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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work.  In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

ISO/IEC 9796-3 was prepared by Joint Technical Committee ISO/IEC /JTC 1, Information technology, 
Subcommittee SC 27, IT Security techniques. 

This second edition cancels and replaces the first edition (ISO/IEC 9796-3:2000), which has been technically 
revised. New mechanisms and object identifiers have been specified. 

ISO/IEC 9796 consists of the following parts, under the general title Information technology ― Security 
techniques ― Digital signature schemes giving message recovery: 

⎯ Part 2: Integer factorization based mechanisms 

⎯ Part 3: Discrete logarithm based mechanisms 
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Introduction 

Digital signature mechanisms can be used to provide services such as entity authentication, data origin 
authentication, non-repudiation, and integrity of data. 

A digital signature mechanism satisfies the following requirements: 

⎯ given only the public verification key and not the private signature key, it is computationally infeasible to 
produce a valid signature for any given message; 

⎯ the signatures produced by a signer can neither be used for producing a valid signature for any new 
message nor for recovering the signature key; 

⎯ it is computationally infeasible, even for the signer, to find two different messages with the same 
signature. 

Most digital signature mechanisms are based on asymmetric cryptographic techniques and involve three basic 
operations: 

⎯ a process for generating pairs of keys, where each pair consists of a private signature key and the 
corresponding public verification key; 

⎯ a process using the private signature key, called the signature generation process; 

⎯ a process using the public verification key, called the signature verification process. 

There are two types of digital signature mechanisms: 

⎯ when, for each given private signature key, the signatures produced for the same message are the same, 
the mechanism is said to be non-randomized (or deterministic) [see ISO/IEC 14888-1]; 

⎯ when, for a given message and a given private signature key, each application of the signature process 
produces a different signature, the mechanism is said to be randomized. 

This part of ISO/IEC 9796 specifies randomized mechanisms. 

Digital signature schemes can also be divided into the following two categories: 

⎯ when the whole message has to be stored and/or transmitted along with the signature, the mechanism is 
named  a signature mechanism with appendix [see ISO/IEC 14888]; 

⎯ when the whole message or a part of it is recovered from the signature, the mechanism is named a 
signature mechanism giving message recovery. 

If the message is short enough, then the entire message can be included in the signature, and recovered from 
the signature in the signature verification process. Otherwise, a part of the message can be included in the 
signature and the rest of it is stored and/or transmitted along with the signature. The mechanisms specified in 
ISO/IEC 9796 give either total or partial recovery, aiming at reducing storage and transmission overhead. 

This part of ISO/IEC 9796 includes six mechanisms, one of which was in ISO/IEC 9796-3:2000 and five of 
which are in ISO/IEC 15946-4:2004. The mechanisms specified in this part of ISO/IEC 9796 use a hash-
function to hash the entire message. ISO/IEC 10118 specifies hash-functions. Some of the mechanisms 
specified in this part of ISO/IEC 9796 use a group on an elliptic curve over finite field. ISO/IEC 15946-1:2002 
describes the mathematical background and general techniques necessary for implementing cryptosystems 
based on elliptic curves defined over finite fields. 
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The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) 
draw attention to the fact that it is claimed that compliance with this document may involve the use of patents 
concerning the mechanisms NR, ECMR and ECAO given in Clause 8, 10 and 11, respectively. 

Area Patent no. Issue date Inventors 

NR [see Clause 8] US 5 600 725, 
EP 0 639 907 

1997-02-04 K. Nyberg and R. A. Rueppel 

ECMR [see Clause 10] JP H09-160492 
(patent application) 

 A. Miyaji 

ECAO [see Clause 11] JP 3 434 251 2003-08-04 M. Abe and T. Okamoto 
 

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights. 

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences 
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this 
respect, the statement of the holders of these patent rights are registered with ISO and IEC. Information may 
be obtained from the following companies. 

Patent no. Name of holder of patent right Contact address 

US 5 600 725, 
EP 0 639 907 

Certicom Corp. 5520 Explorer Drive, 4th Floor, Mississauga, 
Ontario, Canada L4W 5L1 

JP H09-160492 Matsushita Electric Industrial Co., Ltd. Matsushita IMP Building 19th Floor, 1-3-7, 
Siromi, Chuo-ku, Osaka 540-6319, Japan 

JP 3 434 251 NTT Intellectual Property Center 9-11 Midori-Cho 3-chome, Musashino-shi, 
Tokyo 180-8585, Japan 

 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights other than those identified above. ISO and IEC shall not be held responsible for identifying any or all 
such patent rights. 

NOTE 1 Computational feasibility depends on the specific security requirements and environment. 

NOTE 2 Any signature mechanism giving message recovery — for example, the mechanisms specified in this part of 
ISO/IEC 9796 — can be converted for provision of digital signatures with appendix. In this case, the signature is produced 
by application of the signature mechanism to a hash-token of the message. 
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Information technology ― Security techniques —  
Digital signature schemes giving message recovery — 

Part 3:  
Discrete logarithm based mechanisms 

1 Scope 

This part of ISO/IEC 9796 specifies six digital signature schemes giving message recovery. The security of 
these schemes is based on the difficulty of the discrete logarithm problem, which is defined on a finite field or 
an elliptic curve over a finite field. 

This part of ISO/IEC 9796 also defines an optional control field in the hash-token, which can provide added 
security to the signature. 

This part of ISO/IEC 9796 specifies randomized mechanisms. 

The mechanisms specified in this part of ISO/IEC 9796 give either total or partial message recovery. 

NOTE For discrete logarithm based digital signature schemes with appendix, see ISO/IEC 14888-3. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC 10118 (all parts), Information technology — Security techniques — Hash-functions 

ISO/IEC 15946-1:2002, Information technology — Security techniques — Cryptographic techniques based on 
elliptic curves — Part 1: General 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

3.1 
data input 
octet string which depends on the entire message or a portion of the message and which forms a part of the 
input to the signature generation process 

3.2 
domain parameter 
data item which is common to and known by or accessible to all entities within the domain 

[ISO/IEC 14888-1:1998] 

NOTE The set of domain parameters may contain data items such as hash-function identifier, length of the hash-
token, maximum length of the recoverable part of the message, finite field parameters, elliptic curve parameters, or other 
parameters specifying the security policy in the domain. 
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3.3 
elliptic curve 
set of points P = (x, y), where x and y are elements of an explicitly given finite field, that satisfy a cubic equation 
without any singular point, together with the “point at infinity” denoted by O 

[ISO/IEC 15946-1:2002] 

NOTE For a mathematical definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

3.4 
explicitly given finite field 
set of all e-tuples over [0, p – 1], where p is prime and e ≥ 1, along with a “multiplication table” 

NOTE 1 For a mathematical definition of an explicitly given finite field, see Clause A.3. 

NOTE 2 For more detailed information on finite fields, see ISO/IEC 15946-1:2002. 

3.5 
hash-code 
string of octets which is the output of a hash-function 

NOTE Adapted from ISO/IEC 10118-1:2000. 

3.6 
hash-function 
function which maps strings of octets to fixed-length strings of octets, satisfying the following two properties: 

⎯ for a given output, it is computationally infeasible to find an input which maps to this output; 

⎯ for a given input, it is computationally infeasible to find a second input which maps to the same output. 

NOTE 1 Adapted from ISO/IEC 10118-1:2000. 

NOTE 2 Computational feasibility depends on the specific security requirements and environment. 

NOTE 3 For the purposes of this part of ISO/IEC 9796, the allowable hash-functions are those described in 
ISO/IEC 10118-2 and ISO/IEC 10118-3, with the following proviso: 

⎯ The hash-functions described in ISO/IEC 10118 map bit strings to bit strings, whereas in this part of ISO/IEC 9796, 
they map octet strings to octet strings. Therefore, a hash-function in ISO/IEC 10118-2 or ISO/IEC 10118-3 is allowed 
in this part of ISO/IEC 9796 only if the length in bits of the output is a multiple of 8, in which case the mapping 
between octet strings and bit strings is affected by the functions OS2BSP and BS2OSP. 

3.7 
hash-token 
concatenation of a hash-code and an optional control field which can be used to identify the hash-function and 
the padding method 

[ISO/IEC 14888-1:1998] 

NOTE The control field with the hash-function identifier is mandatory unless the hash-function is uniquely determined 
by the signature mechanism or by the domain parameters. 

3.8 
message 
string of octets of any length 

3.9 
parameter generation process 
process which gives as its output domain parameter and user keys 
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3.10 
pre-signature 
octet string computed in the signature generation process which is a function of the randomizer but which is 
independent of the message 

NOTE Adapted from ISO/IEC 14888-1:1998. 

3.11 
private signature key 
data item specific to an entity and usable only by this entity in the signature generation process 

3.12 
public verification key 
data item which is mathematically related to a private signature key and is known by or accessible to all 
entities and which is used by the verifier in the signature verification process 

3.13 
randomized 
dependent on a randomizer 

[ISO/IEC 14888-1] 

3.14 
randomizer 
secret integer produced by the signing entity in the pre-signature production process, and not predictable by 
other entities 

NOTE Adapted from ISO/IEC 14888-1:1998. 

3.15 
signature 
pair of an octet string and an integer for providing authentication, generated in the signature generation 
process 

NOTE Adapted from ISO/IEC 14888-1:1998. 

3.16 
signature generation process 
process which takes as inputs the message, the signature key and the domain parameters, and which gives 
as output the signature 

NOTE Adapted from the definition of signature process in ISO/IEC 14888-1:1998. 

3.17 
signature verification process 
process, which takes as its input the signed message, the verification key and the domain parameters, and 
which gives as its output the recovered message if valid 

NOTE Adapted from the definition of verification process in ISO/IEC 14888-1:—1). 

3.18 
signed message 
set of data items consisting of the signature, the part of the message which cannot be recovered from the 
signature, and an optional text field 

[ISO/IEC 14888-1:1998] 

3.19 
user keys 
data item of a set of private signature key and public verification key 

                                                      

1) To be published. 
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4 Symbols, notation and conventions 

4.1 Symbols and notation 

For the purposes of this document, the following symbols and notation apply. 

A entity, usually signer 

B entity, usually verifier 

d data input (octet string) 

d′ recovered data input (octet string) 

E elliptic curve over explicitly given finite field 

F explicitly given finite field 

G generator of underlying group (finite field element / elliptic curve point) 

h (truncated) hash-token (octet string) 

h′ recovered (truncated) hash-token (octet string) 

h″ recomputed (truncated) hash-token (octet string) 

Hash, Hash1, Hash2 hash-function 

k randomizer (integer) 

KDF key derivation function (synonym for MGF) 

Lclr length in octets of non-recoverable part (integer) 

Ldat length in octets of data input (integer) 

LF length in octets of explicitly given finite field F (non-negative integer) 

Lrec (maximum) length in octets of recoverable part (integer) 

Lred length in octets of (added) redundancy (integer) 

L(x) length in octets of integer x or octet string x (non-negative integer) 

LHash length in octets of output of hash-function Hash (non-negative integer) 

M message (octet string) 

Mclr non-recoverable part of message (octet string) 

Mrec recoverable part of message (octet string) 

M ′ recovered message (octet string) 

M ′clr received non-recoverable part of message (octet string) 

M ′rec recovered part of message (octet string) 

MGF mask generation function 

n order of group generated by G (prime number) 
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O point at infinity of elliptic curve 

p prime number 

P element dependent on the chosen key generation scheme, that is P = G for 
Key Generation Scheme I and P = YA for Key Generation Scheme II [see 
Clause 7.3] 

Π pre-signature (octet string) 

Π ′ recovered pre-signature (octet string) 

q prime power 

Q element dependent on the chosen key generation scheme, that is Q = YA for 
Key Generation Scheme I and Q = G for Key Generation Scheme II [see 
Clause 7.3] 

r first part of signature (octet string) 

r′ first part of recovered signature (octet string) 

s second part of signature (integer) 

s′ second part of recovered signature (integer) 

xA private signature key of entity A 

YA public verification key of entity A 

{0, 1}* set of finite bit strings 

{0, 1}8* set of finite octet strings 

{0, 1}ℓ set of bit strings of length ℓ, where ℓ is a non-negative integer 

{0, 1}8ℓ set of octet strings of length ℓ, where ℓ is a non-negative integer 

[a, b] set of integers x satisfying a ≤ x ≤ b, where a and b are integers 

| x | length of bit string x 

| X | cardinality of set X 

[x]ℓ leftmost ℓ-bits of octet string x, appending zeros to the right when 8ℓ > L(x ) 

[x]ℓ rightmost ℓ-bits of octet string x, appending zeros to the left when 8ℓ > L(x ) 

x mod n r ∈ [0, n − 1] such that (x − r) is divisible by n, where x is an integer 

x ⊕ y bitwise exclusive-OR operation of bit strings x and y 

x || y concatenation of bit strings x and y 

X × Y Cartesian product of sets X and Y 
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4.2 Conversion functions and mask generation functions 

For the purposes of this document, the following conversion functions and mask generation functions are 
used. 

BS2IP bit-string-to-integer primitive [see Clause B.2] 

BS2OSP bit-string-to-octet-string primitive [see Clause B.1] 

EC2OSP elliptic-curve-to-octet-string primitive [see Clause B.6] 

FE2IP finite-field-element-to-integer primitive [see Clause B.4] 

FE2OSP finite-field-element-to-octet-string primitive [see Clause B.5] 

I2BSP integer-to-bit-string primitive [see Clause B.2] 

I2OSP integer-to-octet-string primitive [see Clause B.3] 

MGF1 mask generation function 1 [see Clause C.2] 

MGF2 mask generation function 2 [see Clause C.3] 

OS2BSP octet-string-to-bit-string primitive [see Clause B.1] 

OS2ECP octet-string-to-elliptic-curve primitive [see Clause B.6] 

OS2FEP octet-string-to-finite-field-element primitive [see Clause B.5] 

OS2IP octet-string-to-integer primitive [see Clause B.3] 

 

4.3 Legend for figures 

The following legend is used for the figures in Clause 7 depicting the signature generation and verification 
processes for digital signatures giving message recovery. 

 step of the process 

 mandatory data flow 

 optional data flow 

 

STEP OF THE 
PROCESS 
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5 Binding between signature mechanisms and hash-functions 

Use of the signature schemes specified in this part of ISO/IEC 9796 requires the selection of a hash-function 
Hash. ISO/IEC 10118 specifies hash-functions. There shall be a binding between the signature mechanism 
and the hash-function in use. Without such a binding, an adversary might claim the use of a weak hash-
function (and not the actual one) and thereby forge a signature. 

The user of a digital signature mechanism should conduct a risk assessment considering the costs and 
benefits of the various alternative means of accomplishing the required binding. This assessment should 
include an assessment of the cost associated with the possibility of a bogus signature being produced. 

NOTE 1 One of the security requirements for the hash-function Hash used in this part of ISO/IEC 9796 is so-called 
“collision-resistance.” 

NOTE 2 There are various ways to accomplish this binding.  The following options are listed in order of increasing risk: 

a) Require a particular hash-function when using a particular signature mechanism. The verification process shall 
exclusively use that particular hash-function. ISO/IEC 14888-3 gives an example of this option where the DSA 
mechanism requires the use of Dedicated Hash-function 3 (otherwise known as SHA-1) from ISO/IEC 10118-3; 

b) Allow a set of hash-functions and explicitly indicate the hash-function in use in the certificate domain parameters. 
Inside the certificate domain, the verification process shall exclusively use the hash-function indicated in the 
certificate. Outside the certificate domain, there is a risk arising from certification authorities (CAs) that may not 
adhere to the user’s policy. If, for example, an external CA creates a certificate permitting other hash-functions, then 
signature forgery problems may arise. In such a case a misled verifier may be in dispute with the CA that produced 
the other certificate; and 

c) Allow a set of hash-functions and indicate the hash-function in use by some other method, e.g., an indication in the 
message or a bilateral agreement. The verification process shall exclusively use the hash-function indicated by the 
other method. However, there is a risk that an adversary may forge a signature using another hash-function. 

NOTE 3 The “other method” referred to in paragraph c) immediately above could be in the form of a hash-function 
identifier included in the octet string representative d. If the hash-function identifier is included in d in this way then an 
attacker cannot fraudulently reuse an existing signature with the same octet string d1 and a different d2, even when the 
verifier could be persuaded to accept signatures created using a hash-function sufficiently weak that pre-images can be 
found. However, in this latter case and using the weak hash-function, an attacker can still find a new signature with a 
“random” d1. 

NOTE 4 The attack mentioned in Note 3 that yields a new signature with a “random” d1 can be prevented by requiring 
the presence of a specific structure in d1. For instance, one may impose a length limit on d1 that is sufficiently less than the 
capacity of the signature scheme. For some digital signature schemes, a length limit on d1 may also prevent an attacker 
from reusing existing signatures even if no hash-function identifier is included in the message representative, provided that 
the mask generation function MGF is based on the hash-function. This holds under the reasonable assumption that the 
weak hash-function involved is a “general purpose” hash-function, not one designed solely for the purpose of forging a 
signature. 

6 Framework for digital signatures giving message recovery 

6.1 Processes 

Clauses 6.2 through 6.4 contain a high-level description of a general model for the six signature schemes 
specified in this part of ISO/IEC 9796. A detailed description of the general model is provided in Clause 7. 

A digital signature scheme specified in this part of ISO/IEC 9796 is defined by the specification of the following 
processes: 

⎯ parameter generation process; 

⎯ signature generation process; 

⎯ signature verification process. 
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6.2 Parameter generation process 

6.2.1 Domain parameters 

The parameters can be divided into domain parameters and user keys. The domain parameters consist of 
parameters to define a finite group, such as a multiplicative group of a finite field or an additive group on an 
elliptic curve over a finite field, and other public information which is common to and known by or accessible to 
all entities within the domain. As well as the domain parameters specific to the cryptographic scheme in use, 
the following parameters must be specified: 

⎯ an identifier for the digital signature scheme used; 

⎯ the type of redundancy; 

⎯ (optional) a hash function Hash; 

⎯ the user key generation procedures. 

Implementation techniques and the mathematical background for an additive group on an elliptic curve over a 
finite field are given in ISO/IEC 15946-1:2002. 

6.2.2 User keys 

Each entity has its own public and private keys.  The user keys of entity A consist of the following: 

⎯ the private signature key xA; 

⎯ the public verification key YA; 

⎯ (optional) other information, which is specific to the entity A, for the use in the signature generation and/or 
verification process. 

NOTE 1 User keys are valid only within the context of a specified set of domain parameters. 

NOTE 2 The signature verifier may require assurance that the domain parameters and public verification key are valid, 
otherwise there is no assurance of meeting the intended security even if the signature verifies. The signer may also 
require assurance that the domain parameters and public verification key are valid, otherwise an adversary may be able to 
generate signatures that verify. 

6.3 Signature generation process 

The following data items are required for the signature generation process: 

⎯ the domain parameters; 

⎯ the signer A’s private signature key xA; 

⎯ a message M. 

For all the schemes specified in this part of ISO/IEC 9796, the signature generation process consists of the 
following procedures: 

a) splitting the message; 

b) (optional) computation of redundancy, or computation of the message digest; 
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c) computations in a finite group, which is either the multiplicative group of a finite field or the additive group 
on an elliptic curve over a finite field; 

d) computations modulo the group order of the base element G; 

e) formatting the signed message. 

The output of the signature generation process is a pair (r, s) that constitutes A’s digital signature of the 
message M. 

6.4 Signature verification process 

The following data items are required for the signature verification process: 

⎯ the domain parameters; 

⎯ the signer A’s public verification key YA; 

⎯ the non-recoverable part of the message M′clr (if any); 

⎯ the received signature for M, represented as an octet string r′ and an integer s′. 

For all the schemes the signature verification process consists of some or all of the following procedures: 

a) signature size verification; 

b) computations in a finite group, which is either the multiplicative group of a finite field or the additive group 
on an elliptic curve over a finite field; 

c) computations modulo the group order of the base element G; 

d) recovering the data input or the message; 

e) signature checking. 

If all procedures are passed successfully, the signature is accepted by the verifier; otherwise it is rejected. 

7 General model for digital signatures giving message recovery 

7.1 Requirements 

7.1.1 Domain parameters 

Users who wish to employ one of the digital signature mechanisms specified in this part of ISO/IEC 9796 shall 
select the following domain parameters of the digital signature scheme: 

a) an explicitly given finite field F, or an elliptic curve E over an explicitly given finite field F; 

b) an element G in F or E of prime order n. 

Agreement on these choices amongst the users is essential for the purpose of the operation of the digital 
signature mechanism giving message recovery. 

NOTE 1 The size of n affects the level of security offered by the scheme and shall be chosen to meet the defined 
security objectives. 
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NOTE 2 The two possible groups with which this scheme may be used are normally written using multiplicative 
notation (for the multiplicative group of the finite field) and additive notation (for the group of points on an elliptic curve). In 
Clause 7, the multiplicative notation is used, in order to simplify the presentation. 

NOTE 3 For the definition of an explicitly given finite field, see Clause A.3. 

NOTE 4 For the definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

NOTE 5 For efficient implementations and cryptographic techniques related to the groups on elliptic curves, see 
ISO/IEC 15946-1:2002. 

7.1.2 Type of redundancy 

Users shall select the type of redundancy, which shall be 

⎯ natural redundancy, 

⎯ added redundancy, or 

⎯ both. 

Agreement on the type of redundancy amongst the users is essential for the purpose of the operation of the 
digital signature mechanism giving message recovery. 

If users use added redundancy, the length in octets of added redundancy, Lred, shall be fixed.  A message with 
added redundancy may be constructed by the hash token of the message or of the recoverable message. 

If users use natural redundancy alone, then Lred is set equal to 0. A message with natural redundancy means 
that the message includes redundancy naturally, such as the use of ASCII characters, or that the redundancy 
of the message is verifiable implicitly in some applications. 

The natural or added redundancy may be anything agreed upon as long as it can be checked by the 
communicating parties.  Total redundancy, which consists of natural redundancy and added redundancy, shall 
be greater than some minimum value specified by the application.  In general natural redundancy alone shall 
only be used for total message recovery. 

NOTE The value of the parameter Lred also affects the security level of the signatures giving message recovery. 

7.2 Summary of functions and procedures 

The signature schemes specified in this part of ISO/IEC 9796 give message recovery.  More precisely, some 
of the data which is input to the signature generation function is recovered from the signature as part of the 
signature verification procedure. 

The signature scheme consists of the following functions and procedures: 

⎯ user key generation process; 

⎯ signature generation process; 

⎯ signature verification process. 
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7.3 User key generation process 

One of the following two methods shall be used to compute the key pair consisting of the public verification 
and the private signature key (the signing entity shall keep the private signature key secret): 

a) Key generation I 

Given a valid set of domain parameters, a private signature key and corresponding public verification key 
may be generated as follows: 

1) Select a random or pseudorandom integer xA in the set [1, n – 1].  The integer xA must be protected 
from unauthorised disclosure and be unpredictable; 

2) Compute the element YA = G xA; 

3) The key pair is (YA, xA), where YA will be used as public verification key, and xA is the private 
signature key. 

To allow an unified representation of the algorithms, put P = G and Q = YA. 

b) Key generation II 

Given a valid set of domain parameters, a private signature key and corresponding public verification key 
may be generated as follows: 

1) Select a random or pseudorandom integer e in the set [1, n – 1] and compute an integer xA in the 
interval [1, n – 1] with the property xAe = 1 mod n. The integer xA must be protected from 
unauthorised disclosure and be unpredictable; 

2) Compute the element YA = Ge, and then erase the integer e in a secure manner; 

3) The key pair is (YA, xA), where YA will be used as public verification key, and xA is the private 
signature key. 

To allow an unified representation of the algorithms, put P = YA and Q = G. 

Prior to use of the public verification key the verifier shall have assurance about its validity and ownership.  
This validation may be obtained by various means, see Clause 6.2.2. 

NOTE 1 Some schemes use the range [1, n – 2] for the private signature key xA. 

NOTE 2 Key generation I is the more popular method and is often used. In some environments where modular 
inversion is expensive, Key generation II might be useful. 

7.4 Signature generation process 

7.4.1 Procedures 

Figure 1 shows the signature generation process, which consists of the following procedures: 

a) producing a randomizer and the pre-signature; 

b) splitting the message; 

c) producing the data input; 

d) computing the signature; 

e) formatting the signed message. 

NOTE Each mechanism may require scheme-dependent domain parameters other than those shown in Figure 1. 
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Figure 1 — The signature generation process 
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7.4.2 Producing a randomizer and the pre-signature 

Prior to each signature computation the signing entity must have a fresh, secret randomizer value available.  
The randomizer is an integer k such that 1 ≤ k ≤ n – 1. The implementation of the signature scheme must 
ensure that the following two requirements are satisfied: 

⎯ randomizer generation shall be executed in such a way that the probability that the same randomizer is 
used to produce signatures for two different messages shall be negligible; 

⎯ used randomizer values shall never be disclosed; once used, they shall be destroyed. 

First a randomizer k, which is an integer, is produced. Then the pre-signature Π, which is an octet string, is 
computed as a function of the randomizer. The pre-signature is an intermediate data item that is produced 
during the signature generation process in any randomized signature mechanism. The pre-signature is a 
public data item, while the value of the randomizer shall be available only to the signature generation process. 

NOTE 1 Disclosure of a randomizer after use may jeopardise the secrecy of the private key. Used randomizers are 
never required again by the signer or verifier and should be securely erased. If the same value of the randomizer is used 
to produce signatures for two different messages, or if the randomizer for a signature is disclosed, then it might be 
possible to recover the private key from the signatures. 

NOTE 2 Randomizers may be produced and corresponding pre-signatures may be computed offline. In this case, the 
randomizers should be stored securely for future use by the signature generation process. 

7.4.3 Splitting the message 

The message M is split into the recoverable part Mrec and the non-recoverable part Mclr of the message, and 
Lrec and Lclr are defined to be the length in octets of the recoverable part Mrec and the non-recoverable part 
Mclr, respectively. 

7.4.4 Producing the data input 

The input to the data input function is the recoverable part of the message Mrec with added redundancy, or the 
recoverable part of the message Mrec with natural redundancy. The inputs may optionally include the non-
recoverable part Mclr , the lengths Lrec and Lclr. If added redundancy is used, the data input involves producing 
the hash-token. The hash-token is formed by the hash-code itself, or with the hash-function identifier 
concatenated to the right of the hash-code, where the hash-code is computed by hashing the (recoverable 
part of) message. The choice of whether or not the hash-token includes the hash-function identifier shall be 
controlled by the domain parameters. The output of the data input function is d, which is an octet string. 

NOTE 1 The choice of data input may be determined by each application or signature scheme. 

NOTE 2 See Annex D for an example method of producing the data input with added redundancy. 

7.4.5 Computing the signature 

The signatures produced by the schemes in this part of ISO/IEC 9796 have two parts r and s. The first part r is 
an octet string which is computed as a function of the pre-signature Π and the data input d (and optionally 
other parameters), where d is an octet string that depends upon the message. The second part s is an integer 
such that 0 < s < n and computed as a function of the first part r, the randomizer k, and the private signature 
key xA (and optionally other parameters). 
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7.4.6 Formatting the signed message 

Knowledge of the length of the recoverable part of the message is necessary for the successful opening and 
verification of the signed message. This information must be given by the domain parameter, included in the 
signed message and/or retrieved from the data input d. 

The signed message consists of the following data items: 

⎯ the non-recoverable part Mclr of the message; 

⎯ the first part r of the signature; 

⎯ the second part s of the signature; 

⎯ (optional) the length Lrec of the recoverable part of the message. 

7.5 Signature verification process 

7.5.1 Procedures 

Figure 2 shows the signature verification process, which consists of the following procedures: 

a) opening the signed message; 

b) signature size verification; 

c) recovering the pre-signature or the data input; 

d) recovering the data input or the message; 

e) re-computing the hash-token(optional); 

f) checking the signature. 
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Figure 2 — Signature verification process 
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7.5.2 Opening the signed message 

When starting this step, the verifier must have the following information available: 

⎯ the lengths of the different signature/message parts included in the signed message; 

⎯ the value of the parameter Lred. 

The verifier extracts the following different parts of the signed message: 

⎯ the non-recoverable part of the message; 

⎯ the first part r′ of the signature; 

⎯ the second part s′ of the signature; 

⎯ (optional) the length L′rec of the recoverable message part. 

7.5.3 Signature size verification 

The verifier shall verify the size of the parts of a signature. 

7.5.4 Recovering the pre-signature 

At the beginning of this step the verifier must have the following information available: 

⎯ the public parameters which specify the signature scheme in use; 

⎯ the public verification key YA of the signing entity. 

The computations in this step are specific to the signature scheme in use. The pre-signature is determined by 
the public verification key YA. Given the signature (r′, s′), the pre-signature Π′ is recovered. 

7.5.5 Recovering the data input or the message 

Given the first part r′ of the signature and the recovered pre-signature Π′, the data input d′ is recovered. The 
recovered data input d′ is an octet string. 

7.5.6 Re-computing the hash-token (optional) 

First, the hash-function used by the signing entity in Clause 7.4 is identified, possibly by the domain parameter 
and/or by retrieving the hash-function identifier from the recovered hash-token. Then the hash-code is 
recomputed by hashing the message. 

The recomputed hash-code is used to obtain the recomputed hash-token by optionally concatenating the 
hash-function identifier. 

7.5.7 Checking the signature 

Checking the signature consists of 

⎯ comparing the recomputed (truncated) hash-token h″ with the recovered (truncated) hash-token h′, or 

⎯ verifying the added, and/or natural redundancy of the recovered message. 
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8 NR (Nyberg-Rueppel message recovery signature)2) 

8.1 Domain parameter and user keys 

The domain parameter specifies a multiplicative group of an explicitly given finite field F. 

The length of the data input d in octets, Ldat, is set equal to a fixed value less than or equal to L(n) – 1. 

The keys of the NR signature scheme are produced as follows: 

a) A’s private signature key xA which is a random integer in the interval [1, n – 1]; 

b) A’s public verification key YA computed as in Clause 7.3. 

NOTE For the definition of an explicitly given finite field, see Clause A.3. 

8.2 Signature generation process 

8.2.1 Input and output 

The input to the signature generation process consists of 

⎯ the domain parameters, 

⎯ the private signature key xA, and 

⎯ a message M to be signed. 

The output of the signature generation process is a pair (r, s) ∈ {0, 1}8L(n) × [1, n − 1] that constitutes A’s digital 
signature to the message M. 

8.2.2 Producing a randomizer and the pre-signature (finite field computations) 

The pre-signature Π ∈ {0, 1}8* shall be computed by the following or an equivalent sequence of steps: 

a) Select a random integer k in the interval [1, n − 1]; 

b) Compute the finite field element R = Pk; 

c) Convert R to an octet string Π =  FE2OSPF (R). 

8.2.3 Producing the data input 

The data input d ∈ {0, 1}8Ldat is produced from the message M; see Clauses 7.4.2 and 7.4.3. 

                                                      

2) This signature mechanism is based on a scheme defined in [9]. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 97
96

-3:
20

06

https://iecnorm.com/api/?name=3eb4c2909c0961ffe281406cd8a42a29


ISO/IEC 9796-3:2006(E) 

18 © ISO/IEC 2006 – All rights reserved
 

8.2.4 Computing the signature (arithmetic operations modulo n) 

The signature (r, s) ∈ {0, 1}8L(n) × [1, n − 1] shall be computed by the following or an equivalent sequence of 
steps: 

a) Convert d to an integer δ = OS2IP(d ); note that δ ∈ [0, n − 1]; 

b) Compute π = OS2IP(Π ) mod n; 

c) Compute r˾ = (δ + π) mod n; 

d) Compute s = (k – xAr˾ ) mod n; 

e) Convert r = I2OSP(r˾, L(n)); 

f) Erase k. 

If the signature generation process yields either r˾ = 0 or s = 0, then the process of signature generation must 
be repeated with a new random value k. 

8.2.5 Formatting the signed message 

The pair (r, s) ∈ {0, 1}8L(n) × [1, n – 1] constitutes A’s signature on the message M. 

8.3 Signature verification process 

8.3.1 Input and output 

The signature verification process consists of three steps: calculation of the message digest, finite field 
computations, and signature checking. 

The input to the signature verification process consists of 

⎯ the domain parameters, 

⎯ A’s public verification key YA, 

⎯ the received signature for M, represented as an octet string r′ and an integer s′, and 

⎯ the non-recoverable message M ′clr (if any).  

The output of the signature verification process is either the recovered data input d′ or “reject.” 

8.3.2 Signature size verification 

Verify that and r′ ∈ {0, 1}8L(n), 0 < OS2IP(r′) < n and 0 < s′ < n; if not, then reject the signature. 

8.3.3 Recovering the pre-signature (finite field computations) 

The pre-signature shall be recovered from the received signature (r′, s′) by the following or an equivalent 
sequence of steps: 

a) Convert r˾′ = OS2IP(r′); 

b) Compute R′ = Ps′Qr˾′; 

c) Convert R′ to an octet string Π ′ = FE2OSPF (R′). 
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8.3.4 Recovering the data input or the message 

The data input shall be recovered from the first part of the received signature r′ and the recovered pre-
signature Π ′ by the following or an equivalent sequence of steps: 

a) Compute π′ = OS2IP(Π ′) mod n; 

b) Compute δ′ = (r˾′ – π′) mod n; 

c) Convert δ′ to an octet string d′ = I2OSP(δ′, Ldat). 

8.3.5 Checking the signature 

Check the redundancy.  If it is correct, output d′, otherwise reject. 

9 ECNR (Elliptic Curve Nyberg-Rueppel message recovery signature) 

9.1 Domain parameter and user keys 

The domain parameter specifies an additive group of order n in an elliptic curve E over an explicitly given finite 
field. 

The length of the data input d in octets, Ldat, is set equal to a fixed value less than or equal to L(n) – 1. 

The keys of the ECNR signature scheme are produced as follows: 

a) A’s private signature key xA which is a random integer in the interval [1, n – 1]; 

b) A’s public verification key YA computed as in Clause 7.3. 

NOTE 1 For the definition of an explicitly given finite field, see Clause A.3. 

NOTE 2 For the definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

9.2 Signature generation process 

9.2.1 Input and output 

The input to the signature generation process consists of 

⎯ the domain parameters, 

⎯ the private signature key xA, and 

⎯ a message M to be signed. 

The output of the signature generation process is a pair (r, s) ∈ {0, 1}8L(n) × [1, n − 1] that constitutes A’s digital 
signature to the message M. 
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9.2.2 Producing a randomizer and the pre-signature (elliptic curve computations) 

The pre-signature Π ∈ {0, 1}8(LF +1) shall be computed by the following or an equivalent sequence of steps: 

a) Select a random integer k in the interval [1, n − 1]; 

b) Compute the elliptic curve point R = kP; 

c) Convert R to an octet string Π = EC2OSPE (R, compressed). 

NOTE For the definition of the conversion function EC2OSP with the format specifier compressed, see Clause B.6. 

9.2.3 Producing the data input 

The data input d ∈ {0, 1}8Ldat is produced from the message M; see Clauses 7.4.2 and 7.4.3. 

9.2.4 Computing the signature (arithmetic operations modulo n) 

The signature (r, s) ∈ {0, 1}8L(n) × [1, n − 1] shall be computed by the following or an equivalent sequence of 
steps: 

a) Convert d to an integer δ = OS2IP(d ); note that δ ∈ [0, n − 1]; 

b) Compute π = OS2IP(Π ) mod n; 

c) Compute r˾ = (δ + π) mod n; 

d) Compute s = (k – xAr˾ ) mod n; 

e) Convert r = I2OSP(r˾, L(n)); 

f) Erase k. 

If the signature generation process yields either r˾ = 0 or s = 0, then the process of signature generation must 
be repeated with a new random value k. 

9.2.5 Formatting the signed message 

The pair (r, s) ∈ {0, 1}8L(n) × [1, n – 1] constitutes A’s signature on the message M. 

9.3 Signature verification process 

9.3.1 Input and output 

The signature verification process consists of three steps: calculation of the message digest, elliptic curve 
computations, and signature checking. 

The input to the signature verification process consists of 

⎯ the domain parameters, 

⎯ A’s public verification key YA, 

⎯ the received signature for M, represented as an octet string r′ and an integer s′, and 

⎯ the non-recoverable message M ′clr (if any). 

The output of the signature verification process is either the recovered data input d′ or “reject.” 
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9.3.2 Signature size verification 

Verify that OS2IP(r′) ≠ 0 mod n and r′ ∈ {0, 1}8L(n) and 0 < s′ < n; if not, then reject the signature. 

9.3.3 Recovering the pre-signature (elliptic curve computations) 

The pre-signature shall be recovered from the received signature (r′, s′) by the following or an equivalent 
sequence of steps: 

a) Convert r˾′= OS2IP(r′); 

b) Compute R′ = s′P + r˾′Q; 

c) Convert R′ to an octet string Π ′ = EC2OSPE (R′, compressed). 

9.3.4 Recovering the data input or the message 

The data input shall be recovered from the first part of the received signature r′ and the recovered pre-
signature Π ′ by the following or an equivalent sequence of steps: 

a) Compute π′ = OS2IP(Π ′) mod n; 

b) Compute δ′ = (r′ – π′) mod n; 

c) Convert δ′ to an octet string d′ = I2OSP(δ′, Ldat). 

9.3.5 Checking the signature 

Check the redundancy.  If it is correct, output d′, otherwise reject. 

10 ECMR (Elliptic Curve Miyaji message recovery signature)3) 

10.1 Domain parameter and user keys 

The domain parameter specifies an additive group on an elliptic curve as a finite group.  The keys of the 
ECMR signature scheme are produced as follows: 

a) A’s private signature key xA which is a random integer in the interval [1, n – 1]; 

b) A’s public verification key YA computed as in Clause 7.3. 

A also selects a function: 

⎯ Mask : {0, 1}8* → {0, 1}8L(n), such that Mask(x) = [Hash(x)]8L(n), MGF1(x, L(n)) or MGF2(x, L(n)), where 
Hash : {0, 1}8* → {0, 1}8LHash. 

NOTE 1 For the definition of an explicitly given finite field, see Clause A.3. 

NOTE 2 For the definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

                                                      

3) This signature mechanism is based on a scheme defined in [8]. 
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10.2 Signature generation process 

10.2.1 Input and output 

The input to the signature generation process consists of 

⎯ the domain parameters, 

⎯ the private signature key xA, and 

⎯ the data d with added or natural redundancy in {0, 1}8L(n). 

The data d is produced from the message, see Clauses 7.4.2 and 7.4.3. The output of the signature 
generation process is a pair (r, s) ∈ {0, 1}8L(n) × [1, n – 1] that constitutes A’s digital signature to the data. 

10.2.2 Producing a randomizer and the pre-signature (elliptic curve computations) 

The pre-signature Π ∈ {0, 1}8(2LF + 1) shall be computed by the following or an equivalent sequence of steps: 

a) Select a random integer k in the interval [1, n – 1]; 

b) Compute the elliptic curve point R = kP; 

c) Compute Π = Mask(EC2OSPE (R, uncompressed)). 

NOTE For the definition of the conversion function EC2OSP with the format specifier uncompressed, see 
Clause B.6. 

10.2.3 Computing the signature (computations modulo n) 

The signature (r, s) ∈ {0, 1}8L(n) × [1, n – 1] shall be computed by the following or an equivalent sequence of 
steps: 

a) Compute r = d ⊕ Π; 

b) Compute s = (OS2IP(r)k – OS2IP(r) – 1) / (xA + 1) mod n; 

c) Erase k. 

If the signature generation process yields either s = 0 or OS2IP(r) mod n = 0, then the process of signature 
generation must be repeated with a new random value k. 

10.2.4 Formatting the signed message 

The pair (r, s) ∈ {0, 1}8L(n) × [1, n – 1] constitutes A’s signature on the data d. 
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10.3 Signature verification process 

10.3.1 Input and output 

The signature verification process consists of three steps: calculation of the message digest, elliptic curve 
computations, and signature checking. 

The input to the signature verification process consists of 

⎯ the domain parameters, 

⎯ A’s public verification key YA, 

⎯ the received signature for d, represented as an octet string r′ and an integer s′, 

⎯ the function Mask, and 

⎯ the non-recoverable message M ′clr  (if any). 

The output of the signature verification process is either the recovered data d′ or “reject.” 

10.3.2 Signature size verification 

Verify that OS2IP(r′) ≠ 0 mod n and r′ ∈ {0, 1}8L(n) and 0 < s′ < n; if not, then reject the signature. 

10.3.3 Recovering the pre-signature (elliptic curve computations) 

The pre-signature shall be recovered from the received signature (r′, s′) by the following or an equivalent 
sequence of steps: 

a) Compute R′ = ((1 + OS2IP(r′) + s′) / OS2IP(r′))P + (s′ / OS2IP(r′))Q; 

b) Compute Π ′ = Mask(EC2OSPE (R′, uncompressed)). 

10.3.4 Recovering the data input or the message 

Compute d′ = r′⊕ Π ′. 

10.3.5 Checking the signature 

Check the redundancy.  If it is correct, output d′, otherwise reject. 

11 ECAO (Elliptic Curve Abe-Okamoto message recovery signature)4) 

11.1 Domain parameter 

The domain parameter specifies an additive group of order n, with a base element G, in an elliptic curve E 
over an explicitly given finite field F. 

                                                      

4) This signature mechanism is based on a scheme defined in [2]. 
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The length of added redundancy, Lred, corresponds to the security parameter and shall be chosen to achieve 
security objectives. 

In addition, A uses two hash functions and a mask generation function 

⎯ Hash1 : {0, 1}8* → {0, 1}8Lred, 

⎯ Hash2 : {0, 1}8* → {0, 1}8(LF + 1 – Lred), and 

⎯ MGF : {0, 1}8* → {0, 1}8(L(n) + K). 

Here K is a non-negative integer that corresponds to the security parameter.  The function MGF is defined as 
MGF(x) = MGF1(x, L(n) + K ) for x ∈ {0, 1}8*. 

NOTE 1 For the definition of an explicitly given finite field, see Clause A.3. 

NOTE 2 For the definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

NOTE 3 Since the non-recoverable message part is processed with computing the second part of the signature (and 
indeed only the recoverable message part is involved in computing the added redundancy), normally Lred = ⎣L(n) / 2⎦ is 
used in ECAO for both total and partial message recoveries; see Clauses 11.3.3 and 11.3.4. 

NOTE 4 Since the non-recoverable message part is input to MGF and the output of MGF is taken mod n, a larger value 
of K achieves a higher security level.  The value K = L(n) is recommended for use in ECAO; see Clause 11.3.4. 

11.2 User keys 

The keys of the ECAO signature scheme are produced as follows: 

a) A’s private signature key xA which is a random integer in the interval [1, n – 1]; 

b) A’s public verification key YA computed as in Clause 7.3. 

The base element G and the public verification key YA together provide the public data item (P, Q); the 
knowledge of which key generation scheme is used is public information and must be provided either as a 
domain parameter or along with the public verification key YA; see Clause 7.3. 

11.3 Signature generation process 

11.3.1 Input and output 

The input to the signature generation process consists of 

⎯ the domain parameters, 

⎯ the private signature key xA, and 

⎯ a message M to be signed. 

The output of the signature generation process is a pair (r, s) ∈ {0, 1}8(LF + 1) × [1, n – 1] that constitutes A’s 
digital signature to the message M. The signature (r, s) together with the non-recoverable message part Mclr 
constitutes the signed message. 
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11.3.2 Producing a randomizer and the pre-signature (elliptic curve computations) 

The pre-signature Π ∈ {0, 1}8(LF + 1) shall be computed by the following or an equivalent sequence of steps: 

a) Select a random integer k in the interval [1, n – 1]; 

b) Compute the elliptic curve point R = kP; 

c) Convert R to an octet string Π = EC2OSPE (R, compressed). 

NOTE For the definition of the conversion function EC2OSP with the format specifier compressed, see Clause B.6. 

11.3.3 Splitting the message and producing the data Input 

The maximum length of the recoverable part, Lmax, is set equal to LF – Lred.  Split the message M into the 
recoverable part Mrec and the non-recoverable part Mclr so that the following two conditions are satisfied: 

⎯ M = Mrec || Mclr; 

⎯ L(Mrec) ≤ Lmax. 

Note that resulting octet strings Mrec or Mclr might be null. 

Then form an octet string M˾rec by the following or an equivalent sequence of steps: 

a) Compute pad = I2OSP(1, Lmax + 1 – L(Mrec)); 

b) Compute M˾rec = pad || Mrec. 

Now the data input d ∈ {0, 1}8(LF + 1) is computed from the octet string M˾rec by the following or an equivalent 
sequence of steps: 

a) Compute the hash-token h = Hash1(M˾rec); 

b) Compute the data input d = h || (Hash2(h) ⊕ M˾rec). 

NOTE 1 ECAO mandates the usage of added redundancy with the hash-token h; ECAO explicitly specifies the method 
for producing the data input. 

NOTE 2 The above padding criteria introduce natural redundancy of more than 7 bits and close to (or equal to) 8 bits.  
Hence the total redundancy is about Lred + 1 octets, or more than L(n) / 2 when Lred = ⎣L(n) / 2⎦. 

NOTE 3 This method is, in principle, amenable to “single-pass” processing since the non-recoverable message part 
Mclr is not processed at all. 

11.3.4 Computing the signature (computations modulo n) 

The signature (r, s) ∈ {0, 1}8(LF + 1) × [1, n – 1] shall be computed by the following or an equivalent sequence of 
steps: 

a) Compute the first part r of the signature as r = d ⊕ Π ; 

b) Compute u = MGF(r || Mclr); 

c) Compute t = OS2IP(u) mod n; 

d) If t = 0, then the process of signature generation must be repeated with a new random value k; 
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e) Compute the second part s of the signature as s = (k – xAt) mod n; 

f) If s = 0, then the process of signature generation must be repeated with a new random value k; 

g) Erase k. 

11.3.5 Formatting the signed message 

The pair (r, s) ∈ {0, 1}8(LF + 1) × [1, n – 1] constitutes A’s signature on the message M. The signature (r, s) and 
the non-recoverable message part Mclr constitute the signed message. 

11.4 Signature verification process 

11.4.1 Input and output 

The input to the signature verification process consists of 

⎯ the domain parameters, 

⎯ A’s public verification key YA, and 

⎯ the signed message. 

The verifier B extracts from the signed message 

⎯ the received signature, represented as an octet string r′ and an integer s′, and 

⎯ the non-recoverable message part M ′clr (which may be null). 

The output of the signature verification process is either the recovered message M ′ or “reject.” 

11.4.2 Signature size verification 

Verify that L(r') = LF + 1 and 0 < s′ < n; if not, then reject the signature. 

11.4.3 Recovering the pre-signature (elliptic curve computations) 

The pre-signature shall be recovered from the received signature (r′, s′) and the received non-recoverable 
message part M ′clr by the following or an equivalent sequence of steps: 

a) Compute u′ = MGF(r′ || M ′clr); 

b) Compute t′ = OS2IP(u′) mod n; 

c) If t′ = 0, then reject the signature; 

d) Compute the elliptic curve point R′ = s′P + t′Q; 

e) If R′ = O, then reject the signature; 

f) Convert R′ to an octet string Π ′ = EC2OSPE (R′, compressed). 
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11.4.4 Recovering the data input 

The data input shall be recovered from the octet strings r′ and Π ′ by the following or an equivalent sequence 
of steps: 

a) Compute the recovered data input d′ = r′ ⊕ Π ′; 

b) Compute the recovered hash-token h′ = [d′]8Lred; 

c) Compute M˾ ′rec = [d′]8(LF + 1 − Lred) ⊕ Hash2(h′). 

11.4.5 Checking the signature 

Check the added redundancy by the following or an equivalent sequence of steps: 

a) Re-compute the hash-token h″ = Hash1(M˾ ′rec); 

b) Check whether h′ = h″ holds or not; if not, then reject the signature. 

Recover the message by the following or an equivalent sequence of steps: 

a) Let pad′1 be the leftmost non-zero octet in M˾ ′rec; 

b) If pad′1 ≠ Oct(1), then reject the signature; 

c) Let pad′0 and M ′rec be the leftmost and rightmost octets of M˾ ′rec, respectively, so that 
M˾ ′rec = pad′0 || pad′1 || M ′rec and OS2IP(pad′0) = 0; 

d) Compute M ′ = M ′rec || M ′clr; 

e) Output M ′. 

12 ECPV (Elliptic Curve Pintsov-Vanstone message recovery signature)5) 

12.1 Domain and user parameters 

The domain parameter specifies an additive group of order n in an elliptic curve E over an explicitly given finite 
field F. 

The length Lred in octets of the added redundancy corresponds to the security parameter and is set between 1 
and 255 inclusive, along with other redundancy criteria; see Clause 12.2.3. 

A also uses a hash function, a key derivation function and a symmetric cipher 

⎯ Hash : {0, 1}8* → {0, 1}8(L(n) − 1), 

⎯ KDF : {0, 1}8* → {0, 1}8Lkey, and 

⎯ Sym : {0, 1}8* × {0, 1}8Lkey → {0, 1}8*. 

Here Lkey denotes the length in octets of the key used with Sym.  KDF is defined by KDF(x) = MGF2(x, Lkey) for 
x ∈ {0, 1}8*. 

                                                      

5) This signature mechanism is based on a scheme defined in [10]. 
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The keys of the ECPV signature scheme are produced as follows: 

a) A’s private signature key xA which is a random integer in the interval [1, n – 1]; 

b) A’s public verification key YA computed as in Clause 7.3. 

NOTE 1 For the definition of an explicitly given finite field, see Clause A.3. 

NOTE 2 For the definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

NOTE 3 Lkey corresponds to the security parameter and shall be chosen to achieve security objectives.  The symmetric 
cipher may use exclusive-or ( ⊕ ) encryption; in such case Lkey must be equal to the length of the data input, and the 
maximum length of the recoverable message part shall be determined by the domain parameter; see Clause 12.2.3. 

12.2 Signature generation process 

12.2.1 Input and output 

The input to the signature generation process consists of 

⎯ the domain parameters, 

⎯ the private signature key xA, and 

⎯ a message M to be signed. 

The output of the signature generation process is a pair (r, s) ∈ {0, 1}8* × [1, n – 1] that constitutes A’s digital 
signature to the message. 

12.2.2 Producing a randomizer and the pre-signature (Elliptic curve computations) 

The pre-signature (the symmetric key) Π ∈ {0, 1}8Lkey shall be computed by the following or an equivalent 
sequence of steps: 

a) Select a random integer k in the interval [1, n – 1]; 

b) Compute the elliptic curve point R = kP = (x, y); 

c) Convert x to an octet string S = FE2OSPF (x); 

d) Compute the symmetric key Π = KDF(S ). 

12.2.3 Splitting the message and producing the data input 

A splits the message M to the recoverable part Mrec as being the leftmost octets of M as agreed upon and the 
remaining portion of the message Mclr. Note that the choice of Sym may introduce a length limitation for the 
input. Mrec and Mclr shall be encoded and formatted properly as agreed upon by both parties. Also, a random 
nonce may be used in place of Mclr. 

Form an octet string d by taking Mrec and the added redundancy as follows: 

a) Convert Lred to a single octet Cred = Oct(Lred); 

b) Let C˾red be the octet string formed from the octet Cred repeated Lred times (thus C˾red shall have length Lred); 

c) Compute d = C˾red || Mrec. 

NOTE 1 ECPV explicitly specifies the method for producing the data input. 
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NOTE 2 This method is, in principle, amenable to “single-pass” processing since the non-recoverable message part is 
not processed at all. 

NOTE 3 In ECPV, the encoding method of the recoverable message part and the padding criteria for Sym might 
introduce natural redundancy for the data input and thus increase the amount of total redundancy.  Normally Lred shall be 
chosen so that the total redundancy is more than L(n) / 2 or LHash / 2. 

NOTE 4 ECPV can handle a recoverable message part of essentially any length in octets. 

NOTE 5 In order to achieve security objectives, at least one of the following specifications is recommended for use in 
ECPV: 

⎯ The redundancy criteria might specify that the recoverable message part has a fixed length, or that it begins with a 
fixed-length representation of its length; 

⎯ The redundancy criteria might specify the use of a DER encoding of an ASN.1 type for the recoverable message 
part; 

⎯ The domain parameter might specify that the non-recoverable message part has a fixed length (perhaps empty), or 
that it ends with a fixed-length representation of its length. 

12.2.4 Computing the signature (Computations modulo n) 

The signature (r, s) ∈ {0, 1}8* × [1, n – 1] shall be computed by the following or an equivalent sequence of 
steps: 

a) Compute r = Sym(d, Π ); 

b) Compute u = Hash(r || Mclr); 

c) Convert t = OS2IP(u); note that t ∈ [0, n – 1]; 

d) If t = 0, then the process of signature generation must be repeated with a new random value k; 

e) Compute s = (k – xAt) mod n; 

f) If s = 0, then the process of signature generation must be repeated with a new random value k; 

g) Erase k. 

Output the signature (r, s) and the partial message part Mclr (which may be null). 

12.2.5 Formatting the signed message 

The pair (r, s) ∈ {0, 1}8* × [1, n – 1] constitutes A’s signature on the message M. 

12.3 Signature verification process 

12.3.1 Input and output 

The signature verification process consists of three steps: calculation of the message digest, elliptic curve 
computations, and signature checking. 

The input to the signature verification process consists of 

⎯ the domain parameters, 

⎯ A’s public verification key YA, 

⎯ the received signature for M, represented as an octet string r′ and an integer s′, and 

⎯ the non-recoverable message M ′clr (if any). 

To verify A’s signature for M, B executes the steps described in Clauses 12.3.2 through 12.3.5. 
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12.3.2 Signature size verification 

Verify that 0 < s′ < n; if not, then reject the signature. 

12.3.3 Recovering the pre-signature (Elliptic curve computations) 

The pre-signature (the symmetric key) shall be recovered from the signature by the following or an equivalent 
sequence of steps: 

a) Compute u′ = Hash(r′ || M ′clr); 

b) Convert t′ = OS2IP(u′); note that t′ ∈ [0, n – 1]; 

c) If t′ = 0, then reject the signature; 

d) Compute R′ = s′P + t′Q = (x′, y′) and perform the following operations: 

1) If R′ is the point at infinity, then reject the signature; 

2) Otherwise compute the symmetric key Π ′ = KDF(FE2OSPF (x′)). 

12.3.4 Recovering the data input or the message 

The data input shall be recovered by computing d′ = Sym–1(r′, Π ′), where Sym–1 denotes the decryption function 
of the symmetric cipher Sym. 

12.3.5 Checking the signature 

Verify the added redundancy of d′ and recover M ′rec by the following or an equivalent sequence of steps: 

a) If L(d′) < Lred, then reject the signature; 

b) Convert Lred to a single octet Cred = Oct(Lred); 

c) Let C˾red be the octet string formed from the octet Cred repeated Lred times (thus C˾red shall have length Lred); 

d) Check the added redundancy by C˾red = [d′]8Lred; if it does not hold, then reject the signature; 

e) Compute M ′rec = [d′]8(L(d′) − Lred); 

f) Check the natural redundancy of M ′rec in accordance with its encoding and formatting methods; if it is not 
satisfied, then reject the signature; 

g) Check the format of M ′clr (if any); if it is not satisfied, then reject the signature; 

h) Recover M ′ as the following: 

1) In case M ′clr is either the null string or a random nonce, set M ′ = M ′rec; 

2) Otherwise, recover M ′ from M ′rec and M ′clr; 

i) Output M ′. 
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13 ECKNR (Elliptic Curve KCDSA/Nyberg-Rueppel message recovery signature)6) 

13.1 Domain parameter and user keys 

The domain parameter specifies an additive group of order n in an elliptic curve E over an explicitly given finite 
field F. 

A also uses a mask generation function: 

⎯ MGF : {0, 1}8* → {0, 1}8L(n). 

The function MGF is defined as MGF(x) = MGF2(x, L(n)) for x ∈ {0, 1}8* with the underlying hash-function 
Hash.  The keys of the ECKNR signature scheme are produced as follows: 

a) A’s private signature key xA which is a random integer in the interval [1, n − 1]; 

b) A’s public verification key YA computed as in Clause 7.3. 

A’s certification-derived data zA is defined as zA = [CertA]LB, Hash, where CertA denotes the certification data of A, 
that is A’s public verification key YA converted to a bit string.  When YA = (x0, y0), 
CertA = FE2OSPF (x0) || FE2OSPF (y0) and LB, Hash is the bit length of input size of hash function.  For example, 
LB, Hash in RIPEMD-160 becomes 512. 

NOTE 1 For the definition of an explicitly given finite field, see Clause A.3. 

NOTE 2 For the definition of an elliptic curve over an explicitly given finite field, see Clause A.4. 

13.2 Signature generation process 

13.2.1 Input and output 

The input to the signature process consists of: 

⎯ the domain parameters; 

⎯ A’s private signature key xA; 

⎯ A’s certification data zA, and 

⎯ the message M to be signed, which is split to the recoverable part Mrec as being the leftmost octets of M 
as agreed upon and the remaining portion of the message Mclr. 

The output of the signature generation process is a pair (r, s) ∈ {0, 1}8L(n) × [1, n – 1] that constitutes A’s digital 
signature to the message M. 

13.2.2 Producing a randomizer and the pre-signature (elliptic curve computations) 

The pre-signature Π ∈ {0, 1}8L(n) shall be computed by the following or an equivalent sequence of steps: 

a) Select a random integer k in the interval [1, n – 1]; 

b) Compute the elliptic curve point R = kP; 

c) Convert R into an octet string and compute the hash value Π = MGF (EC2OSPE (R, compressed)). 

NOTE For the definition of the conversion function EC2OSP with the format specifier compressed, see Clause B.6. 

                                                      

6) This signature mechanism is based on a scheme defined in [6] and [11]. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 97
96

-3:
20

06

https://iecnorm.com/api/?name=3eb4c2909c0961ffe281406cd8a42a29


ISO/IEC 9796-3:2006(E) 

32 © ISO/IEC 2006 – All rights reserved
 

13.2.3 Producing the data Input 

The data d with added or natural redundancy in {0, 1}8L(n) is produced from a message, see Clauses 7.4.3. 

13.2.4 Computing the signature (computations modulo n) 

The signature (r, s) ∈ {0, 1}8L(n) × [1, n – 1] shall be computed by the following or an equivalent sequence of 
steps: 

a) Compute the first part of A’s signature r = d ⊕ Π ⊕ MGF(zA || Mclr); 

b) Set t = OS2IP(r) mod n; 

c) Compute the second part of A’s signature s = (k – xAt) mod n; 

d) Erase k. 

If the signature generation process yields r such that OS2IP(r) = 0 mod n or s = 0, then the process of signature 
generation must be repeated with a new random value k. 

13.2.5 Formatting the signed message 

The pair (r, s) ∈ {0, 1}8L(n) × [1, n – 1] constitutes A’s signature on the message M. 

13.3 Signature verification process 

13.3.1 Input and output 

The signature verification process consists of three steps: calculation of the message digest, elliptic curve 
computations, and signature checking. 

The input to the signature verification process consists of: 

⎯ the domain parameters; 

⎯ A’s public verification key YA; 

⎯ A’s certification data zA; 

⎯ the received signature for M, represented as an octet string r′ and an integer s′, and 

⎯ the non-recoverable message part M ′clr (if any). 

The output of the signature verification process is either the recovered data input d′ or “reject.” 

13.3.2 Signature size verification 

Verify that r′ ∈ {0, 1}8L(n), OS2IP(r′) ≠ 0 and 0 < s′ < n; if any one of these conditions is not satisfied, then reject 
the signature. 

13.3.3 Recovering the pre-signature (elliptic curve computations)  

The pre-signature shall be recovered from the received signature (r′, s′) by the following or an equivalent 
sequence of steps: 

a) Set t′ = OS2IP(r′) mod n; 

b) Compute the elliptic curve point R′ = s′P + t′Q; 

c) Convert R′ into an octet string and compute the hash value Π ′= MGF(EC2OSPE (R′, compressed)). 
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13.3.4 Recovering the data input or the message 

The data input shall be recovered from the first part of the received signature r′ and the recovered pre-
signature Π ′ by the following or an equivalent sequence of steps: 

a) Compute the recovered data input d′ = r′ ⊕ Π ′ ⊕ MGF(zA || M ′clr). 

13.3.5 Checking the signature 

Check the redundancy.  If it is correct, output d′, otherwise reject. 
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Annex A 
(informative) 

 
Mathematical conventions 

A.1 Bit strings 

A bit is either zero “0” or one “1.” A bit string x is a finite sequence 〈xl−1, . . . , x0〉 of bits x0, . . . , xl−1.  The length 
of a bit string x is the number l of bits in the string x.  Given a non-negative integer n, {0, 1}n denotes the set 
of bit strings of length n. {0, 1}* = ∪n ≥ 0 {0, 1}n denotes the set of bit strings, including the null string (whose 
length is 0). 

A.2 Octet strings 

An octet is a bit string of length 8. An octet string is a finite sequence of octets. The length of an octet string 
is the number of octets in the string. {0, 1}8* denotes the set of octet strings, including the null string (whose 
length is 0). An octet is often written in its hexadecimal format, using the range between 00 and FF; see 
Clause B.3. 

A.3 Finite fields 

This clause describes a very general framework for describing specific finite fields. A finite field specified in 
this way is called an explicitly given finite field, and it is determined by explicit data. For a finite field F of 
cardinality q = pe, where p is prime and e ≥ 1, explicit data for F consists of p and e, along with a “multiplication 
table,” which is a matrix T = (Tij)1 ≤ i,j ≤ e, where each Tij is an e-tuple over [0, p – 1]. 

The set of elements of F is the set of all e-tuples over [0, p – 1]. The entries of T are themselves viewed as 
elements of F. 

Addition in F is defined element-wise: if 

a = (a1, . . . , ae) ∈ F and b = (b1, . . . , be) ∈ F, 

then a + b = c, where 

c = (c1, . . . , ce) and ci = (ai + bi) mod p (1 ≤ i ≤ e). 

A scalar multiplication operation for F is also defined element-wise: if 

a = (a1, . . . , ae) ∈ F and d ∈ [0, p – 1], 

then d · a = c, where 

c = (c1, . . . , ce) and ci = (d · ai) mod p (1 ≤ i ≤ e). 

Multiplication in F is defined via the multiplication table T, as follows: if 

a = (a1, . . . , ae) ∈ F and b = (b1, . . . , be) ∈ F, 

a · b = ∑1 ≤ i ≤ e∑1 ≤ j ≤ e (aibj mod p)Tij, 
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where the products (aibj mod p)Tij are defined using the above rule for scalar multiplication, and where these 
products are summed using the above rule for addition in F. It is assumed that the multiplication table defines 
an algebraic structure that satisfies the usual axioms of a field; in particular, there exist additive and 
multiplicative identities, every element has an additive inverse, and every element besides the additive identity 
has a multiplicative inverse. 

Observe that the additive identity of F, denoted 0F, is the all-zero e-tuple, and that the multiplicative identity of 
F, denoted 1F, is a non-zero e-tuple whose precise format depends on T. 

NOTE 1 The field F is a vector space of dimension e over the prime field F ′ of cardinality p, where scalar multiplication 
is defined as above. The prime p is called the characteristic of F.  For 1 ≤ i ≤ e, let θi denote the e-tuple over F ′ whose i-th 
component is 1, and all of whose other components are 0. The elements θ1, . . . , θe form an ordered basis of F as a vector 
space over F′.  Note that for 1 ≤ i, j ≤ e, we have θi · θj = Tij. 

NOTE 2 For e > 1, two types of standard bases are defined that are commonly used in implementations of finite field 
arithmetic: 

⎯ θ1, . . . , θe is called a polynomial basis for F over F ′ if for some θ ∈ F, θi = θ e − i for 1 ≤ i ≤ e. Note that in this case, 
1F = θe; and 

⎯ θ1, . . . , θe is called a normal basis for F over F ′ if for some θ ∈ F, θi = θ p
i − 1

 for 1 ≤ i ≤ e. Note that in this case, 
1F = c∑1 ≤ i ≤ e θi for some c ∈ [0, p – 1]; if p = 2, then the only possible choice for c is 1; moreover, one can always 
choose a normal basis for which c = 1. 

A.4 Elliptic curves 

An elliptic curve E over an explicitly given finite field F is a set of points P = (x, y), where x and y are elements 
of F that satisfy a certain equation, together with the “point at infinity,” denoted by O. For the purposes of this 
part of ISO/IEC 9796, the curve E is specified by two field elements a, b ∈ F, called the coefficients of E. 

Let p be the characteristic of F. 

If p > 3, then a and b shall satisfy 4a3 + 27b2 ≠ 0F, and every point P = (x, y) on E (other than O) shall satisfy the 
equation 

y2 = x3 + ax + b. 

If p = 2, then b shall satisfy b ≠ 0F, and every point P = (x, y) on E (other than O) shall satisfy the equation 

y2 + xy = x3 + ax2 + b. 

If p = 3, then a and b shall satisfy a ≠ 0F and b ≠ 0F, and every point P = (x, y) on E (other than O) shall satisfy 
the equation 

y2 = x3 + ax2 + b. 

The points on an elliptic curve form a finite abelian group, where O is the identity element. There exist efficient 
algorithms to perform the group operation of an elliptic curve, but the implementation of such algorithms is out 
of the scope of this part of ISO/IEC 9796. 

NOTE See ISO/IEC 15946-1 for more information on how to efficiently implement elliptic curve group operations. 
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Annex B 
(normative) 

 
Conversion functions 

B.1 Octet string / bit string conversion: OS2BSP and BS2OSP 

Primitives OS2BSP and BS2OSP that convert between octet strings and bit strings are defined as follows: 

⎯ The function OS2BSP(x) takes as input an octet string x and outputs x, which is also a bit string; and 

⎯ The function BS2OSP(y) takes as input a bit string y, whose length is a multiple of 8, and outputs the 
unique octet string x such that y = OS2BSP(x). 

B.2 Bit string / integer conversion: BS2IP and I2BSP 

Primitives BS2IP and I2BSP that convert between bit strings and integers are defined as follows: 

⎯ The function BS2IP(x) maps a bit string x to an integer value x′, as follows.  If x = 〈xl−1, . . . , x0〉 where 
x0, . . . , xl−1 are bits, then the value x′ is defined as x′ = ∑0 ≤ i < l, xi = ‘1’ 2i; and 

⎯ The function I2BSP(m, l ) takes as input two non-negative integers m and l, and outputs the unique bit 
string x of length l such that BS2IP(x) = m, if such an x exists.  Otherwise, the function fails. 

The length in bits of a non-negative integer n is the number of bits in its binary representation, i.e., 
⎡log2(n + 1)⎤. As a notational convenience, Oct(m) is defined as Oct(m) = I2BSP(m, 8). 

NOTE Note that I2BSP(m, l ) fails if and only if the length of m in bits is greater than l. 

B.3 Octet string / integer conversion: OS2IP and I2OSP 

Primitives OS2IP and I2OSP that convert between octet strings and integers are defined as follows: 

⎯ The function OS2IP(x) takes as input an octet string, and outputs the integer BS2IP(OS2BSP(x)); and 

⎯ The function I2OSP(m, l ) takes as input two non-negative integers m and l, and outputs the unique octet 
string x of length l such that OS2IP(x) = m, if such an x exists. Otherwise, the function fails. 

The length in octets of a non-negative integer n is the number of digits in its representation base 256, i.e., 
⎡log256 (n + 1)⎤; this quantity is denoted L(n). 

NOTE 1 Note that I2OSP(m, l ) fails if and only if the length of m in octets is greater than l. 

NOTE 2 An octet x is often written as OS2IP(x) in its hexadecimal format of length 2; when OS2IP(x) < 16, “0”, 
representing the bit string 0000, is prepended. 

B.4 Finite field element / integer conversion: FE2IPF 

The primitive FE2IPF that converts elements of F to integer values is defined as follows: 

⎯ The function FE2IPF maps an element a ∈ F to an integer value a′, as follows. If the cardinality of F is 
q = pe, where p is prime and e ≥ 1, then an element a of F is an e-tuple (a1, . . . , ae), where ai ∈ [0 . . p) for 
1 ≤ i ≤ e, and the value a′ is defined as a′ = ∑1 ≤ i ≤ e ai pi − 1; 
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B.5 Octet string / finite field element conversion: OS2FEPF and FE2OSPF 

Primitives OS2FEPF and FE2OSPF that convert between octet strings and elements of an explicitly given finite 
field F are defined as follows: 

⎯ The function FE2OSPF (a) takes as input an element a of the field F and outputs the octet string 
I2OSP(a′, l ), where a′ = FE2IPF (a), and l is the length in octets of |F |−1, i.e., l = ⎡log256 |F |⎤. Thus, the output 
of FE2OSPF (a) is always an octet string of length exactly ⎡log256 |F |⎤; and 

⎯ The function OS2FEPF (x) takes as input an octet string x, and outputs the (unique) field element a ∈ F 
such that FE2OSPF (a) = x, if such an a exists, and otherwise fails. 

Note that OS2FEPF (x) fails if and only if either x does not have length exactly ⎡log256 |F |⎤, or OS2IP(x) ≥ |F |; this 
quantity is denoted LF. 

B.6 Elliptic curve / octet string conversion: EC2OSPE and OS2ECPE 

B.6.1 Compressed elliptic curve points 

Let E be an elliptic curve over an explicitly given finite field F, where F has characteristic p. 

A point P ≠ O can be represented in either compressed, uncompressed, or hybrid form. 

If P = (x, y), then (x, y) is the uncompressed form of P. 

Let P = (x, y) be a point on the curve E, as above.  The compressed form of P is the pair (x, ỹ), where 
ỹ ∈ {0, 1} is determined as follows: 

⎯ If p ≠ 2 and y = 0F, then ỹ = 0; 

⎯ If p ≠ 2 and y ≠ 0F, then ỹ = ((y′/p f ) mod p) mod 2, where y′ = FE2IPF (y), and where f is the largest non-
negative integer such that p f | y′; 

⎯ If p = 2 and x = 0F, then ỹ = 0; and 

⎯ If p = 2 and x ≠ 0F, then ỹ = ⎣z′/2 f⎦ mod 2, where z = y/x, where z′ = FE2IPF (z), and where f is the largest 
non-negative integer such that 2 f divides FE2IPF (1F). 

The hybrid form of P = (x, y) is the triple (x, ỹ, y), where ỹ is as in the previous paragraph. 

B.6.2 Point decompression algorithms 

There exist efficient procedures for point decompression, i.e., computing y from (x, ỹ). These are briefly 
described here: 

⎯ Assume p ≠ 2, and let (x, ỹ) be the compressed form of (x, y). The point (x, y) satisfies an equation y2 = f (x) 
for a polynomial f (x) over F in x. If f (x) = 0F, then there is only one possible choice for y, namely, y = 0F. 
Otherwise, if f (x) ≠ 0, then there are two possible choices of y, which differ only in sign, and the correct 
choice is determined by ỹ. There are well-known algorithms for computing square roots in finite fields, 
and so the two choices of y are easily computed; and 

⎯ Assume p = 2, and let (x, ỹ) be the compressed form of (x, y). The point (x, y) satisfies an equation 
y2 + xy = x3 + ax2 + b. If x = 0F, then we have y2 = b, from which y is uniquely determined and easily 
computed.  Otherwise, if x ≠ 0F, then setting z = y/x, we have z2 + z = g(x), where g(x) = (x + a + bx−2). The 
value of y is uniquely determined by, and easily computed from, the values z and x, and so it suffices to 
compute z. To compute z, observe that for a fixed x, if z is one solution to the equation z2 + z = g(x), then 
there is exactly one other solution, namely z + 1F. It is easy to compute these two candidate values of z, 
and the correct choice of z is easily seen to be determined by ỹ. 
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B.6.3 Conversion functions 

Let E be an elliptic curve over an explicitly given finite field F. 

Primitives EC2OSPE and OS2ECPE for converting between points on an elliptic curve E and octet strings are 
defined as follows: 

a) The function EC2OSPE (P, fmt) takes as input a point P on E and a format specifier fmt, which is one of the 
symbolic values compressed, uncompressed, or hybrid. The output is an octet string EP, computed 
as follows: 

1) If P = O, then EP = Oct(0); and 

2) If P = (x, y) ≠ O, with compressed form (x, ỹ), then EP = H || X || Y, where 

i) H is a single octet of the form Oct(4U + C · (2 + ỹ )), where 

I) U = 1 if fmt is either uncompressed or hybrid, and otherwise, U = 0, and 

II) C = 1 if fmt is either compressed or hybrid, and otherwise, C = 0, 

ii) X is the octet string FE2OSPF (x), and 

iii) Y is the octet string FE2OSPF (y) if fmt is either uncompressed or hybrid, and otherwise Y is 
the null octet string; and 

b) The function OS2ECPE (EP) takes as input an octet string EP. If there exists a point P on the curve E and a 
format specifier fmt such that EC2OSPE (P, fmt) = EP, then the function outputs P (in uncompressed form), 
and otherwise, the function fails. Note that the point P, if it exists, is uniquely defined, and so the function 
OS2ECPE (EP) is well defined. 

NOTE If the format specifier fmt is uncompressed, then the value ỹ need not be computed. 
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Annex C 
(normative) 

 
Mask generation functions 
(Key derivation functions) 

This annex describes “mask generation functions” that are referred to in this part of ISO/IEC 9796.  Specific 
implementations of mask generation functions that are allowed for use in this part of ISO/IEC 9796 are 
specified. 

A mask generation function is a function MGF*(x, l ) that takes as input an octet string x and an integer l, and 
outputs an octet string of length l. The string x is of arbitrary length, although an implementation may define a 
(very large) maximum length for x and maximum size for l. 

NOTE In some other documents and standards, the term “key derivation function” is used instead of “mask 
generation function.” 

C.1 Allowable mask generation functions 

The mask generation functions that are allowed in this part of ISO/IEC 9796 are MGF1, described below in 
Clause C.2, and MGF2, described below in Clause C.3. 

C.2 MGF1 

MGF1 is a family of mask generation functions, parameterized by the following system parameter: 

⎯ Hash: a hash-function. 

For an octet string x and a non-negative integer l, MGF1(x, l ) is defined to be 

[Hash(x || I2OSP(0, 4)) || Hash(x || I2OSP(1, 4)) || · · · || Hash(x || I2OSP(k − 1, 4))]8l, 

where k = ⎡l / LHash⎤. 

C.3 MGF2 

MGF2 is a family of mask generation functions, parameterized by the following system parameter: 

⎯ Hash: a hash-function. 

For an octet string x and a non-negative integer l, MGF2(x, l ) is defined to be 

[Hash(x || I2OSP(1, 4)) || Hash(x || I2OSP(2, 4)) || · · · || Hash(x || I2OSP(k, 4))]8l, 

where k = ⎡l / LHash⎤. 

NOTE MGF2 is the same as MGF1, except that the counter runs from 1 to k, rather than from 0 to k − 1. 
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Annex D 
(informative) 

 
Example method for producing the data input 

In this annex, an example method for producing the data input with added redundancy and for checking the 
redundancy in Clauses 7.4.3 and 7.5.4 is described. This method can be combined with the following 
schemes described in this part of ISO/IEC 9796:  NR, ECNR, ECMR and ECKNR. 

D.1 Splitting the message and producing the data input 

A selects a hash-function Hash : {0, 1}8* → {0, 1}8Lred. A also specifies the use of hash-function identifier 
option; A sets LHashID = 1 when hash-function identification is desired and LHashID = 0 otherwise. A sets an octet 
string trailer to be the hash-function identifier when LHashID = 1 and to be the null octet otherwise. These 
information must be provided as domain parameters. Also, each mechanism specifies the length of the data 
input; let Ldat be the length of the data input in octets. 

The data input d is then produced from a message M by the following or an equivalent sequence of steps: 

a) Compute the maximum length Lmax of recoverable part as Lmax = Ldat − Lred − LHashID; 

b) Split the message M to the recoverable part Mrec as being the leftmost octets of M and the remaining 
portion of the message Mclr, as follows: 

1) If L(M ) ≤ Lmax, then set Mrec = M and Mclr = ∅ (the null string); 

2) If L(M ) > Lmax, then split M into Mrec and Mclr such as M = Mrec || Mclr satisfying Lmax > L(Mrec); 

c) Convert the lengths to octet strings Crec = I2OSP(Lrec, 8) and Cclr = I2OSP(Lclr, 8); 

d) Compute the hash-token h ∈ {0, 1}8Lred + 8LHashID as h = Hash(Crec || Cclr || Mrec || Mclr || Π ) || trailer; 

e) Compute the padding string pad = I2OSP(0, Lmax − Lrec); 

f) Produce the data input d ∈ {0, 1}8Ldat as d = pad || h || Mrec. 

A must include the length Lrec in the signed message, along with the signature (r, s) and the non-recoverable 
message part Mclr. 

D.2 Checking the redundancy 

B receives a signed message consisting of the first part r′ of the signature, the second part s′ of the signature, 
the recoverable part length L′rec and the non-recoverable message part M ′clr. The pre-signature Π ′ ∈ {0, 1}8* 
and the data input d′ ∈ {0, 1}8Ldat is recovered from the received signature (r′, s′). 

B verifies the signature and recovers the message by the following or an equivalent sequence of steps: 

a) Compute Lmax = Ldat − Lred − LHashID; 

b) Check if L′rec ∈ [0, Lmax]; if not, then reject the signature; 

c) Recover the padding string, the hash-token and the recoverable part as pad′ = [d′]Lmax − L′rec, 
h′ = [[d′]8Lred + 8LHashID + 8L′rec]

8Lred + 8LHashID and M ′rec = [d′]8L′rec, respectively; 
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d) Check the padding:  if OS2IP(pad′) = 0 does not hold, then reject the signature; 

e) Compute the length L′clr = L(M ′clr); 

f) Convert the lengths to octet strings C′rec = I2OSP(L′rec, 8) and C′clr = I2OSP(L′clr, 8); 

g) Re-compute the hash-token h′′ = Hash(C′rec || C′clr || M ′rec || M ′clr || Π ′) || trailer; 

h) Check the added redundancy:  if h′ = h′′ does not hold, then reject the signature; 

i) Output M ′rec || M ′clr. 
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Annex E 
(normative) 

 
ASN.1 module 

E.1 Formal definition 

This annex defines an ASN.1 module containing abstract syntax for the digital signature with message 
recovery mechanisms specified in this part of ISO/IEC 9796. 

MessageRecoverySignatureMechanisms { 
   iso(1) standard(0) signature-schemes(9796) part(3) asn1-module(1) 
      message-recovery-signature-mechanisms(0)  
} 
DEFINITIONS EXPLICIT TAGS ::= BEGIN 
 
IMPORTS 
 
   HashFunctions  
      FROM DedicatedHashFunctions { 
         iso(1) standard(0) encryption-algorithms(10118) part(3) asn1-module(1)  
            dedicated-hash-functions(0) } ; 
 
OID ::= OBJECT IDENTIFIER  -- alias 
 
SignatureWithMessageRecovery ::= SEQUENCE { 
   algorithm   ALGORITHM.&id({MessageRecovery}), 
   parameters  ALGORITHM.&Type({MessageRecovery}{@algorithm})  OPTIONAL 
} 
 
signatureMechanism OID ::= {  
   iso(1) standard(0) hash-functions(9796) part3(3) mechanism(0)  
} 
 
MessageRecovery ALGORITHM ::= { 
   dswmr-nr    | 
   dswmr-ecmr  | 
   dswmr-ecao  | 
   dswmr-ecknr | 
   dswmr-ecpv  | 
   dswmr-ecnr,  
 
   ... -- Expect additional algorithms -- 
} 
 
dswmr-nr ALGORITHM ::= { 
   OID nr PARMS HashFunctions 
} 
 
dswmr-ecmr ALGORITHM ::= { 
   OID ecmr PARMS HashFunctions 
} 
 
dswmr-ecao ALGORITHM ::= { 
   OID ecao PARMS HashFunctions 
} 
 
dswmr-ecknr ALGORITHM ::= { 
   OID ecknr PARMS HashFunctions 
} 
dswmr-ecpv ALGORITHM ::= { 
   OID ecpv PARMS HashFunctions 
} 
dswmr-ecnr ALGORITHM ::= { 
   OID ecnr PARMS HashFunctions 
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} 
 
 
-- Cryptographic algorithm identification – 
 
ALGORITHM ::= CLASS { 
   &id    OBJECT IDENTIFIER  UNIQUE,  
   &Type  OPTIONAL 
} 
  WITH SYNTAX { OID &id [PARMS &Type] } 
 
-- Message recovery signature mechanisms -- 
 
nr    OID ::= { signatureMechanism nr(0) } 
ecmr  OID ::= { signatureMechanism ecmr(1) } 
ecao  OID ::= { signatureMechanism ecao(2) } 
ecknr OID ::= { signatureMechanism ecknr(3) } 
ecpv  OID ::= { signatureMechanism ecpv(4) } 
ecnr  OID ::= { signatureMechanism ecnr(5) } 
 
END  -- MessageRecoverySignatureMechanisms – 
 

E.2 Use of subsequent object identifiers 

Any one of the signature schemes uses a hash-function. Therefore a subsequent object identifier may follow 
for referring to a hash-function (e.g., one of the dedicated hash-functions specified in ISO/IEC 10118-3). 
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Annex F 
(informative) 

 
Numerical examples 

F.1 Numerical examples for NR 

NOTE 1 Throughout Clause F.1 we refer to ASCII encoding of data strings; this is equivalent to coding using ISO 646. 

NOTE 2 Clauses F.1.2, F.1.3 and F1.4 use the domain parameter, the user keys, the randomizer and the message 
described in Clause F.1.1. 

F.1.1 Example with partial recovery 

P ffffffff ffffffff c90fdaa2 2168c234
c4c6628b 80dc1cd1 29024e08 8a67cc74 020bbea6 3b139b22 514a0879
8e3404dd ef9519b3 cd3a431b 302b0a6d f25f1437 4fe1356d 6d51c245
e485b576 625e7ec6 f44c42e9 a637ed6b 0bff5cb6 f406b7ed ee386bfb
5a899fa5 ae9f2411 7c4b1fe6 49286651 ece65381 ffffffff ffffffff

Q 7fffffff ffffffff e487ed51 10b4611a
62633145 c06e0e68 94812704 4533e63a 0105df53 1d89cd91 28a5043c
c71a026e f7ca8cd9 e69d218d 98158536 f92f8a1b a7f09ab6 b6a8e122
f242dabb 312f3f63 7a262174 d31bf6b5 85ffae5b 7a035bf6 f71c35fd
ad44cfd2 d74f9208 be258ff3 24943328 f67329c0 ffffffff ffffffff

Length of Q 1023 bits

G 2

Signature key xA fcf63b30 a349edc2 b135b0d4 fbcf2900
8c9de512 d033dbd5 32e513c3 b2501ef7 c3bae4a5 f1368abc 4f5643e1
0f737660 c9aa959f 8362bc82 7771f89e 88a1bcbc 3276d52b 3e1ab0fc
f398c937 9370241e 66b87ef9 78555971 3282a0ac 7ca11239 976f6605
29b4bc4c 7d0c9412 9ac52410 3a0eed44 f1aaa99f b1791059 0378b037

Verification key YA a544638a d770ce35 c5286db8 3c124a77
f382bc7c ed585501 371928f8 1bc5e61f da841361 08beab18 e84f46d6
5cd0a9f2 4a00998d 37312a2e f28f7370 b95ce7ff 2cee0be9 1457beb0
9fe790f1 e31de199 1ca3b8db 7de3f13c 8add8e02 5eaa7a41 3ee276da
364bf447 52022ca5 48133f7c 57e94a0c 20cbff8e 98660f98 e034fe4c

Randomizer k 1698cc3 2a59174b 93511339 528fb5d8
ba386493 85630f0a 9624f5ab 71a5ccf9 29c63f3e 0e36a339 207685a4
12cec6a4 3f0ae734 bfd30703 83109786 101b036d e83b4954 048217c2
6d76a398 f7afd556 9e1cf908 091be435 de10c379 35aa8896 ee34df2a
1b29866f 29256ea5 8e2c2558 0cd65489 99579211 c5aad05f ddbda767

Pre-signature Π 0ebc1b0b baf3c121 ff29d858 7c35e42b
5614ff11 aa40ceed 454c57b6 dd3a7ee0 7732420e 7c8c7b18 2c7aaccc
52c798c0 2ec6e2bc bb67256e 032c0e13 2eaa8ca8 1dab8404 73e81f61
912827b6 23d65fac 29f5414a 2ce7ce88 07fe6891 c58aaf05 e8546e83
196b0f62 6873befe 51c0b7e3 b8ac49b2 5f416791 e0dacc23 f41f25d5

Message to be signed ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

M 41424344 45464748 494a4b4c 4d4e4f50 51525354 55565758
595a6162 63646566 6768696a 6b6c6d6e 6f707172 73747576 7778797a
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30313233 34353637 38394142 43444546 4748494a 4b4c4d4e 4f505152
53545556 5758595a 61626364 65666768 696a6b6c 6d6e6f70 71727374
75767778 797a3031 32333435 36373839 41424344 45464748 494a4b4c
4d4e4f50 51525354 55565758 595a6162 63646566 6768696a 6b6c6d6e
6f707172 73747576 7778797a 30313233 34353637 38394142 43444546
4748494a 4b4c4d4e 4f505152 53545556 5758595a 61626364 65666768
696a6b6c 6d6e6f70 71727374 75767778 797a3031 32333435 36373839

 

F.1.2 Example with Dedicated Hash-Function 3 (otherwise known as SHA1) of ISO/IEC 10118-3 

Length of hash-token 21 octets

Recoverable length 
Lrec 

00000000 0000006a

Non-recoverable 
length Lclr 

00000000 0000008e

Hash-code 005e4e9b e8c9a202 80ffab58 d9927041 80dcc44d

Hash-function 
identifier 

33

Data input d 5e4e 9be8c9a2 0280ffab 58d99270
4180dcc4 4d334142 43444546 4748494a 4b4c4d4e 4f505152 53545556
5758595a 61626364 65666768 696a6b6c 6d6e6f70 71727374 75767778
797a3031 32333435 36373839 41424344 45464748 494a4b4c 4d4e4f50
51525354 55565758 595a6162 63646566 6768696a 6b6c6d6e 6f707172

First part of  
signature r 

0ebc795a 56dc8ac4 01aad803 d50f769b
9795dbd5 f774102f 88909cfd 2482c82a c27e8f5c cbdccc6a 7fcf0222
aa1ff21a 90294621 20cd8cd6 6c96797f 9c18fc18 8f1df778 e95e96da
0aa257e7 560993e1 602c7983 6e2a11cc 4d44afda 0ed4fa52 35a2bdd3
6abd62b6 bdca1656 ab1b1946 1c10af18 c6a9d0fc 4c473992 638f9747

Second part of 
signature s 

1ecf7056 cac6b0d4 a951f8b6 9e9c191f
930a101e f3f891ff d1636615 b2444590 c1a0e3ee af8f701d 4a796761
d64fcda2 7622fe9f f0645eba 617e9747 2bafc0bf f487efd0 2d2ca4c1
7705a1e6 0c68c6a9 fadd5ca5 43988d5f a338f5e1 5bb59edf 41ce6ecc
2c8832f2 a0565e81 f1696845 2f99ae59 ad24c5d8 bb70a148 9f65a37d

 

F.1.3 Example with Dedicated Hash-Function 1 (otherwise known as RIPEMD-160) of ISO/IEC 10118-3 

Length of hash-token 21 octets

Recoverable length 
Lrec 

00000000 0000006a

Non-recoverable 
length Lclr 

00000000 0000008e

Hash-code 525d1604 e8a2a6f6 054ba7a9 ffc4a18e bab0fe2b

Hash-function 
identifier 

31

Data input d 525d16 04e8a2a6 f6054ba7 a9ffc4a1
8ebab0fe 2b314142 43444546 4748494a 4b4c4d4e 4f505152 53545556
5758595a 61626364 65666768 696a6b6c 6d6e6f70 71727374 75767778
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797a3031 32333435 36373839 41424344 45464748 494a4b4c 4d4e4f50
51525354 55565758 595a6162 63646566 6768696a 6b6c6d6e 6f707172

First part of  
signature r 

0f0e7821 bfdc63c8 f52f2400 2635a8cc
e4cfb00f d572102f 88909cfd 2482c82a c27e8f5c cbdccc6a 7fcf0222
aa1ff21a 90294621 20cd8cd6 6c96797f 9c18fc18 8f1df778 e95e96da
0aa257e7 560993e1 602c7983 6e2a11cc 4d44afda 0ed4fa52 35a2bdd3
6abd62b6 bdca1656 ab1b1946 1c10af18 c6a9d0fc 4c473992 638f9747

Second part of 
signature s 

3e1bf266 a2fe5226 79192ef9 14e4f648
3a89a3c4 87243e86 beecfae9 dabbec98 eaff37d0 b3eaab2c 2308becc
b3681577 9de664bb 4547c06c 8e456be2 24488268 649c30e2 ffb25460
86745066 20e5c853 d6194981 607a2386 be38f463 dd820d10 32771638
7c874364 1ab116eb 00421592 e70b7281 2746acfc 19b601fc 6de5a89d

 

F.1.4 Example with Dedicated Hash-Function 2 (otherwise known as RIPEMD-128) of ISO/IEC 10118-3 

Length of hash-token 17 octets

Recoverable length 
Lrec 

00000000 0000006e

Non-recoverable 
length Lclr 

00000000 0000008a

Hash-code ab8fd266 ddddbddc 48d117ea f0968b0c

Hash-function 
identifier 

32

Data input d                              ab8fd2 66ddddbd dc48d117 eaf0968b 
0c324142 43444546 4748494a 4b4c4d4e 4f505152 53545556 5758595a 
61626364 65666768 696a6b6c 6d6e6f70 71727374 75767778 797a3031 
32333435 36373839 41424344 45464748 494a4b4c 4d4e4f50 51525354 
55565758 595a6162 63646566 6768696a 6b6c6d6e 6f707172 73747576 

First part of  
signature r 

                           0f67aade 21d19edf db72a970 67267ab6 
62474053 ed851433 8c94a101 2886cc2e c6829360 cfe0d06e 83d30626 
b429fc24 942d4a25 24d190da 709a7d83 a01d001c 9321fb7c ed624f92 
c35b5beb 5a0d97e5 6b37848e 722e15d0 5148b3de 12d8fe56 39a6c1d7 
6ec166ba c1ce2060 b5251d4a 2014b31c caadd500 504b3d96 67939b4b 

Second part of 
signature s 

                           64dc5bce 568cb0be 22ea47f7 d848a5ef 
fc34fdea 0f11ed67 ee24753f 655e72fa c0d12fed da5f0c13 9c9d1544 
8cce2297 6a2b0fb0 00055fd8 4e0d38b9 86fde806 fc74e1d4 ddd8144d 
dd5530a1 66fd03aa 11003478 06e5678f 7dd9927a 5834c0d2 cdffb15c 
14dec608 bb6eac7c 15a3c6c7 05de2a82 4b5a3e9f f4b26171 9b8daf16 

 

F.1.5 Example with total recovery (RIPEMD-128) 

P 1 5654b2a4 8af38b0b 45b10960 41a7f552
4a97a065 fff0bb31 94cae13e 38c2969e 527dc350 e5b32309 fc3342fb
741c4294 54020173 aaf8a23d 2ca4a294 27bd8c1c 6384db95 5c944e40
c321a896 b4d50969 e869d23f 49bf2489 c918c3b3 636e4907 3162512d
5ce35acc 858f70b6 daaf970e 0086bad1 2062a127 a2afeee0 5dfd9e3d

Q 1 9cafd651 31c5c9a7 d546e3f9 42577f24 220f1b07

Length of Q 161 bits
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G 1 3e2cfad2 bd5e8128 c6f968df 664ab926
9d3b1ae3 a558100b 22682671 46421b71 43eb37ef 659e992a 0746c1df
dc7b899e 735063d4 e4a9dcad 46f85bb5 4ffe1774 62e18fe4 43efb87f
cda522bf f3097853 d5a1f723 bcde771f 903b7c0a 89974ab2 efc94b69
4590b2b1 02ed7160 f207d18b 0c748186 34118dbe c1ff775a b3a16be4

Signature key xA 478bbe64 7cd50ef3 67ebe30f dc10c9e0 1ce37fb5

Verification key YA 6ce2e099 1ca9f778 571ab62d d535bbd7
260a481f 19619944 0739667f 5978cc7c 7eb25030 d3abe64a b599c1af
6414bed8 3505e2c0 8a42acf7 f2fdab50 6963399c f5b7303d 8953b565
edb0efee 6d8ae8af eeba1890 63c72571 b586092b 1fc0f9d9 d1f82cd0
6bf307bc a385dc4c 1a8cfc87 9bc622d1 135277ac 7264ebef b1fd4127

Randomizer k 5a474224 778948f7 c2aa8890 61fbb3a9 750ec2cb

Π 00 9981665a fddb49bd 99b94480 d0f314e0
9db3539e 2874acf5 59ed6376 15886470 f9a85e0f 98631dc1 516a6c4b
68c7c35d 28efcb29 c1ecd84f ed57a9ad a22d8f3f 57247312 e12c21b9
21d792be c964aed2 48b440b7 a8043ef7 fec79008 186749fd c11f4f6f
fe1b734a 4a504fb3 eca68d2f 8f105a52 fe97effc 0e67fad1 14de9d02

Message to be signed Plaintext

M 70 6c61696e 74657874

Length of truncated 
hash-token 

10 bytes

Recoverable length 
Lrec 

00000000 00000009

Non-recoverable 
length Lclr 

00000000 00000000

Truncated hash-token     c42a ebdb3c89 50e9beff

Data input d   c42aeb db3c8950 e9beff70 6c61696e 74657874

First part of  
signature r 

9af324f6 16d169d0 f1fe0dc1 7d96d4b7 e5e9f641

Second part of 
signature s 

dc2c286e 4d5e6c1e 14551148 12eecfc5 a8f123eb

 

 

F.2 Numerical examples for ECNR 

NOTE 1 The hash function is Hash(T ) = RIPEMD-160(T || C ), where C = 00000001 in hexadecimal. 

NOTE 2 The data input is computed as the rightmost Ldat octets of H || Mrec, where H is a truncated hash token of 
Hash(Crec || Cclr || Mrec || Mclr || Π ). The truncated hash token is the leftmost Lred octets of the hash token. We used 
Crec = I2OSP(Lrec, 4), Cclr = I2OSP(Lclr, 4). 

F.2.1 Elliptic curve over a prime field 

P ffd5d55f a9934410 d3eb8bc0 4648779f 13174945
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Equation of E y2 ≡ x3 + ax + b (mod p)

A  710062dc b53dc6e4 2f8227a4 fbac2240 bd3504d4

B 4163e75b b92147d5 4e09b0f1 3822b076 a0944359

x-coordinate of G 3c1e27d7 1f992260 cf3c31c9 0d80b635 e9fd0e68

y-coordinate of G c436efc0 041bbf09 47a304a0 05f8d43a 36763031

n (order of G) 2aa3a38f f1988b58 235241ee 59a73f46 46443245

Length of n in bits 158 bits

L(n) 20

Ldat 19

Lred 9

Lrec 10

Lclr 13

Signature key xA 24a3a993 ab59b12c e7379a12 3487647e 5ec9e0ce

x-coordinate of YA e564ac ae27d227 1c4af829 cface6de cc8cdce6

y-coordinate of YA 7bd48ce1 08ffd3cf a38177f6 83b5bcf4 fd97a4a9

k 08a8bea9 f2b40ce7 40067226 1d5c05e5 fd8ab326

kG = (x, y) 

x 177b7c44 ac2f7f79 96aefd27 c68d59e0 f8e01599

y 399ea116 298975bb 449d126f 6c97bddf c4e8782e

Π 02 177b7c44 ac2f7f79 96aefd27 c68d59e0 f8e01599

Message to be signed This is a test message!

M 546869 73206973 20612074 65737420 6d657373 61676521

Mrec 5468 69732069 73206120

Mclr 74 65737420 6D657373 61676521

Hash input 0000000a 0000000d 54686973 20697320 61207465

 7374206d 65737361 67652102 177b7c44 ac2f7f79

 96aefd27 c68d59e0 f8e01599

Truncated hash-token H 64 1e6fe77e b1b9cca9

Data input d = H || Mrec 641e6f e77eb1b9 cca95468 69732069 73206120

First part of signature r 1833eff5 4087a911 bb7d3a63 fc2982ff 20ce1b7d
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Second part of signature s 155d498e 35855ab5 04b9adda 0315ca77 4b171e61

 

F.2.2 Elliptic curve over an extension field GF(2m) 

Galois field GF(2185) with the polynomial x185 + x69 + 1. 

Equation of E y2 + xy = x3 + ax2 + b

A 07 2546b543 5234a422 e0789675 f432c894 35de5242

B 00 c9517d06 d5240d3c ff38c74b 20b6cd4d 6f9dd4d9

x-coordinate of G 07 af699895 46103d79 329fcc3d 74880f33 bbe803cb

y-coordinate of G 01 ec23211b 5966adea 1d3f87f7 ea5848ae f0b7ca9f

N 04 00000000 00000000 0001e60f c8821cc7 4daeafc1

Length of n 163 bits

L(n) 21

Ldat 20

Lred 10

Lrec 10

Lclr 13

xA   03 d648bcb2 e4d5d151 656c8477 4ed016ba 292a5a38

x-coordinate of YA 07 01b9786f d72171da a883f34c 44deeace a10b8d02

y-coordinate of YA 00 0149bdc1 54c6ab7f 4e5b4a4a 57d528d7 65d7f8ea

k 02 887ac572 8a839081 8b535fcb f04e827b 0f8b543c

kG=(x,y) 

x 00 eeddbbcf 22652313 c3484118 5d3ebb53 8c453aee

y 03 7df0f68a c78cd813 0a6ffeda 5ba85ff1 14e93ec7

Π  0200 eeddbbcf 22652313 c3484118 5d3ebb53 8c453aee

Message to be signed This is a test message!

M 546869 73206973 20612074 65737420 6D657373 61676521

Mrec  5468 69732069 73206120

Mclr 74 65737420 6D657373 61676521

Hash input 00 00000a00 00000d54 68697320

 69732061 20746573 74206d65 73736167 65210200
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 eeddbbCf 22652313 c3484118 5d3ebb53 8c453aee

Truncated hash-token H d8f3 55fde3c6 1cb29bc0

Data input d = H || Mrec d8f355fd e3c61cb2 9bc05468 69732069 73206120

First part of signature r  01 c7d111cd 062b3fc6 5e158d9c 85a37816 280dbb8e

Second part of signature s 01 0fe6b789 d7ef86bc 5ed726ca 0fc7c96c f6b4faa3

 

F.2.3 Elliptic curve over an extension field GF(pm) 

p fffffffb

m 5

Irreducible polynomial X 5 – 2

Equation of E y2 = x3 + ax + b

a 00000000 00000000 00000000 00000000 00000000 00000000 
00000001

b 00000000 00000000 00000000 00000000 00000000 00000001
00000106

x-coordinate of G fcdee3ee eb6a9d0c 821c8b46 d27937bc 0fbac840

y-coordinate of G 3c329e0d 7a5fb6e4 048a69c1 12f8cb35 dffb7ccc

n ffffffe7 000000f9 fffe3308 f697c1d6 d7de35cf

Length of n 160 bits

L(n) 20

xA d648bcb2 e4d5d151 656c8477 4ed016ba 292a5a38

x-coordinate of YA be00180e c77feb6e a550dbf6 a6d5ccce 8b1f7cf6

y-coordinate of YA 13ad8b66 c59205f7 71112f36 effa0650 72487bef

k 887ac572 8a839081 8b535fcb f04e827b 0f8b543c

kG=(x,y) 

x c9c83609 b667081f 09d4f822 325daa91 01e06c84

y 4e95c220 783a466f 2d2f12aa 6ee07c60 928d2594

Π  02 c9c835f9 f2c2cfd6 951b2642 2531d251 8d5547d7

Message to be signed This is a test message!

M 546869 73206973 20612074 65737420 6d657373 61676521

Mrec 5468 69732069 73206120
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Mclr 74 65737420 6d657373 61676521

Hash input 0000000a 0000000d 54686973

 20697320 61207465 7374206d 65737361 67652102

 c9c835f9 f2c2cfd6 951b2642 2531d251 8d5547d7

Truncated hash-token H 547a d9d64b5e 9b62e920

Date input d = H || Mrec 7ad9d6 4b5e9b62 e9205468 69732069 73206120

First part of signature r ca431002 3e216945 7e3f1498 a1756f0d 50b93d59

Second part of signature s 951cd069 e020eb4d 3da1c3dc e316819c 260c8d36

 

F.3 Numerical examples for ECMR 

F.3.1 Elliptic curve over a prime field 

NOTE (1) Truncated hash token h is first L octets of the Dedicated Hash-Function 3 (otherwise known as SHA-1) 
from ISO/IEC 10118-3 output of Π || M. 

 (2)The function Mask is SHA-1. 

p ffffffff ffffffff ffffffff ffffffff ffff7c67

Equation of E y2 ≡ x3 + ax + b (mod p)

A ffffffff ffffffff ffffffff ffffffff ffff7c64

B 26c1d102 82415e10 a4995e19 80b59224 d7120957

Number of points on E ffffffff ffffffff ffffc748 a4eea1b0 dc8744b9 

x-coordinate of G                                            1

y-coordinate of G 22e0d7c6 1eb0627b 334456c7 a50b77fd a9007da6 

N ffffffff ffffffff ffffc748 a4eea1b0 dc8744b9

Length of n 160 bits 

Signature key xA ddd259e3 d30a77ab c31cdf29 9a0e6cff 7d78f869

x-coordinate of YA 6de7e135 f5b2ad0c e33492fa 61ed55b0 a00be7ba

y-coordinate of YA 79473d9c ea21791a 391d536c 99ebfb13 4b94c3cc

Randomizer k 4b13079f a8f2992e 5bcdb38d 6895a31b 91d822c2

x-coordinate of kG b4f8c602 dec23b19 358271b8 fe868ad4 a7f7fa9f

y-coordinate of kG 691b933a c8e59096 63364135 f5015637 f337f424

Π = (Mask(EC2OSPE(kG)) e5a0d1f5 85a1cf2c 431a8c61 b78f316c 80d8928f
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Message to be signed TestVector

M(=Mrec)   (Mclr is empty)                       5465 73745665 63746f72

Length L(=L1)    of truncated  
hash-token  

10 octets

Recoverable length Lrec 10 octets

Non-recoverable length Lclr 0 octet

Truncated hash-token h                       3b16 b61a504b 21855dfc

Data input d = h || M 3b16b61a 504b2185 5dfc5465 73745665 63746f72

First part of signature r deb667ef d5eaeea9 1ee6d804 c4fb6709 e3acfdfd

Second part of signature s 1f5d610b b13e61c9 03a24f8f 1af14c0a 122cc560

 

F.3.2 Elliptic curve over an extension field GF(2m) 

Galois field GF(2163) with the polynomial x163 + x7 + x6 + x3 + 1. 

NOTE   (1)This is a standard polynomial basis implementation. 

 (2)The function Mask is MGF1 based on SHA-1. 

Equation of E y2 + xy = x3 + ax2 + b

a                                               1

b  2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

Number of points on E  8 00000000 00000000 000525fc efce1825 48469866

x-coordinate of G  3 f0eba162 86a2d57e a0991168 d4994637 e8343e36

y-coordinate of G  0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1

n  4 00000000 00000000 000292fe 77e70c12 a4234c33

Length of n  163 bits

xA  2 ddd259e3 d30a77ab c31cdf29 9a0e6cff 7d78f869

x-coordinate of YA  6 a15faa2f 38cabcbc 48113b58 6c5148a7 f80c424c

y-coordinate of YA  3 302077a6 3ea741d4 ecf200cf 68cd272f b21eefdc

Randomizer k  3 97e49b66 4b13079f a8f2992e 5bcdb38d 6895a31b

x-coordinate of kG  7 3b811311 c037c110 38350437 95543abd 067af556

y-coordinate of kG  6 0f7b188b 0ad4345b 910c0a1f 7b301c31 f9f8d9e1

Π = Mask(EC2OSPE(kG)) e7 acd53a64 16db34c1 788b2011 edaa0db7 9bbd9a21
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Message to be signed TestVector

M(=Mrec)   (Mclr is empty)                         5465 73745665 63746f72

Length L(=L1)    of truncated  
hash-token  

11 octets

Recoverable length Lrec 10 octets

Non-recoverable length Lclr 0 octet

Truncated hash token h                        c76dd5 cc49fa1a bc0aabb4

Data input d = h || M c7 6dd5cc49 fa1abc0a abb45465 73745665 63746f72

First part of signature r 20 c100f62d ecc188cb d33f7474 9ede5bd2 f8c9f553

Second part of signature s  0 2dd0bfcb f8745141 33cdf701 fe774ae3 ff2d7d16

 

F.3.3 Elliptic curve over an extension field GF(pm) 

NOTE (1) An element τ in GF(pm) is defined as t4x4 + t3x3 + t2x2 + t1x + t0 and denoted as t4 t3 t2 t1 t0. 

 (2) The function Mask is SHA-1. 

p ffffff47

m 5

Irreducible polynomial x5 – 2

Equation of E y2 ≡ x3 + ax + b (mod  p)

a 00000000 00000000 00000000 00000000 ffffff44

b 39cd7fda f41a7fb5 488651a5 e362f27f b449e900

Number of points on E fffffc63 000538e9 fc3bbe32 da01dc69 c2516d77

x-coordinate of G 00000000 00000000 00000000 00000000 00000002

y-coordinate of G 8a45f6c7 82f3c45e e2716ce9 26573f3f c5105399

n fffffc63 000538e9 fc3bbe32 da01dc69 c2516d77

Length of n  160 bits

xA 7b5f8464 0e65495c 87e807aa 22b446fb 34e77471

x-coordinate of YA  a39e766 99f8ec98 26c87346 6dd50ba2 94116c31

y-coordinate of YA 9b2ef2cf 22061787 54b154b9 acc2a731 359b675b

Randomizer k 8819bc2c 9ef7fdfc 2c348697 cadbc2be 77349b87

x-coordinate of kG c4e47f64 de0d2859 33af7a91 c5252d1f 671b20a2
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y-coordinate of kG ca71997e 285b76f9 292af138 c4267642 eb1458b9

Π = (Mask(EC2OSPE(kG)) d1fdf8a3 d5bcb759 7cc5b859 1c2d2269 2e0a7cd2

Message to be signed TestVector

M(=Mrec)   (Mclr is empty)                       5465 73745665 63746f72

Length L(=L1) of truncated  
hash-token  

10 octets

Recoverable length Lrec 10 octets

Non-recoverable length Lclr 0 octets

Truncated hash token h                       55d7 dd9166fd 83eca94f

Data input  d = h || M 55d7dd91 66fd83ec a94f5465 73745665 63746f72

First part of signature r 842a2532 b34134b5 d58aec3c 6f59740c 4d7e13a0

Second part of signature s 8dd81109 707daa15 df465d58 008073fe 573f4ca2

 

F.4 Numerical examples for ECAO 

NOTE 1 In the numerical examples described in Clauses F.4.1 through F.4.6, 

⎯ Hash1 uses Lred leftmost octets of the Dedicated Hash-Function 4 (otherwise known as SHA256) from 
ISO/IEC 10118-3, 

⎯ Hash2 uses (LF + 1 − Lred) leftmost octets of SHA256, 

⎯ MGF is constructed from MGF1 with SHA256 as the underlying hash-function, 

⎯ K = L(n), and 

⎯ the Key Generation Scheme I (as described in Clause 7.3) is used, which implies that P = G and Q = YA. 

NOTE 2 In the numerical examples described in Clause F.4.2, the domain parameter, user keys and the randomizer 
are the same as those described in Clause F.4.1. 

NOTE 3 In the numerical examples described in Clause F.4.4, the domain parameter, user keys and the randomizer 
are the same as those described in Clause F.4.3. 

NOTE 4 In the numerical examples described in Clause F.4.6, the domain parameter, user keys and the randomizer 
are the same as those described in Clause F.4.5. 
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