agents capable of making
decisions based on their experiences (so making them ‘intelligent’). Intelligent software agents are also
often labelled as autonomous as they are allowed to select which action to perform (see 4.2.4.3 for more
on autonomous systems).
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Intelligent software agents may work alone or with other agents to implement Al. These agents are
most often located in computer systems (either physical or in the cloud) and interact with the outside
world through computer interfaces. A tool using Al for performing software testing is most likely
to reside in a computer system and interact with the software tester through the user interface and
interact with the software it is testing through a computer interface using a defined protocol (such a
tool would be considered an Al-based system as it has an Al component working with conventional,

non-Al

subsystems, such as the user interface). Intelligent software agents may also reside in robots;

the major difference being that the robots provide the Al with a physical presence and a different way
of interacting with the environment that is not available to purely computer-based software agents.

4.2.4.3
Autond

— T

—

— Ro
— Mo

— Sm

Al and autonomous systems
mous systems can be physical or purely digital, and include systems for:
Ansportation

Cars / trucks

Unmanned aircraft (drones) ‘:; &
Ships / boats &
Trains v,
botic/IoT platforms (e.g. manufacturing, vacuum cleaners, sfmart thermostats)
A
dical diagnostics \\\'

art buildings / smart cities / smart energy / smapttilities

\$
— Financial systems (e.g. automated market trading s§stems)

The lo
functid
RADAH
systenmn
for an 4
the sys
autono
brakin
(e.g. ad
(e.g. to

R[V'y

bical structure of an autonomous system/can be considered as comprising three high-level
ns: sensing, decision-making and contrpl,’ as shown in Figure 1. Sensors (e.g. cameras, GPS,
, LIDAR) provide inputs to the sensiiig function and are tUsed to gather information about the
's environment, suchras the positiofts of nearby cars; pedestrians and information on road signs
utonomous car/Part of this ‘sensing’ function is also known as localization, which is determining
tem’s current position in the efwironment and relating this to maps (e.g. detailed offline maps for
mous cars). The ‘decision-ntaking’ function decides what the system’s next move should be (e.g.
b, turning, climbing, descending) depending on the function provided by the autonomous system
aptive cruise contrgl): The ‘control’ function implements the decision by calling on actuators
release air, open fuekvalve).

14
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v 1
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=3 SENSORS SENSING VAKING CONTROL ACTUATORS (=
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N

Al

& K

\\
-
¥ ~

Figure 1 — Logical structure of an autonomous system

Fully autonomous systems require more, and.perhaps bette(,/‘s)ensors than their less autorjomous
counterparts; and to make sense of the data from these sensors, these systems typically uge deep
learning, a form of machine learning. To/perform the @ecessary decision-making, the systgm will
also often use deep learning. Thus, each"of the high4evel functions in the autonomous syst¢m can
be implemented as Al or can be implemented usingsether technologies (in an autonomous dar, the
sensing and decision-making functions are often 1mplemented as Al, while the control function may be
implemented using conventional.techniques). I‘r(is also possible to implement a complete autorjomous
system as a single ML system/(e.g. a car steeting system that learns from ‘observing’ manual sfeering
based on video inputs and/steering outputs)
O\

4.2.5 Al hardware o

Al-based systems, especially ML\ 'systems implemented as neural networks performing pattern
recognition. (€.g. machine visign)-speech recognition), require many calculations to be run in parallel.
General-purpose CPUs do ~ﬁ0t perform this type of calculation efficiently and, instead, grpphical
processing units (GPUs); which are optimised for parallel processing of images using thousands qf cores
are often used. GPUs are however not optimised for Al, and a new generation of hardware developed
specifically for Al ig'how becoming available.

Many Al implementations are, by their nature, not focused on exact calculations, but rather on
probabilistic\determinations and so the accuracy of a 64-bit processor is often unnecessafy and
processors‘with less bits can run faster and consume less energy. Because much of the processing time
and energy is involved with moving large amounts of data from RAM to the processor for relatively
simple.calculations, the concept of phase changing memory devices that allow simple calculations to be
pérformed directly on memory are also being developed[11],

Al-specific hardware architectures include neural network processing units and neuromorphic
computing, while existing technologies, such as field programmable gate arrays and application-
specific integrated circuits can be tailored to Al workloads, as will the next generations GPUs. Some
of the integrated circuits within these architectures are focused on specific areas of Al, such as image
recognition. When performing machine learning (see Annex A), the processing used to train models
can be quite different from the processing used to run the inferencing on the deployed model and this
suggests that different processors for each activity should be considered.
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4.2.6
There

Al development frameworks

are several open-source Al development frameworks available, often optimised for specific

application areas.

EXAMP

LE The most popular Al development frameworks include:

— TensorFlowl4] - based on data flow graphs for scalable machine learning by Google

— PyTorchl®5] - neural networks for deep learning in the Python language

— MX
— CN

— Ke

Netl66] - a deep learning open-source framework used by Amazon for AWS
TKI[CZ] - the Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolKit

Fasl8] - a high-level API, written in the Python language, capable of running ontop of TensorFlow or CNTK|

This information is given for the convenience of users of this document and does not constitute'an endorsement

by ISO/

4.2.7

Up unt
such as

Generd
numbe
machir
mean
scope (

ISO/IE
4.3 1

4.3.1

There
“Most
up to ]
reason

Failurg
testing

— Al
34

— Al

[EC of the frameworks named.

Narrow vs general Al \

1 now, all successful Al has been ‘narrow’ Al, which means it can haridle a single specialized task,
playing Go, performing as a spam filter, or controlling a manoeuyrg in a self-driving car.

| Al is far more advanced than narrow Al and refers to an Ab%/ased system that can handle a
r of quite disparate tasks, much the same.as a human. General Al is also known as high-level
e intelligence (HLMI). A survey of Al researchers pub.%z‘h’ed in 2017 reported that the overall
stimate for when HLMI would be achieved was by 206W[2]. The testing of HLMI is not within the

fthis document. \
\$

[ 22989[1 provides coverage of Al concepts, inclSding narrow and general Al systems.

Q)

‘esting of Al-based systems &

N\

8

A\
The importance of testing for Al‘based systems

~N
nave already been a number oﬁ\;\’idely publicized failures of Al. According to a 2019 IDC Survey,
brganizations reported somefailures among their Al projects with a quarter of them reporting|
0 % failure rate; lack of 8Killed staff and unrealistic expectations were identified as the top
s for failure.”[13] N

. . N S . .
shave historically provided one of the most convincing drivers for performing adequate software
.Industry surveys show a perception that Al is an important trend for software testing:

was rated{the number one new technology that will be important to the testing world in the next|
b 5 years[24],

wag-rated second (by 49.9 % of respondents) of all technologies that will be important to the

SO

tware testing industry in the following 5 years[13].

— The most popular trends in software testing were Al, CI/CD, and security (equal first)[16l,

However, the quality assurance of existing Al application development processes is still far from
satisfactory and the demand for being able to show demonstrable levels of confidence in such systems
is growing:

— 19
— 57

16

% of respondent are already testing Al / machine learning[14l,

% of companies are experimenting with new testing approaches!l.
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Software testing is a fundamental, effective and recognized quality assurance method which has
shown its cost-effectiveness to ensure the reliability of many complex software systems. Moreover,
the adaptation of software testing to the specifics of Al-based systems remains largely unexplored
and needs extensive research to be performed[Z], Therefore, testing for Al-based systems is definitely
important.

Testing is also included at a high-level as a mitigation measure for known Al vulnerabilities in the
ISO/IEC TR 24028 on trustworthiness in artificial Intelligencel3l.

4.3.2 Safety-related Al-based systems

Al-based systems are already beginning to be used for making decisions'that affect safety ahd this
trend will see increased use of Al for safety-related systems. Safety is defined as the ‘expectatiop that a
system does not, under defined conditions, lead to a state in which-human life, health,"property} or the
environment is endangered (ISO/IEC/IEEE 12207:2017).

Current standards for the assurance of safety of technical systems require afull understanding of the
system under all possible conditions before its release. Many Al-based systéms are probabilisftic and
non-deterministic (see 5.1.8) - this unpredictability makes it very diffieyd to make an evidencg-based
case that they will not cause harm. Also, the use of machine learnlng stich as deep learning, cai result
in systems that are complex (see 5.1.6) and difficult to interpret (see 511, 5:1.7). If Al-based systemg are to
be used in safety-critical areas, then each of these problem area§needs to be addressed. Standgrds for
safety-related Al-based systems are covered in 4-3.3. </

A\

N

'®

4.3.3 Standardization and Al &
\

S
4.3.3.1 Introduction to Al standardization

Standardization aims to promote innovation, helﬁ improve system quality, and ensure user safety, while
creating a fair and open induistry ecosystem: Al standardization occurs at various levels, includipg:
(7,

— International standards organizatiQns'

. o N

— Regional standards organizatigns
~N

— National standards organ'pz[ations

— Other standards organi?ations

Under Joint Technical Committee 1 (JTC 1) of ISO and IEC, Subcommittee 42 (SC 42) is spedifically
responsible for aftificial intelligence standards, although Al-based systems are also congidered
relevant by seyeral other ISO/IEC committees and groups, such as JTC 1/SC 7 (software and systems
engineering); T€ 22 (road vehicles) and ITU-T SG20 (IoT, smart cities and communities).

At the Eufopean level, ETSI and CEN-CENELEC are both involved with Al standards. ETSI jhas an
Industry~Specification Group (ISG) on Experiential Networked Intelligence (ENI), whose goal is to
develop standards for a cognitive network management system incorporating a closed-loop fontrol
approach. CEN-CENELEC intends to define a standards roadmap for the Al domain that is due in[2020.

China has several Al standards initiatives at the national level, with national technical committees
working on automation systems and integration (SAC/TC 159), audio, video, multimedia and
equipment (SAC/TC 242) and intelligent transport systems (SAC/TC 268). SAC/TC 28 also addresses Al
standardization work related to vocabulary, user interfaces and biometric feature recognition.

Germany has developed Al quality metamodell121.[20], which is described in more detail in 4.3.3.3.

The IEEE provides a specific focus on the ethical aspects of Al-based systems. The IEEE Global Initiative
for Ethical Considerations in Artificial Intelligence and Autonomous Systems has a mission “to ensure
every stakeholder involved in the design and development of autonomous and intelligent systems is
educated, trained, and empowered to prioritize ethical considerations so that these technologies are
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advanced for the benefit of humanity.” As part of this initiative, the IEEE P7000 series of standards[¢?
addresses specific issues at the intersection of technological and ethical considerations.

JTC 1/SC 42 are also working on the topic of ethics and AIlZ3],

Other standards initiatives include standards on Al tool interoperability, such as ONNX (Open Neural
Network Exchange format)[Z0], NNEF (Neural Network Exchange Format)[Zll and PMML (Predictive
Model Mark-up Language)[Z2l,

4.3.3. Regulatory standards for Al

4.3.3.2.1 General

Regulatory standards can be split into two broad categories: those that-apply to safety-related
systemnys and those that apply to non-safety-related systems, such as financial, utilities aud reporting
systemnys. Safety-related systems are those that could potentially cause harm to people;property or the
enviropment. Regulatory standards often include requirements for the software testmg of systems
coverefl by these standards. \

¥/

4.3.3.22 Non-safety-related regulatory standards &

At pregent (in 2020), there are few international standards that apply, €@ non-safety-related Al-based
systen]s. However, from May 2018, the EU-wide General Data Protec.u%ﬁ Regulation (GDPR) came into
effect and can cover Al-based systems. Any system that uses aytoniated processes to make decisions
with legal or similarly significant effects on ‘individuals follows the GDPR rules that requirel62]

organitations using such systems to provide users with: Q

— spgcific and easily accessible information about the automated decision-making process;

— a sjimple way to obtain human jntervention to re¥dew, and potentially change the decision.

(7;
s
\\

8

Al-spetific requirements for safety-relate(\ioﬁl-based systems are currently (in 2020) poorly covered by
standafds and in mostdemains are reliant on pre-existing standards written for conventional (non-Al)
systen]s. Some of thése standards (e}g-1EC 61508[74] and 1SO 26262[75]) actually specify that Al-based
systenis that are.on-determinisHg (which is many of them) should not be used for higher-integrity
systents, although, in practice this often means that Al-based systems are considered as special cases
and follow ‘tailored’ versions-0f these standards, ignoring some of the requirements. These existing
safety-related standards also require that the tools used to develop safety-related systems be suitably|
qualified. The currently available Al frameworks and algorithms are not qualified for use on the
development of safety-related systems. Although it is possible to gain this qualification through use, the
relative immaturity-and rapidly evolving nature of ML algorithms would mean that it is unlikely they
would patisfy curfent regulatory requirements in this area.

4.3.3.2.3 Safety-related standards

In the [ared of autonomous systems, which are already being used (e.g. on roads, in the air, at sea
and in|fdetories), there is a danger of a gap between practice (driven by commercial necessity) and
the reg uil Ulllclltb Uf btdllddl db. FUI IUdd vchidca d I1CW btdllddl U, IDG/IPAS 214‘1‘0 Ull LllU bdlt:l._y Ul Lllc
intended functionality (SOTIF), was published in 2019. This partly bridges this gap by covering an
area not covered by the existing standards that are concerned with mitigating risks due to failures.
For Al-based systems, an additional problem is that they may cause harm without there being a failure
- perhaps due to them simply misunderstanding the situation. SOTIF covers design, verification (e.g.

requiring high coverage of scenarios) and validation (e.g. requiring use of simulations).

The U.S. Department of Transportation and the National Highway Traffic Safety Administration
(NHTSA) provides guidance for the development and testing of automated driving systems in the US
(Automated Driving Systems (ADS): A Vision for Safety 2.0[ZZ]), however use of this guidance is purely
voluntary.

18 © ISO/IEC 2020 - All rights reserved


https://iecnorm.com/api/?name=111733f32f73788a2513ebdda76890dd

ISO/IEC TR 29119-11:2020(E)

A new standard is also being developed by UL for the safety of autonomous products in general
(Standard for Safety for the Evaluation of Autonomous Products, UL 4600[Z8]). This standard provides

assessment criteria to determine the acceptability of a safety case for the autonomous product.

4.3.3.3 The Al quality metamodel

DIN SPEC 92001-1[19 is a freely available standard that provides an Al quality metamodel intended
to ensure the quality of Al-based systems. The standard defines a generic life cycle for an Al module,

and assumes the use of ISO/IEC/IEEE 12207 life cycle processes[Z9. Each Al module is assigned
of risk (high or low), based on whether the Al module has relevant safety, security, privacy, ot
attributes.

DIN SPEC 92001-2[29] js under development and describes quality requirements whieh dre lix

link to one or more life cycle stages and processes and they arelassigned a category of mode
platform or environment. Based on their relevance, these requirements of the Al\ihodule are clz
as mandatory, highly recommended or recommended. This requirement cla551f1cat10n and the as

risk of the Al module are used to determine the extent to which the recommended quality requir
should be followed. Y
AV
5 Al system characteristics O
N
5.1 Al-specific characteristics A D,
\\"
5.1.1 General \:\

Al-based systems have both functional and ng ifunctional requirements, the same as any s
As such, the quality characteristics in the ISO/EC 25010 quality model, as shown in Figure

be used to define, in part, ‘the requlrements of Al-based systemsl2ll. However, Al-based s
have some unique characteristics that af€ not contained .with this quality model, such as fle
adaptability, autonomy, jevolution, bia$.transparency/interpretability/explainability, complex
non-determinism. These non-functioital characteristics.are described in more detail in 5.1.2 t
The full set of quality characteristits for Al-based systems could be used as the basis for a ch
used during test-planning for. :r.hﬁ identification of risks that need to be mitigated by testing. Ng
there is potentially some iq&feraction, overlap and possible conflicts between these characteris
there is with any set of nendfunctional requirements. A joint ISO/IEC project is currently under
developastandard in this$ area, titled quality model for Al-based systemslo3],

*
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ISO/IEC 25010 product quality model

Functional Performance e . T . Maintain - o
o . Compatibili Usabili Reliabilit Securi o Portabili
suitability | efficiency p ty ty y ty ability ty
Functional Time Co-existence JAppropriateness Maturity Confidentiality | Modularity Adaptability

let: behavi izabilit
completeness ehaviour Interoperability recoghizabtiity Availability Integrity Reusability Installability
Functional Resource Learnability . .
correctness utilisation Fault tolerance Non- Analysability | Replaceability
Operability . repudiation o
Functional Capacity o Recoverability . - Modifiability
appropfrateness protection - 7 Testability
Authenticity
User interface
aesthetics
Accessibility
\ )\ )
)
Fundtional What the Non-functional How the system
testing system does testing does it N

Figure 2 — ISO/IEC 25010 product-quality mod\e‘l \

v,
5.1.2 | Flexibility and adaptability N

Flexibility and adaptability are closely related characteristic FIex1b111ty can be defined as a measure
of the range of possible behaviours a system.can exhibit (or: S\}tates it can inhabit) - and the costs off
moving between them. Adaptability can be defined as a measure of the ease with which a system can be
adapted (modified)[21]. However, there,are many confllcgi\ng definitions.

Both aflaptability and flexibility are useful attribufes’of a system where the operational environment
is exp¢cted to change. Such changes in the opggational environment may, or may not, be specified
in adv4nce (i.e. the range of new contexts ofxlise which the system is expected to cope with may be
specifipd before the systemis built or it may¥ejunknown). Fora system to achieve useful adaptability or
flexibillity it requires the ability to determifie when it needs.to change. Adaptative and flexible systems
need tp actively or passively gather mﬁ)rmatlon about-their operational environment. Exploration
(active|gathering of information) pro\lldes useful information for self-improvement, but it can also be
dangerjous (e.g. pushing the boundaries of a flight envelope) and systems should exhibit caution when
exploring in safety-related sitations.

Some geople believe that ﬂéxibility is one approach to achieving adaptability, with adaptation including
the adglition, removal,-feplacement or changing (flexing) of parts of the system. Others believe that
adaptafion is one approach to achieving flexibility (e.g. “flexibility can be achieved using different
techni¢al mechapiSms, such as reactivity, pro-activity, interaction, adaptation or self-learningl221”).
Self-legrning Al-based systems could be considered to be both flexible and adaptive.

Flexibility @nd adaptability requirements should specify those environment changes to which the
systen] should be able to respond and also include requirements on the response process itself, such as
maximurtinreto change, witere appropriate However;, these Tequirenentsare tikety tobecome tess
specific for systems where all possible future contexts of use have not been defined in detail.

5.1.3 Autonomy

Autonomy is the ability of the system to work for sustained periods without human intervention. The
expected level of human intervention should be specified for the system - and so should be part of
the system’s functional requirements (e.g. ‘the system will maintain cruise condition until one of the
following occurs...”). Autonomy can also be considered in combination with adaptability or flexibility
(e.g. system should be able to maintain a given level of adaptability or flexibility without human
intervention). In some circumstances, an Al-based system may exhibit too much autonomy, in which
case it may be necessary for a human to take control away from it.
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5.1.4 Evolution

Evolution is when the system changes its behaviour over time. For Al-based systems, we are concerned
with two forms of change. The first is when the system changes its behaviour, typically due to the
system learning new (hopefully improved) behaviours as it is used (self-learning). The second type of
change is when the usage profile changes and usage ‘drifts’ away from the original planned usage. Al-
based systems are typically concerned with concept drift (the change in understanding of data and its
nature over time, potentially requiring re-labelling of data) and data drift (when the data evolves with
time potentially introducing previously unseen variety of data and new categories thereof). For more

details see A.5.3 on distributional shift. Changes in system behaviour are notalways positive, dnd the
negative form of this system characteristic is often known as drift, degradation or stalenesst

5.1.5 Bias

Bias is a measure of the distance between the predicted value provided by the machine learning (ML)
model and a desired fair prediction. An Al-based system that demonstrates systematic discrimfnation
against an individual or group of individuals is considered to be showing unfgir bias. Some application
areas, such as in lending, are bound by legal requirements on fairness. Biasds normally caused| by the
machine learning picking up unwanted patterns in the training datafsuch as an historic pattern of
bias towards male job applicants. Training data can be compromised by both explicit and impligit bias.
Implicit bias is created unintentionally, when unknewn unwanted patterns in the training dath exist.
Explicit bias is created when known unwanted patterns in trainifg data influence the derived|model.
Bias in training data can be caused by several practices, such ag/prejudiced labelling, historic bjas and
uneven sampling. D)

\’f\

) . N . .
Data features that would lead to unfairness in the restiltant model are either not included or handled
carefully. For instance, among others, the followingfeatures can potentially cause unwanted biak:

— Gender '

— Sexual orientation

— Age R
A
— Race &
~N

— Religion Ny

.. \‘\
— Country of origin ~&¥

~

— _Educational baekground
N

— Source of inceme

— Home.dddress

Simplysremoving the above features from the training data does not necessarily solve the bias pfroblem
as there could well be other features (perhaps used in combination) that could still lead to an unfair
nfedel (e.g. whether parents were divorced can lead to racial stereotyping in some locations[23])

JTC 1/SC 42 are also working on the topic of bias in Al-based systems[89],

5.1.6 Complexity

Al-based systems, and especially those implemented through deep learning, can be extremely complex.
To put this complexity in context, a typical neural network with satisfactory performance may have
around 100 million parameters that were learned during training that contribute to a single decision
(there are no visible ‘if X and Y then result is Z’ rules as found in traditional expert systems). Al-based
systems may also be used for problems where there is no alternative, due to the complex nature of the
problem (e.g. making decisions based on big data).
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5.1.7 Transparency, interpretability and explainability

The complexity of Al-based systems (e.g. deep neural nets providing a ‘black-box’ implementation of
Al) can lead to problems with understanding for both users and developers. This ‘understanding’ can
generally be considered in terms of a system’s transparency, interpretability and explainability, where:

— transparency - level of accessibility to the algorithm and data used by the Al-based system;

— interpretability - level of understanding how the underlying technology works;

— explainability - level of understanding how the Al-based system came up with a given result.

Different stakeholders will have different requirements for transparency,. interpretability‘\-and
explainability, for instancel24l;

— giving users confidence that an Al system works well;

— safeguarding against bias;
»
— adhering to regulatory standards or policy requirements; N

Y
— helping developers understand why a system works a ‘certain way, assess its vulnerabilities, or

verify its outputs; or

— mgeting society’s expectations about how individuals are affordéd agency in a decision-making
process. The General Data Protection Regulation (GDPR) inclddes requirements for explainability|
for certain decision-making systems (i.e. the“system must’prowde meaningful explanations of]

defisions made). Q

The required levels of transparency, interpretability and explainability change from system to system.
For insftance, the results used to directamarketing can@\a’ign are likely to need less explainability than
the redults for more critical systems; such as thoseQsed to support decisions on surgery or advise on
jail terms (e.g. in regulated domains). For such crltlcal systems we.need explainability at least until we

learn tp trust the system.

N\

There hre a number of options for addressi?ng transparency, interpretability and explainability in Al-
based $ystems. For instance, transparency can be partially addressed by publishing details of the choice
ework, training-algorithm and training data used to create the (opaque) deployed model (see
for more details on this), Jaterpretability may be addressed by selecting models that humans
find edsier to.understand (e.g. rule*based models, instead of deep neural networks). However, as with
many non-furctional requirements, there are possible conflicts between characteristics - in this case
achieving interpretabilityfnay need to be traded off against required accuracy. Explainability may be
achiev¢dinisome systems\hrough visualization of how different inputs affect results.

The fiegld of explaindble Al (XAI) covers ways to make Al-based systems more explainablel221[26] (but it
also copers transparency and interpretability). There are two main approaches to XAl being considered.
First, Ipoking at methods for developing Al-based systems that are inherently interpretable and second,
supplementing black-box Al-based systems, such as deep neural networks, with tools that provide a
level of explainability.

JTC 1 SC 42 are also working on the topic of explainability in Al-based systemsl[3l.

5.1.8 Non-determinism

A non-deterministic system is not guaranteed to produce the same outputs from the same inputs every
time it runs (in contrast to a deterministic system). With a non-deterministic system there may be
multiple (valid) outcomes from a test with the same set of preconditions and test inputs. Determinism
is normally assumed by testers - it allows tests to be re-run and the same results to be achieved - this
is extremely useful when re-using tests for regression or confirmation testing. However, many Al-based
systems are based on probabilistic implementations, meaning that they do not always produce the same
results from the same test inputs. For instance, the calculation of the shortest route across a non-trivial
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network (the travelling salesman problem) is known to be too complex to calculate exactly (even by a
powerful computer) and sub-optimal solutions based on an initial randomly selected path are normally
considered acceptable. Al-based systems can also include other causes of non-determinism, such as
concurrent processing (although these are often found in complex conventional, non-Al, systems).

5.2 Aligning Al-based systems with human values

Russelll2Z] points out two major problems with Al-based systems. First, the specified functionality
may not be perfectly aligned with the values of the human race, which are (at(best) very diffjcult to
pin down. He gives the example of King Midas, where the requested ability to turn everything he
touched into gold was imparted - exactly as requested - but then found to be not what he truly Wanted.
A more up-to-date example is provided by Bird and Layzelll28], who usédan Al-based $ystem using
genetic algorithms to generate a design for an oscillator, which resulted in a solution that irjvolved
using system’s motherboard as a radio, so that it could receive oscillating signals produced by a nearby
personal computer. When we specify the required objectives of Al-based systenis-we need to e sure
that what is requested is actually what is needed - or first ensure the system is'intelligent enqugh to

provide what we request, while also taking into account human norms. \,
\

N
One way for Al-based systems to learn these human norms would be‘through observation (tHis may
initially simply be through monitoring limited human decisions),hbwever great care is neqded to
ensure that the observed human behaviour is representative and ‘ohly representative of ‘good’ human
behaviour (probably defined as excluding both deliberately bad behaviour and irrational behaviour,
even if this irrational behaviour is by ‘good’ humans). Consi&’ration also needs to be given |to this
learning of human norms being a continuing process, as wﬁh& we consider acceptable behaviouf today
is quite different from what was considered acceptablésbehaviour 20 years ago — human norfns can
change quite quickly. \:\

Russell’s second problem is that.any sufficiently Capable intelligent system will prefer to engure its
own continued existence and to.acquire physicakand computational resources - not for their owjn sake,
but to succeed in its assigned-task. It is recoghized that a sufficiently intelligent system will fisable
any ‘off’ switch early on in. its operation;ssimply because when it is disabled it is unable to achjeve its
given objectives. Al-based systems will\tr}; to fulfil their given objectives, but we need to be careful of
unwanted behaviours,such as thosethat result in side<effects (see 5.3) or reward hacking (see §.4).

Automation complacency is a further problem that can occur in the interaction between human users
and Al-based(systems. This cafx-0ccur when users place too much trust in an automated systemfand do
not pay sufficient attentiop*to monitoring system outputs. Such inattention can cause accidents, such
as have been seen when-the ‘driver’ of a (partially) self-driving vehicle fails to override the syst¢m and
take control of the V'ehide, when needed.

8
5.3 = Side-effects

Side-effectstoccur when an Al-based system attempts to achieve its objectives and causes (typically
negativeNimpacts on its environment. For instance, a home cleaning robot may be tasked with cleaning
the kitchien in your home and decide that ‘eliminating’ your new puppy will help it achieve its objective.
Ofcourse, you could explicitly require your robot to accept that the puppy has a right to be in the kitchen
(and therefore not be eliminated), but as Al-based systems are used in ever more complex enviropments
it soon becomes impracticable to explicitly specify how the robot should interact with every aspect of
its operational environment. For instance, your cleaning robot would also have to be told that using a
high-pressure hose to clean the kitchen was not practical due to the (side-) effect of the water on the
electrical appliances and sockets.

At a high level, specified objectives for Al-based systems may need to include a caveat that minimises
side-effects. For narrow Al, such side-effects may be explicitly specified, but as Al-based systems
become more advanced and start working in more varied operational environments it may be more
efficient to define more generic caveats, such as requiring a minimal change to the environment while
achieving their objective.
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5.4 Reward hacking

Al-based systems using reinforcement learning (see A.1) are based on a reward function that gives the
system a higher score when the system better achieves its objectives. For instance, a home cleaning
robot may have a reward function based on the amount of dirt it removes from the floor - getting
higher scores when the amount of dirt removed is higher. Reward hacking occurs when the Al-based
system satisfies the reward function and so gets a high score, but mis-interprets the required objective.
In the example of the cleaning robot, one way for it to achieve a very high score would be for it to
initially make the floor extremely dirty, so giving it the opportunity to remove more-dirt - a set of
activit]es that do not meet the spirit of the initial objective of cleaning the kitchen. In‘this example the
floor should eventually be clean (although unnecessary energy will have been expended), but there are
many ¢xamples of reward hacking where the Al-based system satisfies the reward function but‘does
not cotpe close to achieving the required objective (e.g. a cleaning robot with-a.reward function-based
on it b¢ing able to see less visible dirt that disables its vision system).

Limiting the system’s ability to innovate, however, is not the solution. One of the attractive features of
Al-bas¢d systems is that they should be able to come up with smart.ways to solve phoblems, often in
ways humans would not have considered (or perhaps even understand). ¢
N
¥/7)

5.5 §pecifying ethical requirements for Al-based systems S

Ethics fis defined in the Cambridge Dictionary as ‘a system of accepted\beliefs that control behaviour,
especidlly such a system based on morals’. As Al-based systems ha\(e\@ecome more popular, the topic
of ethi¢s and how Al-based systems should implement them is proba‘bly the most discussed topic in Al,
drawirlg in far more people than those involved in the technical*a:§pects of AL

An example of the interest in ethics in Al can'be seen in MIT’$*Moral Machinel29l. This is a platform for
gather|ng people’s opinions on moral decisions that maybe made by autonomous cars, with the aim off
providjng guidance to the developers of'such vehicles:\Between 2014 and 2018 this platform gathered
40 million ethical decisions in ten Janguages frommiitlions of peoplein 233 countries and territories.
The (opgoing) study has found that there is a broad consensus thatsystems should give priority to
younggr people, priority to people over anim@ls and priority to-saving more people (e.g. save four
occupdnts of a car over two pedestrians). 'I.‘(he\study also found'that there are significant differences
in the ¢hoices made by people from differént parts of the world (suggesting that autonomous cars may
need tg follow different ethical guidelinés-depending on where they are to be used).
U

)
The Eyropean Commission High-Level Expert Group on Artificial Intelligence published key guidance
to promote trustworthy Al in thetarea of ethics in April 2019[39. It identifies the ethical principles that
should|be respected in the development, deployment and use of Al systems:
*

— Dejvelop, deploy and u\é‘é Al systems in a way that adheres to the ethical principles of respect for
human autonomy; prevention of harm, fairness and explicability. Acknowledge and address the
pofential tensions'between these principles.

— Pay partictlar attention to situations involving more vulnerable groups such as children, persons
with disabilities and others that have historically been disadvantaged or are at risk of exclusion, and
to [sitiations which are characterised by asymmetries of power or information, such as between
enlplovers and workers, or between businesses and consumers.

— Acknowledge that, while bringing substantial benefits to individuals and society, Al systems also
pose certain risks and may have a negative impact, including impacts which may be difficult to
anticipate, identify or measure (e.g. on democracy, the rule of law and distributive justice, or on
the human mind itself.) Adopt adequate measures to mitigate these risks when appropriate, and
proportionately to the magnitude of the risk.
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6 Introduction to the testing of Al-based systems
6.1 Challenges in testing Al-based systems

6.1.1 Introduction to challenges testing Al-based systems

Most Al-based systems comprise one or more Al components (e.g. a ML model) surrounded by a
considerable array of traditional software that provides the supporting infrastructure, typically made

up Uf LUIlVCIlLiUIldl CUIIPOIICIILS, buLh dS LhU UScI illLCl deU dlld L‘lde‘UdbU. EVBII 'pux C, Ai CUIIIY onents
are implemented in software and so can suffer the same defects as any other software. Fhuyg, when
testing an Al-based system, conventional software testing approaches are still required.-Howeyer, Al-
based systems include a number of special attributes that can make additional testing.necessafy than
for conventional software systems:

6.1.2 System specifications

Despite the amount of recent academic research conducted on Al (andsMY; in particular), there is
little coverage of how best to specify the expected behaviour of Al-basefl'systems with their special
characteristics (see 5.1). Rol¢ {
In an ideal world, complete formal specifications would be aVailable, so allowing the creaftion of
automated test oracles. The specifications for Al-based systems qfe likely to be incomplete and informal,
which requires testers to determine unspecified expected resilts, creating a test oracle problem. This
can be problematic if the testers are not fully cognizant<of the required system behaviour apd it is

difficult to get this information from demain experts. &
Q)

Examples of specification challenges include when:,

\$
— thedesired output of the systemis not yet kngwn, and the system is being built to provide that putput;

— thereal-world inputs.are at such a compiexity and scale;that the behaviour of the system is difficult

to predict in advance; \

N,

8

— the required behaviour incluQe;; comparison_ to human qualities, including intelligence, that are
difficult to define and measure.

U
Another problem is that AI—b@s\ed systems are often specified in terms of objectives rather than rqquired
functionality, which is a-siore conventional approach[31l, This is because the nature of many Al-based
systemsis‘such that thesfunctionality provided is opaque (e.g. it is very difficult to imagine how|a deep
neuralnetwork funggions).

Some Al-based’systems have extensive operational environments (e.g. an autonomous drone) and fully
defining the Operational environment can be more challenging than for a typical conventional §ystem.
Note that(the complexity of the operational environment normally means the test environments for
these systems can be equally challenging (see Clause 10 for more details on test environments).

The\specifications for ML models should contain a set of required performance metrics (see |A.8) to
actvas acceptance criteria for the ML models. Acceptance criteria including metrics may consider false
positives and negatives, recognizing that 100 % accuracy is unlikely to be achieved in many use cases.
Additionally, where expert judgement is required to evaluate the response of the Al-system, acceptance
criteria may consider multiple evaluations, as experts may not reach consensus.

6.1.3 Testinput data

Al-based systems may depend on big data inputs and/or inputs from a large range of sources. This can
mean that input data is often unstructured and provided in diverse formats. When developing Al-based
systems managing this data is a specialist task of a data engineer or data scientist, but when it comes to
the testing, this specialist data management task is one of several performed by the tester, often with
little or no specialist training.
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As with all systems, where the data being processed are regulated, there may be a requirement to
anonymize or otherwise control copies of real data, for example, privacy legislation such as GDPR,
US legislation such as Health Insurance Portability and Accountability Act, and India’s Personal Data
Protection Bill. Where necessary, a sufficient level of sanitization can prevent the Al-based system
under test from inferring personal details that are only partially hidden.

Sanitization of data can include de-identification of the data for privacy reasons as described in
ISO/IEC 20889:2018[811,

6.1.4 | Self-learning systems

As Al fechnology becomes more advanced, more Al-based systems will become available that.can
changd their own behaviour over time. These may be self-adapting systems-(able to reconfiguré and
optimife themselves) or full self-learning systems that can adapt themselves by learning from their
past ejperiences. For both situations, it is likely that some tests that ran successfully on the original
systern] will no longer be viable on the new, improved system. Although it may be relatively easy to
identify which tests are no longer valid, it is far more difficult to_ensure that new tests for the new

functignality have been generated. v &

Anothgr potential problem with self-learning systems is that the systems cdn inadvertently learn
unwanfted new behaviours from the testing. .

Y,

\‘ N

The tefting of the flexibility and adaptability of an Al-based sy$tem is typically based on observing
how thle system changes in response to environment modification or mutation. The system’s functional
and noh-functional requirements should betested, and a fgrntof regression testing, ideally automated,
is oftef a suitable approach. The change process performed by the system should also be tested, to
deternjine, for instance, whether the system can changé w1th1n a required timeframe and whether the
systen] stays within constraints for.thé resources consumed to achieve'the change.

6.1.5 | Flexibility and adaptability

4

6.1.6 | Autonomy A

8

A\
An approach to testing the autonomous héhaviour of an Al-based system is to try and force the system
out o%ts autonomous behaviour and.get it to request intervention in unspecified circumstances (a
form of negative testing). Negative, tE\S.%lng can also be used to try and ‘fool’ the autonomous system
into thfinking it is in control when*it should request intervention (e.g. by creating test scenarios at
the boyindary. of.its operatlonal envelope - suggesting the application of boundary value concepts to
scenarjo testing).

*
N

»

6.1.7 | Evolution

Testing for system ‘evolution (or drift) in an Al-based system normally takes the form of maintenance
testing, whichmeeds to be run on a frequent basis. This testing typically needs to monitor specified
systen] goals;-such as performance goals (e.g. accuracy, precision and sensitivity), and ensure that no
data bias/has been introduced to the system (e.g. Microsoft Tay chatbot[32]). The result of this testing
may b that the system is re-trained, perhaps with an updated training dataset.

6.1.8 Bias

Testing for bias of an Al-based system can be performed at two stages. First, bias can be detected (and
subsequently removed) in the training data through reviews, but this requires expert reviewers who
can identify possible features that create bias. Second, a system can be tested for bias by the use of
independent testing using bias-free testing sets. When we know that training data is biased, it may be
possible to remove the source of the bias (e.g. we could remove all information that provided clues to
the sex or race of the subjects). Alternatively, we could accept that a system includes bias (either implicit
or explicit) but provide transparency by publishing the training data.
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6.1.9 Transparency, interpretability and explainability

Testing the transparency of an Al-based system is largely concerned with determining whether there
is access to the algorithm and data it uses - and can be done through review (of the documentation and
referenced material, such as datasets).

Testing the interpretability of an Al-based system will be dependent on the audience as different
stakeholders will hold varying levels of understanding of the underlying technology implemented in
the system.

Testing the explainability of an Al-based system ideally requires the target audience (or a représentative
set of testers) to perform the testing to determine how easy it is for them tounderstand how-the pystem
comes up with a range of results.

6.1.10 Complexity

The complexity of many Al-based systems creates a test oraclé problem; it may,require several ¢xperts
some time and discussion to agree on a single test case result from a complex Al-based systgm and,
ideally, we would want to run many tests, which becomes infeasible if w‘ehave to rely on experts to
(slowly) generate expected results. A number of test techniques can be uéed to address the tes{ oracle
problem, including A/B testing, back-to-back testing,and metamorphic testing (see Clause 8 for more
details on these techniques). O

6.1.11 Probabilistic and non-deterministic’'systems )
e

Due to the probabilistic nature of many-Al-based systems,\fhere is not always an exact value that{can be
used as an expected result. For instance, when an autoromous car plots a route around a stoppefl bus it
does not need to calculate the optimal solution, butyather a solution that works (and is safe) - angl so we

accept sub-optimal, but good-enough solutions. S

The nature of how Al-based systems detetinine their routé tdn also mean that they do not c¢me up
with the same result eachitime (e.g. thejx‘@alculation may be based on a random seed, which refults in
different, but workable, routes each time). This makes such systems non-deterministic, which [results
in a lack of reproducibility and mea,n?: that any regression tests need to have smarter expected [results
that take account inthe Varlablht {'due to the non{determinism.

In both cases, the uncertalnty 1n actual results requires testers to derive more sophisticated expected
results, perhaps including' tlerances, than for conventional systems. Probabilistic Al-based slystems
may alse require the tester to run the same test multiple times to provide a statistically significant
assurance that the;s:y‘s/tem is working correctly (like a Monte Carlo experiment).

6.1.12 The testoracle problem for Al-based systems

A recurrifig-challenge when testing Al-based systems is the test oracle problem. Poor specifidations,
complek, probabilistic, self-learning and non-deterministic systems make the generation of expected
results problematic.

Testing approaches and techniques that address the test oracle problem are described in Claufe 8 on
black-box testing.

6.2 Testing Al-based systems across the life cycle

6.2.1 General

This subclause briefly considers the different test levels (sometimes called test phases) across the life
cycle for an Al-based system. No assumption is made about the form of life cycle (e.g. agile, waterfall,
V, iterative) as these test levels should normally apply irrespective of the life cycle used. As with all
testing, the selection of testing at different levels should be based on the perceived risks and the costs
of testing. Typically, testing at earlier test levels (e.g. unit and integration testing) will be cheaper and
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risks that can be addressed at these levels should be tested as early as possible, however, some risks
(e.g. based on the characteristics of a complete system) can only be addressed by testing a complete
system and so will need to be addressed at the system test level (e.g. end-to-end scenario testing).

As described in 6.1.1, Al-based systems are typically made up of conventional components and Al
components; thus, this subclause focuses on such composite Al-based systems. It does not consider
the details of testing Al development frameworks (see 4.2.6), but it does consider the testing of the
resultant Al components (e.g. ML models). Al-based systems can often be considered in three parts: Al
component, data and user interface. The Al component is often tested similarly to a reusable software
compofent, while the user Interiace 1s tested the same as any user interiace. However, the data for Al-
based $ystems may need to be tested slightly differently, as described in 6.2.2 to 6.2.7.

For details on the use of test environments across the life cycle, see 10.1.

6.2.2 | Unit/component testing

Unit/c¢mponent testing for non-Al components (e.g. user interface code) should be tfeated the same as

for tradlitional systems. 0,
N

Unit/c¢mponent testing of ML models corresponds to the evaluation and teét'i’ng stages of the ML
workflpw (see A.2.8 and A.2.10). As with traditional unit testing by develapérs, it is very rare that any
defectq are reported at this level of testing - and the main purpose is Bo improve the quality of the
deliverfable model. N

A\

Where| ML performance metrics (see A.8.1) have been set as agceptance criteria (at the model level)
then the ML model will be tested against these criteria at th[xte'st level (the acceptance criteria may|
form phrt of the evaluation and tuning activity.that selects a;particular ML model).

Coverage at the unit test level is traditionally concerned-nith either requirements or code coverage (e.g.
staterflEnt, branch and decision coverage). However,\ccz‘:rage of ML components can be measured by
the refresentativeness of the datasets (training, validation and test)—.or, for neural networks, through
coverape of the networks themselves, as described in 9.2.

\
Where|data is pre-processed, unit tests can kg‘eﬁsed to check the pre-processing (e.g. ensuring raw data

is corrg¢ctly scaled or normalized). &
~N

6.2.3 | Integration testing ‘.‘ =
Where|an Al component is part of a larger Al-based system, it will need to be integrated into that
systemn]. Thereare two maip approaches to integrating such an Al-based component. First, and simplest,
it can be treated as an embedded component that is an integral part of the overall Al-based system.
Second,'the Al compopnent can be provided as a service (typically over the web, e.g. as a web service),
in whigh case it is provided independently of the rest of the Al-based system and is called whenever its
servicd is neededs

Integrgtion testing should be performed to ensure the Al component is correctly integrated with the
remairjder(ofijthe Al-based system of which it is a part (e.g. checking interfaces and that communicated
data is|cotrectly interpreted). For instance, tests should be performed to check that the correct image
file is passed to the model for object recognition and that It Is In the format expected by the model. Tests
should also be performed to check that the output of the model is correctly interpreted and used by the
rest of the system.

6.2.4 System testing

As with traditional systems, the system testing of Al-based systems is concerned with both functional
and non-functional testing. Non-functional characteristics that are tested typically include security
and performance efficiency (e.g. response time). Performance efficiency may be particularly relevant
if the Al component of the overall Al-based system is provided as a service rather than as an embedded
component. In addition to the quality characteristics that apply to traditional systems (e.g. as defined in
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ISO/IEC 25010[21]), those Al-specific characteristics (e.g. explainability) described in 5.1 should also be
considered for testing at this test level.

Where ML performance metrics (see A.8) have been set as acceptance criteria (at the system level) then
the Al-based system will be tested against these criteria at this test level.

6.2.5 System integration testing

System integration testing may be especially relevant for an Al-based system when the system uses
Targe amounts of data from other systems or when the system interacts with one or more [0l de}ices.

6.2.6 Acceptance testing

Business acceptance criteria should be tested as part of acceptance‘testing. These criteria will typically
be focused on whether the Al-based system meets high-level business goals, such’as those bgdsed on
making or saving money, rather than on technical criteria, such.as accuracy of results from a model.

Where ML performance metrics (see A.8) have been set as acceptance crlterl\a‘then the Al-based pystem

will be tested against these criteria at this test level. YA

Humans can over-rely on technology and where Al systems includeiahuman-in-the-loop, the quility of
the combined human and automated outputs of the system undertest may not be correct. In such cases,
it can be important to measure the accuracy of user-approved @formatlon such as predictions for pre-
populated fields. AW

6.2.7 Maintenance testing AN

Due to the problems associated, with system evc@ution, it is often necessary to run regular tests to
ensure that the Al-based system is still meetingigs original acceptance criteria (business and technical).
Where these criteria are specified as performance metrics (see A.8), these tests may be automated.

When using regression testing as part.of#fhaintenance testing the probabilistic and non-deternpinistic
nature of many Al-based systems can, cause apparent testfails when the system is simply prou‘iding a
different, but acceptable, result. This may mean thatthe expected results for regression testing may
need to be smarter than those useii for deterministic systems (e.g. with an included tolerance).

Care should be‘taken when te§t1ng operational self-learning systems to ensure that tests do nof cause
the system'to perform unwanted learning from the testing.

~
7 { Testing and‘QA of ML systems

7.1 Intraoduction to the testing and QA of ML systems

Machiné [earning systems are described in Annex A. This clause briefly identifies the quality assurance
andtésting opportunities directly related to ML.

L A5 ] D H £AAL \ Yy |
Y INNCTVITV Ul IVIL WUI RIUW

The ML workflow that is used should be documented and followed when performing ML. Deviations
from the workflow described in Annex A should be justified.

7.3 Acceptance criteria

Acceptance criteria (including both functional and non-functional requirements) should be documented
and justified for use on this application. Performance metrics should be included for the model. As a
minimum the Al-specific characteristics (described in 5.1) should be considered and could be used as the
basis of a checklist used to determine the completeness of acceptance criteria for the Al-based system.

© ISO/IEC 2020 - All rights reserved 29


https://iecnorm.com/api/?name=111733f32f73788a2513ebdda76890dd

ISO/IEC TR 29119-11:2020(E)

7.4 Framework, algorithm/model and hyperparameter selection

The choice of framework, algorithm, model, settings and hyperparameters should be documented and
justified.

7.5 Training data quality

ML systems are highly dependent on the training data being representative of the operational data and
some ML systems have extensive operational environments (e.g. those used in autonomous vehicles).
Boundgry conditions are known to cause failures in all types of system (Al and non-Al) and should
be inclpded in the training data. The selection of training data in terms of the size of the dataset‘and
characferistics such as bias, transparency and completeness should be documented and justified-and
confirthed by experts where the level of risk associated with the system warrants it (e.g. forcritical
systenis).

7.6 Test data quality

»
The criteria for the training data apply equally to the test data, with the caveat thatthe test data must
be as ifdependent of the training data as possible. The level of independence sholdd be documented and
justifigd. Test data should be systematically selected and/or created and ghould also include negative
tests (8.g. inputs outside the expected input range) and adversarial tests (see 7.8 for details).

“

7.7 Model updates AW

)

Whengver the deployed model is updated it should be re-tested to ensure it continues to satisfy the
acceptfince criteria, including tests againstimplicit requiréfnents that may not be documented, such
as testiing for model degradation (e.g. the new model ruils slower than the previous model). Where
approgriate, A/B testing or back-to-back testing should(bér performed against the previous model.

R[V'y

7.8 Adversarial examples and testing 7,

An adversarial example is where an extre Iy small change made to the input to a neural network
produdes an unexpected (and wrong) lar erﬁange in the output (i.e. a completely different result than
for thefunchanged inputs) [33]. Adversarial examples were first noticed with image classifiers. By simply|
changihg a few pixels (not visible toifie’human eye) it is possible to persuade the neural network to
changg its image classification toawery different object (and with a high degree of confidence). Note,
howevér, that adversarial examples are not limited to image classifiers, but are a known attribute of]
neural [networks in general and’so apply to any use made of neural networks (and may also apply to
other fprms,of ML models)\

Adverdarial examplesiare generally transferable. This means that an adversarial example that causes
one nefiral network to‘fail will often cause other neural networks to fail that are trained to perform the
same thsk. Note thiat these other neural networks may have been trained with different data and based
on different architectures, but they are still prone to failure with the same adversarial examples.

Adverdarialtesting is often referred to as performing adversarial attacks. By performing these attacks
and idd nhﬁnnc vulnerabilities dln‘lncr fpchnc measures canbe taken tao protect acnlncf future failures

and so the robustness of the neural network is improved.

Attacks can be made when training the model and then on the trained model (neural network) itself.
Attacks during training can include corrupting the training data (e.g. modifying labels), adding bad
data to the training set (e.g. unwanted features) and corrupting the learning algorithm. Attacks on the
trained model can be white-box or black-box and involve identifying adversarial examples that will
force the model to give bad results.

With white-box attacks, the attacker has full knowledge of the algorithm used to train the model and
also the settings and hyperparameters used. The attacker uses this knowledge to generate adversarial
examples by, for instance, making small perturbations in inputs and monitoring which ones cause large
changes to the model.
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With black-box attacks, the attacker has no access to the model’s internal workings or knowledge of
how it was trained. In this situation, the attacker initially uses the model to determine its functionality
and then builds a ‘duplicate’ model that provides the same functionality. The attacker then uses a white-
box approach to identify adversarial examples for this duplicate model. As adversarial examples are
generally transferable, the same adversarial examples will normally also work on the (black-box) model.

7.9 Benchmarks for machine learning

Ideally experts would be used to evaluate each new ML system, but that's nermally too_expensive.

Instead, “representative” industry-standard benchmark suites are available, which include\fliverse
workloads to cover a wide range of situations (e.g. image classification, object detection;~trarnslation
and recommendation).

These benchmark suites can be used to measure the performance‘of"both hardware (using dlefined
models) and software (e.g. to determine the fastest models). Software benchmark.suites can measure
training (e.g. how fast a framework can train a ML model using-a-defined training dataset to a sgecified
target quality metric, such as 75 % accuracy) and inference-(e.g. how fast @ trained ML modlel can

perform inference). Vo

Examples of ML sets of benchmarks are provided (by-MLPerfl34], hich provides benchmartks for
software frameworks, hardware accelerators and ‘ML cloud platfdrnis, and DAWNBenchl32], which is
a benchmark suite from Stanford University. The OAEI (Ontology Alignment Evaluation Initiatiye) is a
coordinated international initiativel3¢] with the goals of:

— assessing strengths and weaknesses.of alignment/matching systems;
~x

\

— comparing performance of techniques; O

. . . . . a)
— increasing communication among algorithnydevelopers;

X

. . - - |
— improving evaluation techniques; 'Sy

— helping to improve-the work on onto\lE)'/gy alignment/matching.
N,

8

These goals are cachieved througﬁ the controlled ‘experimental evaluation of the techhiques’

performances. \§
s,
8 Black-box testing.6f Al-based systems

~

8.1 Combinatoﬁ.al testing

To prove, by dynamic testing, that a specific test item meets all requirements under all given
circumstanees, then all possible combinations of input values in all possible states would rjeed to
be testedi/This impractical activity is referred to as ‘exhaustive testing’. For that reason, in practice
software-testing derives test suites by sampling from the (extremely large) set of possible inputfvalues
and(States. Combinatorial testing is one systematic (and effective) approach to deriving a useful[subset
of.¢ombinations from this input spacel3Zl.

The combinations of interest are defined in terms of parameters (i.e. inputs and environment conditions)
and the values these parameters can take. Where numerous parameters (each with numerous discrete
values) can be combined, this technique enables a significant reduction in the number of test cases
required, ideally without compromising the defect detection ability of the test suite.

ISO/IEC/IEEE 29119-4[38] defines several combinatorial testing techniques, such as all combinations,
each choice testing, base choice testing and pairwise testing. In practice pairwise testing is the most
widely used, mainly due to ease of understanding, ample tool support and research showing that most
defects are caused by interactions involving few parameters(3Z],

The number of parameters of interest for an Al-based system can be extremely high, especially when
the system uses big data or interacts with the outside world, such as a self-driving car. Thus, a means
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of systematically reducing the almost infinite number of possible combinations to a manageable subset
by using a combinatorial testing technique, such as pairwise testing, is extremely useful. In practice,
even the use of pairwise testing can still result in extensive test suites for such systems and the use of
automation and virtual test environments (see 10.1) often becomes necessary.

Using self-driving cars as an example, at a high level the scenarios for system testing need to consider
both different vehicle functions and the environments in which they are expected to operate. Thus,
the parameters would need to include the various self-driving functions (e.g. cruise control, adaptive
cruise control, lane keeping assistance, lane change assistance, traffic light assistance, etc.) along

conditions, traffic conditions, visibility, etc.). In addition to these parameters, inputs from sensors
should|be considered at varying levels of effectiveness (e.g. the input from a vidéo camera will degrade
as a joyirney progress and it gets dirtier or the accuracy of a GPS unit will change as different numbers
of sate|lites come into and go out of line of sight). Research is currently unclear on the necessary level
of rigour that would be required for the use of combinatorial testing with safety-critical Al-based
systenis such as self-driving cars (e.g. pairwise may not be sufficient), but it is known that'the approach
is effeqtive at finding defects and can also be used to estimate the residual level of ris\k.

\\

8.2 Back-to-back testing YO

< X\

In back-to-back testing, an alternative version of the system (e.g. already existing, developed by a
differept team or implemented using a different programming languageé) is used as a pseudo-oracle
to geng¢rate expected results for comparison from the same test 1@11% This is sometimes known as
differeptial testing.

e

-

As such, back-to-back testing is not a test case)generation tec’hr}lque as test inputs are not generated.
Only tHe expected results are generated automatically by the ﬁéeudo-oracle (the functionally equivalent
systen]). When used in partnership with.tools for gedepating test inputs (random or otherwise) it
becomgs a powerful way to perform high-volume aut\on{ated testing.

N

When pack-to-back testing is used.to support fu/nttional testing,.the pseudo-oracle does not have to
meet the same non-functional'constraints as:the'system under, test. For instance, the pseudo-oracle
could fun far slower than is required for the System under. test. It is also not always necessary for
the pseudo-oracle to be a'complete fungtionally equivalent ;System, as back-to-back testing can be
perforined with a pseudo-oracle that is.mﬂy equivalent to part of the system under test.

U

In the |context of ML, it is possibjé to use different frameworks, algorithms and settings to create
pseudd-oracles (in'some situatjions4tis even possible to create a pseudo-oracle using conventional, non-
Al, sofyware).‘A known problem-with the use of pseudo-oracles is that for them to work well they should
be completely independent,of the software under test. With so much reusable, open source software
being ysedto develop Al-based systems, this independence can be easily compromised.

8.3 A/Btesting

A/B tepting js\a’statistical testing approach that allows testers to determine which of two systems
performs Better(32l. It is often used for digital marketing (e.g. finding the email that gets the best
respOr];le) in client-facing situations.

As an example, A/B testing is often used to optimize user interface design. For instance, the user
interface designer hypothesises that by changing the colour of the ‘buy’ button from the current red
to blue, that sales will increase. A new variant of the interface is created with a blue button and the
two interfaces are assigned to different users. The sales rates for the two variants are compared and,
given a statistically significant number of uses, it is possible to determine if the hypothesis was correct.
If the blue button generated more sales, then the new interface with the blue button would replace
the current interface with the red button. This form of A/B testing requires a statistically significant
number of uses and can be time-consuming, although tools (often using Al) can be used to support it.

A/B testing is not a test case generation technique as test inputs are not generated. A/B testing is a
means of solving the test oracle problem by using the existing system as a partial oracle. By comparing
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the new system with the current system, it is possible to determine if the new system is better in some
way. When used for digital marketing, the measure of success may be more sales, but for an Al-based
system, such as a classifier, the performance metrics, such as accuracy, sensitivity and recall, could be
used (see A.8).

A/B testing can be used whenever a component of an Al-based system is updated, as long as acceptance
criteria (e.g. ‘specified performance metrics must improve or stay the same’) are defined and agreed.
If A/B testing is automated, then it can be used for testing self-learning Al-based systems, given that
valid acceptance criteria are set, by comparing the new performance of the system with its previous

performance and reverting to the previous version 1 the sell-learning has. not improved the pystem
performance.

8.4 Metamorphic testing

Metamorphic testing[40l[41] js an approach to generating test cases that deals, in.part, with the test
oracle problem often found with Al-based systems, where it is difficult to determine if a test haspassed
or failed (e.g. because of complexity, non-determinism and probabilistic systenis). The main difference
between test cases generated using metamorphic testing.and conventional'test case design techniques
is that the expected results in metamorphic testing may.not be a fixed¥ahie, but, instead, are dlefined
by a relationship with another expected result. RO
Metamorphic testing uses metamorphic relations-to generate follow-up test cases from a source test
case that is known to be correct. A metamorphic relation fox €he software under test describps how
a change in the test inputs from the source test case to_th& follow-up test case affects a chapge (or
not) in the expected outputs from the source test case to‘the follow-up test case. These metamorphic
relationships that are expected to hold can be thought\?')f as partial oracles for the tests conductgd.

EXAMPLE1 A test item measures the distance between a start and end point. The source test case has test
inputs A (start point) and B (end/point) and an ere}'ted result C (distance) from running the test cdse. The
metamorphic relation states that,if the start and\end points are swapped, then the expected result femains
unchanged. Thus, a follow-up-test case can be genérated with B as'the start point, A as the end point and [C as the
distance. &
\
EXAMPLE 2 A test item predicts the Q‘ge\of death for ancindividual based on a set of lifestyle parampters. A
source test case has'various test inputgyincluding 10 cigarettes smoked per day, and an expected result of age 58
years from running the test case. The-metamorphic relation states that if a person smokes more cigarettgs, then
their expectedage of death will pr'ebably decrease (and not increase). Thus, a follow-up test case can be geherated
with the same input set of lifestyle parameters, except with the number of cigarettes smoked increased tp 20 per
day. The expected result (thepredicted age of death) for this follow-up test case can now be set to less|than or
equal to 58years. X

*
The_expected resdlt for the follow-up test case will not always be an exact value but will often be
described as asfunction of the actual result achieved by executing the source test case (e.g. expected
result for follew-up test case is greater than the actual result for source test case).

A single~metamorphic relation can often be used to derive multiple follow-up test cases|(e.g. a
metamorphic relation for a function that translates speech into text can be used to generate :{eultiple

follow-up test cases using the same speech input file at different input volume levels but with the same
text'as the expected result). If metamorphic relations are stated formally (or semi-formally) and|source

test cases are provided, then it should be possible to automate the generation of follow-up test cases,
although it is not possible to automate the generation of the metamorphic relations, which requires
some domain knowledge.

The process for performing metamorphic testing is:
a) Construct metamorphic relations (MRs)

Identify properties of the program under test and represent them as metamorphic relations
between test inputs and expected outputs, together with some method to generate a follow-up test
case based on a source test case.
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b) Review MRs

Review and confirm MRs with customers and/or users.

c) Ge
Ge
d) Ge
Us
e) Ex
Ex

nerate source test cases
nerate a set of source test cases (using any testing technique or random testing).

nerate follow-up test cases

E tThe metamorphic relations to generate follow—up test cases.
ecution of metamorphic test cases

ecute both the source and follow-up test cases, and check that the outputs do not violate the

mgtamorphic relation. Otherwise, the metamorphic test case has failed;indicating a hug:

Metamforphic testing has been used on many types of traditional software, as well .as-successfully in

a wide

variety of Al-based application areas, such as bioinformatics, web services, machine learning

classifiers, search engines and security. Research shows that only-3-to 6 diverse metamorphic relations
can reyeal over 90 % of the faults that could be detected usinga traditional test oraclel42],

8.5

A

.,

xploratory testing Q

Test d¢sign and execution can be conducted in a.number of waysy tg/pending on the needs of each
project. It can be scripted or exploratory. In practice, a combinatioh-0f scripted and exploratory testing
is typifally used, as scripted testing ensures.required test oiﬁerage levels are achieved and better
suppoijts automated testing, while exploratory testing allows for creativity and the rapid execution
of test$. When testing Al-based systems, exploratory testing is often found to be beneficial due to its
suitabillity when specifications are poor-or lean (such a%ih agile development).

In exp
learns

oratory testing, tests are designed and exécuted on the fly, as the tester interacts with and
about the test item. Session sheets are oftén used to structure’exploratory testing sessions (e.g.

by settling a focus and time limits on each tesk session). These same session sheets are also used to

captur

e information about.what was tested;%and ‘any anomaleus behaviour observed. Exploratory tests

are often not wholly unscripted, as high;}é‘vel test scenarios-(sometimes called "test ideas") are often
documented in the session sheets to Q(qvide a focus for the‘exploratory testing session.

%

g
9 White-boxtesting of neural networks

*

9.1 Structure ofa nelh"‘al network

A neutfal network_is.a computational model inspired by the neural network in a human brain. It

compr
clause

type of

ses a numpber of layers of connected nodes or neurons, as shown in Figure 3. Note that in this
ive will ise as our example a feedforward neural network, which was the first and is the simplest
artificial neural network - the only extra complexity we will add is that we will consider a

networkayith multiple layers - known as a multi-layer perceptron (or deep neural net as it has hidden

layers)

34
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Figure 3 — Deep neura é)
AN

The input nodes receive information from the outside W@H (e.g. each input may be a value for|a pixel
in an image), and the output nodes provide informatiointo the outside world (e.g. a classification). The
nodes in the hidden layers have no connections to the'outside world and perform the computatiﬂ?ls that
pass information from the input nodes to the o nodes.

As shown in Figure 4, each neuton accepts iq@values and generates outputvalues, known as actjivation
values (or output vectors); which can be positive, negative-or zero (with a value of zero, a neufon has
no influence on downstream neurons)\ h connection has a weight (these change as the netyork is
trained) and each neuron has a bias §o e that the bias here is quite different from the bias asspciated
with unfairness described in Clausé5.1.5). The activation values are calculated by a formula (knpwn as
the activation function) based onthe input activation values, the weights of the input connectiqns and
the bias of the-neuron. \O

Figure 4 — Neuron activation values

For supervised learning, the network learns by use of backward propagation. Initially all nodes are
set to an initial value and the first input training data is passed into and through the network. The
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output is compared with the known correct answer and the difference between the calculated output
and the correct answer (the error) is fed back to the previous layer of the network and is used to modify
the weights. This backward error propagation goes back through the whole network and each of the
connection weights is updated as appropriate. As more training data is fed into the network it gradually
learns from the errors until it is considered ready for evaluation with the validation data, which will
determine the performance of the trained network.

9.2 Test coverage measures for neural networks

9.2.1 | Introduction to test coverage levels

Traditipnal coverage measures are not really useful for neural networks as 100 %, statement coverage is
typicaﬁy achieved with a single test case. The defects are normally hidden in‘the neural network itself.
Thus, different coverage measures have been proposed based on the activation values of the neurons
(or pairs of neurons) in the neural network when the neural network is.tested.

Having measures of coverage of the neural network allows testers tosmaximize coverage, which has been
shown|to identify incorrect behaviours in Al-based systems, such-as'self-driving car Systems[431[44],

1,"’
9.2.2 | Neuron coverage QBN
Neuron coverage for a set of tests is defined as the proportion of activ: (fneurons divided by the total
numbefr of neurons in the neural network (normally expressed as ag-pgrcentage). For neuron coverage, a

neuror] is considered to be activated if its activation value exceedszero.
%

\
9.2.3 | Threshold coverage >

N
ThresHold coverage for a set of tests.is.defined as th@ proportion of neurons exceeding a threshold
activatjion value divided by the totalnumber of neurgns in the neuralnetwork (normally expressed as
a perc¢ntage). For threshold coverage, a threshqldA activation value between 0 and 1 is chosen as the
threshpld value. Note that this threshold covera\gé corresponds to.‘neuron coverage’ in the DeepXplore
N,

tooll44], \
A\

9.2.4 | Sign change coverage N\

~

N\ 4

Sign change coverage for a set of:tests is defined as the proportion of neurons activated with both
positive and negative activation ydlues divided by the total number of neurons in the neural network
(normglly expressed as a pereentage). An activation value of zero is considered to be a negative
activatiionvaluel45]. O

9.2.5. | Value change'coverage

Value ¢hange covérage for a set of tests is defined as the proportion of neurons activated where their
activatiion values differ by more than a change amount divided by the total number of neurons in the
neural|network (normally expressed as a percentage). For value change coverage, a value between 0
and 1 shodld be chosen as the change amount(43],

9.2.6 Sign-sign coverage

Sign-Sign coverage for a set of tests is achieved if each neuron by changing sign (see 9.2.4) can be shown
to individually cause one neuron in the next layer to change sign while all other neurons in the next
layer stay the same (i.e. they do not change sign). In concept, this level of neuron coverage is similar to
modified condition/decision coverage (MC/DC)43],
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9.2.7 Layer coverage

Coverage measures can also be defined based on whole layers of the neural network and how the
activation values for the set of neurons in a whole layer change (e.g. absolutely or relative to each other).
Further research is needed in this area.

9.3 Test effectiveness of the white-box measures

There is currently little data on the test effectiveness of the different white-box coverage measures for
the white-box testing of neural networks. However, it is generally true that criteria requiring mofye tests
will find more defects than those that require fewer tests, so allowing the relative effectiveness$ of the
measures to be deduced. Several subsumes relationships can be derivedfrom the coverage mgasures
described in 9.2.1. to 9.2.5. All other measures subsume neuron coverage and sign-sign coverage also
subsumes sign change coverage. The full subsumes hierarchy for theseis shown in Figure 5. Where an
arrow points from one measure to another, it means that if the first measure is fully/achieved, then the
second measure is automatically achieved. For instance, it shows.that if threshold coverage is achieved,
then neuron coverage is automatically achieved.

Sign-sign

Figure 5 — White-l{(')'}'( neural network subsumes hierarchy
N,

8

3
Although easy to understand, achie¥ing high levels of-neuron coverage can normally be achievefl using
only a few test'cases, so limiting\fts test effectiveness. Early results for threshold coverage appear to
show that this‘may be a useful’'measure for generating tests that cover defect-inducing corner cases, but
the threshold value may ngédto be set individually for each neural network. For value change coyerage,
higher, values for the ¢change amount will naturally require more test cases. Sign-sign covefage is
normally the most rigbrous of the coverage criteria specified herel4>l.

D\

9.4 White-hox testing tools for neural networks

Commercial-tools are not currently available to support the white-box testing of neural netjworks,
however there are several research tools, including:

— ,‘\DeepXplore - specifically for testing deep neural nets, proposes a white-box differential festing
(back-to-back) algorithm to systematically generate adversarial examples that cover all neujrons in

the network (threshold coverage)l44l.

— DeepTest - systematic testing tool for automatically detecting erroneous behaviours of cars driven
by deep neural netsl46l, which supports the sign-sign coverage for DNNs.

— DeepCover - provides all the levels of coverage defined in this clausel42l.
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10 Test environments for Al-based systems

10.1 Test environments for Al-based systems

The te

st environments for Al-based systems have much in common with those for conventional

systems: typically, the development environment at unit level and a production-like test environment
at system and acceptance levels. ML models, when tested in isolation, are typically tested within their
development framework, as described in A.2.9.

There
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are two main factors that affect the selection of test environments for- Al-based systems
hose required for conventional systems. First, the context in which Al-based systems, sueh|as
mous systems, operate means their environment can be large, complex and.constantly changing.
n make testing in the real world extremely expensive if the full rangeof possible environments
be tested, the test environments are expected to be realistic and the testing is to be performed
a sensible timescale. Second, those Al-based systems that can physically interact\with humans

safety component, which can make testing in the real world dangerous. Both factors indicate the
r the use of virtual test environments. \
\
N
test environments provide the following benefits, among others: Y

— Thie use of a virtual environment ensures that dangerous scenarios cah e tested in safety without
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ising damage to the system under test or any-ebjects in its, ényironment, such as vehicles,
jldings, animals and humans. Tests in virtual environments are Cyplcally also better for the real-
rld environment. N

e
tual environments do not need to run-in real-time - thg})‘Ean be run much faster with suitable
bcessing power - meaning that many-tests can be‘run in a short time period, potentially|
Creasing time-to-market by a large amount. A smgi system can also be tested on many virtual
t environments running in parallel, perhaps in th’e cloud.

tual environments can be-cheaper to set up Yand run than(théir real-world counterparts. For
tance, testing mobile phone communicatiéns across widely different urban environments is far
paper when performed.in a laboratory with virtual phones; transmitters and landscapes rather
in with real phones.being driven a;‘gund a mix of locations, largely because only the relevant
tures need to be. included in theyirtual test environmentl4Zl. However, it should be noted that
me virtual test:environments,must be truly representative and closely match the real-world in
me respects. For instance, thetesting of pedestrian avoidance in autonomous vehicles can require
h levels of image representa‘tiveness

metimes, creating unusual (edge-case) scenarios can be very difficult in the real world and
tual env1r0nments}110w the creation of such scenarios (and the ability to run multiple variants
these unusual scenarios many times). Virtual environments provide the tester with a greater
el of control than they would have with real-word testing. These tests can also incorporate alevel
Fandomness,'such as by including Al-based humans in autonomous car testing.

supperting the simulation of hardware, virtual environments allow systems to be tested with
rdware components even when these components are not physically available (perhaps they|

ye.not been built yet) and they allow different hardware solutions to be trialled and compared

inexpensively.

— Virtual environments provide excellent observability, so that all aspects of the system under test’s
response to a scenario can be measured and, where necessary, subsequently analysed.

— Virtual environments can be used to test systems that cannot be tested in their real operational
environment, such as a robot working on the site of a nuclear accident or a system to be used for
space exploration.
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Virtual testing can be performed on simulators built specifically for a given system, but reusable
simulators for specific domains are available both commercially and open source, for instance:

— Morse, the Modular Robots Open Simulation Engine, a simulator for generic mobile robot simulation
(single or multi robots), based on the Blender game enginel48l;

— Al Habitat, a simulation platform created by Facebook Al, designed to train embodied agents (such
as virtual robots) in photo-realistic 3D environments[42];

— DRIVE Constellation an open and scalable p]ntfr\rm for Qplf-driving cars from NVIDIA based on a
cloud-based platform, capable of generating billions of miles of autonomous vehicle testinghol.

10.2 Test scenario derivation

For the systematic testing of an Al-based system, test scenarios need.to be generatéd to test indjividual
Al components, the interaction of these components with the rest of the system, the complete syftem of

interacting components, and the system interacting with its environment.
»
Test scenarios can be derived from several sources: N

— System requirements RO
— Userissues 0

— Automatically reported issues (e.g. for aitonomous systéms)

— Accident reports (e.g. for physical systems) X AN

— Insurance data (e.g. for insured systems, such autorlomous cars)

\
— Regulatory body data (e.g..collected throggl(legislation)
— Testing at various levels (e.g. test faildres or anomalies on the test track or on real roadf could
generate interesting.test scenarios {or an autonomous-car at other test levels, while a sample of
test scenarios.runon the virtuak tést environment should also be run on real roads to vjalidate

representativéness of the virtyal test environment)

~N
An option using-combinatorial’testing for the generation of test scenarios for the system teqting of
autonomous. cars is describedin 8.1. Metamorphic testing (see 8.4) and fuzz testing could also e used
to generate test scenarjosi <
. ~
& = =
10.3 Regulatorystest scenarios and test environments

In the case of\safety-related Al-based systems, some level of regulation can apply to the systems.
Two options-are generally available to government for this regulation; it can allow the develgpment
organization to self-regulate or a regulatory body is set up to provide independent assurance that the
systenis'heet minimum standards (a certification approach).

If a cert1f1cat10n approach is followed then the testmg approach w1ll need to be shared betwen the

s . 5 . sting-df cars).
A core part of the approach w1ll be shared test env1ronment defmltlons and shared test scenarios that
can be run using test automation on those environments. The core set of shared test scenarios will need
to be parameterized to allow new scenarios to be generated by varying the parameter values for each
test to prevent overfitting and the regulatory body will also keep a set of private test scenarios that are
not shared. The parameterization and the private scenarios should ensure that systems are not built
just to pass known tests, and this approach also allows the regulatory body to add new scenarios as
they become aware of potential problem situations from actual use of the systems.
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Annex A

Machine learning

A1l IIntroduction to machine learning

Machine learning (ML) is a form of Al, where the Al-based system learns its behaviour from previded
training data, rather than being explicitly programmed. The outcome of‘ML is known_as“a model,
which |s created by the Al development framework using a selected algorithm and theitraining data;
this m¢del reflects the learnt relationships between inputs and outputs. Often the created model, once
initially trained, does not change in use. In contrast, in some situations,the created model can continue
to learh from operational use (i.e. it is self-learning). Example usés of ML include 1mage classification,
playing games (e.g. Go), speech recognition, security systems(malware deteqt}on) aircraft collision
avoidapce systems and autonomous cars. * 14

Q
There are three basic approaches to machine learnlng (ML), as shown in(Figure A.1

: N\
[ iR )
learning N ?,

N\
\
N ]
Supervised || Unsupervised |NEINGVI{]{v=I0 1
learning learning | learning

Classification

Regression

< ‘Figure A.1 — Forms of machine learning

With stipervised MLithe algorithm creates the model based on a training set of labelled data. An example

number of bugs in the module is 12 As ML is probablllstlc we can also measure the llkellhood of these
classifications and regressions being correct (see A.8 on performance metrics for ML).

With unsupervised ML the data in the training set is not labelled and so the algorithm derives the
patterns in the data itself. An example of unsupervised ML would be where the provided data was about
customers and the system was used to find specific groupings of customers, which may be marketed to
in a specific manner. Because the training data does not have to be labelled, it is easier (and cheaper) to
source than the training data for supervised ML.

With reinforcement learning a reward function is defined for the system (agent), which returns a
higher reward when the system gets closer to the required behaviour. Using feedback from the reward
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function, the system learns to improve its behaviour. An example of reinforcement learning would be a
route planning system that used a reward function to find the shortest route.

ISO/IEC 23053[51] describes a framework for Al-based systems using machine learning and covers some
of the material in this annex in more detail.

A.2 The machine learning workflow

A-2-TMachime tearming workflowoverview

The activities in the machine learning workflow are shown in Figure A.2:

Understand Source the
the objectives data

framork Pre-process

the data

Build and
compile model

Train the
model

Tune the Evaluate the

model model Deploy the

model

Monitor and tune

S,
\\C\}‘F igure A.2 — Machine learning workflow

The activities in t}@;achine learning workflow are described in A.2.2 to A.2.13.

A.2.2 Unde@@nd the objectives

The purpgse-of the ML model to be deployed needs to be understood and agreed with the stakeholders
to ensufe)alignment with business priorities. Acceptance criteria (including performance metrigs - see
ﬂ)@ 1d be defined for the developed model.

A2 3 Selectaframework

A suitable Al development framework should be selected based on the objectives, acceptance criteria
and business priorities. These frameworks are introduced in 4.2.6.

A.2.4 Build and compile the model

The model structure (e.g. number of layers) should be defined (it will typically be in source code, such
as Python). Next, the model is compiled, ready to be trained.
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A.2.5 Source the data

The data used by the model will be based on the objectives. For instance, if the system is a real-time
trading system, the data will come from the trading market. If the system is analysing customers’ retail
preferences for a marketing campaign, then the organization’s customer big data will be the source.

The data used to train, tune and test the model should be representative of the operational data
expected to be used by the model. In some cases, it is possible to use pre-gathered datasets for the
initial training of the model (e.g. see Kaggle datasets at https://www.kaggle.com/datasets). However,
raw dafaTrorTatly TTeeds SOITE pre-proCcessing.

A.2.6 | Pre-process the data

The feqtures in the data that will be used by our model need to be selected - these are the’attributes
or properties in the data that we believe are most likely to affect the outcome of the/prediction.
Training data may need to be managed to remove features that are not expected (orwe don’t want)
to hav¢ any effect on the resultant model - this is called feature engineering or fedabure selection. By
removing irrelevant information (noise), feature engineering can reduce overall tralmng times, prevent
overfiting (see A.4.1), increase accuracy and make models more generalizable

Real wjorld data is likely to include outlier values, be in a variety of forma€s, be missing coverage of
importfant areas, etc. Thus, pre-processing is normally required before it oAl be used to train (and test)
the madel. Pre-processing includes conversion of data'‘to numeric valGes;inormalizing numeric data to
a comrpon scale, detection and removal of outliersiand noisy data,\réducmg data duplication and the
additidn of missing data.

A.2.7 | Train the model W

N

A ML glgorithm (e.g. see machine learning technique$it. 4.2.4) uses the training data to create and
train the model. The algorithm should;be selected baged on the objectives, acceptance criteria and the
availahle data.
&
Note that the activities of training, evaluatigiand tuning are shown explicitly in Figure A.2 as being
iteratiye, however ML is a.highly iterative. Workflow and it may be necessary to return to any of the
earlier| activities, such.as-sourcing and ’pre processing/the-data as a result of later activities (e.g.
evaluating the model), G

X
A.2.8 | Evaluate the model s

The trpined.model is evaluated against the agreed performance metrics using validation data; the
resulty are then used te \mprove (tune) the model. Visualization of the results of the evaluation is
normally-required anddifferent ML frameworks support different visualization options.

In pragtice severalkmodels are typically created and trained, and the best one chosen based on the
resultg of the evaluation and tuning.

A.2.9 | Tune the model

The results from evaluating the model against the agreed performance metrics are used to adjust
its settings to fit the data and so improve performance. The model may be tuned by hyperparameter
tuning, where the training activity is modified (e.g. by changing the number of training steps or by
changing the amount of data used for training), or attributes of the model are set (e.g. the number of
neurons in a neural network or the depth of a decision tree).

A.2.10 Test the model
Once a model has been trained, evaluated, tuned and selected it should be tested against the test

dataset to ensure that the agreed performance criteria are met. This test data should be completely
independent of the training and validation data used up until this point in the workflow.
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