INTERNATIONAL ISO/IEC
STANDARD 21000-10

First edition
2006-01-01

AMENDMENT 1
2006-12-15

Information technology —
Multimedia framework (MPEG-21) —

Part 10:
Digital Item Processing

AMENDMENT-1:"Additional C++ bindings

Technologies de‘¥information — Cadre multimédia (MPEG-21) —
Partie 10.Traitement d'élément numérique
AMENDEMENT 1: Liaisons C++ additionnelles

Reference number
ISO/IEC 21000-10:2006/Amd.1:2006(E)

1SO|IEC
g g © ISO/IEC 2006

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In

the pnlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© I90/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical

rs of

o H H _£. 1l - H = + £ 1ol = | + ol P~ H FH Nlaot: Ll ad ot b
\JUIIIIIIIOOIUII} o uane O}JU\JIGIILUU O_YOI.UIII TUT VWUTITUWIUTS oldlnudruioativull. TYauulidln VUUTCO UTIal dic TTICTTTY
ISO or IEC participate in the development of International Standards through technical commi
established by the respective organization to deal with particular fields of technical activity. IS@~and
technical committees collaborate in fields of mutual interest. Other international organizations, governm
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of inform
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft Internat

Standards adopted by the joint technical committee are circulated to national bedies for voting. Publicatio
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

tees

IEC
ental
ation

onal
n as

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. ISO and IEC shall not be held responsible for identifying any or|all such patent rights.

Amendment 1 to ISO/IEC 21000-10:2006 was prepared by\dgint Technical Committee ISO/IEC JT]
Information technology, Subcommittee SC 29, Coding ¢f)audio, picture, multimedia and hypernj
information.

This Amendment defines normative C++ bindings for Digital Iltem Base Operations, informative security
platform dependence considerations, an informative example of a safe DIP profile and an entry t
appended to the Bibliography.

C1,
edia

and
b be

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

Information technology — Multimedia framework (MPEG-21) —

Part 10:
Digital Item Processing

AMENDMENT 1: Additional C++ bindings

In Clause 1, Scope, second paragraph, replace the text:
three normative annexes
with:

four normative annexes

In Clause 1, Scope, add at the end:
— C++ bindings for Digital Item Base Operations:

Annex E specifies the C++ bindings for the Digital ltem Base Operations described in 5.4.

In Clause 2, Normative references, insert the following normative reference before the referenc
ISO/IEC 16262:2002:

ISO/IEC 14882:2003, Programming languages — C++

Add a new subclause 5:6:
5.6 Security and platform dependence considerations (informative)
5.6.1 Security considerations

5.6.1(1 Execute DIBO

The use of the p1P.execute DIBO can potentially result in security issues, because the DIBO provides m

to

)

Eans

1o execute arbitrary code.

5.6.1.2 C++ bindings

The use of the C++ DIBO bindings can potentially result in security issues.

5.6.1.3 DOM Load and Save

The DOM Load and Save API exposes potential security issues, because they provide access to the file

system.

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

5.6.2 Platform dependence considerations

5.6.2.1 Execute DIBO

The use of the DIP.execute DIBO can result in the use of platform dependent code. It is possible to avoid
those issues by creating a profile removing D1P.execute. This can be done using profiles as demonstrated in
subclause Annex 1.8.

5.6.2.2 C++ bindings

The|use of the C++ DIBO bindings will result in the use of platform dependent code. It is possible to avoid
thosp issues by creating a profile removing the C++ bindings. This can be done using profiles."as
dempnstrated in subclause Annex |.8.

Adjust numbering clauses:

"5.6| Digital Item eXtension Operations" numbering change to "5.7 Digital ItemieXtension Operations"
numpering.

And|change following (sub)clauses numbering accordingly.

Add|a new Annex E:

AnnexE
(normative)

C++ bindings for'Digital ltem Base Operations

E.1| Introduction

C++| bindings for DIBOs.are specified so that C++ executables can interact with the DIP environment. The
way|in which C++ exeécutables are executed and the reference to the bindings are obtained, is done in an
implementation specific way.

E.2| C++ data type bindings for DIML object types

E.2.1 <DIPError

See 54.3.2

2 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

#ifndef DIPERROR H
#define DIPERROR H

/**

* C++ interface for the DIPError.

*/

class DIPError {
public:

/**
* General DIP error not covered by other defined error codes.
* The value of this property is 1.
w4

static const int GENERAL EXCEPTION;

/**
* A parameter provided to a DIBO or other DIP function is invalidi.
* The value of this property is 2.
*/

static const int INVALID PARAM;

/**
* Permission to execute this operation is unavailablesin the host environment |
* The value of this property is 3.
w4

static const int INVALID PERMISSION;

/**
* Something needed to complete the operatien is not found.
* The value of this property is 4.
*/

static const int NOT FOUND;

/**
* An error occurred during an @ttémpt to adapt a resource.
* The value of this propertySNis 5.
w4

static const int ADAPTATION, FAILED;

/**
* An error occurred during an attempt to play.
* The value of this\property is 6.
*/

static const int\PLAYBACK FAILED;

/**
* An erroxJoccurred during an attempt to execute.
* The walue of this property is 7.
*/

static/ const int EXECUTE FAILED;

/**
* An error occurred during an attempt to print.
* The value of this property is 8.
*/

static const int PRINT FAILED;

oo

}i

#fendif

* Returns the code of an error caused by an exception.

* @return int value representing DIPErrorCode or other value specified in ISO/IEC

* 21000.
*/

virtual int getDIPErrorCode() const = 0;

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

E.2.

See

2 ObjectMap

54.3.3

#ifndef OBJECTMAP H
#define OBJECTMAP H

#include <DOMElement.h>

/**
* ¢++ interface for the ObjectMap DIML Object Type.
*/
clags ObjectMap {
public:

/**

* Returns a pointer to succeeding char pointers representing the

* Arguments Types of an argument list.

* @param index The index of the Argument list in the Object Map.

* @return array of char pointers or null pointers if no such index/exists. The

B last element of the array must be a null pointer.

*/

virtual char** getArgumentList (int index) const throw (DIPErrer) = 0;

/**

* Returns the number of unique argument lists with axguments in a specific order.

* @return int value indicating the number of unique \argument lists.

*/

virtual int getArgumentListCount () const = 0;
/**

* Returns the number of DIMs taking arguments of given Argument Types.

* @param argumentList An array of char pointers representing the Arguments names.

& The last element{ of this array shall be a null pointer.

* @Qreturn int value indicating the ntmber of DIMs.

*/

virtual int getMethodCount (char** aegumentlList) const throw (DIPError) = 0;
/**

* Returns a pointer to a DOMElement representing Components containing the DIM

* declarations of DIMs tak®ng arguments of given Argument Types.

* @param argumentList An\array of char pointers representing the Arguments names.

The last element of this array shall be a null pointer.
* @return pointer to DOMElement.
*/
virtual DOMElementXx‘*getMethodWithArgs (char** argumentList) const
throw (DIPError)= 0;
/**

* Returns ‘an array of pointers to DOMElements representing Components containing

* the DIMAdeclaration of a DIM taking arguments of given Argument Types.

* @param argumentList An array of char pointers representing the Arguments names.

The last element of this array shall be a null pointer.

A \@param index An int value indicating the index of the DIM in the list of DIMS
that accept the char pointers of the argumentlList parameter as
parameters.

* @return array of pointers to DOMElements. The last element of this array shall

ES be a null pointer.

*/

virtual DOMElement** getMethodsWithArgs (char** argumentList, int index) const
throw (DIPError)= 0;
/**

* Returns a DID object corresponding to the given Object Type and the index.

* @param objectType A char pointer containing the Object Type of the wanted DID

object.

* @param index The index in the array to DID objects corresponding

to the Object Type.
4 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

* @return pointer to DOMElement or null pointer if no such DID object exists.
*/
virtual DOMElement* getObjectOfType (char* objectType, int index) const
throw (DIPError)= 0;

/**
* Returns an array of DID objects corresponding to the given Object Type.
* @param objectType A char pointer containing the Object Type of the wanted DID

objects.
* @Qreturn array of pointers to DOMElements. The last element of the array must
W be a null pointer.

*/
virtual DOMElement** getObjectsOfType (char* objectType) const
throw (DRDIPError) # 0;

/**
* Returns the number of objects corresponding to a certain Objedi(Type.
* @param objectTypeName A char pointer containing the name ofi~fhe Object Type [in
the Object Map.
* @return int value representing the number of objects.
*/
virtual int getObjectsOfTypeCount (char* objectTypeName) ,const
throw (DIPError)

1
(@]
~.

/**
* Returns the number of Object Types defined in the Object Map.
* @Qreturn int value representing the number OFf.Object Types.
w4

virtual int getObjectTypeCount () const = Q;

/**
* Returns a char pointer representing) the Object Type name.
* @param index The index of the Obdect Type in the Object Map.
* @return char pointer or null_ peinter if no such index exists.
*/
virtual char* getObjectTypeName(int index) const throw (DIPError) = 0;
}i

#fendif

E.2.3 PlayStatus

See 5.4.3.4

#ifndef RLAYSTATUS H
#define «RUAYSTATUS H

/**
£SC++ interface for the PlayStatus DIML Object Type.
J

class PlayStatus {

public:
/**
* Indicates that the associated resource is not currently playing.
* The value of this property is 0.
=
static const int RELEASED;

/**
* Indicates that the associated resource is currently playing. Time based state
* information related to playing the resource, if relevant, is paused for a
* STATICPLAY resource.

© ISO/IEC 2006 — All rights reserved 5

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

* The value of this property is 1.
*/
static const int STATICPLAY;

/**
* Indicates that the associated resource is currently playing. Time based state
* information related to playing the resource, if relevant, is advancing for a
* TIMEPLAY resource.
* The value of this property is 2.

#end

=
static const int TIMEPLAY;

/**
* Returns the current status of a played instance of a resource associated with
* this PlayStatus object.
* @return int value representing the current status.
*/

virtual int getStatus() const = 0;

if

E.3

This
C++

The
bind

C++ DIBO factory interface

subclause specifies the C++ interface for the C++ DIBO factory.“An MPEG-21 environment providing
bindings to DIBOs shall provide an implementation of CopDIBOFagtory.

C++ DIBO factory is used in a C++ executable to obtain aniinstance of an object that implements the C++
ng for a DIBO. The interface of a C++ DIBO factory is defined below.

#ifn
#def

#ing
/**

=/
clag

}i

ldef CPPDIBOFACTORY H
ine CPPDIBOFACTORY H

lude "DIPError.h"

ppDIBOFactory interface is useéd to create new C++ DIBO classes.

bs CppDIBOFactory {
ublic:
/**
* Returns the implementation for the given DIML object interface.
defining the set of C++ DIBO interfaces bound to the required DIBO. This method
is implemented by the C++ DIBO implementation provider.
@param odbjectName A char pointer containing the name of the DIML object for
which the implementation is requested.
@feturn void pointer representing the implementation for the given DIML object
interface.

f P S

7
virtual void* getCppDIBOObject (char* objectName) const throw (DIPError) = 0;

#fendif

E.4

C++ global environment interface

A reference to the global environment (i.e., GlobalEnv object) should be provided to a C++ executable,
enabling access to the DIP environment in the C++ executables.

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

#ifndef GLOBALENV H
#define GLOBALENV H

#include <DOMDocument.h>
#include "CppDIBOFactory.h"

/**

* C++ interface defining a mechanism for C++ executables to query the platform for

* environment settings.

*/
class CppDIBOFactory;

class GlobalEnv {
public:

/**
* Returns the instance of the CppDIBOFactory which in turn is~tsed to
* instantiate C++ DIBOs. This call must not fail.
* @return pointer to CppDIBOFactory.
*/

virtual CppDIBOFactory* getCppDIBOFactory() const = 0;

/**
* Returns the instance of the Current DIDL document.
* @Qreturn pointer to DOMDocument.
#/
virtual DOMDocument* getCurrentDIDDocument ()\abnst = 0;
}i

#fendif

The platform implementation for a particular C+#)DIBO will be obtained from the cppbIBOFactory object
subclause E.3 for the specification of the<eppDIBOFactory interface) which shall be queried from
GlobalEnv object.

E.5 C++ interface bindings for DIBOs

E.5.1 Introduction

This clause specifies the*C++ interface bindings for the corresponding DIBOs as specified in the subcl
5.4,

E.5.2 DIDL-document access and manipulation

In DIML~base operations for accessing and manipulating the DIDL document objects are those specifig]
the DOM Level 3 Core API as defined by W3C.

Any W3C DOM conformant C++ language binding supporting the Core module can be used, provided:

(see
the

puse

e The Core module interfaces of the W3C DOM specification are supported,;

e The binding specifies an interface called “DOMDocument.h” which supports the Document interface

from the Core module;

e The binding specifies an interface called “DOMElement.h” which supports the Element interface
the Core module.

NOTE For example, the C++ language binding for the DOM Level 3 Core API from Xerces — C++ 2.
can be used. It provides the C++ bindings for these access and manipulation operations.

© ISO/IEC 2006 — All rights reserved

from

4 [1]

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

E.5.3 DIDL document loading and saving

In DIML base operations for loading and saving a DIDL document are those specified by the DOM Level 3
Load and Save API as defined by W3C.

Any W3C DOM conformant C++ language binding supporting the Load and Save module can be used,
provided the Load and Save module interfaces of the W3C DOM specification are supported.

NOTE For example, the C++ Tanguage binding for the DOM Level 3 Load and Save API from Xerces — C++
2.4 [[1] can be used. It provides the C++ bindings for these loading and saving operations.

E.54 DIA related operations

See|5.4.2.4.

#ifndef DIA H
#define DIA H

#ing¢lude <DOMElement.h>
#inglude "DIPError.h"

/**
* (¢++ interface bindings for the DIA related DIBOs.
*/
clags DIA {
public:
/**
* Requests the adaptation of the given resgurce.
* @param element A pointer to a DOMEleme&nt representing the Component or
b Descriptor to be adapfed.
* @param metadata An array of pointens to DOMElements representing additional
W information or null\pointers. The last element of the array
w must be a null pointer.
* @return pointer to DOMElement(fepresenting the adapted DIDL element or null
w pointer if the element was not adapted.
w4
virtual DOMElement* adapt{(DOMElement* element, DOMElement** metadata)
throw (DIPError) = 0;
}i
#endif

E.5)/5 DID related -operations

Seel5.4.2.5.

#ifndef /DID H

#defimeDIDH

#include <DOMElement.h>
#include "DIPError.h"

/**
* C++ interface bindings for the DID related DIBOs.
*/
class DID ({
public:
/**

8 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

Returns whether or not the conditions in the given DOMElement are satified.

@param element A pointer to a DOMElement representing the DIDL element for wich

@return boolean value of true if conditions of DOMElement are satisfied, false

*
*
* conditions will be tested.
*
*

if not.
#/

virtual bool areConditionsSatisfied (DOMElement* element) throw (DIPError) = 0;

*

/

)i

#endif

Configures the choice in the given DOMElement.
@param choice A pointer to a DOMElement representing the DOMElement to bg
configured.

* % % ok o %

choice configuration was not modified.
*/

virtual bool configureChoice (DOMElement* choice) throw (DIPError) _ =(0;

*

/
Sets the state of the selection of the given DOMElement t&“\the given
state.

@param selection A pointer to a DOMElement representipg)the Selection.

or "undecided") .
@return void.

E O I R A

~

virtual void setSelection (DOMElement* selectiony c¢har* state)
throw (DIPError)

@return boolean value of true if choice configuration was modified, false if

@param state A char pointer to the state to set the.Selection ("true", "fals

E.5.6 DIl related operations

See 5.4.2.6.

#ifndef DII H
#define DII H

#include <DOMDocumentshS
#include <DOMElemenmt\.h>
#include "DIPError%h"

/**

* C++ interface bindings for the DII related DIBOs.

*/

class DIFEN{
public:

/**
* Retrieves DIDL elements identified by using a DII identifier.
@param sourceDID A pointer to a DOMDocument from which to retrieve the
elements.

@param value A char pointer to a DII Identifier identifying elements to be
retrieved.
@return array of pointers to DOMElements representing the retrieved DIDL
elements. The last element of the array must be a null pointer.

* % ok X | %

/
virtual DOMElement** getElementsByIdentifier (DOMDocument* sourceDID,
char* value) const throw (DIPError)

/**
* Retrieves DIDL elements identified by using RelatedIdentifiers.
* @param sourceDID A pointer to a DOMDocument from which to retrieve the

0;

© ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

B elements.

* @param value A char pointer to a DII RelatedIdentifier identifying the elements

w to be retrieved.

* @Qreturn array of pointers to DOMElements representing the retrieved DIDL

B elements. The last element of the array must be a null pointer.

*/
virtual DOMElement** getElementsByRelatedIdentifier (DOMDocument* sourceDID,

char* value) const throw (DIPError) = 0;

/**

* Retrieves DIDL elements identified by using DII Type. The last element of this

* array must be a null pointer.

* @param sourceDID A pointer to a DOMDocument from which to retrieve the

* elements.

* @param value A char pointer to a DII Type identifying the type of the eléments

w to be retrieved.

* Qreturn array of pointers to DOMElements representing the retrieved \DIDL

B elements. The last element of the array must be a null peinter.

*/

virtual DOMElement** getElementsByType (DOMDocument* sourceDID, chap* value) const
thxrow (DIPError) = 0;

#enqif

E.5)7 DIP related operations
Seel|5.4.2.7.

#ifndef DIP H
#define DIP H

#inglude <DOMDocument.h>
#ing¢lude <DOMElement.h>

#ing¢lude "ObjectMap.h"
#inglude "PlayStatus.h"
#inglude "DIPError.h"

/**
* (¢++ interface bindings./for the DIP related DIBOs.
*/

clags DIP {

public:

/**

* Alerfs the User of some circumstance via a given message.
* @param message A char pointer containing the message to be displayed.
x \@param messageType an int value indicating the generic nature of the message

R (MSG_INFO, MSG WARNING, MSG ERROR, and MSG PLAIN) .
* @return void.
*/
virtual void alert (char* message, 1nt messagelype) const = O;
/**
* Requests to execute the given resource.
* @param element A pointer to the DID object, being a DOMElement, reflecting the
& DIDL Resource element representing the resource.
* @param arguments An array of void pointers to arguments given to the
W executable. The last element of the array shall be a null
w pointer.
* @return boolean value of true if the resource execution was successfully
*

initiated, or false if resource execution was not initiated.

10 © ISO/IEC 2006 — All rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

=
virtual bool execute (DOMElement* element, void** arguments) const
throw (DIPError) = 0;

*

Requests the User to choose resources located external to the Digital Item.

@param mimetypes An array of arrays of char pointers specifying the required
media formats. The last element of the array must be a null
pointer.

@param requestMessages An array of either char pointers or null pointers. . THe
last element of the array must be a null pointer.
@return array of char pointers specifying the URLs that describe the ldcatign
of the resources. The last element of the array must be a

null pointer.

E O S Y B S

~

virtual char** getExternalData (char*** mimeTypes, char** requestMesiSages) const
throw (DIPError)

1
(@]
~.

*

/
Retrieves the Object Map from a DIDL Document.
@param document A pointer to a DOMDocument representipg)the DID instance
document containing the Object Type. information.
@return pointer to ObjectMap object representing @k3ject Map of the DID instdgnce
document.

* ok % %k Kk o

/
virtual ObjectMap* getObjectMap (DOMDocument* deeumént) const
throw (DIPError) F O;

*

Requests the User to choose availableBT¥D objects of the given Object Types
from the current DID instance document™
@param objectTypeNames An array of(¢har pointers specifying the Object Type
names. The last element of the array must be a null
pointe&f.
@param requestMessages An array of char pointers or null pointers. The last
element of the array must be a null pointer.
@return array of pointersi¥o DOMElements or null pointers. A DOMElement
object representis the selected element of the corresponding Object
Type as specifiied in the objectTypeNames array. The last element of
the array must be a null pointer.

P R S T

*

=
virtual DOMElement*X "‘getObjects (char** objectTypeNames,
char** requestMessages) const throw (DIPError) # 0;

*

Requests” the User to supply values for boolean values, char pointers, or int
data.
@param ‘dataTypes An Array of char pointers specifying the data type of each
datum. The last element of the array must be a null pointer.
@param requestMessages An array of char pointers or null pointers. The last
element of the array must be a null pointer.
@return rray of void pointers representing boolean values, char
pointers or int data, corresponding to the data type specified in the
dataTypes array. The last element of the array must be a null pointgr.

* ok ok Bk ok ok ok ok Kk ok

~

virtual void** getValues (char** dataTypes, char** requestMessages) const

throw (DIPError) §F 0;

/**

* Requests to play the given resource.

* @param element A pointer to the DOMElement that reflects the DIDL Resource

w element describing the media resource.

* @param async If this boolean value is true, play the resource asynchronously,

b else synchronously.

* @return pointer to PlayStatus object to identify the playing resource.

*/

virtual PlayStatus* play(DOMElement* element, bool async)
throw (DIPError) = 0;

© ISO/IEC 2006 — Al rights reserved 1

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:2006(E)

*

Requests to print the given resource.
@param element A pointer to the DOMElement that reflects the DIDL Resource
element representing the media resource.
@return boolean value of true if the element was successfully printed, or
false if it was not printed.

P I

#/
virtual bool print (DOMElement* element) throw (DIPError) = 0;

*

/

Requests that playing of a resource is stopped and any associated state

information be released.

@param playStatus A pointer to a PlayStatus object associated with the playing
resource.

P

@return void.
*/
virtual void release (PlayStatus* playStatus) throw (DIPError) = 0;

*

/

Runs an identified DIM.

@param itemIdType A char pointer indicating the type of identifier (DII

Identifier or URI) that is given by thelNdtemID parameter.

@param itemId A char pointer identifying the ITem that comntains the DIM

declaration of the DIM to be run or nuhl “‘pointer.

@param componentIdType A char pointer indicating the {ype of identifier (DII
Identifier or URI) that ig,gdven by the componentID
parameter.

@param componentId A char pointer identifying the CowmponenNT that contains the DIM

declaration of the DIM to be . Fdh or null pointer.

@param arguments An array of void pointer§ that are to be the arguments to be
passed on to the invoked) DIM. The last element of the array
must be a null poingtef.

@return void.

P R I S R S S S

~

virtual void runDIM(char* itemIdTypeé,»' char* itemId, char* componentIdType,

char* compenentId, void** arguments) throw (DIPError) = 0;
/**
* Runs an identified J-DIXO.
* @param itemIdType A charx®pointer indicating the type of identifier (DII
® Identifier or URI) that is given by the itemID parameter.
* @param itemId A chakpointer identifying the ITeM that contains the DIM
B declaration of the DIM to be run or null pointer.
* @param componentldType A char pointer indicating the type of identifier (DII
B Identifier or URI) that is given by the componentID
b parameter.
* @param cofponentId A char pointer identifying the CompoNENT that contains the DIM
w declaration of the DIM to be run or null pointer.
* @param. cglassName A char pointer representing the fully qualified class name of
* the J-DIXO to be run.
* @param arguments An array of void pointers that are to be the arguments to be
s passed on to the invoked DIM. The last element of the array
< must be a null pointer.
¥ @Qreturn void.
*/

vircual Uiu TUINNJDULIAU (CIIdl iLemiuiype, Cllarl iLemiu, Cllar CONPOINEIIL LA YPE,
char* componentId, char* className, void** arguments) throw (DIPError) = 0;

/**
* Pauses the executing of the invoking DIM.
* @param timeInterval An int value indicating the time in milliseconds for the

B wait operation to pause execution of the DIM.
* Qreturn void.
=

virtual void wait (int timeInterval) = 0;

12 © ISO/IEC 2006 — Al rights reserved

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

ISO/IEC 21000-10:2006/Amd.1:200

6(E)

#fendif

E.5.8 REL related operations

Snn 54298
A oe o oo

#ifndef REL H
#define REL H
#include <DOMElement.h>
#include "DIPError.h"
/* *
* C++ interface bindings for the REL related DIBOs.
*/
class REL {
public:
/ * *
* Requests to retrieve any licenses associated with the given resource.
* @param resource A pointer to a DOMElement representing the DIDL Resource.
* @Qreturn array of pointers to DOMElements pépresenting any licenses. The last
* element of the array must be a nul¥ pointer.
*/
virtual DOMElement** getLicense (DOMElemern®* resource) const throw (DIPError) =|(0;
/ * *
* Requests to check for the exisgtefice of an authorization proof for an
* authorization request.
* @param license A pointer to, avsDOMElement representing license information.
* @param resource A pointer.t80 a DOMElement representing DIDL Resource.
* @param rightNs A char pointer representing the namespace of the right to be
* checked~o0r a null pointer.
* @param rightLocal A .char pointer to the Localname of the right to be checked or
w the value of the definition attribute of xs:rightUri,
& depending on whether rightNs is a char pointer or a null
w pointer, respectively.
* @param additiemalInfo An array of pointers to DOMElements representing
B additional information that can be considered. The las|t
B element of the array must be a null pointer.
* @return\boolean value of true if a corresponding authorization proof is fourld,
& false if a corresponding authorization proof does not exist or coulf
* not be found.
*/
virtual bool querylicenseAuthorization (DOMElement* license, DOMElement* resourde,
char* rightNs, char* rightLocal, DOMElement** additionalInfo)
throw (DIPError) §F 0;
}i
#endif
© ISO/IEC 2006 — Al rights reserved 13

https://iecnorm.com/api/?name=6702243bc083278d69e77b8b6883471b

