TECHNICAL ISO/IECTR
REPORT 19075-4

First edition
2015-07-01

Information technology < "Database
languages — SQL Technical Reports —

Part 4:
SQL with Routines and types using
the Java™ programming language

Technologies de l'information — Langages de base de donnges — SQL
rapports techniques,—

Partie 4: SQL avéc des Routines et Types Utilisant le Langade
de Programnigtion de Java™

Reference number

@ m ISO/IEC TR 19075-4:2015(E)
Y=
©ISO/IEC 2015

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

ISO/IEC TR 19075-4:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

WwWw.iso.org

ii © ISO/IEC 2015 - All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

Contents Page
0 1= (0 o P Y}
INErOAUCHION. . .o N ... Vi
L GO0 i A 1
2 Normative referenCes. D .3
2.1 ISOand IEC standards. e .3
2.2 Other international standards. i N .3
3 Routines tutorial....... ... S5h
3.1 Technical components. o ..5
3.2 OVBIVIBW. .« o ottt N .5
3.3 Example Java methods: region and correctStates.0 . i ..6
34 Installing region and correctStates in SQL. o e T
3.5 Defining SQL names for region and correctStates. . </ .7 8
3.6 A Java method with output parameters: beStTWOEDMPS.o vt e .9
3.7 A CREATE PROCEDURE best2 for beStTWOEMPS.ot 11
3.8 Calling the best2 procedure. 5 e e .12
3.9 A Java method returning a result set: QrderedEMPS.o e .12
3.10 A CREATE PROCEDURE rankedEmps for orderedEmps.t .14
3.11 Calling the rankedEmPS ProCedure’ttt e e .15
3.12 Overloading Java method names and SQL Names. oot .15
3.13 Java main mMethods. . . (0 o .17
3.14 Java method signatures in the CREATE statements.t e .18
3.15 Null argument values and the RETURNS NULL clause. it .19
3.16 Static variables.).o .21
3.17 Dropping.SQL names of Java methods. o .22
3.18 Remoying Java classes from SQL.22
3.19 Replaeing Java classes in SQL.o .23
3.20 § 27 10T 1 L7 .24
3.21 xeepticns—————— - ... 24
3.22 Deployment desCriptors.ot e e 25
3.23 PatNS. .. 28
3.24 PV g, . . ot 30
3.25 Information SChema. 30
A TYPES TULOMTAl. . oot 33
4.1 L@ T T 33
4.2 Example Java Classes.o 33

©ISO/IEC 2014 — All rights reserved Contents iii

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

4.3 Installing Address and Address2Line in an SQL SYStem. i 35
4.4 CREATE TYPE for Address and Address2Line.t e 36
45 Multiple SQL types for asingle Java Class.t 37
4.6 Collapsing SUDCIASSES.ottt 38
4.7 GRANT and REVOKE statements for data types.t i e 40
4.8 Deployment descriptors for Classes.t 40
4.9 Using Java classes a5 dat@ tyPeS: - - - - - - - - - - - - o .o 41
4.10 SELECT, INSERT, and UPDATE.o N ... 42
411 Referencing Java fields and methods in SQL. i 07 ... 43
412 Extended visibility rules. o M ... 43
4.13 Logical representation of Java instances in SQL. A< 44
4.14 Static methods. N ...45
4.15 Static flelds. A ...46
4.16 Instance-update methods. 46
417 Subtypes in SQLART data.o oo N ... 48
4.18 References to fields and methods of null instances. AN . .. i i ... 49
4.19 Ordering of SQLART data. oot o e et ...51
0T = ...53

iv. SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the

respec
collab
in liaig
have e

Interna

Them
adopte
tional

In excs
that w
to pub
review

Attent
rights.

ISO/IH
Subco

ISO/IH
langug

— P3
— Pe
— Pg
— Pg
— P3

NG

paits may be published without publication of new editions of other parts.

on with 1SO and IEC, also take part in the work. In the field of information technology, 1IS©’and
btablished a joint technical committee, ISO/IEC JTC 1.

in task of the joint technical committee is to prepare International Standards. Dratt-International Sta
d by the joint technical committee are circulated to national bodies for voting.-Publication as an |
Standard requires approval by at least 75 % of the national bodies casting'a vote.

pptional circumstances, when the joint technical committee has collécted data of a different kind
nich is normally published as an International Standard (“state of the art”, for example), it may d
ish a Technical Report. A Technical Report is entirely informative in nature and shall be subject
every five years in the same manner as an International Standard.

on is drawn to the possibility that some of the elements:of this document may be the subject of |
ISO and IEC shall not be held responsible for identifying any or all such patent rights.

C TR 19075-4 was prepared by Joint Technical-Committee ISO/IEC JTC 1, Information techno
mmittee SC 32, Data management and interchange.

C TR 19075 consists of the following parts, under the general title Information technology — D4
ges — SQL Technical Reports:

rt 1: XQuery Regular ExpressioncSupport in SQL

rt 2: SQL Support for Time-Related Information

rt 3: SQL Embedded in.Programs Using the Java™ Programming Language
rt 4: SQL with Rautines and Types Using the Java™ Programming Language
rt 5: Row Pattern-Recognition in SQL

TE 1 — TheSindividual parts of multi-part technical reports are not necessarily published together. New editions of one

tional Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

IVE organization to deal with particular Tields of technical activity. ISO and TEC technical commjttees
prate in fields of mutual interest. Other international organizations, governmental and non-governmental,

IEC

ndards

nterna-

from
ecide
to

atent

ogy,

tabase

or more

©ISO/IE

C 2014 — All rights reserved Foreword v

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

I ntroduction

The organization of this part of ISO/IEC 19075 is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 19075.

2) C
E

3) C
la

4 C

nguage within SQL expressions and statements.

vi SQL with Routines and Types Using the Java™ Programming L anguage

ause 2, “Normative references”, identifies additional standards that, through reference in this paft of
O/IEC 19075, constitute provisions of this part of ISO/IEC 19075.

ause 3, “Routines tutorial”, provides a tutorial on the use of routines written in the Java,programming

ause 4, “Types tutorial”, provides a tutorial on the use of user-defined types writtep-in the Java program-
mjng language within SQL expressions and statements.

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

TECHNICAL REPORT ISO/IEC DTR 19075-4:2014

| nfor mation technology — Database languages — SQL Technical Reports —

Part 4:
SQL [with Routines and Types Using the Java™ Programming L anguage

1 Stope

This Technical Report provides a tutorial of SQL Routines and Types Using the Javal™ Programming Larjguage.

The Report discusses the following features of the SQL Language:

— The use of routines written in the Java programming language within'SQL expressions and statements.

— the use of user-defined types written in the Java programming language within SQL expressions and

statements.

©ISO/IEC 2014 — All rights reserved

Scope 1

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

(Blank page)

2 SQL with Routinesand Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

2 N

The fo

DTR 19075-4:2014(E)

2.1 1SO and |EC sta

ormativereferences

lowing referenced documents are indispensable for the application of this document For dated refe

ndards

ences,

only th

any anpendments) applies.

2.1

[1S(

Framework (SQL/Framework).

[1S4
Fou

[15(
Obj

[1S¢
Infg

[1S(
Ce)l

2.2

[JaV

Bragha, Prentice Hall, June 14, 2005, ISBN 0-321-24678-0.

[V
Wes

e edition cited applies. For undated references, the latest edition of the referenced document (ing

| SO and | EC standards

DI075-1] ISO/IEC 9075-1:2011, Information technology — Database languages — SQL — Part

DI075-2] ISO/IEC 9075-2:2011, Information technology — Databasefanguages — SQL — Part
hdation (SQL/Foundation).

ot Language Bindings (SQL/OLB).

rmation and Definition Schemas (SQL/Schemata).

Routines and Types Using the Java™ Pregramming Language (SQL/JRT).

Other international standards

a] The Java™ Language'Specification, Third Edition, James Gosling, Bill Joy, Guy Steele, and (

M] The Java™ Virtual Machine Specification, Second Edition, Tim Lindholm and Frank Yellin, Ad

Ma

clarify_html.

[J23E], Java™ Platform Standard Edition 6 APl Specification, http://java.sun.com/javass
dogs/api/index._html.

ley, 1999, ISBN:0-201-43294-3, as amended by Clarifications and Amendments to the Java Virt
thi ne Specification, http://java.sun.com/docs/books/jvms/second_edition/j

luding

1

2.

D9075-10] ISO/IEC 9075-10:2008, Information technol ogy — Database languages — SQL — Part 10:

D9075-11] ISO/IEC 9075-11:2011, Information techinology — Database languages — SQL — Part 11

D9075-13] ISO/IEC 9075-13:2008, Information technology — Database languages — SQL — Part 13:

Silad

dison-
Ual
vms-—

/6/-

[Serialization] Java™ Object Serialization Specification, version 6.0 http://java.sun.com/javase/-
6/docs/platform/serialization/spec/serialTOC.html.

[JDBC] JDBC™ 4.0 Specification, Final v1.0, Lance Andersen, Sun Microsystems, Inc., November 7, 2006.

©ISO/IE

C 2014 — All rights reserved Normativereferences 3

http://java.sun.com/docs/books/jvms/second_edition/jvms-clarify.html
http://java.sun.com/docs/books/jvms/second_edition/jvms-clarify.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/platform/serialization/spec/serialTOC.html
http://java.sun.com/javase/6/docs/platform/serialization/spec/serialTOC.html
https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

(Blank page)

4 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.1 Technical components

3 Routinestutorial

3.1 | Technical components

Part 13 of ISO/IEC 9075 includes the following:

— Negw built-in procedures.

| SQLJ.INSTALL_JAR —to load a set of Java classes in an SQL system.

* | SQLJ.REPLACE_JAR — to supersede a set of Java classes in an SQL System.

e | SQLJ.REMOVE_JAR — to delete a previously installed set of Java classes.

e | SQLJ.ALTER_JAVA PATH — to specify a path for name resolution within Java classes.
New built-in schema.

Tlpe built-in schema named SQLJ is assumed to be in allcatalogs of an SQL system that implements the
SQL/IRT facility, and to contain all of the built-in praCedures of the SQL/JRT facility.

Extensions of the following SQL statements:

¢ | CREATE PROCEDURE/FUNCTION —=<to specify an SQL name for a Java method.
| DROP PROCEDURE/FUNCTION =10 delete the SQL name of a Java method.

e | CREATE TYPE — to specify an SQL name for a Java class.

* | DROP TYPE — to delete the-SQL name of a Java class.

* | GRANT — to grant thelSAGE privilege on Java JARs.

* | REVOKE — torévoke the USAGE privilege on Java JARs.

v

— Conventions for, returning values of OUT and INOUT parameters, and for returning SQL result se

— Negw forms ofreference: Qualified references to the fields and methods of columns whose data types are
dgfined on'Java classes.

— Afditienal views and columns in the Information Schema.

3.2 Overview

This tutorial shows a series of example Java classes, indicates how they can be installed, and shows how their
static, public methods can be referenced with SQL/JRT facilities in an SQL-environment.

The example Java methods assume an SQL table named EMPS, with the following columns:

©ISO/IEC 2014 — All rights reserved Routinestutorial 5

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.2 Overview

— NAME — the employee's name.

— ID — the employee's identification.

— STATE — the state in which the employee is located.

— SALES — the amount of the employee's sales.

— JQBCODE —the Jinh code of the nmplnynn

The taple definition is:

CREATE TABLE emps (
name VARCHAR(50),

state CHARACTER(20),

S
b
The ex

— R
da

— R
th

— R
ar
ar

— R
ern

— Oy

— R
to

— R
V3

Unless
using |

Itis as
inall g

CHARACTER(5),

les DECIMAL (6,2),
pbcode INTEGER);

ample classes and methods are:

putinesl.region — A Java method that maps a US state code\to a region number. This mef]
esn't use SQL internally.

putinesl.correctStates — A Java method that performs an SQL UPDATE statement to
e spelling of state codes. The old and new spellings arelspecified by input-mode parameters.

putines2._bestTwoEmps — A Java method thatidetermines the top two employees by their
d returns the columns of those two employee rowsas output-mode parameter values. This method
SQL result set and processes it internally.

putines3.orderedEmps — A Java method that creates an SQL result set consisting of sele
nployee rows ordered by the sales column, and returns that result set to the client.

yerl. 1sOdd and Over2. 1sQdd — Contrived Java methods to illustrate overloading rules.

putines4. jobl and Routines5. job2 — Java methods that return a string value correspo
an integer jobcode value(These methods illustrate the treatment of null arguments.

putines6 . job3 —Another Java method that returns a string value corresponding to an integer j
lue. This method illustrates the behavior of static Java variables.

otherwise noted; the methods that invoke SQL use JDBC. One of the methods is shown in both a
DBC and @wersion using SQL/OLB. The others could also be coded with SQL/OLB.

sumedkthat the import statements import java.sgl.*; and java.math.*; have been in
lasses.

hod

Correct

bales,
Creates

cted

nding

bbcode

ersion

cluded

3.3

Example Java methods:. region and correctStates

This clause shows an example Java class, Routinesl, with two simple methods.

— The int-valued static method region categorizes 9 states into 3 geographic regions, returning an integer
indicating the region associated with a valid state or throwing an exception for invalid states. This method
will be called as a function in SQL.

6 SQL with Routines and Types Using the Java™ Programming L anguage

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.3 Example Java methods:. region and correctStates

— The void method correctStates updates the EMPS table to correct spelling errors in the state column.
This method will be called as a procedure in SQL.

public class Routinesl {
//An int method that will be called as a function
public static int region(String s) throws SQLException {
if (s.equals("MN'™) || s-equals('VT"™) || s-equals('NH™)) return 1;
else if (s.equalsC'FL™) || s.equals(C'GA™) || s.equals(AL™)) return 2;:
else if (s.equals('CA™) || s-equals("AZ™) || s-equals(”NV'")) return 3;
else throw new SQLException("Invalid state code', '"38001");

//A|void method that will be called as a stored procedure
public static void correctStates (String oldSpelling, String newSpelling)
throws SQLException {
Connection conn = DriverManager.getConnection ("jdbc:default:connection™);
reparedStatement stmt = conn.prepareStatement
(""UPDATE emps SET state = ? WHERE state = ?');
stmt.setString(1l, newSpelling);
stmt.setString(2, oldSpelling);
stmt.executeUpdate();
stmt.close();
conn.close();
return;

o

3.4 | Installing region and correctStatesin SQL

The sgurce code for Java classes such as Rout1nesl1 will normally be in one or more Java files (i.e., files

with file type “java”). When you compile them (using the javac compile command), the resulting code will
be in gne or more class files (i.e, files with file type “class”). You then typically collect a set of class fil¢s into
a Java AR, which is a ZIP-coded collection of files.

To use|Java classes in SQL, youload a JAR containing them into the SQL system by calling the SQL
SQLJ| INSTALL_JAR procedure. The SQLJ . INSTALL_JAR procedure is a new built-in SQL procgdure
that makes the collection.eflava classes contained in a specified JAR available for use in the current SQL cat-
alog. Hor example, assume‘that you have assembled the above Routinesl class into a JAR with loca| file
name {~/classes/Routinesl.jar”:

SQLJ. INSTALL(JAR("file:~/classes/Routinesl.jar®, "routinesl_jar®, 0)

— The firstyparameter of the SQLJ . INSTALL_JAR procedure is a character string specifying the URL of
thegiven JAR. This parameter is never folded to upper case.

— The second parameter of the SQLJ . INSTALL_JAR procedure is a character string that will be used as
the name of the JAR in the SQL system. The JAR name is an SQL qualified name, and follows SQL con-
ventions for qualified names.

The JAR name that you specify as the second parameter of the SQLJ . INSTALL__JAR procedure identifies
the JAR within the SQL system. That is, the JAR name that you specify is used only in SQL, and has
nothing to do with the contents of the JAR itself. The JAR name is used in the following contexts, which
are described in later clauses:

©ISO/IEC 2014 — All rights reserved Routinestutorial 7

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.4 Installing region and correctStatesin SQL
e As a parameter of the SQLJ .REMOVE__JAR and SQLJ.REPLACE_JAR procedures.
* Asaqualifier of Java class names in SQL CREATE PROCEDURE/FUNCTION statements.
» Asan operand of the extended SQL GRANT and REVOKE statements.
» Asa qualifier of Java class names in SQL CREATE TYPE statements.

The JAR-name may. also be used infollow-0on facilities for rln\/\mlnnding JARs from-the SQL system.

— JARs can also contain deployment descriptors, which specify implicit actions to be taken by the
SQLJ. INSTALL_JAR and SQLJ.REMOVE_JAR procedures. The third parameter of the

SQLJ. INSTALL_JAR procedureis an integer that specifies whether you do or do not (indicated by non-
zdro or zero values, respectively) want the SQLJ . INSTALL_JAR procedure to execute the actionp spec-
ified by a deployment descriptor in the JAR.

The ngme of the INSTALL_JAR procedure is qualified with the schema name SQL.J. All built-in procefures
of the BQL/JRT facility are defined to be contained in that built-in schema. The<SQLJ schema is assumgd to
be present in each catalog of an SQL system that implements the SQL/JRT facility.

The finst two parameters of SQLJ . INSTALL__JAR are character strings, so.if you specify them as literals, you
will uge single quotes, not the double quotes used for SQL delimited, identifiers.

The aqgtions of the SQLJ . INSTALL__JAR procedure are as follows:

— Optain the JAR designated by the first parameter.

— Extract the class files that it contains and install them_into the current SQL schema.

— Rgtain a copy of the JAR itself, and associate it-with the value of the second parameter.

— Ifjthe third parameter is non-zero, then perform the actions specified by the deployment descriptor|of the
JAR.

After you install a JAR with the SQLJ.&NSTALL _JAR procedure, you can reference the static methogs of
the clakses contained in that JAR in the CREATE PROCEDURE/FUNCTION statement, as we will describe
in the pext Subclause.

3.5 | Defining SQL’namesfor region and correctStates

Beforg you can call-a Java method in SQL, you shall define an SQL name for it. You do this with new gptions
on the[SQL CREATE PROCEDURE/FUNCTION statement. For example:

CREATIE . PROCEDURE correct_states(old CHARACTER(20), new CHARACTER(20))
MOD LELRES QQI DATA
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routinesl_jar:Routinesl.correctStates”;
CREATE FUNCTION region_of(state CHARACTER(20)) RETURNS INTEGER
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routinesl_jar:Routinesl.region”;

The CREATE PROCEDURE and CREATE FUNCTION statements specify SQL names and Java method
signatures for the Java methods specified in the EXTERNAL NAME clauses. The format of the method names

8 SQL with Routinesand TypesUsing the Java™ Programming L anguage ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.5 Defining SQL namesfor region and correctStates

in the external name clause consists of the JAR name that was specified in the SQLJ . INSTALL_JAR procedure
followed by the Java method name, fully qualified with the package name(s) (if any) and class name.

The CREATE PROCEDURE for correct_states specifies the clause MODIFIES SQL DATA. This
indicates that the specified Java method modifies (via INSERT, UPDATE, or DELETE) data in SQL tables.
The CREATE FUNCTION for region_of specifies NO SQL. This indicates that the specified Java method
performs no SQL operations.

Other ¢lauses that you can specify are READS SQL DATA, which indicates that the specified Java method
reads (through SELECT) data in SQL tables, but does not modify SQL data, and CONTAINS SQLwhich
indicafes that the specified method invokes SQL operations, but neither reads nor modifies SQL data. The
alterngtive CONTAINS SQL is the default.

You use the SQL procedure and function names that you define with such CREATE PROCEDURE/FUNCTION
statemgnts as normal SQL procedure and function names:

SELECT name, region_of(state) AS region
FROM émps

WHERE | region_of(state) = 3;

CALL ¢orrect_states ("GEO", “GA");

You cgn define multiple SQL names for the same Java method:

CREATE PROCEDURE state correction(old CHARACTER(20), new CHARACTER(20))
MODJFIES SQL DATA
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routinesl_jar:Routinesl.correctStates”;

CREATE FUNCTION state_region(state CHARACTER(20)) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routinesl_jar:Routineslk region”;

The vdrious SQL function and procedure names for a Java method can be used equivalently:

SELECT name, state_region(state) ‘AS region
FROM émps

WHERE | region_of(state) = 2;

CALL $tate_correction ("OREY, "OR");

The SQL names are normak-3=part SQL names, and the first two parts of the 3-part names are defaulted as
definedl in SQL for CREATE PROCEDURE and CREATE FUNCTION statements.

There gire other considerations for the CREATE PROCEDURE/FUNCTION statement, dealing with parameter
data tylpes, overloaded names, and privileges, which we will discuss in later Subclauses.

3 6 A~ 1ava mathod wit
. WVUIAV A A LILY)

v

The parameters of the region and correctStates methods are all input-only parameters. This is the
normal Java parameter convention.

SQL procedures also support parameters with mode OUT and INOUT. The Java language does not directly
have a notion of output parameters. SQL/JRT therefore uses arrays to return output values for parameters of
Java methods. That is, if you want an Integer parameter to return a value to the caller, you specify the type
of that parameter to be Integer[1],i.e anarray of Integer. Such an array will contain only one element:

©ISO/IEC 2014 — All rights reserved Routinestutorial 9

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.6 A Java method with output parameters. best TwoEmps

the input value of the parameter is contained in that element when the method is called, and the method sets
the value of that element to the desired output value.

As we will see in the following clauses, this use of arrays for output parameters in the Java methods is visible
only to the Java method. When you call such a method as an SQL procedure, you supply normal scalar data
items as parameters. The SQL system performs the mapping between those scalar data items and Java arrays
implicitly.

The following Java method illustrates the way that you code output parameters in Java. This method;
bestTwoEmps, returns the name, 1d, region, and sales of the two employees that have thg highest

sales in the regions with numbers higher than a parameter value. That is, each of the first 8 parametefs is an
OUT parameter, and is therefore declared to be an array of the given type.

The following version of the bestTwoEmps method uses SQL/OLB for statements that access SQL.:

publi¢ class Routines2 {

pubjic static void bestTwoEmps (
String[1 nl1, String[] idl, int[] r1, BigDecimal[] si,
String[1 n2, String[] id2, int[] r2, BigDecimal[] s2;
int regionParm) throws SQLException {

#$qgl iterator ByNames (String name, String id, int region, BigDecimal sales);
ni[0]= "****"; n2[0]= "****"; idl[0]= ""'; id2[0]= "%
r1[0]=0; r2[0]=0; s1[0]= new BigDecimal (0); s2[0]=<new BigDecimal (0);
ByNames r = null;
try {
#sql r = {SELECT name, id, region_of(state) ‘AS region, sales
FROM emp
WHERE region_of(state) > :régronParm
AND sales IS NOT NULL
ORDER BY sales DESC};
if (ronextQ)) {
nl[0] = r.name();
id1[0] = r.idQ;
ri[0] = r.region();
s1[0] = r.sales();
}

else return;

if (ronextQ)) {
n2[0] = r.nane®;
id2[0] = rAAdQ);
r2[0] r.region(Q);
s2[0] r~sales();

}

else_return;
H Finally {
i (r 1= null) r.close(Q);

}
}
}

Note that since the above Java method uses SQL/OLB for SQL operations, it does not have to explicitly obtain
a connection to the SQL system. By default, SQL/OLB executes any SQL contained in a routine in the context
of the SQL statement invoking that routine.

For comparison, here's a version of the bestTwoEmps method using JDBC instead of SQL/OLB:

public class Routines2 {

10 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

public static void bestTwoEmps (

String[] nl, String[] idl, int[]
String[] n2, String[] id2, int[]

DTR 19075-4:2014(E)
3.6 A Java method with output parameters. bestTwoEmps

rl, BigDecimal[] si,
r2, BigDecimal[] s2,

int regionParm) throws SQLException {

N1[0]= "*****; n2[0]= "****"; id1[0]=

"oid2[o]= vt

r1[0]=0; r2[0]=0; s1[0]= new BigDecimal(0); s2[0]= new BigDecimal(0);
jJava.sqgl .PreparedStatement stmt = null;

try {

stmt.conn.prepareStatement
FROM emp

AND sales IS NOT NULL
ORDER BY sales DESC™);
stmt.setInt(l, regionParm)

if (ronextQ)) {
nl[0] = r.getString('name');
id1[0] = r.getString('id™");
ri[o] r.getint('region™);
s1[O0]

}

else return;

if (ronextQ)) {
n2[0] = r.getString('name');
id2[0] = r.getString('id™");
r2[0] r.getint('region™);
s2[0]

}

else return;
} Finally {

};

3.7 | A CREATE PROCEDURE best2 for bestTwoEmps

Connection conn = DriverManager .getConnection
("'jdbc:default:connection'™);

(""SELECT name, id, region_of(state) AS region, sales

WHERE region_of(state) > ?

ResultSet r = stmt.executeQuery();

r.getBigDecimal ("'sales');

r.getBigDecimal ("'sales™).

if (stmt != null) stmt.clese()

Assu|e that you-call the SQLJ . INSTALL_JAR procedure for a JAR containing the Routines2 clags with

the belstTweEmMps method:

SQLJ. INSTALL_JAR ("file:~/classes/Routines2._jar”™, "routines2_jar®, 0)

As indicated previously, in order to call a method such as bestTwoEmps in SQL, you shall define an SQL
name for it, using the CREATE PROCEDURE statement:

CREATE PROCEDURE best2 (

OUT nl CHARACTER VARYING(50), OUT

OUT s1 DECIMAL(6,2),

OUT n2 CHARACTER VARYING(50), OUT
OUT s2 DECIMAL(6,2), region INTEGER)

READS SQL DATA

©ISO/IEC 2014 — All rights reserved

idl CHARACTER VARYING(5), OUT rl1 INTEGER,

id2 CHARACTER VARYING(5), OUT r2 INTEGER,

Routinestutorial 11

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.7 A CREATE PROCEDURE best2 for bestTwoEmps

LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME “"routines2_jar:Routines2._bestTwoEmps*®;

For parameters that are specified to be OUT or INOUT, the corresponding Java parameter shall be an array of
the corresponding data type.

3.8

After y
for be
ventio
follow|

java.

stm
stm
stmy
stm
stmy
stm
stm
stm
stm
stmy
Str
Str
int
Big
Str
Str
int
Big

3.9

SQLs
and SQ
but are
of the

Calling the bestZ procedure

f . registerOutParameter(l, java.sql
. registerOutParameter(2, java.sql
f . registerOutParameter (3, java.sql
. registerOutParameter(4, java.sql
f . registerOutParameter(5, java.sql
. registerOutParameter(6, java.sql
. registerOutParameter (7, java.sql
. registerOutParameter(8, java.sql
[.setInt(9, 3);

I .executeUpdate();

ng nl = stmt.getString(1);

ng idl = stmt._.getString(2);

rl = stmt.getInt(3);

becimal sl = stmt.getBigDecimal(®);
ng n2 = stmt.getString(5);

ng i1d2 = stmt.getString(6).

r2 = stmt.getint(7);

becimal s2 = stmt.getBigbecimal (8);

resultset.

-Types.
-Types.
-Types.
-Types.
-Types.
-Types.
-Types.
-Types.

ou have installed the Routines2 class in an SQL system and executed the CREATE,PROCEL
512, you can call the bestTwoEmps method as if it were an SQL stored procedure, with norm
ns for OUT parameters. Such a call could be written with embedded SQL, CLI, ODBC, or JDBC
ng is an example of such a call using JDBC:

51 .CallableStatement stmt = conn.prepareCall(
fcall best2(?,?,?,?,?,2,2,2,2)}");

STRING);
STRING);
INTEGER) ;
DECIMAL) ;
STRING) ;
STRING)G
INTEGER) ;
DECIMAL) ;

A Java method returning a result set: orderedEmps

ored procedures can generate SQL result sets as their output. An SQL result set (as defined in JI
L) is an.ordered sequence of SQL rows. SQL result sets aren't processed as normal function result
instead bound to caller-specified iterators or cursors, which are subsequently used to process th

DURE
Al con-
. The

DBC
values,
P FOWS

The following Java method, orderedEmps, generates an SQL result setand then returns that result set to the

client. Note that the orderedEmps method internally generates the result set in the same way as the
bestTwoEmps method. However, the bestTwoEmps method processes the result set within the

bestTwoEmps method itself, whereas this orderedEmps method returns the result set to the client as an
SQL result set.

To write a Java method that returns a result set to the client, you specify the method to have an additional
parameter that is a single-element array of either the Java Resul tSet class or a class generated by an SQL/OLB
iterator declaration (“#sql iterator...”).

12 SQL with Routines and Types Using the Java™ Programming L anguage

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.9 A Javamethod returning aresult set: orderedEmps

The following version of the orderedEmps procedure uses SQL/OLB to access the SQL server, and returns
the result set as an SQL/OLB iterator, SalesReport:

// #sqgl public iterator SalesReport (String name, int region, BigDecimal sales);

pub

lic class Routines3 {

public static void orderedEmps (int regionParm, SalesReport[] rs)

}
}

The S
exam
Rout

contains:

#sql

Assun
packag

For co

publi
pub

C

jJava.sqgl .PreparedStatement stmti= conn.prepareStatement

ST

-

r¢

}
}

Them
the SQ

throws SQLException {
#sgl rs[0] = { SELECT name. region_of(state) AS reqion., sales

FROM emp
WHERE region_of(state) > :regionParm
AND sales 1S NOT NULL
ORDER BY sales DESC };
return;

lesReport iterator class could be a public static inner class of Routines3. However, the al
le presumes existence of an “*_sql j” file, named SalesReport.sdlyj; in the same packag
nes3, containing the public definition of the SalesReportiterator. That is, Sal esReport |

public iterator SalesReport (String name, int regioQr, BigDecimal sales);

e, for this example, that both class Routines3 and the iterator SalesReport are defined in
e named classes.

mparison, the following shows orderedEmps written using JDBC instead of SQL/OLB.

L class Routines3 {

ic static void orderedEmps(int regionParm, ResultSet[] rs)

throws SQLException {

bnnection conn = DriverManager-gétConnection (“jdbc:default:connection™);

(""SELECT name, region_of(state) AS region, sales
FROM emp WHERE region.of(state) > ?
AND sales 1S NOT~NULL
ORDER BY sales DESC™);

fmt.setInt (1, regionParm);

5[0] = stmt.executeQuery();

pturn;

pthod setS.the first element of the ResultSet[] parameter to reference the Java ResultSet con

Java stlatement object that generated the result set. The SQL system will implicitly close both of those @

pove
P as
sqlj

D

faining

L result'set to be returned. The method does not close either the returned Resul tSet object o the

bjects.

You can call a method such as orderedEmps in Java in the normal manner, supplying explicit arguments
for both parameters. You can also call it in SQL, as a stored procedure that generates a result set to be processed
in the SQL manner. We illustrate how this is done in the following two clauses.

Each of the above orderedEmps examples has a single result set parameter, rs, in which you can only return

a singl

e result set. You can also specify multiple result set parameters.

Note that, in comparison to the prior examples of bestTwoEmps, there is no try. . . Final ly block to
close the SQL/OLB iterator or ResultSet, rs[0], or the JDBC PreparedStatement, stmt. For a result set

©ISO/IE

C 2014 — All rights reserved Routinestutor

ial 13

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.9 A Java method returning a result set: orderedEmps

to be returned from a stored procedure it shall not be explicitly closed, which means, in the case of JDBC, that
the statement executed to generate the result set also shall not be explicitly closed.

3.10 A CREATE PROCEDURE rankedEmpsfor orderedEmps

Assunie that you call the SQLJ . INSTALL_JAR procedure for a JAR containing the Rout1nes3 clafs with
the orj[deredEmps method:

SQLJ. INSTALL_JAR("file:~/classes/Routines3.jar", "routines3_jar", 0)

As with previous methods, you will now need to define an SQL name for the orderedEmps method pefore
you cah call it as an SQL procedure. As above, you will do this with a CREATE PROCEDURE statemgnt that
specifies an EXTERNAL...LANGUAGE JAVA clause to reference the orderedEmps method. The fol{owing
is an exkample CREATE PROCEDURE...DYNAMIC RESULT SETS for the above orderedEmps method:

CREATE PROCEDURE rankedEmps (region INTEGER)
READS SQL DATA
DYNAMIC RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME “routines3_jar:classes.Routines3.orderedEmps”®;

A CRBATE PROCEDURE statement for a Java method that-génerates SQL result sets has the following
characferistics:

— The DYNAMIC RESULT SETS clause indicates<that the procedure generates one or more result sets. The
integer specified in the DYNAMIC RESULT SETS clause is the maximum number of result sets tiat the
procedure will generate. If an execution generates more than this number of result sets, a warning ill be
issued, and only the specified number of résult sets will be returned.

— The SQL signature specifies only the parameters that the caller explicitly supplies.

— The specified Java method actually has one or more additional, trailing parameters, whose data typgs shall
bq a Java array of either Javassql .ResultSet oranimplementation of sql j . runtime.Result-
Setlterator.

The aljJove CREATE PROCEDURE statement could be used to reference either an SQL/OLB-based or JDBC-
based yersion of Routines3.orderedEmps. When it is necessary to choose a particular implementation,
the Javja method signature of the desired Java method shall be explicitly stated. For the SQL/OLB-based
orderedEmps:

CREATE PROCEDURE rankedEmps (region INTEGER)
READS\.SQL DATA
DYNAMIC RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME
"routines3_jar:classes.Routines3.orderedEmps(int, classes.SalesReport[])~;

And, for the JDBC-based orderedEmps:

CREATE PROCEDURE rankedEmps (region INTEGER)
READS SQL DATA
DYNAMIC RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA

14 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.10 A CREATE PROCEDURE rankedEmpsfor orderedEmps

EXTERNAL NAME

"routines3_jar:classes.Routines3.orderedEmps(int, java.sqgl.ResultSet[])";

The only difference in the above CREATE PROCEDURE rankedEmps statements is in the Java method

signature's description of the dynamic result set returned. In both cases, a fully qualified class name is provided
for, respectively, the SQL/OLB iterator (remember that SalesReport is in the package named classes)
and the JDBC result set.

It'swo

by SQ
invoke
howeV|

The ne

311

|, because the names and signatures are identical and SQL would not be able to determine which
when requested by an application. They could be permitted if they were created in different'sch
J

xt clause will show an example invocation of this procedure.

Calling the rankedEmps procedure

After y
forr

ou have installed the Routines3 class in an SQL system and gxecuted the CREATE PROCEL
kedEmps, you can call the rankedEmps procedure as if ittwere an SQL stored procedure. S

call copld be written with any facility that defines mechanisms foriprocessing SQL result sets — that ig
SQL/QLI, JDBC, and SQL/OLB. The following is an example-ofssuch a call using JDBC:

java.sqgl.CallableStatement stmt = conn.prepareCal I'C ""{call rankedEmps(?)}'");
stmt.setint(1, 3);

Res
whi
ST

XX XK

}

Note t
CRE

isane
That J
compl

ItSet rs = stmt.executeQuery();

e (rs.next()) {
fring name = rs.getString(l);

int region = rs.getint(2);

gDecimal sales = rs.getBigDecimal(3);

stem.out.print(*Name = " + pame);
stem.out.print("'Region = "+ region);
stem.out.print("Sales =-"-+ sales);

stem.out.printIn();

nat the call of the rankedEmps procedure supplies only the single parameter that was declared
TE PROCEDURE statement. The SQL system then implicitly supplies, as applicable, a paramet
pty array of Resul tSet or an empty array of classes.SalesReport, and calls the Java
va method-assigns the output result set or iterator to the array parameter. And, when the Java me
ptes, the SQL system returns the result set or iterator in that output array element as an SQL resu

Fth observing that the two CREATE PROCEDURE rankedEmpS statements above wouldntbe allowed

one to
emas,

DURE
ich a

in the
br that
ethod.
thod
It set.

3.12

overioading Java metnod names and SUYL names

When you use CREATE PROCEDURE/FUNCTION statements to specify SQL names for Java methods, the
SQL names can be overloaded. That is, you can specify the same SQL name in multiple CREATE PROCE-
DURE/FUNCTION statements. Note that support for such SQL overloading is an optional feature.

Consider the following Java classes and methods. These are contrived routines intended only to illustrate
overloading, and we won't show the routine bodies.

©ISO/IE

C 2014 — All rights reserved Routinestutor

ial 15

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.12 Overloading Java method names and SQL names

public class Overl {
public static int is0dd (int i) {...};
public static int isOdd (float) {...};
public static int testOdd (double d) {...};

public class Over2 {
public static int isOdd (Java.sql.Timestamp t) {...};
pubfrc static 1nt oddDateTime (Java.sql-Date d) {---F.
pubjlic static int oddDateTime (Java.sql.Time t) {...};

}

Note that the 1sOdd method name is overloaded in the Over1 class, and the oddDateT ime<method name
is overfloaded in the Over?2 class.

Assunie that the above classes are in a JAR ~/classes/Over . jar, which you install:

SQLJ. INSTALL_JAR ("file:~/classes/Over.jar®, "over_jar", 0)

To refgrence these methods in SQL, you will of course need to specify SQL hames for them with CREATE
FUNCTION statements. These CREATE FUNCTION statements can specify SQL names that are overloaded.
The oyerloading of the SQL names is completely separate from the overloading in the Java names. Thi$ is
illustrgted in the following.

Recalljthat you can specify the same Java method in multiple CREATE PROCEDURE/FUNCTION stategments.

CREATE FUNCTION odd (INTEGER) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.isOdd";
CREATE FUNCTION odd (REAL) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.isOdd™;
CREATE FUNCTION odd (DOUBLE PRECISION) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.testOdd-";
CREATE FUNCTION odd (TIMESTAMP) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Over2.isOdd";
CREATIE FUNCTION odd (DATE) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Over2.oddDateTime";
CREATIE FUNCTION _.odd (TIME) RETURNS INTEGER
LANGUAGE JAVA).PARAMETER STYLE JAVA
EXTERNAL NAME® "over_jar:Over2.oddDateTime";
CREATE FUNETION is_odd (INTEGER) RETURNS INTEGER
LANGUAGE JJAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.isOdd";
CREATE FUNCTTON Test_odd (REAL) RETURNS TNTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.isOdd";

Note the following characteristics of these CREATE FUNCTION statements:

— The SQL name odd is defined on the two 1s0dd methods and the test0dd method of Overl, and also
the 1s0dd method and two oddDateT ime methods of Over2. That is, the SQL name odd spans both
overloaded and non-overloaded Java names.

16 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.12 Overloading Java method names and SQL names

— The SQL names is_odd and test_odd are defined on the two 1s0dd methods of Over1. That is,
those two different SQL names are defined on the same Java hame.

The rules governing overloading are those of the SQL language as defined in Subclause 11.60, “<SQL-invoked
routine>", in [ISO9075-2], and in Subclause 10.4, “<routine invocation>", in [ISO9075-2]. This includes:

— Rules governing what parameter combinations can be overloaded. That is, the legality (or not) of the fol-
lowing CREATE statements is determined by SQL language rules:

CHEATE FUNCTION is_odd (INTEGER) RETURNS INTEGER.. .
CHEATE FUNCTION is_odd (SMALLINT) RETURNS INTEGER. ..
CHREATE PROCEDURE is_odd (SMALLINT) ...

— Rules governing the resolution of calls using overloaded SQL names. That is, the determination offwhich
Java method is called by “odd(x)” for some data item “x” is determined by SQL:tanguage rules,

The EXTERNAL NAME clauses of the above CREATE FUNCTION statementséspecify only the JAR [name
and mg¢thod name of the Java method. For example:

CREATE FUNCTION odd (INTEGER) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.isOdd";

You cdn also include the Java method signature (i.e., a list of the parameter data types) of a method in the
EXTERNAL NAME clause. For example:

CREATE FUNCTION odd (INTEGER) RETURNS INTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "over_jar:Overl.isOdd (int)r;

The grpup of eight example CREATE FUNCT ION statements, shown earlier in this clause, do not requife Java
methodl signatures, but you can include them far clarity. Subclause 3.14, “Java method signatures in the CREATE
statemgnts”, describes cases where the Java‘method signature is required.

3.13| Java main methods

[Java] places special ng-requirements on any method named main. However, a JVM recognizes a method
named main, with the following Java method signature, as the method to invoke when only a class name is
provided:

publi¢ static void main (String[1);
If you pecify a Java method named main in an SQL CREATE PROCEDURE...EXTERNAL statement, then

that Javamethod statttave theabove Javamethod sigmature The signature of the-SQ L procedure camreither

be:

— A ssingle parameter that is an array of CHARACTER or CHARACTER VARYING. That array is passed
to the Java method as the String array parameter. Note: This SQL method signature can only be used in
SQL systems that support array data types in SQL.

— Zero or more parameters, each of which is CHARACTER or CHARACTER VARYING. Those N
parameters are passed to the Java method as a single N element array of String.

©ISO/IEC 2014 — All rights reserved Routinestutorial 17

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.14 Java method signaturesin the CREATE statements

3.14

Java method signaturesin the CREATE statements

Consider the following method, job1, which has an integer parameter and returns a String with the job
corresponding with a jobcode value:

public class Routines4 {

//A
pub

Note t

String method that will be called as a function

ic static String jobl (Integer jc) throws SQLException {

T gc == 1) return "Admin";

se iIf (Jc == 2) return "Sales";
se iIf (Jc == 3) return "Clerk";
f (gc == null) return null;

se return "unknown jobcode";

nat we suffix the method name with a “1” in anticipation of subsequent variants of the method.

Assure that you install this class in SQL.:

SQLJ.

You m

CREATIE

LAN
EXT

Howe

NSTALL_JAR ("Ffile:~/classes/Routines4._jar™, "routines4 jar®, 0)

light want to specify an SQL function job_of1 defined onthe jobl method:

FUNCTION job_ofl(jc INTEGER) RETURNS CHARACTER VARYING(20)
BUAGE JAVA PARAMETER STYLE JAVA
FRNAL NAME “routines4_jar:Routines4.jobl?3y

er, as written above, this CREATE statementds not valid. Note that the data type of the paramets

the Jajja method jobl is Java Integer (which'is'short for java. lang. Integer), and we have sp
the SQL data type INTEGER for the corresponding parameter of the SQL job_oF1 function. Howev{
detailed rules for the external Java form of the' SQL CREATE PROCEDURE/FUNCTION statement sp

that th
Java l

e default Java parameter data typefor an SQL INTEGER parameter is the Java 1nt data type, n
nteger datatype. Subclause-3.15, “Null argument values and the RETURNS NULL clause”, de

some feasons why you may want-ta:specify Java Integer rather than Java int.

If you
param
types i

want to specify an SQL'CREATE PROCEDURE/FUNCTION statement for a Java method who

h a Java method,signature in the CREATE statement. This Java method signature is written afte

Java method name in.the EXTERNAL NAME clause. For example, the above CREATE statement for

jobl

CREATE

LAN
EXT

method would be written as:

FUNETION job_ofl(jc INTEGER) RETURNS CHARACTER VARYING(20)
bUAGE JJAVA PARAMETER STYLE JAVA
FRNAL NAME "routines4_jar:Routines4.jobl(java. lang. Integer)”;

pter data types include\Java types differing from their default Java types, then you specify those]iata
r

r of
ecified
br, the
ecifies
pt the
scribes

bE

the
he

If you specify data types in the Java method signature of a CREATE statement that specifies DYNAMIC

RESULT SETS, then you shall include the implicit trailing result set or iterator parameters in that Java method
signature. You do not, however, include those trailing parameters in the SQL signature. For example, you would
write the CREATE of Subclause 3.10, “A CREATE PROCEDURE rankedEmps for orderedEmps”, as follows:

CREATE PROCEDURE rankedEmps (region INTEGER)
READS SQL DATA
DYNAMIC RESULT SETS 1

18 SQL with Routines and Types Using the Java™ Programming L anguage

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.14 Java method signaturesin the CREATE statements

LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME “"routines3_jar:Routines3.orderedEmps (int, java.sql.ResultSet[]):

3.15

WHERE

Suppos

of the |
data ty
referer
Javac
Java m

Now ¢
type i

publi¢

//7A
pub

i
e
e
e

}
}

Assun

SQLJ.

CREATIE

LAN
EXT

You c§

Null argument valuesand the RETURNSNULL clause

job_ofl(jobcode) <> "Admin®;

e that a row of the EMPS table has a null value in the JOBCODE column."Note that the Java da
parameter of the Job1l method is Java Integer (thatis, Java. langZlnteger). The Java Inf
pe is a class, rather than a scalar data type, so its values include bothnumeric values, and also th
ce value. When an SQL null value is passed as an argument to a-Java parameter whose data typ¢
ass, the null SQL value is passed as a Java null reference. Such-amull reference can be tested wit
ethod, as shown in Routines4. jobl.

pnsider the following similar method, which specifies.its’parameter data type to be the Java scalz
Nt, rather than the Java class Integer.

class Routines5 {

String method that will be called aspa function
ic static String job2 (int jc)

throws SQLException {

F (Jc == 1) return "Admin";

se iIf (Jc == 2) return "Sales®;

se if (Jc == 3) return "Clerk";

se return "unknown jobcode™;

e that you install this-class in SQL:

NSTALL_JAR(, “File:~/classes/Routines5.jar", "routines5 jar®, 0)
FUNCTION.Sjob_of2 (Jc INTEGER) RETURNS CHARACTER VARYING(20)
BUAGE JAVACPARAMETER STYLE JAVA

FRNAL NAME “routines5_jar:Routines5.job2";

n ther'call the SQL function job_o¥2 in SQL statements such as the following:

[a type
feger
e null
isa
hin the

Ir data

SELECT name, job_of2 (Jobcode)
FROM emps

WHERE

job_of2(jobcode) <> "Admin*®;

When this SELECT statement encounters a row of the EMPS table in which the JOBCODE column is null, the
effect of the null value on the call(s) of the Job_o¥2 function is different than for the previous job_of
function. The job_o¥2 function is defined on the method Routines5. job2, whose parameter has the
scalar data type int, rather than the class data type java. lang. Integer. The Java int data type (and

©ISO/IEC 2014 — All rights reserved

Routinestutorial 19

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.15 Null argument values and the RETURNSNULL clause

other Java scalar data types) has no null reference value, and no other representation of a null value. Therefore,
if the Job2 method is invoked with a null SQL value, then an exception condition is raised.

To summarize:

— The following Java data types have null reference values, and can accommodate SQL arguments that are
null:

_l - - H - - 1 1 - -
Java.sql .Timestamp, java.lang.Double, java. lang.Float, java.
Java.lang.Short, java.lang.Long, java. lang.Boolean

. JTime,
lang. Integer,

— The following Java data types are scalar data types that cannot accommodate nulls. An exception condition
w]ll be raised if an argument value passed as such a parameter data type is null:

bpolean, byte, short, int, long, Float, double

The eXception condition that is raised when you attempt to pass a null argumentto. a Java parameter that is a
non-nyllable data type is analogous to the traditional SQL exception conditign that is raised when you gttempt
to FETCH or SELECT a null column value into a host variable for which,yeudid not specify a null indicator
variable. In both cases, the “receiving” parameter or variable is unable to,accommodate the actual run-{ime
null vglue, so an exception condition is raised.

When lyou code Java methods specifically for use in SQL, you willprobably tend to specify Java parameter

data tylpes that are the nullable Java data types. You may, however, also want to use Java methods in SQL that
were not coded for use in SQL, and that are more likely tospecify Java parameter data types that are the scalar
(non-nullable) Java data types.

You cgn call such functions in contexts where null values will occur by invoking them conditionally, e., in
CASE|expressions. For example:

SELECT name,
CASE
WHEN jobcode IS NOT NULL.THEN job_of2 (jobcode)
ELSE NULL
END
FROM émps
WHERE | CASE
WHEN jobcode AIS*NOT NULL THEN job_of2 (jobcode)
ELSE NULL
END<> "Administrator”;

You cgn also make such CASE expressions implicit, by specifying the RETURNS NULL ON NULL INPUT
optionfin the CREATE FUNCTION statement:

CREATE . RUNCTION job_of22 (jc INTEGER) RETURNS CHARACTER VARYING(20)
RETURNS NULL ON NULL INPUT

LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routines5_jar:Routines5.job2";

When an SQL function is called whose CREATE FUNCTION statement specifies RETURNS NULL ON
NULL INPUT, then if the runtime value of any argument is null, the result of the function call is set to null,
and the function itself is not invoked.

The following SELECT statement invokes the job_of22 function.

SELECT name, job_of22(jobcode)

20 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.15 Null argument values and the RETURNS NULL clause

FROM emps
WHERE job_of22(jobcode) <> "Administrator”;

This SELECT is equivalent to the previous SELECT that invokes the job_o¥2 function within CASE
expressions. That is, the RETURNS NULL ON NULL INPUT clause in the CREATE FUNCTION statement
for Job_oT22 makes the null-testing CASE expressions implicit.

The RETURNS NULL ON NULL INPUT option applies to all of the parameters of the function, not just to
the pafameters whose Java data type IS not nullable.

The cgnvention that the RETURNS NULL ON NULL INPUT option defines for a function is the same cpnven-
tion that is followed for most built-in SQL functions and operators: if any operand is null, then the-valug of the
operatfon is null.

The alternative to the RETURNS NULL ON NULL INPUT clause is CALLED ON NULL INPUT, which is
the default.

You cgn specify the same Java method in multiple CREATE FUNCTION statements (i.e., defining SQL syn-
, and those CREATE FUNCTION statements can either specify RETURNS NULL ON NULL INPUT

If you reate multiple SQL functions named job_o¥22 (with different-numbers and/or types of parameters),
you cah specify (or default to) CALLED ON NULL INPUT in some'efthe CREATE FUNCTION job [of22
statemgnts, and specify RETURNS NULL ON NULL INPUT jn®@thers. The actions of the RETURNS [NULL
ON NULL INPUT clause are taken after overloading resolution has been done and a particular CREATE

The RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT clauses can only be specified in
CREATE FUNCTION statements, that is, not in CREATE PROCEDURE statements. This is because there is
ivalent conditional treatment of procedure<calls that would be as generally useful.

3.16| Static variables

Java stptic methods can be contained in Java classes that have static variables, and, in Java, static methqds can
both reference and set staticwariables. For example:

publi¢ class Routingest {
static String joebs;
pubjlic statie)void setJobs (String js) throws SQLException {jobs=js;}
public static String job3(int jc) throws SQLException {
iT gc<uT || Jc * 5 > length(Jobs)+1) return "Invalid jobcode";
else return jobs.substring(5*(jJc-1), 5*jc);

}

3
Assume that you install this class in an SQL system:

SQLJ. INSTALL_JAR("Ffile:~/classes/Routines6.jar®, "routines6_jar®, 0);

The class Routines6 has a static variable jobs, which is set by the static method setJobs and referenced
by the static method job3. A class such as Routines6 that dynamically modifies the values of static variables
is well-defined in Java, and can be useful. However, when such a class is installed in an SQL system, and the
methods setJobs and job3 are defined as SQL procedures and functions (<SQL-invoked routine>), the

©ISO/IEC 2014 — All rights reserved Routinestutorial 21

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.16 Staticvariables

scope of the assignments to the static variable jobs is implementation-dependent. That is, the scope of that
variable is not specified, and is likely to differ across implementations (and possibly across the releases of a
given implementation).

For example:

CREATE PROCEDURE set_jobs (js CHARACTER VARYING(100))
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routines6_jar:Routines6.setJobs”;
CREATE FUNCTION job_of3 (jc integer) RETURNS CHARACTER VARYING(20)
RETURNS NULL ON NULL INPUT
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME "routines6_jar:Routines6.job3";
CALL $et_jobs ("AdminSalesClerk®);
SELECT name, job_of3 (jobcode)
FROM émps
WHERE | Job_of3(jobcode) <> *"Admin*®;

This appears to be a straightforward use of the Routinese6 class in SQL. The call of set_jobs spegifies a
list of job code values, which a user might reasonably assume is “cached’ %y the SQL-environment angl used

in subgequent calls of job_o¥F3. However, since the scope of the static yariable Jobs in the SQL-envirgnment
is implementation-dependent, the answers to the following questions-regarding the values passed to the
set_jobs procedure are likely to differ across implementations:

— Isjthe set__jobs value visible only to the current sessionOr also to concurrent sessions and to latgr non-
cqncurrent sessions?

— Dpes the set_jobs value persist across a COMMIT? Is it reset by a ROLLBACK?

The inpplication of this uncertainty is that you should not use classes that assign to static variables in SQL.
Note, however, that such assignments will not (necessarily) be detected by the SQL implementation, either
when you CREATE PROCEDURE/FUNCTION or when you call a routine.

You cgn prevent assignments to static variables in Java by declaring them with the Final property.

3.17 | Dropping SQL«names of Java methods

After you have created\SQL procedure or function names for Java methods, you can drop those SQL names
with ajnormal SQLsDROP statement:

DROP FUNCTION-region RESTRICT;

A DROPstatement has no effect on the Java method (or class) on which the SQL name was defined. Drppping
an SQL_procedure or function implicitly revokes any granted privileges for that routine

3.18 Removing Java classes from SQL

You can completely uninstall a JAR with the SQLJ . REMOVE__JAR procedure. For example:

SQLJ.REMOVE_JAR ("routines_jar", 0);

22 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.18 Removing Java classes from SQL

As noted earlier, JARs can contain deployment descriptors, which specify implicit actions to be taken by the
SQLJ. INSTALL_JAR and SQLJ .REMOVE_JAR procedures. The second parameter is an integer that specifies
whether you do or do not (indicated by non-zero or zero values, respectively) want the SQLJ . REMOVE_JAR
procedure to execute the actions specified by a deployment descriptor in the JAR.

After the SQLJ . REMOVE__JAR procedure performs any actions specified by the JAR's deployment descriptor
file(s), there shall be noremaining SQL procedure or function whose external name references any method of

any class-in-the epnnifinrl JAR Any such mmgining SQl prnhnr‘lumc orfunctions-shall be nyplir*ifl\ll dr pped

before|the SQLJ . REMOVE__JAR procedure will be able to complete successfully.

3.19| Replacing Java classesin SQL

Assunie that you have installed a Java JAR in SQL, and you want to replace some or.all'of the contained dlasses,
e.g., tg correct or improve them. You can do this by using the SQLJ . REMOVE AR procedure to remagve the
currenf JAR, and then using the SQLJ . INSTALL__JAR procedure to install the new version. However| you

will prpbably have executed one or more SQL DDL statements that depend.on’the methods of the clasges that
you want to replace. That is, you may have executed one or more of the-fallowing DDL operations:

— CREATE PROCEDURE/FUNCTION statements referencing, the-classes.
— GRANT statements referencing those SQL procedures and functions.

— CREATE PROCEDURE/FUNCTION statements for<SQL procedures and functions that invoke thpse
SQL procedures and functions.

— CREATE VIEW/TABLE statements for SQL views and tables that invoke those SQL procedures gnd
functions.

The rules for the SQLJ . REMOVE_JAR progedure require that you drop all SQL procedure/functions that
directly reference methods of a class before‘you can remove the JAR containing the class. And, SQL ryles for
RESTRICT, as specified in the SQL <drop routine statement>, require that you drop all SQL objects (tables,
views,|SQL-server modules, and routines whose bodies are written in SQL) that invoke a procedure/fupction
before|you drop the procedure/function.

Thus, {f you use the SQLJ .REMOVE_JAR and SQLJ . INSTALL_JAR procedures to replace a JAR, ypu will
have t¢ drop the SQL objects that directly or indirectly depend on the methods of the classes in the JAR, and
then rg-create those items.

The SQLJ . REPKACE__JAR procedure avoids this requirement, by performing an instantaneous remove and
install| with suitable validity checks. You can therefore call the SQLJ . REPLACE__JAR procedure withdut first
droppinhg the“dependent SQL objects.

For example, in Subclause 3.4, “Installing region and correctStates in SQL”, we installed the class of Rou-
tinesl with the following statement:

SQLJ.INSTALL_JAR("file:~/classes/Routinesl.jar”, "routinesl_jar®, 0)

You can replace that JAR with a statement such as:

SQLJ.REPLACE_JAR("file:~/revised_classes/Routinesl.jar®, "routinesl_jar")

©ISO/IEC 2014 — All rights reserved Routinestutorial 23

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.19 Replacing Java classesin SQL

Note that the JAR name shall be the same. It identifies the existing JAR, and will subsequently identify the
replacement JAR. The URL of the replacement JAR can be the same as or different from the URL of the orig-
inal JAR.

In the general case, there will be classes in the old JAR that are not in the new JAR, classes that are in both
JARs, and classes that are in the new JAR and not in the old JAR. These are referred to respectively as unmatched
old classes, matching old/new classes, and unmatched new classes.

The v1|idity requirements on the replacement JAR are:

— There shall be no SQL procedure or function whose routine descriptor's <external routine name> spgcified
ar] <external Java reference string> that references any method of any unmatched old class (since gll
unmatched old classes will be removed).

— Apy CREATE PROCEDURE/FUNCTION statement that references a method of-a.matching class{shall
bg a valid statement for the new class.

— There shall be no SQL user-defined type whose descriptor's <jar and class name> references any unmatched
olf class.

— Apy CREATE TYPE statement that references a method of a matching class shall be a valid statement for
the new class.

If thes¢ requirements are satisfied, the SQLJ . REPLACE_ JAR procedure deletes the old classes (both unmatched
and matching) and installs the new classes (both unmatched and matching).

3.20| Visibility

The SQLJ . INSTALL_JAR procedure will install any Java classes into the SQL system. However, notjall

methogls of all classes can be referenced in.SQL. Only visible methods of visible classes can be referenged in
SQL. The notion of visible classes and.methods is based on the concept of mappable data types. They may be
summarized as follows:

— A}Java data type is mappableto SQL (and vice versa) if and only if it has a corresponding SQL data type,
onit is an array that is used.for OUT parameters, or it is an array that is used for result sets.

— AJJava method is mappable (to SQL) if and only if the data type of each parameter is mappable, and the
repult type is either-d mappable data type or is void.

A Javg method jswisible in SQL if and only if it is publ ic, static, and mappable.

Only the visible'installed methods can be referenced in SQL. Other methods simply don't exist in SQL. Aftempts
to refefence-them will raise implementation-defined syntax errors such as unknown name.

Non-visible classes and methods can, however, be used by the visible methods.

3.21 Exceptions

SQL exception conditions are defined for the SQL/JRT procedures. For example, if the URL argument specified
in calls to SQLJ. INSTALL_JAR or SQLJ.REPLACE_JAR (etc.) is invalid, an SQL exception condition
(Java.sql . SQLException) with a specified SQLSTATE will be raised. These exception conditions are

24 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.21 Exceptions

specified in the definitions of the procedures. Java exceptions that are thrown during execution of a Java method
in SQL can be caught within Java, and if this is done, then those exceptions do not affect SQL processing.

Any Java exceptions that are uncaught when a Java method called from SQL completes will be returned in
SQL as SQL exception conditions.

For example, in Subclause 3.3, “Example Java methods: region and correctStates™, we defined the Java method
Routinesl.region.And, in Subclause 3.5, “Defining SQL names for region and correctStates”, we defined
the S@L function name region_of for the Java method Routinesl.region.

The Java method Routinesl. region throws an exception if the argument value is not in a specified range
of valyes:

publi¢ class routinesl {

pubjic static int region(String s) throws SQLException {
T (s.equals ("MN'™) || s-.equals ('VT") || s-equals ("NH™)) return\I;
else if (s.equals ("FL"™) || s-equals ("GA™) || s-equals ("AL"))~return 2;
else if (s.equals (""CA™) || s-equals ("AZ™) || s-equals ("NV'")) return 3;
else throw new SQLException("Invalid state code', "38001")%

}
}

Assume that the EMPS table contains a row for which the value of the”'STATE column is 'TX'. The follpwing
SELECT will therefore raise an exception condition when it encaunters that row of EMPS:

SELECT name, region_of(state)
FROM émps
WHERE | region_of(state) = 1;

The cdll of the region_of function with an invahd parameter ('TX") will raise the SQL exception copdition
with the SQLSTATE of '38001". The SQL message text associated with that exception will be the folloying
string:

"Invalid state code”

The message text and SQLSTATE may be specified in the Java exception specified in the Java throw statement.
If that exception does not specify an SQLSTATE, then the default SQL exception condition for an uncgught
Java exception is raised.

When p Java method executes an SQL statement, any exception condition raised in the SQL statement will be
raised Jin the Java method as a Java exception that is specifically the SQLException subclass of the Java

Exception class."The effect of such an SQL exception condition on the outer SQL statement that callled the
Java method isdmplementation-defined. For portability, a Java method that is called from SQL, that itself
executps an SQL statement, and that catches an SQLException from that inner SQL statement should re-
throw that SQLException.

3.22 Deployment descriptors

When you install a JAR containing a set of Java classes into SQL, you shall execute one or more CREATE
PROCEDURE/FUNCTION statements before you can call the static methods of those classes as SQL procedures
and functions. And, you may also want to perform various GRANT statements for the SQL names created by
those CREATE PROCEDURE FUNCTION statements. When you later remove a JAR, you will want to execute
corresponding DROP PROCEDURE/FUNCTION statements and REVOKE statements.

©ISO/IEC 2014 — All rights reserved Routinestutorial 25

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.22 Deployment descriptors

If you plan to install a JAR in several SQL systems, the various CREATE, GRANT, DROP, and REVOKE
statements will often be the same for each such SQL system. One way that you could simplify the install and
remove actions would be as follows:

— Provide methods called “afterlnstal 1” and “beforeRemove” to be executed as an “install script”
and “remove script”, performing such actions as the following:

The afterinstall method: The CREATE and GRANT statements that you want to be performed

S

— In
cl

— In

Note t
therefq
that yg

If you
you sp

That is, the aFterInstal l and beforeRemove methods would use SQL/OLB'0rIDBC to i
DL for the desired CREATE, GRANT, DROP, and REVOKE statements.

Clude the after Instal l and beforeRemove methods in a class, whictpyou might call the d¢
hss, and include that dep 1oy class in the JAR that you plan to distribute.

struct recipients of the JAR to do the following to install the JAR:

struct recipients of the JAR to proceed.as follows to remove the JAR:

nat this simplification of the install and remove actions still requires several manual steps. SQL/J
re provides a mechanism, called deployment descriptors, with which you can specify the SQL stat
u want to be eéxecuted implicitly by the SQLJ . INSTALL_JAR and SQLJ.REMOVE_JAR proc

want thedeployment descriptors in a JAR to be interpreted when you install and remove the JAR
beify anon-zero value for the dep 1oy parameter of the SQLJ . INSTALL_JAR procedure and similarly

for the
descri

CREATE and GRANT statements to execute after it has installed the classes of the JAR. The corresponding

undep oy parameter of the SQLJ . REMOVE_JAR procedure. If a JAR contains a deployment

when the JAR is installed.

The beforeRemove method: The DROP and REVOKE statements (the inverse of the\actions of

the after Install method) that you want to be performed when the JAR is removed:

Call the SQLJ - INSTALL_JAR procedure for the JAR.

Execute a CREATE procedure statement for the after knstall method, giving it an SQLU
suchas after_instal l. Note that this “bootstrap” action cannot be included in the after Ins
method itself.

Call the after_install procedure. Note: We can assume that the after_install pro
will include a CREATE PROCEDURE statement to give the beForeRemove method an SQL
such as before_remove.

Call the before_remove procedure.

Drop the after_installand before_remove procedures. Note that this action canng
included in the beforeRemove procedure itself.

Call the SQLJ .REMOVE_ JAR procedure.

woke

eploy

name
stall

cedure
| name

t be

RT
bments
pdures.

, then

ne

SQLJ.REMOVE_JAR procedure uses the deployment descriptor todetermine the DROP and REVOKE statements
to execute before it removes the JAR and its classes.

A deployment descriptor is a text file containing a list of SQL CREATEand GRANT statements to be executed
when the JAR is installed, and a list of SQL DROP and REVOKE statements to be executed when the JAR is
removed.

26 SQL with Routines and Types Using the Java™ Programming L anguage

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.22 Deployment descriptors

For example, suppose that you have incorporated the above classes Routinesl, Routines2,and Routines3
into a single JAR. The following is a possible deployment descriptor that you might want to include in that
JAR.

Notes:

— Within a deployment descriptor file, you use the JAR name“thisjar” as a placeholder JAR name in the
EXTERNAL NAME clauses of CREATE statements.

— TILe various user names in this example are of course hypothetical.

SQLActions[] = {
"BEGIN INSTALL

CREATE PROCEDURE correct_states (old CHARACTER(20), new CHARACTER(20))

MODIFIES SQL DATA

LANGUAGE JAVA PARAMETER STYLE JAVA

EXTERNAL NAME "thisjar:Routinesl.correctStates”;

GRANT EXECUTE ON correct_states TO Baker;

CREATE FUNCTION region_of(state CHARACTER(20)) RETURNS INTEGER

NO SQL

LANGUAGE JAVA PARAMETER STYLE JAVA

EXTERNAL NAME "thisjar:Routinesl.region”;

GRANT EXECUTE ON region_of TO PUBLIC;

CREATE PROCEDURE best2 (OUT nl CHARACTER VARYING(50), OUT idl CHARACTER(5),
OUT regionl INTEGER, QUT sl1 DECIMAL(6,2),
OUT n2 CHARACTER VARYANG(50), OUT id2 CHARACTER(5),
OUT region2 INTEGER,{ OUT s2 DECIMAL(6,2),
region INTEGER)

READS SQL DATA

LANGUAGE JAVA PARAMETER STYLE JAVA

EXTERNAL NAME "thisjar:Routines2_.bestTwoEmps”;

GRANT EXECUTE ON best2 TO Baker, Cook, Farmer;

CREATE PROCEDURE ordered_emps (region INTEGER)

READS SQL DATA

DYNAMIC RESULT SETS 1

LANGUAGE JAVA PARAMETERCSTYLE JAVA

EXTERNAL NAME "thisjar.:Routines3.rankedEmps”;

GRANT EXECUTE ON ordered_emps TO PUBLIC;

END| INSTALL",

"BEGIN REMOVE

REVOKE EXECUTE(ON correct_states FROM Baker RESTRICT;

ROP PROCEDURE. correct_states RESTRICT;

FVOKE EXECUTE ON region_of FROM PUBLIC RESTRICT;

ROP FUNCTION region_of RESTRICT;

FVOKESEXECUTE ON best2 FROM Baker, Cook, Farmer RESTRICT;

ROP PROCEDURE best2 RESTRICT;

F\V/OKE EXECUTE ON ordered_emps FROM PUBLIC RESTRICT;

DROP PROUCEDURE ordered_emps RESIRICT,;
END REMOVE"

}

Assume that deploy_routines.txt isthe name of a text file containing the above deployment descriptor.
You would build a JARcontaining the following:

D
R
D
R
D
R

— The text file deploy_routines.txt.

— The class files for Routinesl, Routines?2, and Routines3.

©ISO/IEC 2014 — All rights reserved Routinestutorial 27

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.22 Deployment descriptors

— A manifest file with the following manifest entry:

Name: deploy_routines.txt

SQLJIDeploymentDescriptor: TRUE

This manifest entry identifies the file deploy_routines.txt as a deployment descriptor in the JAR, for
theSQLJ. INSTALL_JAR and SQLJ.REMOVE_JAR procedures to interpret.

Deployment descriptor files can contain syntax errors. In general, any error that can arise in a CREATH
GRANT statement can occur in a deployment descriptor file.

You mpy want to install a JAR that contains a deployment descriptor file withoutperforming the .deploy
actiong. For example, those actions may contain syntax errors, or may simply be inappropriate for som
systen]. You can do this by specifying a zero value for the deploy parameter of the SQLI “INSTALL|
procedure, and a zero value for the undep 1oy parameter of the SQLJ . REMOVE__JAR procedure.

3.23| Paths

In the preceding clauses, the example JARs and their Java classes reféreénced other Java classes in the pa
jJaval lang and Java.sql. The JARs and their Java classes that you install can also reference Java
in othgr JARs that you have installed or will install. For example, suppose that you have three JARs, con
Java classes relating to administration, project managementsand property management.

SQLJ. INSTALL_JAR ("Ffile:~/classes/admin.jar: ,~\Yadmin_jar®, 0);

At thig point, you can execute CREATE PROCEDURE/FUNCTION statements referencing the methodls of
classeq in admin__jar. And, you can call those procedures and functions. If, at runtime, the Java mett
admin_jar reference system classes or otherJava classes that are contained in admin__jar, then th
refererjces will be resolved implicitly. If the;admin__jar methods reference Java classes that are conts
in prgperty_jar (which we will install below), then an exception condition will be raised for an unre

class reference.

SQLJ. INSTALL_JAR ("file:~/cVasses/property.jar®™, "property_jar", 0);
SQLJ. INSTALL_JAR ("fileg~/classes/project_jar®, “project_jar~®, 0);

These ralls of SQLJ . INSTALL_JAR install property_jar and project_jar. However, refere
the prioperty_jar classes by classes in admin__jar will still not be resolved. Similarly, references
property_jar{o:classes in project_jar will not be resolved, and vice versa.

To sunpmarizes

hef you install a JAR, any references within the classes of that JAR to system classes, or to class

or

ment
b SQL
JAR

ckages
Classes
aining

ods of
pse
ined
solved

hces to
within

es that

are_cantained in the same JAR, will be implicitly resolved

References to any other classes, installed or not, are unresolved.

You can install JARs that have unresolved class references, and you can use CREATE PROCEDURE/FUNC-

TION statements to define SQL routines on the methods of those classes.

When you call SQL routines defined on Java methods, exceptions for unresolved class references may

occur at any time allowed by [Java].

Invoking classes that contain unresolved references can be useful:

28 SQL with Routines and Types Using the Java™ Programming L anguage

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

3.23

— To use or to test partially-written applications.

Paths

— To use classes that have some methods that are not appropriate for use in an SQL-environment. For
example, a class that has display-oriented or interactive methods that are used in other Java-enabled envi-

ro

nments, but not within an SQL system.

To resolve references to classes in other JARs, you use the SQLJ .ALTER_JAVA_PATH procedure.

SQLJ.

SQLJ.
SQLJ.

The S
SQLJ
— I
in
— P
in
se
an

Suppo
that w
class n
call de|

— Eq
— If
ng
— If
be

— If
el

The p4g
the fol

ALTER_JAVA_PATH (fadmin_jar®, "(property.*,property_jar)

(project.*, project_jar)");
A\LTER_JAVA_PATH ("property_jar®", "(project.*,project_jar)");
\LTER_JAVA _PATH ("project_jar®, "(*, property_jar) (*, admin_jar)");

DLJ .ALTER_JAVA_PATH procedure has two arguments, both of which are character strings. |
ALTER_JAVA PATH(JX, PX):

([is the name of the JAR for which you want to specify a path. This is the JAR name that you spe
the INSTALL_JAR procedure.

JX to be resolved. The path argument is a character string containing'a list of path elements (not ¢
parated). Each path element is a parenthesized pair (comma-separated), in which the first itemis ap
d the second item is a JAR name.

be that at runtime, some method of a class C that is contained in JAR JX is being evaluated. And, s
thin the execution of class C, a reference to some other/class named XC is encountered, such tha
lamed XC is defined in JAR JX. The path PX specifiéd for JAR JX in the SQLJ.ALTER_JAVA |
fermines the resolution, if any, of class name XGC:

ch path element '(PAT;, J;)' is examined.

PAT; is a fully qualified class name thatis equivalent to XC, then XC shall be defined in JAR J;.
t, then the reference to XC is unresolved.

PAT; is a package name followed by an *', and XC is the name of a class in that package, then X
defined in JAR J;. If it isnot; then the reference to XC is unresolved.

PAT; is a single ", then if XC is defined in JAR J;, that resolution is used; otherwise, subsequen
bments are tested.

ths that we specified above for admin_jar, property_jar, and project_jar therefore
owing effegt:

h a call

cified

K is the path of JARs in which you want unresolved class names that@arefeferenced by classes contained

bmma-
attern,

ippose
tno
PATH

Ifitis

C shall

[path

have

ill be

ed in

— When exeeuting within admin_jar, classes that are in the property or project packages W
resolved’in property_jar and project_jar, respectively.

— Whenmexecuting within proper ty_jar, classes thatare im the project package witt be Tesotv
project_jar.

— When executing within project_jar, all classes will first be resolved in property_jar, and then
inadmin_jar.

Note that if a class C contained in property_jar directly contains a reference to a class AC contained in

admin_jar, then that reference to AC will be unresolved, since admin__jar is not specified in the path for
property_jar. But, if that class C invokes a method project.C2 .M of a class contained in
project_ jar,and project.C2._M references class AC, then that reference to AC will be resolved in

©ISO/IE

C 2014 — All rights reserved Routinestutor

ial 29

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.23 Paths

admin_jar, since admin_jar is specified in the path for project_jar. That is, while class C is being
executed, the path specified for property_jar is used, and while class C2 is being executed, the path
specified for project_jar is used. Thus, as execution transfers to classes contained in different JARSs, the
current path changes to the path specified for each such JAR. In other words, the path specified for a JAR J1
applies only to class references that occur directly within the classes of J1, not to class references that occur in
some class contained in another JAR that is invoked from a class of J1.

The path-that you spec iy : 2 o 2 f the
ifi classes

When lyou call the SQLJ.ALTER_JAVA_ PATH procedure, the path you specify replaces the eurrent gath (if
mple-
mentation-defined.

When lyou execute the SQLJ.ALTER_JAVA_PATH procedure, you shall be the owner of the JAR thaf you
specify as the first argument, and you shall have the USAGE privilege on each JAR that you specify in the path
argument.

The pgth facility is an optional feature.

3.24 | Privileges

The SQL privilege system is extended for SQL/JRT.

First, the SQLJ build-in procedures are considered to,be SQL-schema statements, and as such require imple-
mentation-defined privileges to be invoked.

Secondl, the USAGE privilege is defined for. JARs. USAGE is needed on a JAR in order to:
— Rgference it in a CREATE PROCEDURE/FUNCTION/TYPE statement.
— Listitinan SQL-Java path indnSQLJ.ALTER_JAVA PATH procedure call.

The uger who installs a JAR is'the owner of that JAR and implicitly has USAGE on the JAR, and can gfant
USAGE to other users andsales. Only the owner can replace, remove, or alter the JAR.

USAGE privileges on & JAR is an optional feature.

3.25| Information Schema

Additional Views and columns are defined Tor the Information Schema to describe external Java routines and
external Java types:

— JARS lists the JARs installed in a database.
— METHOD_SPECIFICATIONS is augmented to include information about static field methods.
— ROUTINES contains information about external Java routines.

— USAGE_PRIVILEGES contains information on USAGE privileges granted on JARs.

30 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
3.25 Information Schema
— USER_DEFINED_TYPES is augmented to include information about external Java types.
In addition, the usage of JARSs by routines, types, and other JARs is shown in a collection of new usage views:
— JAR_JAR_USAGE lists the JARs used in the SQL-Java path of a given JAR.
— ROUTINE_JAR_USAGE names the JAR used in an external Java routine.

— TYPEJAR USAGE namesthe JAR used-in-an external Java tyne

These [Information Schema views are optional features.

©ISO/IEC 2014 — All rights reserved Routinestutorial 31

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)

(Blank page)

32 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.1 Overview

4 Typestutorial

4.1 | Overview

This tytorial clause shows a series of example Java classes and their methods, and shows howthey can
install¢d in an SQL system and used as data types in SQL.

4.2 | Example Java classes

This Spbclause shows example Java classes Address and Address2Line.

— The Address class represents street addresses in the USA, withlastreet field containing a streef name

ar{d building number, and a zi p field containing a postal codé.

— The Address2Line class is a subclass of the Address-class. It adds one additional field, named 1
which would contain data such as an apartment number.

— The Address and Address2L ine classes both have the following methods:

¢ | A default niladic constructor.

A constructor with parameters.
« | A toString method to return-a’string representation of an address.

— The Address and Address2Liine classes are both specified to implement the Java interfaces
Java.io.Serializableand java.sql .SQLData.

A Javq class that will be used.as a data type in SQL shall implement either the Java interface
jJavalio.Serializable orthe Java interface Java.sql . SQLData or both. This is required to t
class ipstances between JVMs and between Java and SQL.

It is aspumed thatthe import statements import java.sql.*; and java.math.*; have been in
in all dlasses.

The following'is the text of the Address class:

ine2,

ransfer

cluded

publ iCTlass Address Implements java-To-seriatizabte, Java-sgi-SQtData <
public String street;
public String zip;
public static int recommendedWidth = 25;
private String sql_type; // For the java.sql.SQLData interface
// A default constructor
public Address () {
street = "Unknown";
zip = "None";

}

©ISO/IEC 2014 — All rights reserved Typestutorial 33

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.2 Example Java classes

}

The fo

// A constructor with parameters
public Address (String S, String 2) {
street = S;
zip = Z;
by
// A method to return a string representation of the full address
public String toString() {
return "'Street=" + street + " ZIP=" + zip;

}

/f A void method to remove leading blanks

/f This uses the static method Misc.stripLeadingBlanks.
public void removelLeadingBlanks() {

street = Misc.stripLeadingBlanks(street);

zip = Misc.stripLeadingBlanks(zip);

b
/f A static method to determine if two addresses

/f are in arithmetically contiguous zones.

plblic static String contiguous(Address al, Address a2) {

if (Integer.parselnt(al.zip) == Integer.parselnt(a2.zip)#1, ||
Integer.parselnt(al.zip) == Integer.parselnt(a2.zip) -1)
return(‘'yes');
else

return(*'no™);

by

/f java.sqgl .SQLData implementation:

public void readSQL (SQLInput in, String typ€)
throws SQLException {

sql_type = type;

street = in.readString(Q);

zip = in.readString(Q);

3

public void writeSQL (SQLOutput out)
throws SQLException {

out_writeString(street);

out.writeString(zip);

3

public String getSQLTypeName () {
return sql_type;

3

publi¢ class/Address2Line extends Address

34 SQL with Routines and Types Using the Java™ Programming L anguage

implements java.io.Serializable, java.sql.SQLData {
plblLilc String line2;
/{ A _default constructor

P

flowing is the text'of the Address2L ine class, which is a subclass of the Address class:

ol o A-alal Lo Y - AN
pubTrc—AaaressSZzCIme ()

super() ;
b

line2 = ;
// A constructor with parameters
public Address2Line (String S, String L2, String 2) {
street = S;
line2 = L2;
zip = Z;

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.2 Example Java classes

// A method to return a string representation of the full address
public String toString() {

return "Street=" + street +'" Line2=" + line2 + " ZIP=" + zip;
by
// A void method to remove leading blanks.
// Note that this is an imperative method that modifies the instance.
// This uses the static method Misc.stripLeadingBlanks defined below.
public void removeLeadingBlanks() {
TineZ = Misc.stripLeadingBTanks(TineZ);
super .removelLeadingBlanks() ;

by

/f java.sqgl .SQLData implementation:

public void readSQL (SQLInput in, String type)
throws SQLException {

super .readSQL(in,type);

line2 = in.readString(Q);

3

plblic void writeSQL (SQLOutput out)
throws SQLException {

super .writeSQL(out);

out.writeString(line2);

/{The following class and method is used only internally in the above Java methqds.
/fWe won"t define an SQL function for this method.

publi¢ class Misc {

/f remove leading blanks from a String

plblic static String stripLeadingBlanks(String s) {

int scan;

for (scan=0; scan < s.length() ; scant+)

if (!'java.lang.Character.isSpace(s.charAt(scan)))

break;

if (scan == s.length()) return“";

else return s.substring(scan);

4.3 | Installing Address and Address2Linein an SQL system

To install classesssuch as Address and Address2Line in an SQL system, you proceed as in Clausg¢ 3,
“Routines tutorial™. The source code for the classes will be in files with filetype Java, which you compile
using the jawac command to produce object code files with filetype class. You then assemble those glass
files intoa Java JAR with filetype jar, and you place that JAR in a directory for which you can specify 4 URL.
Assuniethat File:~/classes/AddrJar . jar is such a URL. Now, you can install the classes info an
SQL system by calling the SQLJ . INSTALL_JAR procedure that was described in Clause 3, “Routines tutorial””:

SQLJ.INSTALL_JAR ("file:~/classes/AddrJar._jar®, "address_classes_jar®, 0);

©ISO/IEC 2014 — All rights reserved Typestutorial 35

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
44 CREATE TYPE for Address and Address2L ine

44 CREATE TYPE for Address and Address2Line

Before you can use a Java class as an SQL data type, you shall define SQL names for the SQL data type and
its fields and methods. You do this with extended forms of the SQL CREATE TYPE statement.

An implementation of SQL/JRT may support these extended forms of the CREATE TYPE statement explicitly
as standalone SQL statements, or in deployment descriptor files, or may support animplementation-defined
mechahism that achieves the same effect as the CREATE TYPE statement. Deployment descriptor fileg are
includéd in JARs, and executed implicitly during calls of the built-in SQL/JRT procedure SQLJ . INSTAELL_JAR
that specify a deploy action (third parameter non-zero). This is described in Subclause 3.22, “Deploymgnt
descriptors™. In this Annex, we will show the CREATE TYPE statements as standalone SQL Statementp.

The following SQL CREATE TYPE statements reference the above Java Address and/Address2L ine
classey:

CREATE TYPE addr EXTERNAL NAME "address_classes_jar:Address*
L ANGUAGE JAVA

AS (
street_attr CHARACTER VARYING(50) EXTERNAL NAME "Stréet”,
p_attr CHARACTER(10) EXTERNAL NAME "zip")

z

STATIC METHOD rec_width Q

RETURNS INTEGER

EXTERNAL VARIABLE NAME "recommendedWidth®,

CONSTRUCTOR METHOD addr

RETURNS addr SELF AS RESULT

EXTERNAL NAME “Address”,

CONSTRUCTOR METHOD addr (s_parm CHARACTERJVARYING(50),

z_parm CHARACPER(10))

RETURNS addr SELF AS RESULT

EXTERNAL NAME “Address”,

METHOD to_string O

RETURNS CHARACTER VARYING(255)

EXTERNAL NAME "toString”,

METHOD remove_leading_blanks O

RETURNS addr SELF AS_RESULT

EXTERNAL NAME “"removeleadingBlanks”,

STATIC METHOD contiguous (Al addr, A2 addr)

RETURNS CHARACTER(3)

EXTERNAL NAME-“contiguous”;

CREATE TYPE addr_ ‘Fine

UNDER addr

EXTERNALXNAME "address_classes_jar:Address2Line”

LANGUAGE’ JAVA

AS

1jn€2_attr CHARACTER VARYING (100) EXTERNAL NAME “line2")

CONSTRUCTOR METHOD addr 2 line Q)

RETURNS addr_2_line SELF AS RESULT
EXTERNAL NAME “Address2Line”,

CONSTRUCTOR METHOD addr_2_line (s_parm CHARACTER VARYING(50),
s2_parm CHARACTER(100),
z_parm CHARACTER(10))

RETURNS addr_2_line SELF AS RESULT
EXTERNAL NAME “Address2Line”,
METHOD strip Q

36 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.4 CREATE TYPE for Addressand Address2Line

RETURNS addr_2_line SELF AS RESULT
EXTERNAL NAME “"removelLeadingBlanks”;

These CREATE TYPE statements are an extension of the SQL CREATE TYPE statement as defined in

[1ISO9075-2], Subclause 11.51, “<user-defined type definition>". The above extensions add the EXTERNAL
clauses, which are patterned after the EXTERNAL clause of the SQL CREATE PROCEDURE/FUNCTION
statement, and the METHOD clauses, which are patterned after SQL CREATE PROCEDURE/FUNCTION

statements.

In this|Technical Report, we'll describe the basic elements of these CREATE TYPE statements, and.det
later sgctions discussions of the following less intuitive clauses:

— The Java static field recommendedWidth of the Address class is represented in the,.SQL CRH
TYPE by a static method with no arguments, named rec_width. This is described'in"Subclause
“Static fields”.

— The Java void method removelLeadingBlanks of the Address classs-represented in the S
CREATE TYPE for the addr type by a method, remove_leading_blanks that specifies RET
SELF AS RESULT. The removeLeadingBlanks and strip methods of the Address2Lin
ar treated similarly. This is described in Subclause 4.16, “Instance-update methods”. The strip 1
isfincluded to illustrate that multiple SQL methods can reference.a single Java method.

— The other clauses of the CREATE TYPE statements are straightforward transliterations of the sign
of|the Java classes.

The EXTERNAL clause following the CREATE TYPE clause-shall reference a Java class that is in its idg

er to

EATE
4.15,

QL

URNS
b class
nethod

atures

ntified

install¢d JAR. This is referred to as the subject Java class,.and the SQL data type is the subject SQL data type.

If the EXTERNAL clause of a METHOD clause references a Java constructor method (i.e., a method W
explicitly specified return type whose name is the:same as the class name), then the SQL method name

ith no
shall

be the same as the SQL data type name. That is;\the same conventions for constructor function calls wijl be

used in SQL as in Java.

SQL dgata types such as addr and addr—2_ 1 ine that are defined on Java classes are referred to as e
Java dgta types.

4.5 | Multiple SQLtypesfor a single Java class

You cgn define meyeithan one SQL data type on a given Java class. For example:

CREATE TYPE-another_addr
EXTERNAL NAME "address_classes_jar:Address”
LANGUAGE JAVA

cter nal

AS
zip_part CHARACTER(10) EXTERNAL NAME "zip-,
street_part CHARACTER VARYING(50) EXTERNAL NAME "street")
STATIC METHOD rec_width_part () RETURNS INTEGER

EXTERNAL VARIABLE NAME "recommendedWidth®,
CONSTRUCTOR METHOD another_addr

RETURNS another_addr SELF AS RESULT

EXTERNAL NAME "Address”®,
CONSTRUCTOR METHOD another_addr (s_parm CHARACTER VARYING(50),

z_parm CHARACTER(10))

©ISO/IEC 2014 — All rights reserved Typestutorial 37

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
45 Multiple SQL typesfor asingle Java class

RETURNS another_addr SELF AS RESULT
EXTERNAL NAME "Address”,

METHOD string_rep O
RETURNS CHARACTER VARYING(255)
EXTERNAL NAME "toString-”,

STATIC METHOD contig (Al another_addr,

A2 another_addr)

RETURNS CHARACTER(3)
EXTERNAL NAME “contrguous™;

The SQL data type another_addr is a different data type than the addr data type. The two datatypef aren't
compafrable, assignable, or union compatible. You can include or omit an SQL data type that is-alsubtype of

the another_addr type for “2 line” data. If you define such a subtype, with a name such as
another_2 line,theninstances ofanother_2_ line are specializations of anothetr_addr, 3nd not
of addr.

4.6 | Collapsing subclasses

Given Pava classes and subclasses such as Address and Address2Line, you can either define SQU data
types flor each such class, or for a subset of those classes.

Assunie that in SQL you only want to use the Java class Addfess2L ine. You can define an SQL data type
for that class without a corresponding SQL data type for the’Address class. For example:

CREATE TYPE complete_addr

EXTERNAL NAME "address_classes_jar:Address2Line”

LANGUAGE JAVA

AS (

zjp_attr CHARACTER(10) EXTERNAL 'NAME "zip-,

street_attr CHARACTER VARYING(50) EXTERNAL NAME "street”,

ne2_attr CHARACTER VARYING(L00) EXTERNAL NAME "line2")

TATIC METHOD rec_width Q

RETURNS INTEGER

EXTERNAL VARIABLE NAME "recommendedWidth®,

CONSTRUCTOR METHOD complete_addr ()

RETURNS completetvaddr SELF AS RESULT

EXTERNAL NAME-%Address2Line”,

CONSTRUCTOR METHOD complete_addr (s_parm CHARACTER VARYING(50),
s2_parm CHARACTER(100),
z_parm CHARACTER(10))

RETURNS_complete_addr SELF AS RESULT

EXTERNAL NAME "Address2Line”,

STATIC“METHOD contiguous (Al complete_addr,

A2 complete_addr)

) ==

RETURNS CHARACTER(3)
EXTERNAL NAME *"contiguous®,

METHOD to_string
RETURNS CHARACTER VARYING(255)
EXTERNAL NAME *"toString-”,

METHOD strip
RETURNS complete_addr SELF AS RESULT
EXTERNAL NAME “removelLeadingBlanks”;

38 SQL with Routines and Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.6 Collapsing subclasses

Note that this CREATE TYPE includes attribute and method definitions for attributes and methods of the
superclass, Addr. You can include such superclass attributes and methods in a CREATE TYPE only if the
CREATE TYPE does not specify UNDER. That is, if a CREATE TYPE specifies a supertype with an UNDER
clause, then the CREATE TYPE can only include attributes and methods of its immediate subject Java class.

The subsets of the classes that you can specify in CREATE TYPE statements are restricted. For example,
assume that you install a hlerarchy of classes Person, Employee Manager, and Director, where each

— Apy one of Person, Employee, Manager, or Director. That type can include members from any
of}its superclasses.

anager and Director: The SQL data type for Manager can include members from Person and
ployee. The SQL data type for Director can include only members.6f-Director.

M
E

— Employee, Manager, and Director: The SQL data type for Emp layee can include members from
Person. The SQL data types for Manager and Di rector can include only members of those dlasses.
E

ployee and Manager. The SQL data type for Emp loyee Caninclude members from Persagn. The
— Person, Employee, and Manager, or Person and Emp loyee. Each class can include only m¢mbers
The supsets that are not allowed are those that omit andntermediate level of subclass. That is, you cannot{define

— Pe¢rson and Manager, or Person, Manager, and Director.

— Pe¢rsonand Director.

— Pe¢rson, Employee, and Director, or Employee and Director.
The rufle is simpler than the explahation:

If a|CREATE TYPE statement for SQL type S2 specifies “UNDER S1”, then the subject Java class ¢f S1
shalll be the direct superclass of the subject Java class of S2.

Subclduse 4.5, “Multipte’ SQL types for a single Java class”, describes how you can define multiple SQL data
types @n a single dJava class. This also can be done for subtype hierarchies. For example, let P;, E;, M;, and D;
be SQL data types'defined on Person, Employee, Manager, and Di rector. For a given number i, each
type i defined-to be a subtype of the preceding i type. You can define SQL data types such as:

— Eland'M1, and P2 and E2. That is, M1 is defined to be a subtype of E1, and E2 is defined to be a stibtype
of PZ.Tn this case, EI and EZ are different types. Instances of E1 are not specializations of PZ.

— P1,E1, and M1, and M2 and D2. That is, E1 is defined to be a subtype of P1, M1 is defined to be a subtype
of E1, and D2 is defined to be a subtype of M2. In this case, M1 and M2 are different types. Instances of
M2 are not specializations of either P1 or E1, and instances of D2 are not specializations of either P1, E1,
or M1.

©ISO/IEC 2014 — All rights reserved Typestutorial 39

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.7 GRANT and REVOKE statementsfor datatypes

4.7 GRANT and REVOKE statementsfor data types
After you have performed the CREATE TYPE statements shown in the preceding clause, you can perform
normal SQL GRANT statements to grant the SQL USAGE privilege on the new data type:

GRANT USAGE ON TYPE addr TO PUBLIC;

GRA '

\L

=Y Ll
TEFC aduul

AT
| I

oA~ A
DAL U

AN
N1

The sy
specifi

4.8

Youm
you in
when y
descri
be exe
JAR i

The following is an example deployment descriptor file forthe above Javaclasses and SQL CREATE a

GRAN

SQLACT
""BE

oY | - O (] —
<_Tnfie 1TV aulinrt,

ntax and semantics for GRANT and REVOKE of the USAGE privilege for user-defined types are as

pd in [1SO9075-2], and are not further described by SQL/JRT.

Deployment descriptorsfor classes

y want to perform the same set of SQL CREATE and GRANT statements'in any SQL system in
tall a given JAR of Java classes, together with the corresponding SQL: DPROP and REVOKE stat
ou remove that JAR. You can automate this process by specifying-those SQL statements in a depl
ptor file in the JAR. A deployment descriptor file contains a listoFCREATE and GRANTstatemg
cuted when the JAR is installed, and a list of REVOKE and<DROP statements to be executed wh
removed.

T statements.

Fions[] = {
5IN INSTALL
CREATE TYPE addr

EXTERNAL NAME "thisJar:Address”

LANGUAGE JAVA

AS (
zip_attr CHARAGTER(10) EXTERNAL NAME "zip-,
street_attr CHARAETER VARYING(50) EXTERNAL NAME "street”)
STATIC METHOD rec_width()

RETURNS INTEGER

EXTERNAL VARIABLE NAME "recommendedWidth®,
CONSTRUCTOR ,METHOD addr

RETURNS addr SELF AS RESULT

EXTERNALANAME “Address”,
CONSTRUETOR METHOD addr (s_parm CHARACTER VARYING(50),

z_parm CHARACTER(10))
RETURNS addr SELF AS RESULT
EXTERNAL NAME "Address”®,

which
bments
pyment
nts to
en the

nd

METHOD to_string ()

40 SQL with Routinesand Types Using the Java™ Programming L anguage

RETURNS CHARACTER VARYING(255)

EXTERNAL NAME "toString-,
METHOD remove_leading_blanks

RETURNS addr SELF AS RESULT

EXTERNAL NAME "removelLeadingBlanks*®,
METHOD strip O

RETURNS addr SELF AS RESULT

EXTERNAL NAME "removelLeadingBlanks*®,
STATIC METHOD contiguous (al addr, a2 addr)

RETURNS CHARACTER(3)

©ISO/IEC 2014 — All rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.8 Deployment descriptorsfor classes

EXTERNAL NAME *"contiguous”;
GRANT USAGE ON TYPE addr TO PUBLIC;
CREATE TYPE addr_2_line UNDER addr
EXTERNAL NAME "thisJar:Address2Line”
LANGUAGE JAVA
AS (
line2_attr CHARACTER VARYING(100) EXTERNAL NAME “line2")
CONSTRUCTOR METHOD addr_2_line
RETURNS addr_2_Tine SELF AS RESULT
EXTERNAL NAME "Address2Line”,

CONSTRUCTOR METHOD addr_2_line (s_parm CHARACTER VARYING(50),
s2_parm CHARACTER(100),
z_parm CHARACTER(10))

RETURNS addr_2_line SELF AS RESULT
EXTERNAL NAME "Address2Line”,
METHOD strip O
RETURNS addr_2_line SELF AS RESULT
EXTERNAL NAME *"removelLeadingBlanks";
ERANT USAGE ON TYPE addr_2_line TO admin;
END INSTALL™,
"BEGIN REMOVE
EEVOKE USAGE ON TYPE addr_2_line FROM admin RESTRICF;

ROP TYPE addr_2_line RESTRICT;

EVOKE USAGE ON TYPE addr FROM PUBLIC RESTRICT;
DROP TYPE addr RESTRICT;

END | REMOVE"™

}

4.9 | Using Java classes as data types

After you have installed a set of Java classes with the SQLJ . INSTALL_JAR procedure, and executed|the
approfriate SQL CREATE statements to-specify SQL types defined on the Java classes, you can specify those
externgl Java data types as the data types of SQLcolumns. For example:

CREATE TABLE emps (

name CHARAETER VARYING(30),
hfme_addr addr,
mailing_addr addr_2 line

))

Inthisfable, the name column is an ordinary SQL character string, and the home_addr and mai ling |addr
columps are-instances of the external Java data types.

SQL cplumns whose data types are external Java data types are referred toas SQL/JRT columns.

Alternatively, if the implementation of SQL/JRT supports typed tables as specified in [ISO9075-2], you can
use the SQL type to create a typed table. Other tables can then reference the objects in the typed table. This
representation allows the objects in the typed table to be shared (i.e., referenced from multiple objects).

For example, you could store objects of type addr in a typed table addresses and reference them from one
or more other tables:

CREATE TABLE addresses OF addr (
REF 1S id SYSTEM GENERATED) ;

©ISO/IEC 2014 — All rights reserved Typestutorial 41

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
4.9 Using Java classes as data types

CREATE TABLE companies (
name CHARACTER VARYING(100),
address REF(addr) SCOPE addresses

) s

CREATE TABLE emps2 (
name CHARACTER VARYING(30),
home_addr REF(addr) SCOPE addresses,
mailing_addr addr_2_line

) s

In a typed table such as addresses, each attribute of the type becomes a separate column of the'sam¢ name
in the fyped table. In addition, the typed table has an implicit identifier column, which identifies arow (].e., an
object] in the table. In the example above, the name of this column is §1d and the values foy the*column|are

automatically generated by the database system. [ISO9075-2] supports additional generation mechanisms for
object|identifiers, which can be defined through extended syntax in the CREATE TYRE statement.

You cgn store references to the objects of the addresses table in columns of type REF(addr). Thg defi-
nition for these columns also identifies the addresses table as the scope of the reference column.

410 | SELECT, INSERT, and UPDATE

After you have specified SQL/JRT columns such as emps . home_addrand emps.mai ling_addrj, the
values|that you assign to those columns shall be Java instances. Such instances are initially generated by calls
to constructor methods, using the NEW operator as in Java."For example:

INSERT INTO emps VALUES ("John Doe", NEW @ddr(), NEW addr_2 line())
INSERT INTO emps VALUES ("Bob Smith®, NEW addr("432 EIm Street", "95123%),
NEW addr_2_line("PO Box 997, "attn: Bob Smith", "99678"))

The injtial values specified for the SQL/JRT columns are the results of constructor method invocations] Note
the usg of the NEW keyword, whose roleis the same in the facilities of SQL/JRT as in Java.

Valueg of such columns can also he‘copied from one table to another. For example, assume the following
additignal table:

CREATE TABLE trainees~(

name CHARACTER(30),
hfme_addr ader,
mailing_addrvaddr_2 line

);
INSERT INTO emps
(SELECT * FROM trainees

WHERE name IN ("Bill Baker®, "Chuck Morgan®, "Frank Jones®)) ;

Inserting objects into typed tables uses the same syntax as for regular base tables. For example:

INSERT INTO addresses
VALUES (71357 Ocean Blvd.", "99111%)

Reference values can be obtained either directly from the referenced table (using the identifier column), or
from other reference columns. For example, the following statement obtains a reference value stored in the
companies table and inserts it into the emps2 table. This results in a situations where the addr object is
“shared” by multiple referencing parties, thereby avoiding multiple redundant copies of the same addr object.

42 SQL with Routinesand Types Using the Java™ Programming L anguage ©ISO/IEC 2014 — Al rights reserved

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

DTR 19075-4:2014(E)
410 SELECT, INSERT, and UPDATE

INSERT INTO emps2
VALUES ("Rob White , NEW addr("165 Oak Street", "95234"),

(SELECT address FROM companies
WHERE name = "eBiz Unlimited®))

4.11 [Referencing Java fields and methods in SQL
You cgn invoke the methods andreference and update the fields of SQL/JRT columns such as
emps|{home_addr and emps.mai ling_addr using SQL field qualification.
SELECT home_addr.to_string() , mailing_addr.to_string()
FROM émps
WHERE |name = "Bob Smith";
SELECT name, home_addr.zip_attr
FROM émps
WHERE | home_addr.street_attr= "456 Shoreline Drive-";
UPDATE emps

SET home_addr.street_attr = "457 Shoreline Drive”®,

home_addr.zip_attr = "99323"

WHERE | home_addr.to_string() LIKE "%456%Shore%" ;
You cgn also access columns of objects in typed tables and.invoke methods on objects in typed tables t
refererjces by using the dereference operator (*->").
SELECT name, mailing_addr->to_string()
FROM éemps2
WHERE|name = "Bob Smith";
SELECT name, mailing_addr->street_attr,
FROM éemps2
WHERE[mailing_addr->zip_attr = 799111°%;
4.12 | Extended visibility rules
We haye now defined SQL data types on the Java classes Address and Address2L ine, and shown
you cah use those classes as the data types of SQL columns.
Defining those SQL data types on the Java classes has one additional effect. Those SQL data types and
Java classes-that they are defined upon are now added to the list of corresponding Java and SQL data ty
that we canmnow use Java methods whose data types are those Java classes. For example:

hrough

how

the
hes, SO

public class Utility {
// A function version of the removelLeadingBlanks method of Address.
public static Address stripLeadingBlanks(Address a) {

}

return a.removelLeadingBlanks() ;

// A function version of the removelLeadingBlanks method of Addr2Line.
public static Addr2Line striplLeadingBlanks(Addr2Line a) {

}

©ISO/IEC 2014 — All rights reserved

return a.removelLeadingBlanks() ;

Typestutorial 43

https://iecnorm.com/api/?name=902170b74ce5f5cdb5b55a324249aee8

