INTERNATIONAL ISO/IEC
STANDARD 14496-33

First edition
2019-02

Information technology —-Coding of
audio-visual objects —

Part 33:
Internet video coding

Technologies de l'information — Codage des objets audioVisuels —

Partie 33: Codage vidéo Internet

Reference number
ISO/IEC 14496-33:2019(E)

© ISO/IEC 2019

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or [SO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Contents Page
FOT@WOToocccc e85 55858555555855 8 5555 \%
IIMETOUICEION. ..ot vi
1 S0P ... 1
2 Normative references
3 Terms and definitions
4 Abbreviations
5 COMVENTIOIS ..ottt P)
51 ATTENMETIC OPEIALOTS ..o e
5.2 Logical operators
5.3 Relational OPETAtOTS ... e
5.4 BitWISE OPEIAtOTS. ..o adens e
5.5 ASSIGNMENT ..o
5.6 Order of operation precedence............ccc.
5.7 Mathematical functions..........ccocsns
5.8 Variables, syntax elements and tables
5.9 Text description of logical operations
5,10 PrOCESSES cooieoioeeieeieeieeeeseeeseees e ettt et
5.11 Description of bitsteam syntax parsing process.ahd decoding process..............}ocen 12
5.11.1 Method of describing bitstream syntax
5.11.2 Syntax functions ...y b
5.11.3 Syntax descriptors
5.11.4 Reserved, forbidden and marker bit
6 Source, coded, decoded and output data formats ..., 16
6.1 Source
6.2 COlOUT FOTTNIAL .ot e
6.3 Coded bitstream format
6.4 Sequence header ...
6.5 Framecc.ccs
6.6 Frame types......x;
6.7 Slice .. i)
6.8 Macroblock........
6.9 T S
LT TN 3 U0 (0 o) e 1<) D0 O
6.11 RefEIENCE fTAIMES......ooo oo
6.12 dnverse scanning processes and derivation processes for neighbours
6121 GEIMETAL e
6.12.2 Inverse macroblock SCanning proCess ...
6.12.3 Inverse macroblock partition scanning process..............n.
6124 Inverse 8x8 luma black scanning process
6.12.5 Inverse 4x4 luma block SCANNING PIOCESS. ...
6.12.6 Derivation process of the availability for macroblock addresses.............cccoconnen 21
6.12.7 Derivation process for neighbouring macroblock addresses and their
AVATLADTIIEY e 22
6.12.8 Derivation processes for neighbouring macroblocks, blocks, and partitions...... 23
6.12.9 Derivation process for neighbouring locations.............. e 25
7 SYNEAX ANA SEIMMAIITICS ..o
7.1 BIESTIOAIM SYIITAK ..ottt
7.1.1 Startcodes
7.1.2
7.1.3
7.1.4
7.1.5

© ISO/IEC 2019 - All rights reserved iii

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

10

7.1.6 BlOCK
7.2 Video bitstream semantics
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
Decoding process........
8.1 General.......ccococ.
8.2 ntraprediction—
82,1 GEIETAL e P
8.2.2 Intra_4x4 prediction process for luma Samples............omm ey
8.2.3 Intra_8x8 prediction process for luma samples..........cccoceeee
8.2.4 Intra_16x16 prediction process for luma samples
8.2.5 Intra prediction for 8x8 chroma block...
8.3 Inter prediction ...
8.3.1 GENETAL. e BN e
8.3.2 Derivation process for motion vector components and reference indices........ .52
8.3.3 Decoding process for inter prediction samples ... S,
8.4 | Transform coefficient decoding process and frame reconstruction process
S 0 O 12 1) =Y OSSN 45 st
8.4.2 INVEISE SCANMINEGccocoiiriiniiiiiisiieieesieeees e B
8.4.3 Inverse quantization..................
8.4.4 Inverse transform process
8.4.5 RECONSIIUCTION ..o e e
8.5 LOOD FIIEOTIIE .o A e
8.6 Reference frame buffer management. ... s
PATSIING PIOCESS ...t B e .82
9.1 General .82
9.2 LR T=] (174 R - SO .82
9.3 Parsing process for transform-coefficient levels.. ..82
9.4 (=Y (17 S ..83
0.4 1T GENETAL e ..83
0.4.2 DESCIIPTION. ol ..83
9.4.3 Initialization .84
9.4.4 BINATIZATION PIOCESScccocovvioiirisiieiesesesieseses e .84
9.4.5 PargingDiNary ST ...t .87
Profjles and levels .97
10.1 .97
10.2 .98
10.3 .98

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-3

Foreword

3:2019(E)

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The [procedures used to develop this document and those intended for its further main
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria

the
edit

Atte
of p
right
Intr

Any
cons

For

expr
Wor
.0rg,

ifferent types of document should be noted. This document was drafted insac¢ordan
rial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

htion is drawn to the possibility that some of the elements of this document may be
htent rights. ISO and IEC shall not be held responsible for identifying any or all
s. Details of any patent rights identified during the development of the document w

tenance are
needed for
ce with the

the subject
such patent
ill be in the

duction and/or on the ISO list of patent declarations received (See-www.iso.org/patent

titute an endorsement.

hn explanation of the voluntary nature of standdrds, the meaning of ISO specific
essions related to conformity assessment, as welD as information about ISO's adher
d Trade Organization (WTO) principles in the¥Technical Barriers to Trade (TBT) s
iso/foreword.html.

This
Suba

Alis

Any
com

document was prepared by Technical” Committee ISO/IEC]JTC 1, Information
ommittee SC 29, Coding of audio, picturxe,"multimedia and hypermedia information.

F of all parts in the [SO/IEC 14496.5eries can be found on the ISO website.

feedback or questions on this document should be directed to the user’s national stand
plete listing of these bodies'can be found at www.iso.org/members.html.

s).

trade name used in this document is information given for\the convenience of users and does not

terms and
ence to the
Pe WWW.iso

technology,

irds body. A

© ISO/IEC 2019 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Introduction
This document specifies Internet video coding, a video compression technology that is intended to be
suitable for video distribution models currently adopted on the Internet.

The International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may
involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holderd of these patent rights have assured ISO and IEC that they are willing to negotiate liggnces
under reasdnable and non-discriminatory terms and conditions with applicants throughout the.world.
In this resplect, the statements of the holders of these patent rights are registered with ISO-and| IEC.
Informatior] may be obtained from:

Nokia Techmologies Oy
Joensuunkaltu 7E
FIN-24100 §alo
FINLAND
Telephone :[+358 50 366 2022

Apple Inc.
Intellectual|Property and Licensing
1 Infinite Loop, MS 169-3IPL
Cupertino, (A 95014

USA
Telephone: $1(408) 974-0015

Industry-University Cooperation Fouhdation Hanyang University
222 Wangsimni-ro, Seongdongsgts

Seoul 04763
REPUBLIC QF KOREA
Telephone: $82-2-2220-2212

vi © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Mitsubishi Electric Corporation

Corporate Licensing Division
2-7-3 Marunouchi, Chiyoda-ku
Tokyo 100-8310

JAPAN

Telephone: +81-3-3218-3465

QUA

5771
San

USA
Telej

Atte
pate
any

LCOMNMMNT ol
GUIVIIVI TTICUI lJUl altu

Morehouse Drive
Diego, CA 92121

pbhone: +1 (858) 587-1121

htion is drawn to the possibility that some of the elements of this"document may be th
ht rights other than those identified above. ISO and IEC shall notbe held responsible for
r all such patent rights.

© ISO/IEC 2019 - All rights reserved

e subject of
identifying

vii

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

INTERNATIONAL STANDARD ISO/IEC 14496-33:2019(E)

Information technology — Coding of audio-visual
objects —

Part 33:
Internet video coding

1 Bcope

This|document specifies MPEG-4 Internet video coding.

2 Normative references

The [following documents are referred to in the text in such a waythat some or all of their content
consftitutes requirements of this document. For dated references,“gnly the edition cited ppplies. For
undqted references, the latest edition of the referenced documenty(including any amendments) applies.

Rec.|ITU-T H.262 | ISO/IEC 13818-2: 2013, Information technology — Generic coding of moVing pictures
and @ssociated audio information — Part 2: Video

IEC 60461, Time and control code

3 Jl‘erms and definitions
For the purposes of this document, the follawing terms and definitions apply.

ISO 4nd IEC maintain terminological databases for use in standardization at the following addresses:

— |EC Electropedia: available at http://www.electropedia.org/

—]SO Online browsing pldtform: available at http://www.iso.org/obp

31
B frame

bidirectional frame
framle (3.28) thatiis coded using motion compensated prediction from past or future referlence frames
(3.53) in outputorder (3.40)

3.2
backward prediction
process of predicting the CUrTent frame (3-28) by USINg future frames im an output order (3.40) as
reference frames (3.53)

3.3

bin

bit of a bin string (3.4)
3.4

bin string

intermediate binary representation of values of syntax elements (3.65) resulting from the binarization
(3.5) of the syntax element

© ISO/IEC 2019 - All rights reserved 1

http://www.electropedia.org/
http://www.iso.org/obp
https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

3.5
binarization
set of bin strings (3.4) for all possible values of a syntax element (3.65)

3.6
binarization process
unique mapping process of all possible values of a syntax element (3.65) onto a set of bin strings (3.4)

3.7
bitstream
ordered series of bits that forms the coded representation (3.14) of the data

3.8
block
MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients (3.66)

3.9
byte
sequence of|8 bits, written and read with the most significant bit on the left and thelleast significant ljit on
the right, suich that when represented in a sequence of data bits, the most significant bit of a byte is first

3.10
byte-align¢d
positioning|of a bit or byte (3.9) or syntax element (3.65) when the. pdsition at which it appears|in a
bitstream (3.7) is an integer multiple of 8 bits from the position of the first bit in the bitstream

3.11
byte streamn
ordered serjes of bytes that forms the coded representation(3.14) of the data

3.12

chroma
sample arrdy or single sample, identified symbelically by Cb or Cr, representing one of the two c¢lour
difference sfgnals related to the primary coleurs

Note 1 to enfry: The term chroma is used rathér than the term chrominance in order to avoid the implicatijon of
the use of lingar light transfer characterisgics that is often associated with the term chrominance.

3.13
coded frame
coded reprefentation (3.14).efa frame (3.28)

3.14
coded repriesentation
series of data elements as represented in coded form in the bitstream (3.7)

3.15
componen
array or single sample from one of the three arrays (luma (3.37) and two chroma (3.12)) that make up a
frame (3.28) in 4:2:0 colour format

3.16
DC coefficient
transform coefficient (3.66) for which the frequency index (3.27) is zero in all dimensions

3.17
decoded frame
frame (3.28) derived by decoding a coded frame (3.13)

2 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

3.18

ISO/IEC 14496-3

decoder
embodiment of the decoding process (3.20)

3.19

decoding order

orde

3.20

r in which syntax elements are processed by the decoding process (3.20)

decoding process
process that derives decoded frames (3.17) from the syntax elements in the bitstream (3.7)

3:2019(E)

3.21

deqyantization

proc
bitst]
part

3.22
encg
emb

3.23
encg
proc

Note

ess of scaling (3.57) the quantized transform coefficients (3.49) after their repriesent
ream (3.7) has been parsed (3.42) and before they are presented to the inverse trans
of the decoding process (3.20)

der
bdiment of an encoding process (3.23)

ding process
ess that produces a bitstream (3.7)

1 to entry: This document does not specify an encoding process.

3.2
forb
spec

Note

3.25
forw
proc

3.26
flag
bina

3.27

dden
ification that a value shall never be used

1 to entry: This is usually to avoid emulation of a start code (3.63) pattern.

rard prediction
ess of predicting the currentframe by the past reference frames (3.53) in output order

['y variable that dan take one of the two possible values, 0 and 1

fre

ency index

one-dimensienal or two-dimensional index associated with a transform coefficient (3.66)
inverse transform (3.34) part of a decoding process (3.20)

htion in the
form (3.34)

prior to an

3.2

frame
successive lines, numbered from the top-most line to the bottom-most line, containing samples
numbered from the left-most sample to the right-most sample, representing the spatial information of a
video signal from a single time instant

3.29

I frame
intra frame

fram

3.30

e (3.28) coded using information only from itself

inter macroblock
macroblock (3.38) which is coded using inter prediction (3.31)

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

3.31

inter prediction
prediction (3.44) derived from data elements (e.g. sample value or motion vector (3.39)) of reference
frames (3.53) other than the current frame

3.32

intra macroblock

macroblock

3.33
intra predi

(3.38) which is coded using intra prediction (3.33)

ction

~

prediction (]

3.34

inverse transform

part of the
spatial-dom

3.35
layer
one of a se

layers contg
(3.38) and 4

3.36
level
defined set
a different ¢

Note 1 to ent]

level being ih common across different profiles. IndividualFimplementations may, within specified constr

support a dif

3.37

luma
sample arra
signal relatg

Note 1 to en
use of linear]
sometimes u

3.38

macroblock

16 x 16 lum
3.39

44 1 . h Yl hl hl hl L hl h Y £l hl hl h - £
A%) UETNTVEU TTOIIT OIlly Udld CICIICIILS (€.8. SAlIIPIC VAIucs) Ol LI SAIIe dccoucd Siice { S.]

decoding process (3.20) by which a set of transform coefficients (3.66) arereonverted
ain values, or by which a set of transform coefficients are converted into DCedefficients (}

in lower layers, with such coded layers being the coded frame (3.13), slice (3.60), macrol
lock (3.8)

bf constraints on the values that may be taken by.syntax elements (3.65) and variables;
ontext, the value of a transform coefficient (3.66) prior to scaling (3.57)

ry: The same set of levels is defined for all profiles (3.47), with most aspects of the definition of]

ferent level for each supported profile.

y or single sample, identified symbolically by Y or L, ordinarily representing the bright
pd to the primary colours

ry: The term luma is used rather than the term luminance in order to avoid the implication d

light transfer charédcteristics that is often associated with the term luminance. The symbo
ced instead of the-symbol Y to avoid confusion with the symbol y as used for vertical location.

b (3.37)sample value block and its corresponding two chroma (3.12) sample value bloc

motion ved

into
8.16)

of syntactical structures in a non-branching hierarchical relatienship, such that higher

block

or in

each

hints,

ness

f the

L is

ks

o
TOT

two-dimensional vector used for inter prediction (3.31) that provides an offset from the coordinates in
the decoded frame (3.17) to the coordinates in a reference frame (3.53)

3.40

output order
order in which the decoded frames (3.17) are output from the decoded frame buffer in case the decoded
frames are to be output from the decoded frame buffer

3.41
P frame

predictive frame
frame (3.28) that is coded using motion compensated prediction from past reference frames (3.53) in
output order (3.40)

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

3.42
parse
procedure of obtaining the value of a syntax element (3.65) from a bitstream (3.7)

3.43
partitioning
division of a set into subsets such that each element of a set is in exactly one of the subsets

3.44
prediction
embodiment of a prediction process (3.45)

otion vector

otion vector

quanptized transform coefficients
tran§form coefficients (3.66) before dequantization (3.21)

3.50
random access
starting the decoding process (3:20) for part of a bitstream at some point other than the begihning of the
bitstyeam (3.7)

3.51]
rastpr scan
mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first
entrles in theone-dimensional pattern are from the top-most row of the two-dimensignal pattern
scanned fromeft to right, followed similarly by the second, third, etc., top-most rows of|the pattern
(propeeding'*downwards), with each row scanned from left to right

3.52
reference index
order indication of the reference frames (3.53) in the frame buffer in the decoding process (3.20)

3.53

reference frame

frame that contains samples that may be used for inter prediction (3.31) in the decoding process (3.20) of
subsequent frames (3.28) in decoding order (3.19)

3.54

reserved

specification that some values of a particular syntax element (3.65) are for future use by ISO/IEC, such
that these values shall not be used in bitstreams (3.7), but may be specified for use in future extensions
by ISO/IEC

© ISO/IEC 2019 - All rights reserved 5

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

3.55
residual

decoded difference between a prediction (3.44) of a sample or data element and its decoded value

3.56
run

number of data elements with the same value or the same treatment in the decoding process (3.20)

Note 1 to entry: In one context, it means the number of zero coefficients before a non-zero coefficient in the block
scan, and in another context, it means the number of consecutive skipped macroblocks (3.59).

3.57

scaling
process of
coefficients

3.58
sequence
highest layj
frames (3.1

3.59

multiplying transform coefficient levels (3.67) by a factor, resulting in ¢rans
(3.66)

er syntax structure of the bitstream (3.7), including one or more“consecutive c|

B)

skipped macroblock

macroblock
indication t

3.60
slice

(3.38) for which no syntax elements are present in the)bitstream (3.7) except fol
hat the macroblock is a skipped macroblock (3.59)

integer nunj
with the sa

3.61
slice head

ber of consecutive macroblock (3.38) rows in.the raster scan (3.51) order that is assoc
e header data

form

bded

the

ated

part of a codled slice (3.60) containing the datd elements pertaining to the first or all macroblocks (3.58

represented

3.62
source
video mater

3.63
start code
32-bit codey

in a slice

ial or some of its attributes before operation of an encoding process (3.23)

vord patterniwhich is unique in the whole bitstream (3.7)

Note 1 to enffry: Start.codes can be used to identify the starting point of a syntax structure in the bitstreant

to enable ran

dom(ageess (3.50)).

(e.g.

3.64

stuffing bits
bit string having a prescribed pattern of fixed values at a particular position in the bitstream (3.7)

3.65

syntax element
element of data represented in the bitstream (3.7)

3.66

transform coefficient
scalar quantity, considered to be in a frequency domain, that is associated with a particular one-
dimensional or two-dimensional frequency index (3.27) in an inverse transform (3.34) part of the
decoding process (3.20)

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

3.67

ISO/IEC 14496-3

transform coefficient level
integer quantity representing the value associated with a particular two-dimensional frequency index in
the decoding process (3.20) prior to scaling (3.57) for computation of a transform coefficient value (3.66)

3.68

video buffering verifier
hypothetical reference decoder (3.18) that operates on the bitstream (3.7) to perform the decoding
process (3.20) with a specified timing and with a specified limited capacity for buffering the coded data
and decoded frames (3.17)

3:2019(E)

Note[ttoemntryr tts purpose is to provide a constraint o the vartabitity of the data rate thratamency
editihg process may produce.

4 Abbreviations

LSB
MB
MSB
VBV

5 C(Conventions

NOTE

5.1 | Arithmetic operators

~

The mathematical operators and their precedence rules used in this document are sin
used|in the C programming language. However, operators of integer divisions with truncation and
are specifically defined. If not specifically explained) numbering and counting begin from zero.

least significant bit
macroblock
most significant bit

video buffering verifier

Addition
Subtraction (as abinary operator) or negation (as a unary prefix operator)
Multiplication

Exponential operation: a is raised to power of b. (May alternatively represent a
scripty)

Integer division with truncation of the result toward zero. For example, 7/4 and
are truncated to 1 and (-7)/4 and 7/(-4) are truncated to -1.

der (3.22) or

ilar to those
of rounding

super-

=7)/(=4)

Division in mathematical formulae where no truncation or rounding is intended.

'Mw SHES
-
~
N—

a%b

Division in mathematical formulae where no truncation or rounding is intended.

The summation of f(i) with i taking integral values from a up to and including b

Remainder of a divided by b, defined only fora >=0and b > 0.

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

5.2 Logical operators

a&&b Logical AND operation between a and b
allb Logical OR operation between a and b
! Logical NOT operation

a?b:c Ifais TRUE or not equal to 0, evaluates to b; otherwise, evaluates to c.

5.3 Relational operators

> greater than

>= greater than or equal to
< l¢ss than

<= l¢ss than or equal to

== egual to

I= njot equal to

5.4 Bitwise operators

& AND operation

| JR operation

~ Negation operation

a>>b Shift ain 2’s complement binary integer representation format to the right by b bit positjons.
This operator is only defined with'b, a positive integer.

a<<b hift a in 2’s complementbinary integer representation format to the left by b bit positigns.

— wn

his operator is only defined with b, a positive integer.
5.5 Assignment

= Assignmentoperator

+
+
—

ncrement, x++ is equivalent to x = x + 1. When this operator is used for an array index, the
priable value is obtained before the increment operation.

<

- Decrement, 1.e. Xx——1s equivalent to x = x — 1. When this operator 1s used for an array index,
the variable value is obtained before the decrement operation.

+= Addition assignment operator, for example, x += 3 corresponds tox =x + 3, x += (-3) is
equivalent to x = x + (-3).

-= Subtraction assignment operator, for example, x —= 3 corresponds tox =x - 3, x == (=3) is
equivalent to x = x - (-3).

8 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

5.6 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the
following rules apply:

— operations of a higher precedence are evaluated before any operation of a lower precedence;
— operations of the same precedence are evaluated sequentially from left to right.

Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table
indicates a higher precedence.

NOTE For those operators that are also used in the C programming language, the order of pre¢edence used
in th]s document is the same as used in the C programming language.

Table 1 — Operation precedence from highest (at top of table) to lowest (at’bottom|of table)

operations (with operands x, y, and z)

« » o« ”

x++”, “x

"o«

“Ix", “=x” (as a unary prefix operator)

«

”

Xy

K (0 W » o« n o« X

«“ . n « ”
x*y" “x [y, “x+y”, ,“x%y

b
“x+y”, “x —y” (as a two-argumentoperator), Zf(i) ’

i=a

J

»n o«

“x<<y”, “x>>y”

” o« » o« U ”

X<y’ x<=y", x>y4 % >=y

” o« »”

“x==y","x =y
% &y"

x|y

“x &&
x4

"X ?y. Zn

» o« » o«

"X=y, X+=y, X_=yn

5.7 | Mathematical functions

x ; x>=0

abs(x)<
I=x ; x<0

ceil(x) Takes the smallest integer not smaller than x
clipl(x) = clip3(0, 255, x)

a;c<a
clip3(a,b,c) = b ;c>b

c ; else
floor(x) Takes the biggest integer not bigger than x

© ISO/IEC 2019 - All rights reserved 9

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

log2(x) Logarithm number of x with base 2
log10(x) Logarithm number of x with base 10
median(x, y, z) = X +y + z — min(x, min(y, z)) - max(x, max(y, z))
X ; X<=Yy
min(x, y) = {
y 5 x>y
(Y > X>=V
max(x, y) =
y 5 x<Jy
round(x) = sign(x) * floor(abs(x) + 0.5)
_ 0 ; x>=0
sign(x) =
gnx) 1 ; x<0
0, * . ==
InverseRasferScan (a/o(d/b)) b;e==0
(alblcldle = (a/(d/b))*b ;e::

5.8 Varigbles, syntax elements and tables

Syntax elenjents in the bitstream are represented in bald)type. Each syntax element is described by its
name (all lqwercase letters with underscore characters), its one or two syntax categories, and one or
two descriptors for its method of coded representation. The decoding process behaves according tp the
value of the|syntax element and to the values of previously decoded syntax elements. When a valug¢ of a
syntax elenjent is used in the syntax tables orthe text, it appears in regular (i.e., not bold) type.

In some cages the syntax tables may use\the values of other variables derived from syntax element
values. Such variables appear in the syntax tables, or text, named by a mixture of lowercase| and
uppercase letter and without any underscore characters. Variables starting with an uppercase letter
are derived for the decoding of the current syntax structure and all depending syntax structfires.
Variables starting with an uppercase letter may be used in the decoding process for later syntax
structures yithout mentioning the originating syntax structure of the variable. Variables starting with
a lowercaselletter are only used within the subclause in which they are derived.

In some casg¢s, “mnemonic” names for syntax element values or variable values are used interchangg¢ably
with their numericalvalues. Sometimes “mnemonic” names are used without any associated numerical
values. The pssdcigation of values and names is specified in the text. The names are constructed fronj one
or more grqup$of letters separated by an underscore character. Each group starts with an uppeicase
letter and niay contaiin MOTe UPPErcase [etters.

NOTE The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax
functions. These functions are specified in subclause 5.11.2 and assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the
bitstream. Syntax functions are described by their names, which are constructed as syntax element
names and end with left and right round parentheses including zero or more variable names (for
definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.7)
are described by their names, which start with an uppercase letter, contain a mixture of lower and
uppercase letters without any underscore character, and end with left and right parentheses including

10 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

zero or more variable names (for definition) or values (for usage) separated by commas (if more than
one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix.
Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the
indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row
(vertical) index and the second subscript is used as a column (horizontal) index. The indexing order
is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a
matrix s at horizontal position x and vertical position y may be denoted either as s[x, y] or as syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example,
‘010 ight=bi ' ' i ' ' pm the most
e least significant bit) equal to 1.

Hexgdecimal notation, indicated by prefixing the hexadecimal number by “0x”, may be used instead of
binaly notation when the number of bits is an integer multiple of 4. For example,-0x41 represents an
eighf-bit string having only its second and its last bits (counted from the mostto the least significant
bit) ¢qual to 1.

Numlerical values not enclosed in single quotes and not prefixed by “0x” are decimal values.

A value equal to 0 represents a FALSE condition in a test statement.The value TRUE is repfresented by
any Yalue different from zero.

5.9 | Text description of logical operations
In the text, a statement of logical operations as wouldsbe'described in pseudo-code as:

if(condition 0)
statement 0

else if(condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may(be described in the follawing manner:

... as follows / ,.5the following applies.
— If condition-0, statement 0
— Otherwiseg, if condition 1, statement 1

— Otherwise (informative remark on remaining condition), statement n

EacH “Uf.;70Otherwise, if ... Otherwise, ...” statement in the text is introduced with “... as follows” or “...
the flollowing annlies” immediate ollowed by “ " The last condition of the “ Qtherwise, if ...
Otherwise, ...” is always an “Otherwise, ...". Interleaved “If ... Otherwise, if ... Otherwise, ...” statements

can be identified by matching “... as follows” or “... the following applies” with the ending “Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as:

if(condition 0a && condition 0b)
statement 0

else if(condition 1a || condition 1b)
statement 1

else
statement n

© ISO/IEC 2019 - All rights reserved 11

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

may be described in the following manner:

... dS

follows / ... the following applies.

If all of the following conditions are true, statement 0

— condition Oa
— condition Ob

Otherwise, if any of the following conditions are true, statement 1

((

In the text,
if(c

if(c

may be desg

Whe
Whs

5.10 Procq

Processes a

——comditiomrta
— condition 1b

therwise, statement n
W statement of logical operations as would be described in pseudo-code as:

bndition 0)
statement 0
bndition 1)
statement 1

ribed in the following manner:
n condition 0, statement 0

n condition 1, statement 1
PSSES

re used to describe the decodingef syntax elements. A process has a separate specific:

and invokinfg. All syntax elements and uppercase variables that pertain to the current syntax strug

and depend
specificatio
specificatio
variable or

When invoK

Ifthe va

ing syntax structures are available in the process specification and invoking. A prq
h may also have a lowercase variable explicitly specified as the input. Each prg
h has explicitly specified-an output. The output is a variable that can either be an upper
h lowercase variable!

ing a process, the assignment of variables is specified as follows.

riables attheinvoking and the process specification do not have the same name, the vari:

are exp

icitly agsighed to lowercase input or output variables of the process specification.

Otherwlise (the variables at the invoking and the process specification have the same n3

assignment’is implied.

ition
ture
cess
cess
case

hbles

me),

In the specification of a process, a specific macroblock may be referred to by the variable name having a

value equal

to the address of the specific macroblock.

5.11 Description of bitsteam syntax parsing process and decoding process

5.11.1 Method of describing bitstream syntax

The descrip

12

tion style of the syntax is similar to C programming language.

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on
the syntax may be specified, either directly or indirectly, in other clauses.

NOTE An actual decoder would implement means for identifying entry points into the bitstream and means
to identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other
such situations are not specified here.

Table 2 lists examples of pseudo code used to describe the syntax. When syntax_element appears, it
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to
the next position beyond the syntax element in the bitstream parsing process.

Table2—Examplesof pseudocode]

DeScriptor
/* A statement can be a syntax element with associated descriptor or can be
an expression used to specify its existence, type, and value, as in the following
examples */
syntax_element ue(v)

conditioning statement

/* A group of statements enclosed in brackets is a compound stateinent and is
treated functionally as a single statement. */

{

statement

statement

}

/* A “while” structure specifies that the statement is to be evaluated repeated-
ly while the condition remains true. */

while (condition)

statement

/* A “do ... while” structure exédutes the statement once, and then tests the
condition. It repeatedly evaluates the statement while the condition remains
true. */

do

statement

while (condition’)

/* An “if ..‘else” structure tests the condition first. If it is true, the primary
statementis evaluated. Otherwise, the alternative statement is evaluated. If
the alternative statement is unnecessary to be evaluated, the “else” and corre-
sponding alternative statement can be omitted. */

if(-condition)

3 eade 4
lJl IIIdar _y SLUALTIIITIIT

else

alternative statement

/* A “for” structure evaluates the initial statement at the beginning then tests
the condition. If it is true, the primary and subsequent statements are evaluat-
ed until the condition becomes false. */

for (initial statement; condition; subsequent statement)

primary statement

Parsing and decoding process are described using text and C-like pseudo language.

© ISO/IEC 2019 - All rights reserved 13

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

5.11.2 Syntax functions

Functions used for syntax description are explained in this section. It is assumed that the decoder has
a bitstream position indicator. This bitstream position indicator locates the position of the bit that
is going to be read right next. A function consists of its name and a sequence of parameters inside of
parentheses. A function may not have any parameters.

byte_aligne

d()

The function byte_aligned () returns TRUE if the current position is on a byte boundary. Otherwise, it
returns FALSE.

next_bits(n

The functign returns the next n bits from the bitstream, MSB first. The current bitstream-pos
not changed. If the remaining number of bits to be read are less than n, it returns 0.

indicator is
byte_aligne
If the curre
byte-aligne
position of
bitstream p

next_start_

The next_st

)

d_next_bits(n)

code()

Table 3 — next_start_code() function

nt position of the bitstream is not byte-aligned, returns n bits beginning from the
 position, MSB first. The current bitstream position indicator is mot changed. If the cu
he bitstream is byte-aligned, returns n bits from the current position, MSB first. The cu
psition is not changed. If the remaining number of bits to beread is less than n, it retur

art_code() function locates the next start code. It isidefined in Table 3.

neyt_start_code() { Descriptor
stuffing_bit 1"
stuffing_bit "1
while (! byte_aligned())
stuffing_bit '0'
while (next_bits(24) !="'0000-0000 0000 0000 0000 0001")
stuffing_byte '0000 0000’
}

is_end_of_slice()

This functig

n tests if the'current position is at the end of the slice. The function’s definition is shoy

ition

next
rent
rent
ns 0.

/n in

Table 4.
Table 4 — Function’s definition of the end of the slice
is_end_of _slice () { Descriptor
if(byte_aligned ()) {
if(next_bits(32) ==0xc0000001)
return TRUE /* end of slice */
}
else {
if(((byte_aligned_next_bits(24) == 0x000001) ||
(byte_aligned_next_bits(32) == 0x80000001)) &&
is_stuffing_pattern())
return TRUE /* end of slice */
14

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Table 4 (continued)

}

return FALSE

}

is_stuffing_pattern()

This function tests whether the remaining bits of the current byte or the next byte (in case the current
position is byte-aligned), are stuffing bits. The function’s definition is shown in Table 5.

read

This
posi
indid

Table 5 — Function’s definition of stuffing bits

is_stuffing_pattern () {

descriptor

if(n == 7) && (next_bits(1) == 1)) /* n, in the range 0..7, is the
bitstream position indicator in the current byte, when n is 0, the
bitstream position indicator indicates the MSB of the current byte. */

return TRUE
else if((n <7) && (next_bits(8-n) == ((1<< (7-n)) + (1<< (6-n))))
return TRUE
else
return FALSE
}
bits(n)

function returns n bits of the bitstream¢from the current position, MSB first. Th
ion indicator advances n bits. If n is equabto 0, the function returns 0, and the bitstre
ator does not move.

Syntpx functions can be also used for deScribing parsing process and decoding process.

5.11

3 Syntax descriptors

The fescriptors below specify,the parsing process of syntax elements.

b(8)

A by
valu

f(n)
A bit

te with arbitraty; value (8 bits). The parsing process for this descriptor is specified by
e of read_bits(8).

string with n bits. The parsing process is specified by the returned value of read_bits(;

e bitstream
Aam position

y the return

i(n)

Signed integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by other syntax
elements. The parsing process is specified by the return value of read_bits(n), interpreted as two’s
complement representation with MSB first.

r(n)

A bit string with n bits equal to ‘0. The parsing process is specified by the returned value of read_
bits(n).

u(n)

© ISO/IEC 2019 - All rights reserved

15

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Unsigned integer with n bits. In syntax table, if n is ‘v’, the number of bits is determined by other syntax
elements. The parsing process is specified by the returned value of read_bits(n), interpreted as two’s
complement representation with MSB first.

ue(v)

Unsigned integer Exp-Golomb(Exponential Golomb) coded syntax element with the first bit on left. The
parsing process is specified in subclause 9.2.

5.11.4 Res

In the bitstf

‘reserved’ o

The term ‘r
for future u
be used in f

The term ‘f
conforming
particular s
ignore thesg

6 Sourc

6.1 Sour

This documlent only deals with coding of progressive-s¢éanned video sequences, and each picture i

video sequd
reconstruct
frame rate.

A frame co
sample mat

Each element of each colour component matrix has an integer value.

erved, forbidden and marker bit

V

‘forbid

den’.
eserved’, when used in the clauses specifying some values of a particular syntax eleme

Kes. These values shall not be used in the bitstreams conforming to this docament, but
1ture extensions or revisions of this document.

rbidden’ specifies some values of syntax elements that shall not be uséd in the bitstrg
to this document. marker_bit specifies a bit with value ‘1". reserved_bits specifies that s
yntax elements are used for future extension of this documentsThe decoding process
e bits.

e, coded, decoded and output data formats
re

nce is a frame. The sequence, at the outptit of the decoding process, consists of a seri
ed frames that are separated in time byra frame period which is the inverse of a sped

hsists of three matrices of integer samples: a luma sample matrix (Y), and two chr
rices (Cb and Cr).

6.2 Colouyir format

This documgnt only dealswith 4:2:0 colour format, in which the two chroma colour component mat

kad as

nt, is
may

ams
ome
shall

N the

es of

ified

oma

rices

have half the number of'samples of the corresponding luma colour component matrix both horizonftally

and vertically. The lunta and chroma samples are positioned as shown in Figure 1.

16

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

O O
X
O O

O O

Key

6.3

The
com
fram
orde]
the ¢

6.4

X

A vi

coddd frame data.(A) sequence header is allowed to be repeatedly present in the bits

luma sample

chroma sample

Figure 1 — Position of luma and chroma samples in 4:2:0 format

Sequence header

Coded bitstream format

X
O O

highest syntactic structure of the coded video bitstream is the video sequence. A vid¢o sequence
mences with a sequence header which is followed by one or more coded frames. In f
e, a frame header is present. The.order of the coded frames in the coded bitstream is the bitstream
r. The bitstream order is samea$the decoding order. The decoding order is not necessa
utput order. The video sequénce is terminated by a sequence_end_code.

ront of each

[rily same as

eo sequence hedder commences with sequence header start code and is followed by a series of

fream. This

sequence header.is called repeat sequence header. The main purpose of repeat sequende header is

provfiding withd4andom access functionality. The first coded frame after a sequence header
frame. The R\frames after a sequence header only refer to frames appeared after the sequen
is a fequirement of bitstream conformance that if the bitstream is modified by removing a
precpding any of the repeat sequence headers, then the resulting bitstream shall be a leg

shall be an |
ce header. It

Il of the data
| bitstream

£ PRSI I | 4
that CUIITUTIIIS tU UIIS UUCUIIICIIT.

6.5 Frame

A reconstructed frame is obtained by decoding a coded frame, i.e. a frame header, the optional
extensions immediately following it, and the frame data.

6.6 Frame types

There are three types of frames that use different coding methods:

— an Intra-coded (I) frame is coded using information only from itself;

© ISO/IEC 2019 - All rights reserved

17

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— a Predictive-coded (P) frame is a frame which is coded using motion compensated prediction
from past reference frames;

— aBidirectionally predictive-coded (B) frame is a frame which is coded using motion compensated

predict

ion from past or future reference frames.

This document defines three sub-types of P frames, which can be used for P frame coding in low delay
cases as shown in the Table 6. A non-reference P frame is not used as a reference frame for motion
compensated inter-frame prediction. A non-reference P frame with reference frame buffer (RPB)
swapping is referred as a non-reference P frame accompanied with the operation of RPB swapping.
After decoding a non-reference P frame with RPB swapping, the last two decoded frames placed in RPB

shall exchaygetheirpositions i the buffer:

6.7 Slice

Asliceisas
slice shall n
is not equal
at least one
Slices shall
of the framg

6.8 Macn

A slice is pg
the spatiall
decoded da
structure h

Table 6 — P frame sub-types

Name Value
P frame 1
Non-reference P frame 2
Non-reference P frame with RPB swapping 3

bries of an arbitrary number of consecutive macroblocks. The first and last macroblock
bt be skipped macroblocks, it is a requirement of bitstream conformance that mb_part |
to zero when the macroblock is at the first or lastposition in the slice. Every slice conf
macroblock. Slices shall not overlap. The position/of slices may change from frame to fT|
bccur in the bitstream in the order in which they are encountered, starting at the uppe
and proceeding by raster-scan order from left to right and top to bottom.

oblock

Irtitioned into macroblocks. A miacroblock contains a section of the luma component
/ corresponding chroma components. The term macroblock can either refer to source
a or to the corresponding coded data elements. A macroblock consists of 6 8x8 blocks.
blds 4Y, 1 Cb and 1 Cr blocks and the block order is depicted in Figure 2.

0

5 of a
type
ains
ame.
r-left

and
and
This

Ch Cr
oo L =4

Figure 2 — Partitioning of a macroblock into 8x8 blocks (4:2:0 format)

6.9 Block

The term “block” can refer either to source and reconstructed data or to the transform coefficients or

to the corre

sponding coded data elements.

When “block” refers to source and reconstructed data, it refers to an orthogonal section of a luma or
chroma component with the same number of lines and samples.The size of a block can be either 4x4,

8x8 or 16x1

18

6.

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-3

6.10 Frame re-ordering

3:2019(E)

When the sequence contains coded B frames, the number of consecutive coded B frames is variable and
shall be less than 127. The first coded frame after a sequence header shall not be a B frame.

The order of the coded frames in the bitstream, also called coded order, is the order in which a decoder
reconstructs them. The order of the reconstructed frames at the output of the decoding process, also
called the output order, is not always the same as the coded order and this subclause defines the rules
of frame re-ordering between the decoder input and decoder output.

When the sequence contains no coded B frames, the coded order is the same as the output order. This

is tr
orde

The
reco

The
succ
to fo
and
decq

3 43 1 1 L] dal H AL R_£. £ 3 £l
LT 111 Pﬂl tituial cuvva_yo VVIICII lUVV_LlClGly IS5 UIIC,. VVIIUIILI D 11 dITIICS dI'T }Jl COUIIU IIT UIIT O

ring shall be performed to produce the output order according to the following rules:

f the current frame in coded order is a B frame, the output frame is the frame reconst
hat B frame;

f the current frame in coded order is an I frame or P frame, the output frame i
reconstructed from the previous I frame or P frame if one exists. If none exists, at the
sequence, no frame is output.

frame reconstructed from the final I frame or P frame is oufput immediately afte

following Figure 3 is an example for explaining re-ordering: there are two coded B fran
bssive coded P frames. The P frame with only intra coded blocks is marked as “I”. Fram
'm a prediction for frame ‘4P’. Frames ‘4P’ and ‘1’axe both used to form predictions for
3B’. Therefore the order of coded frames in the‘¢oded sequence is ‘1I’, ‘4P’, ‘2B’, ‘3B". H
der outputs them in the order ‘1I’, ‘2B’, ‘3B’, ‘4P,

At the encoder input:
1 2 3. 4 5 6 7 8 9 10 11 12
| BB P B B P B B | B B

At the encoder output, in the coded bitstream, and at the decoder input:

1 4 2 3 7 5 6 10 8 9 13 11
|l P B B P B B I B B P B

hstructed when the last coded frame in the sequence was removed from the VBV buffer.

quence, re-

ructed from

b the frame
start of the

 the frame

1es between
b ‘11" is used
frames ‘2B’
owever, the

13

12

At the decoder output:

1 2 3 4 5 6 7 8 9 10 11 12
| B B P B B P B B | B B

Figure 3 — Frame re-ordering example

6.11 Reference frames

13
P

P frame can use up to eight (at maximum) past frames as reference. B frame can refer up to one forward
reference frame or one backward reference frame.

© ISO/IEC 2019 - All rights reserved

19

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

6.12 Inverse scanning processes and derivation processes for neighbours

6.12.1 General

This subclause specifies inverse scanning processes, i.e., the mapping of indices to locations, and
derivation processes for neighbours.

6.12.2 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of t
address mb

The inverse

X = Invd

y = Inve

6.12.3 Inv

Macroblock
Figure 4. T
partitions.]

The functig
partitions @
appropriate
by mb_part

1 16x1
macrolh
partitig

his process is the location (X, y) of the upper-left luma sample for the macrobloeck
Addr relative to the upper-left sample of the frame.

macroblock scanning process is specified as follows:
rseRasterScan(mbAddr, 16, 16, PicWidth, 0);
rseRasterScan(mbAddr, 16, 16, PicWidth, 1).

brse macroblock partition scanning process

5 may be partitioned, and the partitions are scanned for-inter prediction as show
he outer rectangles refer to the samples in a macrablock. The rectangles refer ta
'he number in each rectangle specifies the index of thelinverse macroblock partition sg

ns MbPartWidth(), and MbPartHeight() describing the width and height of macrol
re specified in Table 16, and Table 17. MbPartWidth() and MbPartHeight() are s
values for each macroblock partition, depending on the macroblock partition type (den

 type).

4 8x8
macrobloc
partitions

=

lock

2 8x16
macroblock
partitions

2 16x8
macroblock
partitions

with

n in
the

lock
et to
oted

Figure 4 — Macroblock partitions

Input to this process is the index of a macroblock partition mbPartldx.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock partition
mbPartldx relative to the upper-left sample of the macroblock.

The inverse

macroblock partition scanning process is specified by:

— x = InverseRasterScan(mbPartldx, MbPartWidth(mb_part_type), MbPartHeight(mb_part_type),

16,0);

20

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— y = InverseRasterScan(mbPartldx, MbPartWidth(mb_part_type), MbPartHeight(mb_part_type),
16,1).

6.12.4 Inverse 8x8 luma block scanning process
Input to this process is the index of an 8x8 luma block luma8x8Blkldx within a 16x16 luma block.

Output of this process is the location (x, y) of the upper-left luma sample for the 8x8 luma block with
index luma8x8BIlkldx relative to the upper-left luma sample of the16x16 luma block.

Figure 5 shows the scan order for the 8x8 luma blocks.

0 1

Figure 5 — Scan order for 8x8 luma blocks

The |nverse 8x8 luma block scanning process is specified asfollows.
— x =InverseRasterScan(luma8x8Blkldx, 8, 8, 16,0);
— V¥ = InverseRasterScan(luma8x8BIkldx, 8, 8416, 1).

6.12L5 Inverse 4x4 luma block scanning process
Inpult to this process is the index of a 4%4-luma block luma4x4Blkldx within an 8x8 luma blqck.

Output of this process is the location (x, y) of the upper-left luma sample for the 4x4 luma block with
indek luma4x4Blkldx relative ta the upper-left luma sample of the 8x8 block.

Figuke 6 shows the scan order for the 4x4 luma blocks.

0 1

Figure 6 — Scan order for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified as follows.
— x =InverseRasterScan(luma4x4Blkldx, 4, 4,8, 0)
— y = InverseRasterScan(luma4x4Blkldx, 4, 4,8, 1)

6.12.6 Derivation process of the availability for macroblock addresses

Input to this process is a macroblock address mbAddr.

© ISO/IEC 2019 - All rights reserved 21

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Output of this process is the availability of the macroblock mbAddr.
NOTE The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless one of the following conditions is true in which case the
macroblock is marked as not available:

— mbAddr < 0;
— mbAddr > CurrMbAddr;

— the macroblock with address mbAddr belongs to a different slice than the current slice.

6.12.7 Derjivation process for neighbouring macroblock addresses and their availability
The outputg of this process are:

— mbAddfA: the address and availability status of the macroblock to the left of the cu¥rent macroblock;
— mbAdd}B: the address and availability status of the macroblock above the current macroblock];

— mbAddfC: the address and availability status of the macroblock @abeve-right of the cufrent
macrobjlock;

— mbAddfD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 7 shpws the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC,
and mbAddyD relative to the current macroblock with CurrMbAddr.

mbAddrD mbAddrB mbAddrC

mbAddrA JCurrMbAddr

Figure 7 — Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.12.6 is mbAddrA = CurrMbAddr - 1 and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr
% PicWidthInMbs is equal to 0.

Input to the process in subclause 6.12.6 is mbAddrB = CurrMbAddr - PicWidthInMbs and the output is
whether the macroblock mbAddrB is available.

Input to the process in subclause 6.12.6 is mbAddrC = CurrMbAddr - PicWidthInMbs + 1 and the output
is whether the macroblock mbAddrcC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

22 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Input to the process in subclause 6.12.6 is mbAddrD = CurrMbAddr - PicWidthInMbs - 1 and the output
is whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.12.8 Derivation processes for neighbouring macroblocks, blocks, and partitions

6.12.8.1 General

Subclause 6.12.8.2 specifies the derivation process for neighbouring macroblocks.

Subclause 6.12.8.3 specifies the derivation process for neighbouring 8x8 luma blocks

Subdlause 6.12.8.4 specifies the derivation process for neighbouring partitions.

Tablg 8 specifies the values for the difference of luma location (xD, yD) for the inputdand the feplacement
for N in mbAddrN, mbPartldxN, and luma8x8BIlkIdxN for the output.

Thede input and output assignments are used in subclauses 6.12.8.2\t0' 6.12.8.4. The variable
predPartWidth is specified when Table 7 is referred to.

Table 7 — Specification of input and output assignments forsubclauses 6.12.8.2 t0|6.12.8.4

N xD yD
A -1 0

B 0 -1
C predPartWidth -1
D -1 -1

Figufe 8 illustrates the relative location of theékheighbouring macroblocks, blocks, or partitions A, B, C,
and D to the current macroblock, partition, or block.

D B C
current

A macroblock
or partition
or block

Figl1re 8 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.12.8.2 Derivation process for neighbouring macroblocks
Outputs of this process are:

— mbAddrA: the address of the macroblock to the left of the current macroblock and its availability
status; and

— mbAddrB: the address of the macroblock above the current macroblock and its availability status.
mbAddrN (with N being A or B) is derived as follows.

— The difference of luma location (xD, yD) is set according to Table 7.

© ISO/IEC 2019 - All rights reserved 23

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— The derivation process for neighbouring locations as specified in subclause 6.12.9 is invoked for

luma lo

cations with (xN, yN) equal to (XD, yD), and the output is assigned to mbAddrN.

6.12.8.3 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BIkIdx.

The luma8x8Blkldx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are:

— mbAdd
macrob

— luma8x
and its

— mbAdd

A aithar Ao A
< O B

lock and its availability status;

hvailability status;

B: either equal to CurrMbAddr or the address of the macroblock @beve the cui

macrobflock and its availability status;

— Juma8x
and its

mbAddrN a
— The dif

hvailability status.
nd luma8x8BlkIdxN (with N being A or B) are derived as fallows.

ference of luma location (xD, yD) is set according to Table 7.

— The lunpa location (xN, yN) is specified by:

— xN
— yN

— The det
luma lo

— The var

= (luma8x8Blkldx % 2) * 8 + xD;
= (luma8x8Blkldx / 2) * 8 + yD.

ivation process for neighbouring locations as specified in subclause 6.12.9 is invoke
cations with (XN, yN) as the input'and the output is assigned to mbAddrN and (xW, yV

iable luma8x8BlkIdxN is derived as follows.

— If mbAddrN is not available; Tima8x8BlkIdxN is marked as not available.

— Oth
lun

6.12.84 D

Inputs to th

erwise (mbAddrN is‘available), the 8x8 luma block in the macroblock mbAddrN coverin
ja location (xW, yW') is assigned to luma8x8BIlkIdxN.

privation process for neighbouring partitions

IS process are

rent

BBlkIdxA:theindexofthe 8x8lumablocktotheleftofthe 8x8 blockwith indexlunia8x8BlkIdx

rent

BBlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8BlkIdx

i for
V).

o the

— amacrgbleck partition index mbPartldx.

Outputs of this process are:

— mbAddrA\mbPartldxA: specifying the macroblock partition to the left of the current macroblock
and its availability status;

— mbAddrB\mbPartldxB: specifying the macroblock partition above the current macroblock and its
availability status;

— mbAddrC\mbPartldxC: specifying the macroblock partition to the right-above of the current
macroblock and its availability status;

— mbAddrD\mbPartldxD: specifying the macroblock partition to the left-above of the current
macroblock and its availability status.

24

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

mbAddrN and mbPartldxN (with N being A, B, C, or D) are derived as follows.

— The inverse macroblock partition scanning process as described in subclause 6.12.3 is invoked with
mbPartldx as the input and (%, y) as the output.

— The variable predPartWidth in Table 7 is specified as follows.
predPartWidth = MbPartWidth(mb_part_type).
— The difference of luma location (xD, yD) is set according to Table 7.

— The neighbouring luma location (xN, yN) is specified by:

— xN =x+xD;
— yN=y+yD.

— TThe derivation process for neighbouring locations as specified in subclause6.12.9 is|invoked for
uma locations with (XN, yN) as the input and the output is assigned to,mabAddrN and (| xW, yW).

— Depending on mbAddrN, the following applies.

— If mbAddrN is not available, the macroblock partition mbAddrN\mbPartldxN is mgrked as not
available.

— Otherwise (mbAddrN is available), the following applies.

— The macroblock partition in the macroblogk mbAddrN covering the luma logation (xW,
yW) is assigned to mbPartldxN.

— When the partition given by mbPartldxN is not yet decoded, the macroblo¢k partition
mbPartldxN is marked as not available.

6.129 Derivation process for neighbouring locations

Inpult to this process is a luma or chroma location (xN, yN) expressed relative to the upper left corner
of the current macroblock.

Outputs of this process are:

— mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains
[xN, yN) and its availability status;

— [xW, yW):the location (xN, yN) expressed relative to the upper-left corner of the jmacroblock
mbAddrN<{rather than relative to the upper-left corner of the current macroblock).

Let tnaxWHbe a variable specifying a maximum value of the location components xN, yN, xW, and yW.
maxWH is“derived as follows.

— Ifthis process is invoked for neighbouring luma locations:
maxWH = 16

— Otherwise (this process is invoked for neighbouring chroma locations):
maxWH =8

The derivation process for neighbouring macroblock addresses and their availability in subclause
6.12.7 is invoked with mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status
as the output.

Table 8 specifies mbAddrN depending on (xN, yN).

© ISO/IEC 2019 - All rights reserved 25

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Table 8 — Specification of mbAddrN

xN yN mbAddrN

<0 <0 mbAddrD

<0 0. maxWH -1 mbAddrA

0.maxWH -1 <0 mbAddrB
0.maxWH -1 0.maxWH -1 CurrMbAddr

>maxWH -1 <0 mbAddrC
>maxWH -1 0..maxWH -1 not available
STmaxWH =1 Totavaitabte

The neighb
is derived a

— xW=_>
— yW=()

7 Synta;
7.1 Bitst

7.1.1 Sta
Start codes
Each start d

byte-aligne
The start ca

The start cpde suffix is an eight-bit integer Which denotes the type of start code. Most types of

code have ju
code suffix
the slice_ve

Table 9 spe

uring luma location (xW, yW) relative to the upper-left corner of the macroblockimbA

D.

(N + maxWH) % maxWH;
/N + maxWH) % maxWH.

r and semantics

Feam syntax

't codes
are specific bit patterns that do not otherwiseloccur in the video bitstream.

ode consists of a start code prefix followed, by a start code suffix. The start code prefi)
1 string of twenty-three bits with the value zero followed by a single bit with the value
de prefix is thus the the byte-alignedsbit string ‘0000 0000 0000 0000 0000 0001".

st one associated value of the start code suffix. However, a slice_start_code may have a
value in the range of 0x00 £0°0xAF; in this case the start code suffix value is interprete
‘tical_position syntax element for the slice.

ifies the start code suffix values that are allowed in the video elementary bitstream.

Table 9 — Start codes and start code suffix values

HdrN

K is a
one.

start
start
bd as

Start code name Suffi)((izzc;\ilrl:lz{)l{ exa-
slice_start_code 00..AF
video_sequence_start_code BO
video_sequence_end_code B1
user_data_start_code B2
i_frame_start_code B3
reserved B4
reserved B5
pb_frame_start_code B6
video_edit_code B7
reserved B8

When considering the values that may occur in the syntax elements of the bitstream, it is important
to ensure that the pattern of bits that represents other syntax elements cannot emulate the start code

26

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-3

3:2019(E)

prefix pattern. It is thus a requirement of bitstream conformance that the bit string pattern of a start
code prefix (i.e., the bit string ‘0000 0000 0000 0000 0000 0001’) shall not occur in the bitstream in
any byte-aligned position other than the positions in which start codes are specified to appear in the
bitstream syntax specification that follows.

At the beginning of the decoding process, the decoder initializes its current position in the byte stream
to the beginning of the bitstream. It then extracts and discards each zero byte (if present), moving
the current position in the bitstream forward one byte at a time, until the current position in the byte
stream is such that the next three bytes in the bitstream form the bit string ‘0000 0000 0000 0000
0000 0007

The
unti

7.1.2

7.1.2

the end of byte stream has been encountered.

[he next three-byte sequence in the byte stream is extracted and the current pasition
stream is set equal to the position of the byte following this three-byte sequence.

fthe current position in the byte stream is such that the next three bytes’in the bitstre
pit string ‘0000 0000 0000 0000 0000 0010’, these three bytes are extracted, the two L
'hree bytes are dropped, and the current position in the byte stream is set equal to
bf the byte following this three-byte sequence; otherwise, the’current byte is extrac
Current position is moved forward to the position following thisbyte.

When one of the following conditions is met, the extracted bitstream segment is dec
lecoding process:

[) A subsequent byte-aligned three-byte sequencejequal to 0x000000, or
P) A subsequent byte-aligned three-byte sequence equal to 0x000001, or
B) The end of the byte stream, as determined by unspecified means.

When the current position in the bytewstream is not at the end of the byte stream (as def
inspecified means) and the next bytés in the byte stream do not start with a three-by
equal to 0x000001, the decoder-extracts and discards each zero byte syntax element,
Current position in the byte stream forward one byte at a time, until the current positior
btream is such that the nextbytes in the byte stream form the three-byte sequence 0x0(
end of the byte stream Has'been encountered (as determined by unspecified means).

Video sequence

.1 Sequence

decoder them performrs the fottowing process Tepeatedly to extract anmd decode the hyte stream

in the byte

hm form the
SBs of these
the position
ted and the

bded by the

ermined by
te sequence
moving the
hin the byte
0001 or the

vide

o_sequence() {

lescriptor

do~{

f

start code }*’\rnfiv

24)

start_code_type f

(8)

if(start_code_type != video_sequence_end_code &&
start_code_type != video_edit_code) {

if(start_code_type == video_sequence_start_code)

sequence_header()

else if(start_code_type == user_data_start_code)

user_data()

else if(start_code_type ==i_frame_start_code)

i_frame_header()

else if(start_code_type == pb_frame_start_code)

© ISO/IEC 2019 - All rights reserved

27

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

pb_frame_header()

else if(start_code_type == slice_start_code)
slice()

}
} while ((next_bits(24) == ‘0000 0000 0000 0000 0000 0001"))

7.1.2.2 Sequence header

sequence_header() { descriptor
profild_id u(8),
level_if ‘?@)
horizoptal_size A 51({4)
vertical_size (T u(14)
chromp_format N b‘\b u(2)
sampl¢_precision ,. N” u(3)
aspect] ratio K/S') u(4)
frame[rate_code m\\v u(4)
bit_ratle_lower) \%V u(18)
markep_bit B O\) f(1)
bit_rate_upper <\‘(u(12)
low_ddlay LY u(l)
markep_bit s\Q\\ f(1)
vbv_byffer_size N u(18)
abt_enpable \Q\'\ u(1)
if_type ;’\\Q‘ u(1)
reserved_bits xO h r(4)
next_sfart_code() . (-\,J: -

} ™

7.1.2.3 User data @

O

user_data(] { A@’ descriptor

while (flext_bits(24] ! = 0000 0000 0000 0000 0000 0001) {
use r_d:;txél\)frte b(8)

I R

} N

7.1.3 Frame

7.1.3.1 1Frame header

i_frame_header() { descriptor
vbv_delay u(16)
time_flag u(1)

if(time_flag == ‘1") { /* Time code syntax elements */

drop_frame_flag u(1)

28 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

time_code_hours u(5)
time_code_minutes u(6)
time_code_seconds u(6)
time_code_frames u(6)
}
marker_bit f(1)
frame_distance u(8)

if(low_delay == ‘1")

vbv_check_times e(v)
fixed_frame_level_qp (\'\ d (§8)
f(fixed_frame_level_qp) 0;‘.1/\’

frame_qp . 9.)") y(6)
reserved_bits KS) 1(4)
oop_filter_disable ,\b&w y(1)
f('loop_filter_disable) { P .

alpha_threshold NS 4(8)

beta_threshold 2 4(6)

: S
next_start_code() & -

} \Q\)]

7.1.3.2 PB Frame header Qj\o\

el

pb_frame_header() { \Q\'\ descriptor
Ybv_delay K2 4(16)
Tame_coding_type xO h 1|1(2)
Tame_sub_type . (-\‘J: - 1|1(2)
Tame_distance C)\\v 111(8)
f(low_delay == ‘1") ¢ -

vbv_check_times" fie(v)
fixed_frame _‘l\ép‘él_qp 1[1(1)
f(fixed_frdme_level_qp)

frame.qp 1(6)
1o£ﬁv}vard_reference_flag 1|1(1)
fesérved_bits 1(3)

loop_filter_disable u(1)
if('loop_filter_disable) {

alpha_threshold u(8)

beta_threshold u(6)

}
next_start_code()
}

© ISO/IEC 2019 - All rights reserved

29

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

7.1.4 Slice
slice() { Descriptor
if(vertical_size > 2800)
slice_vertical_position_extension u(3)
if(Ifixed_frame_level_qp) {
fixed_slice_level_qp u(1)
slice_qp u(6)
}
do { RS
if(lis_end_of_slice()) { N
macroblock() 1254
aec_mb_stuffing_bit (& |ae(v)
) WD
} while|(lis_end_of_slice()) N~
next_start_code() ‘OS-)
} o
\%v
7.1.5 Mag¢roblock O‘\
7.1.5.1 General QQ<<
N
macroblock() { ‘\\\f\ descriptor
if(FranpeType !=0) { /* 0:] frame */ s?(\Q)
mb_part_type K\ - ae(v)

if((FrameType == 2) && (MbPartType&ka_Skip’)) {/*2:Bframe */
if(MbPartType == ‘B_16x16") «O

mb_pred_type \.\(\}‘ ae(v)
elbe if((MbPartType == ‘B_16x8") || (MbPartType == ‘B_8x16")) {
mb_pred_type _\° ae(v)
mb_pred_typ}Q\ ae(v)
O
} (\\’

elpe if(MbPartType == ‘B_8x8") {
mb _J.@éﬂ’_type ae(v)

l‘@gpﬁ:ed_type ae(v)
rw\annrl ftuno aalin)
mb—pred—type aefv
mb_pred_type ae(v)

}
else if(FrameType == 1) { /* 1: P frame */

if(MbPartType == ‘P_16x16’)

mb_pred_type ae(v)

else if((MbPartType == ‘P_16x8’) || (MbPartType == ‘P_8x16")) {
mb_pred_type ae(v)
mb_pred_type ae(v)

30 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

}
else if(MbPartType == ‘P_8x8") {
mb_pred_type ae(v)
mb_pred_type ae(v)
mb_pred_type ae(v)
mb_pred_type ae(v)
}
} /* P frame */
f C
if(MbPartType == ‘I_Block’) /* intra macroblock */ (\'\ g
mb_trans_type 04“17 de(v)
if(FrameType == 1) && (RefPicNumber > 1)) { . 9.)")
if(MbPartType !=‘I_Block’) { KS)
for (i=0; i<MvNum; i++) ,\b&w
reference_frame_index . . de(v)
i AN
I ‘o)U
if(MbPartType == ‘1_Block’) { A
if(mb_trans_type == 0) /* 16x16 */ &
intra_luma_pred_mode 0\)) de(v)
else { LN N
for (i=0; i<4; i++) { /* 8x8 %/ o
submb_trans_type \\\S\' de(v)
if(submb_trans_type) { .‘Q)@
for(j=0;j<4j++)
intra_luma_m’éﬁl_mode de(v)
} A
else L V
intra_}uﬁ{%_pred_mode de(v)
y O
} o
intrg(&gltoma_pred_mode de(v)
for (i=0; i< MvNum; i++) {
mv_diff x ae(v)
mv_diff_y ae(v)
}
}
coded_block_pattern()
if((MbCBP > 0) && (! FixedQP))

© ISO/IEC 2019 - All rights reserved

31

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

mb_qp_delta ae(v)
block()

}
NOTE MvNum = MbPartMvNum *(16*16) / (MbPartWidth(mb_part_type) * MbPartHeight(mb_part_type))

7.1.5.2 Coded block pattern

coded_block_pattern() {
if(mb_trans—type==03{A36536%
cbp_[luma_bit ae Vb\u-)
if(cbp_luma_bit) q))
MpbCBP = OxFFFF 0P’
} o0
else {
for (1=0; i<4; i++) { /* 8x8 */ .
if(submb_trans_type) { \\Q/V
for(j=0;j<4;j+4) { O
cbp_luma_bit N7 ae(v)
MbCBP += cbp_bit << (4*i+j) ., O

elpe { h‘\\}‘
cbp_luma_bit 7 ae(v)

if(cbp_luma_bit) R\
MbCBP += 0xF << (4 * i) R\

} O

} ‘\\C\F

cbp_chroma_bit . o ae(v)

if(cbp_chroma_bit) { A@ ’

ch p_chroma_allpx&n&‘ero_bit ae(v)

ifl cbp_chrom@l‘}\ﬁonzero_bit)

MbCBP +<0xFF0000
elpe { fé\/

Q@b?hroma_nonzero_bit ae(v)

tbp_chroma_monzero_bit)
MbCBP += 0xF00000
else
MbCBP += 0xF0000

32 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

7.1.6 Block

block() {

Descriptor

if(mb_trans_type == 16x16) {

if(MbCBP & 1) {

do {

trans_coefficient

ae(v)

} while (trans_coefficient I= ‘EOB’)

}

}

else {

if(submb_trans_type == 0) { /* 8x8 */ ({b i

for(i=0;1<4;i++){ &

if(MbCBP & (1<< i*4)) { WD

do { N7

trans_coefficient) </\.)

o))

e(v)

} while (trans_coefficient != ‘EOB’) (‘\\ -

) 20

} o

] X

else{ /* 4x4 */ N

for (i=0;i<4; i++) { N

for(j=0;j<4;j++) { 2

if(MbCBP &(1 << (i*4 +)4\ ~
do { ;\\Q‘

trans_coefficie{(p B

o5}

e(v)

} while (trang&befficient 1= ‘EOB’)

) &

for(i &k 2; i++) { /* chroma */

f(MbCBP & (1 << (16+4*i)) {

\‘/dn{

trans_coefficient

ae(v)

} while (trans_coefficient = ‘EOB’)

}

© ISO/IEC 2019 - All rights reserved

33

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

7.2 Video bitstream semantics

7.2.1 Start code

start_code_prefix - the bit string ‘0x000001". It indicates the prefix of a start code.

start_code_type - an 8-bit unsigned integer. It indicates the type of header.

7.2.2 Video sequence

7221 S

profile_id

1o o |
JUTIILT IICTAUciI

an 8-bit unsigned integer. It indicates the profile of a bitstream, as specified in subotause [L0.2.

level_id - ah 8-bit unsigned integer. It indicates the level of a bitstream, as specified in subgclause 1{0.3.

horizontal
component
component

of the frames in samples. The width of the corresponding displayable part of the chjoma
of the frames in samples is horizontal_size / 2. In order ensure that the chroma width

size - a 14-bit unsigned integer. It specifies the width of the displayahle‘part of the Juma

is exactly hlalf the luma width, horizontal_size shall be a multiple of 2. Inforder to avoid start fcode
emulation and null video content, horizontal_size shall not be zero. The displayable part is left-aligned

in the encod
The width @

vertical_siz
component
component
half the lum
video conte

The height ¢f the encoded frames in macroblocksyPicHeightInMbs, is (vertical_size + 15) / 16.

The width a
— PicWid{
— PicHeig
NOTE T

represent th
and vertical |

f the encoded frames in macroblocks, PicWidthInMbs, is (horizontal_size + 15) / 16.

nd height of the luma component of the coded frames are calculated by:

ht = PicHeightInMbs * 16:

ed frames.

e - a 14-bit unsigned integer. It specifies the height of the displayable part of the luma

of the frames in samples. The height of the cortesponding displayable part of the chioma
bf the frames in samples is vertical_size / 2. In}order ensure that the chroma width is exactly
h width, horizontal_size shall be a multiple of2-In order to avoid start code emulation and null
nt, vertical_size shall not be zero. The displdyable part is top-aligned in the encoded franes.

h = PicWidthInMbs * 16;

he relation of horizontal_size, vertical_size and frame boundaries is shown in Figure 9. Solid|lines
e boundaries of the-displayable area, for which the luma width and the height are horizontal _size

size, respectively; dash lines represent the boundaries of the encoded frame, for which the yidth

and the height are PicWidth'and PicHeight, respectively. For example, if the horizontal_size is 1920, and vertical

size is 1080,

Fhe PicWidth is 1920, and the PicHeight is 1088.

34

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Q.

[————————
K

Key

a horizontal_size

b bertical_size

C PicWidth

d PicHeight

chrgma_format - a 2-bit unsigned integer. It specifies the chroma component format. Refer

Figure 9 — Luma component frame boundaries

for ifs semantics. 01 indicates 4:2:0 format, and ether values are reserved for future use.

Table 10 — Chroma format

chroma: format Description
00 Reserved
01 4:2:0
10 Reserved
11 Reserved

to Table 10

sample_precision = a-3-bit unsigned integer. It specifies the precision of luma and chroma samples.
Refef to Table 11 for its semantics. 001 indicates the precision of luma and chroma sample
othef values aréereserved for future use.

Table 11 — Sample precision

is 8-bit, and

sample precision Description
000 Forbidden
001 The precision of luma and chroma sample is 8-bit.
010 .. 111 Reserved

aspect_ratio - a 4-bit unsigned integer. It specifies the sample aspect ratio (SAR) or display aspect
ratio (DAR) of reconstructed frames. Refer to Table 12 for its semantics.

© ISO/IEC 2019 - All rights reserved

35

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Table 12 — Aspect ratio information

aspect_ratio SAR DAR
0000 Forbidden Forbidden
0001 1.0 —
0010 — 4+3
0011 — 16+9
0100 — 2.21+1
0101 - 1111 — Reserved

The whole rleconstructed frame is mapped to the whole active display area as follows:
SAR = (DAR[* horizontal_size) + vertical_size
NOTE horizontal_size and vertical_size are restricted by the SAR and selected DAR of a’source frame.

frame_rate code - a 4-bit unsigned integer. It specifies the frame rate. Referi\to’ Table 13 fdr its
semantics.

Table 13 — Frame rate codes

frame_rate_code Frame rate
0000 Forbidden
0001 24000 + 1002 (23.967...)
0010 24
0011 25
0100 30000 + 1001 (29.97..)
0101 30
0110 50
0111 60000 + 1001 (59.94..)
1000 60
1001 - 1111 Reserved

The time inferval between two successive frames is reciprocal of frame rate.
bit_rate_lower - the low-order 18 bits of BitRate.

bit_rate_upper - the high-order 12 bits of BitRate.

BitRate = (Hit_rate_upper << 18) + bit_rate_lower

BitRate is cflculated in units of 400 bits/s and it expresses a ceiling on the video bit rate. BitRate ghall
not be 0.

low_delay - flag. ‘1’ indicates that the sequence does not contain any B frames, that the frame re-
ordering delay is not present.

vbv_buffer_size - a 18-bit unsigned integer. It specifies the requirement for bitstream buffer size of VBV
for decoding. BBS is the minimum bitstream buffer size in bits for video decoding, and it is calculated by

BBS =16 * 1024 * vbv_buffer_size

The VBV operation and associated conformance requirements are specified by Rec. ITU-T H.262 | ISO/
IEC 13818-2:2013, Annex C.

abt_enable - flag. ‘1’ indicates that either 16x16, 8x8 or 4x4 transform can be used in transform coding,
"0" means only 8x8 transform is used in transform coding.

36 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

if_type - flag. ‘1’ indicates that either 4-tap, 6-tap or 10-tap filter can be used in luma component
interpolation, ‘0’ means that only 6-tap filter is used in luma component interpolation. These
interpolation filters are specified in subclause 8.3.3.3.

7.2.2.2 User_data

user_data_byte - an 8-bit integer. User data is defined by users for their specific applications. In the
series of consecutive user_data bytes there shall not be a bit string of 23 or more consecutive zero bits.

7.2.3 Frame

7.2.3.1 1Frame header

vbv |delay - a 16-bit unsigned integer. In all cases other than when vbv_delay has the value hexadecimal
FFFE, the value of vbv_delay is the number of periods of a 90 kHz clock derived fronr'the 27 MHz system
clock that the VBV waits after receiving the final byte of the frame start code before dpcoding the
frane. vbv_delay shall be coded to represent the delay as specified above ar;it shall be coded with the
valug hexadecimal FFFF. If any vbv_delay field in a sequence is coded with liexadecimal FFFF, then all of
thenp shall be coded with this value. The VBV operation and associated conformance requifements are
specfified by Rec. ITU-T H.262 | ISO/IEC 13818-2:2013, Annex C.

time_flag - flag. ‘1’ indicates that drop_frame_flag, time_code _hours, time_code_minutes)time_code_
secopds, and time_code_frames are present in the bitstream) ‘0’ indicates that these syntax elements
are jot present in the bitstream.

drop_frame_flag, time_code_hours, time_code_niinutes, time_code_seconds, and [time_code_
fralies are unsigned integers that correspond to:these defined in IEC 60461. These syntax elements
are gssociated with the first frame in display ordenafter a sequence header. The range of allpwed values
for these syntax elements is shown in Table 14

Table 14 == Time code syntax elements

Syntax element Value Descriptor
drop_frame_flag 0,1 u(1)
time_code™hours 0..23 u(5)
time_code_minutes 0..59 u(6)
timescode_seconds 0..59 u(6)
time_code_frames 0..59 u(6)

frampe_distance~ an 8-bit unsigned integer. It specifies the frame order of I or P frame, in modulo 256
operjation.

vbv check_times - If low_delay is equal to ‘0’, vbv_check_times is not present in the bitstream and
Vbv(héekTimes is set to 0. If vbv_check_times is present in the bitstream, VbvCheckTimes|is obtained
with parsing vbv_check_times. The value of vbv_check_times shall be less than 216-1. VbvCheckTimes
plus 1 indicates the times VBV buffer has been checked. The VBV operation and associated conformance
requirements are specified by Rec. ITU-T H.262 | ISO/IEC 13818-2:2013, Annex C.

fixed_frame_level_qp - flag. ‘1’ indicates the quantization parameter does not change in the frame, ‘0’
indicates the quantization parameter may change. The fixed quantization parameter flag FixedQP is set
to fixed_frame_level_qp after fixed_frame_level_qp is parsed.

frame_qp - a 6-bit unsigned integer. It specifies the quantization parameter of the frame, ranging from
0 to 63 inclusive.

loop_filter_disable - flag. It specifies whether the operation of de-blocking filter is disabled. ‘1’
indicates the de-blocking filter operation is disabled, ‘0’ indicates the de-blocking filter is used.

© ISO/IEC 2019 - All rights reserved 37

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

alpha_threshold- a 8-bit unsigned integer. It specifies a threshold of level difference between the
border samples across one block edge.

beta_threshold - a 6-bit unsigned integer. It specifies a threshold of level difference between the
border samples on the same side of one block edge.

7.2.3.2 PB

frame header

frame_coding_type - a 2-bit unsigned integer. It specifies the coding type of a frame. Its semantics are
defined in Table 15.

Table 15 — Coding type of a frame

frame_coding_type Coding type FrameType
op Forbidden -
oL Forward inter prediction (P) 1
1P Bidirectional inter prediction (B) 2
11 Reserved -
frame_sub|type - a 2-bit unsigned integer. It specifies the sub-type of R frames. Its semantics
defined in Table 6.

no_forward_

for forward
prediction.

See subclau

7.2.4 Slice

slice_vertid
than or equ

MbRow tha

if(vertical _
MbRow

else
MbRow

1
i

fixed_slice
while ‘0’ ind
FixedQP is ¢

se 7.2.3.1 for other syntax elements of PB framle header.

al_position_extension - a 3-bit unsigned integer. If vertical_size of a coded frame is
h1 to 2800, slice_vertical_position_extension shall not be present in the bitstream.

f indicates the number of macroblock rows in the current slice is derived by:
size > 2800)

= (slice_vertical_position_extension << 7) + slice_vertical_position

= slice_veftical_position

qual to fixed_slice_level_gp after fixed_slice_level_qgp is parsed.

reference_flag - flag. ‘1’ indicates that current frame.does not use past reference fr:
prediction, ‘0’ indicates that current frame can usé-past reference frames for fory

evelgp - flag. ‘1’ indicates that the quantization parameter in the slice does not ch{
cates that the quantization parameter may change. The fixed quantization paramete

are

imes
ward

less

inge,
flag

slice_qp - a 6-bit unsigned integer. It specifies the quantization parameter of a slice, ranging from 0 to

63, inclusive.

aec_mb_stuffing_bit - flag. The aec_mb_stuffing_bit of the last macroblock of a slice shall be ‘1".

7.2.5 Macroblock

7.2.5.1 General

mb_part_type - It indicates the partition type of a macroblock. The semantics depends on the frame

coding type.

38

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Tables and semantics are specified for the various partition types for macroblocks in P and B frames.
Each table presents the value and name of mb_part_type (given by the MbPartType), the width of
macroblock partitions(given by the MbPartWidth(mb_part_type)), and the height of macroblock
partition (given by the MbPartHight(mb_part_type)).

— If current frame is a P frame,
Refer to Table 16 for the semantics of mb_part_type.
— Otherwise, if current frame is a B frame,

Refer to Table 17 for the semantics of mb part tvpe.

Table 16 — MbPartTypes of macroblocks in P frames

mb_part_type MbPartType MbPartWidth(mb_part_type) MbPartHight(mb_part_type)
0 P_16x16 16 16

1 P_8x16 8 16

2 P_16x8 16 8

3 I_Block 16 16

4 P_8x8 8 8

Table 17 — MbPartTypes of macroblocks in B frames

mb_part_type MbPartType MbPartWidth{mb_part_type) |MbPartHight(mb_part_type)
0 B_Skip 16 16

1 B_16x16 16 16

2 B_8x16 8 16

3 B_16x8 16 8

4 I_Block 16 16

5 B_8x8 8 8

mb_trans_type - flag. It indicates the transform type of an intra macroblock (gijen by the
MbTransformType). If mb_trahs_type is 0, the MbTransformType is set equal to ‘Tyans_16x16’.
Othgrwise, the MbTransformType is set equal to ‘“Trans_8x8’.

For the inter macroblock; the MbTransformType is determined by the value of mb_part_typ¢. If both the
MbPprtWidth(mb_part_type) and the MbPartHight(mb_part_type) are 16, the MbTransforimType is set
equdl to ‘Trans_16x%16". Otherwise, the MbTransformType is set equal to ‘Trans_8x8’.

reference_frame_index - It indicates the reference frame index of a macroblock partition.

RefHicNumber is a variable to indicate the number of available reference frames in refefence frame
bufferMtis initialized to 0 at the beginning of one video sequence. RefPicNumber is updatedlas specified
in subclause 8.6.

mb_pred_type - It indicates the inter prediction type of each macroblock partition.

Tables 18 to 21 specify the semantics for the various inter prediction types for macroblock partitions
in P and B frames. Each table lists the value and name of mb_pred_type (given by the MbPredType), the
number of motion vectors of a macroblock partition in the bitstream (given by the MbPartMvNum), and
the prediction mode of a macroblock partition (given by the MbPartPredMode).

— Ifcurrent frame is a P frame,

Refer to Table 18 and Table 21 for the semantics of mb_pred_type.

© ISO/IEC 2019 - All rights reserved 39

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Otherwise, if current frame is a B frame,

Refer to Table 20 and Table 21 for the semantics of mb_pred_type.

Table 18 — MbPredTypes of P_16x16 macroblock

mb_pred_type MbPredType MbPartMvNum MbPartPredMode
0 Pred_Skip 0 Forward
2 Pred_Fwd 1 Forward
3 Pred_Mh 1 Forward

Table 19 — MbPredTypes of P_16x8, P_8x16, and P_8x8 macroblocks

mb_pred_type MbPredType MbPartMvNum MbPartPredMode
0 Pred_Fwd 1 Forward
1 Pred_Mh 1 Forward

Table 20 — MbPredTypes of B_16x16, B_16x8, and B_8x16 macroblocks

mb_pred_type MbPredType MbPartMvNum MbPartPredMode
0 Pred_Bck 1 Backward

2 Pred_Fwd 1 Forward

3 Pred_Sym 1 Bidirectional

Table 21 — MbPredTypes of B.8x8 macroblock

mb_pred_type MbPredType MbPartMvNum MbPartPredMode
0 Pred_Skip 0 Bidirectional

1 Pred_Fwd 1 Forward

2 Pred_Bck 1 Backward

3 Pred_Sym 1 Bidirectional

submb_traps_type - flag. It indicates the transform type of an 8x8 block (given by| the
SubMbTrangformType). If submb_trans_type is 0, the SubMbTransformType is set equal to ‘Trans_Bx8’.
Otherwise, the SubMbTransformType is set equal to ‘Trans_4x4’.

intra_lumal pred_mode -\Itspecifies the type of intra prediction used for luma blocks (the blocH size
can be eithdr 16x16, 8x8-ar 4x4).

intra_chrona_pred_mode - It specifies the type of intra prediction used for chroma blocks (the block
size is 8x8).

mv_diff_x -{thé’horizontal motion vector component difference. it is in one-quarter luma sample units,
in range from -4096 to 4095 (the range is -1024 to 1023.75 in luma sample units).

mv_diff_y - the vertical motion vector component difference. it is in one-quarter luma sample units, in
range from —4096 to 4095 (the range is -1024 to 1023.75 in luma sample units).

mb_qgp_delta - It indicates the increment of current quantization parameters relative to predicted
quantization parameters.

7.2.5.2 Coded block pattern
cbp_luma_bit - flag. It is used to indicate whether a luma block (the block size can be either 16x16, 8x8

or 4x4) contains nonzero quantized coefficients. If cbp_luma_bit is 1, the luma block contains nonzero
quanization coefficients; otherwise, the luma block contains all-zero quantized coefficients.

40 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

cbp_chroma_bit - flag. It is used to indicate whether both the Cb and Cr chroma blocks (the block size
is 8x8) in a macroblock contains all-zero quantized coefficients. If cbp_chroma_bit is 1, the Cb or Cr
chroma blocks in a macroblock contain nonzero quantized coefficients; otherwise, both the Cb and Cr
chroma blocks in a macroblock contain all-zero quantized coefficients.

cbp_chroma_allnonzero_bit - flag. [t is used to indicate whether both the Cb and Cr chroma blocks (the
block size is 8x8) in a macroblock contains nonzero quantized coefficients. If cbp_chroma_allnonzero_
bitis 1, both the Cb and Cr chroma blocks in a macroblock contain nonzero quantized coefficients.

cbp_chroma_nonzero_bit - flag. It is used to indicate which chroma block (the block size is 8x8) in
a macroblock contains nonzero quantized coefficients. If cbp_chroma_nonzero_bit is 1, only the Cr
chropma blockimammacrobtock comtaims onzero quantized coefficients; otherwise, omty the Cb chroma
block in a macroblock contains nonzero quantized coefficients.

7.2.6 Block

tranls_coefficient - it is used to specify run length and nonzero quantized\Coefficient. The parsing
procgss of trans_coefficient is specified in subclause 9.3.

The pize of current block can be either 16x16, 8x8, or 4x4. When the block size is 8x8, the stan order of
8x8 plocks within a macroblock is given in Figure 5. When the block size is 4x4, the scan ¢rder of 4x4
blocks within an 8x8 block is given in Figure 6. The scan order withimn one block refers to subflause 8.4.2.

8 Decoding process

8.1 | General
Outputs of this process are decoded samples of the current frame.

This| clause describes the decoding process; given syntax elements and upper-case varjiables from
Clauke 5.

The decoding process is specified such that all decoders shall produce numerically identjical results.
Any [decoding process that produces identical results to the process described here confprms to the
decading process requirementscof this document.

The [various parameters -in”the bitstream for macroblock() and all syntactic structjures above
macfoblock() are interpreted as indicated in Clause 7. Many of these parameters affect the decoding
process described in the following subclauses. Once all of the macroblocks in a given framp have been
procgssed, the entireframe will have been reconstructed.

An oyerview ofdhe decoding process is given as follows.

— The intra prediction process for I macroblocks is specified in subclause 8.2, has intra prediction
bamples as its output.

— The inter prediction process for P and B macroblocks is specified in subclause 8.3 with inter
prediction samples being the output.

— The transform coefficient decoding process and frame reconstruction process prior to deblocking
filter process are specified in subclause 8.4. That process derives samples for [, P and B macroblocks.
The output are reconstructed samples prior to the deblocking filter process.

— Thereconstructed samples prior to the deblocking filter process that are next to the edges of blocks
and macroblocks are processed by a deblocking filter as specified in subclause 8.5 with the output
being the decoded samples.

The sequence of reconstructed frames shall be re-ordered for output by the decoder as described in
subclause 6.10. The reconstructed frames shall be output from the decoding process at regular intervals

© ISO/IEC 2019 - All rights reserved 41

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

of the frame period, which is the inverse of the frame rate determined by the frame_rate_code syntax
element.

8.2 Intra prediction

8.2.1 General
This process is invoked for intra macroblocks.

Inputs to this process are reconstructed samples prior to the deblocking filter process from

neighbouri
Outputs of

Depending
component

‘Intra_1

Otherw
inthes

current

Otherwise,
in subclaus
subclause 8|

8.2.2 Inti

8.2.21 G

This proces

Inputs to this process are reconstructed luma samples prior to the deblocking filter process

neighbourir

If the NIbTransformType is equal to ‘Trans_16x16’, the macroblock prediction-mode is equ

If the SbMbTransformType of current 8x8 block is equal to ‘Trans“4x4’, the prediction mode o

hgtnnrnﬂﬂnrkc

t[his process are the Intra prediction samples of components of the macroblock.

bn the MbTransformType of current macroblock, the process of intra prediction-for the
s specified as follows.

6x16’, and the specification in subclause 8.2.4 applies.

ise, the current macroblock is divided into 4 8x8 blocks, and the’se-8x8 blocks are proce
cran order specified in Figure 5 as follows.

8x8 block is equal to ‘Intra_4x4’, and the specificationdnsubclause 8.2.2 applies.
the prediction mode of the current 8x8 block is.équal to ‘Intra_8x8’, and the specific

b 8.2.3 applies.The process of intra prediction for the chroma components is describ¢
2.5

a_4x4 prediction process for luma samples

pbneral

5 is invoked when the prediction mode of current 8x8 block is equal to ‘Intra_4x4’.

1g 8x8 blocks.

uma

al to

ssed

f the

ition
bd in

from

Outputs of this process are 4x4 luma sample arrays as part of the 8x8 luma array of prediction sanpples
of the block|pred8x8y..

The luma cq
scanned usi

mponentef-an 8x8 block consists of 4 blocks of 4x4 luma samples. These blocks are iny
ng the 4x4 luma block inverse scanning process as specified in subclause 6.12.5.

erse

able

For all 4x4 Juma blocks of the luma component of an 8x8 block with luma4x4BlkIdx 0..3, the var
Intra4x4PredMode[lum d sd dass

For each luma block of 4x4 samples indexed using luma4x4Blkldx = 0..3,
1) The Intra_4x4 sample prediction process in subclause 8.2.2.3 is invoked with luma4x4Blkldx and
reconstructed samples prior (in decoding order) to the deblocking filter process from adjacent
luma blocks as the input and the output are the Intra_4x4 luma prediction samples pred4x4[x, y |
with x,y =0..3.

2) The position of the upper-left sample of a 4x4 luma block with index luma4x4Blkldx inside the
current 8x8 block is derived by invoking the inverse 4x4 luma block scanning process in subclause

6.12.5 with luma4x4Blkldx as the input and the output being assigned to (xO, y0) and x, y = 0..3.

pred8x8L[X0 + X, y0 +y | = pred4x4,[X,y |

42 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

3) The transform coefficient decoding process and frame reconstruction process prior to deblocking
filter process in subclause 8.4 is invoked with pred8x8}, and luma4x4Blkldx as the input and the
reconstructed samples for the current 4x4 luma block Sy, as the output.

8.2.2.2 Derivation process for the Intra4x4PredMode
Inputs to this process are the index of the 4x4 luma block luma4x4BlkIdx.
Output of this process is the variable IntraLumaPredMode [luma4x4BlkIdx].

The Value ofmtra luma pred mode of4x4 block with 1uma4x4BlkIdx is derlved from bltstream parsing,
and p s ' = s XA BIRTAR e values for
intrg luma _pred_ mode and the aSSOCIated names.

Table 22 — Luma intra prediction modes

intra_luma_pred_mode Name
0 Intra_Vertical

1 Intra_Horizontal

2 Intra_DC

3 Intra_Down_Left
4 Intra_DownaRight

The jntra_luma_pred_mode labelled 0, 1, 3, and 4 represent directions of predictions as illustrated in
Figufe 10.

3 0 4
Figure 10 — Luma intra prediction mode directions

8.2.2.3/,Intra_4x4 sample prediction

8.2.2.3.1 General

This process is invoked for each 4x4 luma block of a 8x8 block with prediction mode equal to ‘Intra_4x4’
followed by the transform decoding process and frame reconstruction process prior to deblocking for
each 4x4 luma block.

Inputs to this process are the index of the 4x4 luma block with index luma4x4Blkldx and reconstructed
samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks.

Output of this process are the prediction samples pred4x4y[x, y], with x, y = 0..3 for the 4x4 luma block
with index luma4x4BlkIdx.

© ISO/IEC 2019 - All rights reserved 43

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current
8x8 block is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.12.5 with
luma4x4Blkldx as the input and the output being assigned to (x0, yO).

8.2.2.3.2 Reference sample calculation

Let the decoded frame sample matrix of the current block be . The reference samples for I is obtained
by the following process: Let the coordinates of upper left corner sample of the current block be (xO0,
y0). The reference samples for current block are obtained by:

— If the samples with coordinates (x0+i-1, y0-1) (i=1..4) are “available”, r[i] are equal to I[x0+i-1,
y0-1], dnd r[i] are “available”; otherwise, r[i] are “not available”;

— If the spmples with coordinates (x0+i-1, y0-1) (i=5..8) are “available”, r[i] are equal to J[xO0pi-1,
y0-1], 9nd r[i] are “available”; otherwise, r[i] are equal to r[4], and availability of rfi] follow$ the
availabllity of r[4];

— Ifthe samples with coordinates (x0-1, y0+i-1) (i=1..4) are “available”, c[i] are equalto I[x0-1, y04i-1],
and c[i]|are “available”; otherwise, c[i] are “not available”;

— If the qamples with coordinates (x0-1, y0+i-1) (i=5..8) are “available’}-¢[i] are equal to I[30-1,
y0+i-1]} and c[i] are “available”; otherwise, c[i] are equal to c[4], and‘availability of c[i] followp the
availabllity of c[4];

— If the simple with coordinate (x0-1, y0-1) is “available”, r[0]4ds equal to I[x0-1, y0-1], and r|0] is
“availalple”; otherwise:

— Ifr|1] is “available” and c[1] is “not available”, r[0].iS€qual to r[1], and r[0] is “available”;

— Otherwise, if c[1] is “available”, and r[1] is “not available”, r[0] is equal to c[1], and r[J0] is
“avpilable”;

— OtHerwise, r[0] is “not available”;

— c[-1] is ¢qual to r[0], and r[-1] is equal te.r[0].

8.2.2.3.3 PSpecification of 4x4 Intra_ Vertical prediction mode
This mode ghall be used only when.r[i] (i=1..4) is “available”.
pred4x4[x,y] = r[x + 1] (x,y=0..3)

8.2.2.3.4 Specification of 4x4 Intra_Horizontal prediction mode

This mode ghall be-used only when c[i] (i=1..4) is “available”.

pred4x4y [x =<y + 1] (x,y=0..3)

8.2.2.3.5 Specification of 4x4 Intra_DC prediction mode
The intra prediction process of this mode is defined as follows.
— Ifboth r[i] and cJ[i] (i=0..6) are “available”,
pred4x4p[xy] = ((r[x-1] +4*r[x] +6 *r[x+ 1] +4 *r[x+ 2] +r[x + 3] + 8) >> 4 +
(c[y-1]+4*c[y]+6*c[y+1] +4*c[y+ 2] +c[y + 3] + 8) >>4) >> 1,(xy=0..3)
— Otherwise, if only r[i] (i=0..6) is “available”,

pred4x4p[xy] = (r[x - 1] +4 *r[x] + 6 *r[x + 1] + 4 *r[x + 2] + r[x + 3] + 8) >> 4, (x,y=0..3)

44 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Otherwise, if only c[i] (i=0..6) is “available”,
predaxdy[xy] = (c[y-1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4, (xy=0.3)
— Otherwise,

pred4x4y[x,y] = 128 (x,y=0..3)

8.2.2.3.6 Specification of 4x4 Intra_Down_Left mode

This mode shall be used only when both r[i] and c[i] (i=2..8) are “available”.

preddx4y[xy] = (r[x +y + 2] + c[x +y + 2]) >> 1, (x,y=0..3)

8.2.2.3.7 Specification of 4x4 Intra_Down_Right mode

This|mode shall be used only when both r[i] and c[i] (i=0..3) are “available”.
— Ifxisequaltoy,

bred4x4[x,y] = r[0], (x,y=0..3)

— Ptherwise, if x is greater than y,

bred4x41,[x,y] = r[x - y], (x,y=0..3)

— Dtherwise,

bred4x4,[x,y] = c[y - x], (x,y=0..3)
8.2.3 Intra_8x8 prediction process for luma samples

8.2.3.1 General
This|process is invoked when the prediction mode of the current block is equal to ‘Intra_8x8’".

Inpufts to this process are reconstructed luma samples prior to the deblocking filter process from
neighbouring 8x8 blocks, and the index of the 8x8 luma block(given by the luma8x8BlkIdx].

Outputs of this process.are 8x8 luma sample arrays as part of the 16x16 luma array of prediction
samples of the macroblock predy..

Intrag8x8PredMade| luma8x8Blkldx] is derived as specified in subclause 8.2.3.2.
For qurrentluma block of 8x8 samples indexed using luma8x8Blkldx = 0..3,

1) TheIntra_8x8 sample prediction process in subclause 8.2.3.3 is invoked with luma8x8Blkldx and
reconstructed samples prior (in decoding order) to the deblocking filter process from adjacent
luma blocks as the input and the output are the Intra_8x8 luma prediction samples pred8x8y[x, y |
withx,y =0..7.

2) The transform coefficient decoding process and frame reconstruction process prior to deblocking
filter process in subclause 8.4 is invoked with pred;, and luma8x8Blkldx as the input and the
reconstructed samples for the current 8x8 luma block Sy, as the output.

8.2.3.2 Derivation process for the Intra8x8PredMode
Inputs to this process are the index of the 8x8 luma block luma8x8BlkIdx.

Output of this process is the variable IntraLumaPredMode[luma8x8BIkIdx].

© ISO/IEC 2019 - All rights reserved 45

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

The value of intra_luma_pred_mode of 8x8 luma block with luma8x8Blkldx is derived from bitstream
parsing, and assigned to the variable IntraLumaPredMode [luma8x8BIlkIdx].

Table 22 specifies the values for intra_luma_pred_mode and the associated names.

The intra_luma_pred_mode labelled 0, 1, 3, and 4 represent directions of predictions as illustrated in

Figure 10.

8.2.3.3

Intra_8x8 sample prediction

8.2.3.3.1 General

This proceg
‘Intra_8x8’
deblocking

Inputs to th
samples pri

Output of th

with index Juma8x8BIlkIdx.

The positiol
macroblock
with luma8

8.2.3.3.2
Let the decq

The referen
corner samj

If the s
y0-1], 4

If the s
y0-1], 4
availab

and c[i]
If the s

y0+i-1]
availab

If the samples with coordinates (x0-1, y0+i-1) (i=1..8) are “available”, c[i] are equal to I[x0-1, y 04

s is invoked for each 8x8 luma block of a macroblock with prediction mode. equ
followed by the transform decoding process and frame reconstruction process-pri
for each 8x8 luma block.

js process are the index of the 8x8 luma block with index luma8x8Blkldx-and reconstru
pr (in decoding order) to the deblocking filter process from adjacent lumablocks.

is process are the prediction samples pred8x8[x, y], with x, y =0..7 for the 8x8 luma |

1 of the upper-left sample of a 8x8 luma block with index luma8x8Blkldx inside the cut
is derived by invoking the inverse 8x8 luma block scahming process in subclause 6|
x8BlklIdx as the input and the output being assigned to(()x0, yO).

Reference sample calculation
ded frame sample matrix of the current block’be [;

ce samples for | are obtained by the felowing process: Let the coordinates of uppe
ple of the current block be (x0, y0). The‘reference samples for current block are obtaine

hmples with coordinates (x0+i=1,"y0-1) (i=1..8) are “available”, r[i] are equal to I[x0
nd r[i] are “available”; otherwisg, r[i] are “not available”;

hmples with coordinates (x0+i-1, y0-1) (i=9..16) are “available”, r[i] are equal to I[x0
nd r[i] are “available”; otherwise, r[i] are equal to r[8], and availability of r[i] follow
lity of r[8];

are “available®; otherwise, c[i] are “not available”;

amples With coordinates (x0-1, y0+i-1) (i=9..16) are “available”, c[i] are equal to I3
and-C[i] are “available”; otherwise, c[i] are equal to c[8], and availability of c[i] follow
lity of c[8];

h] to
r to

cted

lock

rent
12.4

" left
d by:

H+i-1,

Hi-1,
5 the

i-1],

r0-1,
5 the

“available”; otherwise:

If r[1] is “available” and c[1] is “not available”, r[0] is equal to r[1], and r[0] is “available”;

“available”;

46

Otherwise, r[0] is “not available”;

c[-1] is equal to r[0], and r[-1] is equal to r[0].

© ISO/IEC 2019 - All rights res

If the sample with coordinate (x0-1, y0-1) is “available”, r[0] is equal to I[x0-1, y0-1], and r[0] is

Otherwise, if c[1] is “available”, and r[1] is “not available”, r[0] is equal to c[1], and r[0] is

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

8.2.3.3.3 Specification of 8x8 Intra_Vertical prediction mode
This mode shall be used only when r[i] (i=1..8) is “available”.

pred8x8i[xy] =r[x + 1] (x,y=0..7)

8.2.3.3.4 Specification of 8x8 Intra_Horizontal prediction mode
This mode shall be used only when c[i] (i=1..8) is “available”.

pred8x8y,[x,y] = c[y + 1] (x,y=0..7)

8.2.3.3.5 Specification of 8x8 Intra_DC prediction mode

The |ntra prediction process of this mode is defined as follows.

— Ifboth r[i] and c[i] (i=0..10) are “available”,

pred8x8L[x,y] = (r[x-1] +4 *r[x] +6 *r[x+ 1] + 4 *r[x + 2] +r[x + 3] £ 8) >> 4 +
(c[y-1]+4*c[y] +6*c[y+ 1] + 4 * c[y + 2] + c[y&+ B] + 8) >>4) >> 1,(x}y=0..7)
— Ptherwise, if only r[i] (i=0..10) is “available”,

bred8x8L[x,y] = (r[x - 1] +4 *r[x] + 6 *r[x + 1] + 4 * r[x + 2]+ r[x + 3] + 8) >> 4, (x,y=0..7

L

— Ptherwise, if only c[i] (i=0..10) is “available”,

pred8x8L[x,y] = (c[y-1] + 4 * c[y] + 6 * c[y + 1] K* c[y + 2] + c[y + 3] + 8) >> 4, (x,y=0..7)

L

— Dtherwise,

bred8x8L,[x,y] = 128 (x,y=0..7)

8.2.3.3.6 Specification of 8x8 Intra:Down_Left mode
This|mode shall be used only wheén both r[i] and c[i] (i=2..16) are “available”.
pred8x8i[xy] = (r[x +y + 2] we[x + y + 2]) >> 1, (x,y=0..7)

8.2.3.3.7 Specification of 8x8 Intra_Down_Right mode
This|mode shall bewused only when both r[i] and c[i] (i=0..7) are “available”.
— Ifxisegualtoy, then

bred8x8y,[x,y] = r[0], (x,y=0..7)

— Otherwise, if xisgreater thamy, then
pred8x8[x,y] =[x - y], (x,y=0..7)
— Otherwise,

pred8x8i[xy] = c[y - x], (xy=0..7)
8.2.4 Intra_16x16 prediction process for luma samples

8.2.4.1 General

This process is invoked when the macroblock prediction mode is equal to ‘Intra_16x16'". It specifies how
the Intra prediction luma samples for the current macroblock are derived.

© ISO/IEC 2019 - All rights reserved 47

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Input to this process are reconstructed samples prior to the deblocking process from neighbouring
luma blocks (if available).

Outputs of this process are Intra prediction luma samples for the current macroblock predy[x,y].

The value of intra_luma_pred_mode of current macroblock is derived from bitstream parsing, and
assigned to the variable Intral6x16PredMode.

Table 22 specifies the values for intra_luma_pred_mode and the associated names.

The intra_luma_pred_mode labelled 0, 1, 3, and 4 represent directions of predictions as illustrated in
Figure 10.

Let predy[)J y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samplés.
8.2.4.2 Reference sample calculation

8.2.4.2.1 [General
Let the decqded frame sample matrix of the current block be I;

The referenfe samples for | is obtained by the following process: Let the coordinates of upper left cdqrner
sample of the current block be (x0, y0). The reference samples for currentblock are obtained by:

— Ifthe sgmples with coordinates (x0+i-1,y0-1) (i=1..16) are “available”, then r[i] are equal to I[xOpi-1,
y0-1], gnd r[i] are “available”; otherwise, r[i] are “not available”;

— If the damples with coordinates (x0+i-1, y0-1) (i=17432) are “available”, then r[i] are equpl to
[[x0+i-1, y0-1], and r[i] are “available”; otherwise, &fi] are equal to r[16], and availability of r[i]
follows|the availability of r[16];

— Ifthe sgmples with coordinates (x0-1, y0+i-1) (i=1..16) are “available”, then c[i] are equal to I[30-1,
y0+i-1]} and c[i] are “available”; otherwise, cfi] are “not available”;

— Ifthe sgmples with coordinates (x0-1, y0+i-1) (i=17..32) are “available”, then c[i] are equal to I[30-1,
y0+i-1]} and c[i] are “available”; otherwise, c[i] are equal to c[16], and availability of c[i] followf the
availabllity of c[16];

— Ifthe sgmple with coordinate:(x0-1, y0-1) is “available”, then r[0] is equal to I[x0-1, y0-1], and r[0]
is “available”; otherwise:

— Ifr|1] is “available®.and c[1] is “not available”, then r[0] is equal to r[1], and r[0] is “availablg”;

— Otherwise, ifi¢[] is “available”, and r[1] is “not available”, then r[0] is equal to c[1], and r|0] is
“avpilable®;

— OtHerwise, r[0] is “not available”;

— c[-1] is equal to r[0], and r[-1] is equal to r[0].

8.2.4.2.2 Specification of 16x16 Intra_Vertical prediction mode
This mode shall be used only when r[i] (i=1..16) is “available”.
predi[xy] =r[x + 1] (x,y=0..15)

8.2.4.2.3 Specification of 16x16 Intra_Horizontal prediction mode
This mode shall be used only when c[i] (i=1..16) is “available”.
predi[x,y] = c[y + 1] (x,y=0..15)

48 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

8.2.4.2.4 Specification of 16x16 Intra_DC prediction mode
The intra prediction process of this mode is defined as follows.
— Ifboth r[i] and cJi] (i=0..18) are “available”,
predi[xy] = ((r[x-1] +4*r[x] +6*r[x+ 1]+ 4 *r[x+ 2] +r[x+ 3] +8) >4 +
(c[y-1]+4*c[y]+6*c[y+ 1] + 4 *c[y + 2] + c[y + 3] + 8) >>4) >> 1,(x,y=0..15)

— Otherwise, if only r[i] (i=0..18) is “available”,

PredLIXy| = UIX - L] ¥4 " TX] F0 "TXF [F 4 "T[XF 2] FI[X ¥ 3] F8) >> &, (X,y=0..15)
— Ptherwise, if only c[i] (i=0..18) is “available”,

predy[x,y] = (c[y-1] + 4 * c[y] + 6 * c[y + 1] + 4 * c[y + 2] + c[y + 3] + 8) >> 4, (xy=0..15)
— Ptherwise,

bredp[x,y] = 128 (x,y=0..15)

8.2.4.2.5 Specification of 16x16 Intra_Down_Left mode
This|mode shall be used only when both r[i] and c[i] (i=2..32)-are “available”.

predi[xy] = (r[x +y + 2] + c[x +y + 2]) >> 1, (x,y=0..15)

8.2.4.2.6 Specification of 16x16 Intra_Down_Right mode

This|mode shall be used only when both r[i] and ¢[i] (i=0..15) are “available”.
— Ifxisequal toy, then

bredy [x,y] = r[0], (x,y=0..15)

— PDtherwise, if x is greater than yythen

bredp[xy] = r[x - y], xy=0:15)

— Ptherwise,

predp[x,y] = c[y(=x], (x,y=0..15)
8.2.3 Intraprediction for 8x8 chroma block

8.2.5.1, (_General

This processisinvoked forimra macrobiock: Ttspecifies iow the mtra prediction chromnma samples for
the current macroblock are derived.

Inputs to this process are reconstructed samples prior to the deblocking process from neighbouring
chroma blocks (if available).

Outputs of this process are Intra prediction chroma samples for the current macroblock predcp|[X, y]
and predcr[x, ¥].

Both chroma blocks (Cb and Cr) of the macroblock share the same prediction mode. The prediction
mode is applied to each of the chroma blocks separately. The process specified in this subclause is
invoked for each chroma block. In the remainder of this subclause, chroma block refers to one of the
two chroma blocks and the subscript C is used as a replacement of the subscript Cb or Cr.

Let predc[x, y] with x, y = 0..7 denote the prediction samples for the chroma block samples.

© ISO/IEC 2019 - All rights reserved 49

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Intra chroma prediction mode of current 8x8 chroma block is parsed from the intra_chroma_pred_
mode, which is specified in Table 23.

8.2.5.2 R

Let the dec
obtained by
be (x0, y0).

8.2.5.3 Specification of Intra_Chroma_DC prediction mode

The values

50

Table 23 — 8x8 Chroma intra prediction mode

intra_chroma_pred_mode Name

0 Intra_Chroma_DC

1 Intra_Chroma_Horizontal
2 Intra_Chroma_Vertical

3 Intra_Chroma_Plane

If the s
y0-1], 4

If the s
y0-1], 4
availab

If the samples with coordinates (x0-1, y0+i-1) (i=1..8) are “available”, c[i] are equal to [[x0-1, y04i

and cJi]

If the s
y0+i-1]
availab

If the s3
and bot]

— Ifr
and

— Oth
bot

— Oth

pference sample calculation

[he reference samples for current block are obtained by:

hmples with coordinates (x0+i-1, y0-1) (i=1..8) are “available”, r[i]zare equal to I[x0
nd r[i] are “available”; otherwise, r[i] are “not available”;

hmples with coordinates (x0+i-1, y0-1) (i=9..16) are “available”, r[i] are equal to I[x0
nd r[i] are “available”; otherwise, r[i] are equal to r[8],.and availability of r[i] follow
lity of r[8];

are “available”; otherwise, c[i] are “not available’;

hmples with coordinates (x0-1, y0+i-1) (i59.16) are “available”, c[i] are equal to I|>
and c[i] are “available”; otherwise, c[i] aré equal to c[8], and availability of c[i] follow
lity of c[8];

mple with coordinate (x0-1, y0-1)is*available”, both r[0] and c[0] are equal to I[[x0-1, y
h r[0] and c[0] are “available”; otherwise:

1] is “available” and c[1] is¢“not available”, both r[0] and c[0] are equal to r[1], and both
c[0] are “available”;

erwise, if c[1] is “available”, and r[1] is “not available”, both r[0] and c[0] are equal to c[1]
h r[0] and c[0] are Yavailable”;

erwise, both 0] and c[0] are “not available”.

fthe prediction samples predc[x,y] withx=0..7 and y = 0..7 are derived as follows.

pded frame sample matrix of current chroma block be I. The reference samples for I is
the following process: Let the coordinates of upper left corner sample ofithe’current hlock

Hi-1,

+i-1,
5 the

If both r[i] and c[i] (i=0..9) are “available”,

predc[xy] = ((r[x] + 2 * r[x + 1] + r[x + 2] + 2) >> 2 + (c[y] + 2 * c[y + 1] + c[y + 2] + 2) >>2) >> 1,

(x,y=0..7)

Otherwise, if r[i] (i=0..9) is “available”, then

predc[xy] = r[x + 1], (x,y=0..7)

Otherwise, if c[i] (i=0..9) is “available”, then

predc[x

Yyl =cly +1], (xy=0..7)

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Otherwise,

predc[xy] = 128, (x, y=0..7)

8.2.5.4 Specification of Intra_Chroma_Horizontal prediction mode

This

mode shall be used only when c[i] (i=1..8) is “available”.

predc[x,y] = c[y + 1], (x, y=0..7)

8.2.5.5 Specficication of Intra_Chroma_Vertical prediction mode

This

predc

8.2.1
This

Let,

ia=

ic=

Ther

predc

8.3

8.3.1

This
Outy

mode shall be used only when rJ[i] (i=1..8) is “available”.
[xy] =r[x+1], (x,y=0.7)
.6 Specification of Intra_Chroma_Plane prediction mode

mode shall be used only when both r[i] and c[i] (i=1..8) are “available®

h = jo 1+1 ([5+1] r[3—1:|)

1

v = 21+1 ([5+1:| C|:3—I:|)

r[8] + c[8]) << 4
[17 *ih + 16) >> 5
17 *iv + 16) >> 5
,

[x,y] = clipl((ia + (x - 3) Hib + (y - 3) *ic + 16) >>5), (x,y = 0..7)
Inter prediction

General

pred
chro

ma components Cb and Cr.

processis invoked when decoding inter macroblocks in P and B frames.

16x16 array

uts of this process are inter prediction samples for the current macroblock that are a

each of the

The partitioning of a macroblock is specified by mb_part_type. Each macroblock partition is referred
by mbPartldx.

The following steps are specified for each macroblock partition.

The functions MbPartWidth(), MbPartHeight() describing the width and height of macroblock
partitions are specified in Table 16, and Table 17.

The variables partWidth and partHeight are derived as follows.

— partWidth = MbPartWidth(mb_part_type);

© ISO/IEC 2019 - All rights reserved

51

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— partHeight = MbPartHeight(mb_part_type);
with mbPartldx proceeding over values 0..3.

The inter prediction process for a macroblock partition with mbPartldx consists of the following
ordered steps.

— Derivation process for motion vector components and reference indices as specified in subclause 8.3.2.
— Decoding process for inter prediction samples as specified in subclause 8.3.3.

For use in derivation processes of variables invoked later in the decoding process, the following
assignmentf are made:

MvFst[mbPartldx | = mvFst;
MvSnd||mbPartldx] = mvSnd;

RefldxHst[mbPartldx | = refldxFst;
Refldx4nd[mbPartldx | = refldxSnd;
PredFlagFst[mbPartldx | = predFlagFst;
PredFlggSnd[mbPartldx | = predFlagSnd.

The location of the upper-left sample of the partition relative to theévipper-left sample of the macroblock
is derived By invoking the inverse macroblock partition scanhing process as described in subclause
6.12.3 withmbPartldx as the input and (xP, yP) as the output:

The macrobplock prediction is formed by placing the¢partition prediction samples in their cofrect
relative posfitions in the macroblock, as follows.

The variablg¢ predL[xP + x, yP + y] withx = 0 .. paktWidth - 1, y = 0 .. partHeight - 1 is derived by
predy[XP + X, yP + y] = predParty[x,y]

The variablg predC[xP /2 +x,yP / 2 + yJwithx =0 .. partWidth /2 -1,y =0 .. partHeight / 2 - 1,4nd C
being replaged by Cb or Cr, is derived-by

predc[¥P /2 +x,yP /2 +y|=predPartc[x,y]
8.3.2 Derjivation process for motion vector components and reference indices

8.3.2.1 General

Input to this$ process is

— a macrahlack partition mbPartldx

Outputs of this process are:

— 32-bit signed integer luma motion vectors mvFst and mvSnd as well as 32-bit signed integer chroma
motion vectors mvCFst and mvCSnd;

— reference indices refldxFst and refldxSnd;

— prediction list utilization flags predFlagFst and predFlagSnd.

52 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

For the derivation of the variables mvFst and mvSnd as well as refldxFst and refldxSnd, the following
applies.

If MbPartType is equal to P_16x16 and MbPredType(mbPartldx) is equal to ‘Pre

d_Skip’, the

derivation process for luma motion vectors for skipped macroblocks in P frames in subclause 8.3.2.2
is invoked with the output being the luma motion vectors mvFst and reference indices refldxFst,
and predFlagFstis set equal to 1. mvSnd and refldxSnd are marked as unavailable, and predFlagSnd

is set equal to 0.

Otherwise, if MbPartType is equal to ‘B_Skip’, or MbPartType is equal to

B_8x8 and

MbPredType(mbPartldx) is equal to ‘Pred_Skip’, the derivation process for luma motion vectors

oo o -

brediction utilization flags predFlagFst, predFlagSnd.

Dtherwise, if MbPredType(mbPartldx) is equal to ‘Pred_Sym’, the derivation ppoeess for|
ectors for B_Sym in B frames in subclause 8.3.2.4 is invoked with mbPartidx as the in
butput being the luma motion vectors mvFst, mvSnd, the reference indicesrefldxFst, ref
he prediction utilization flags predFlagFst, predFlagSnd.

Dtherwise, if MbPredType(mbPartldx) is equal to ‘Pred_Mh’, thederivation process for |
bectors for P_Mh in P frames in subclause 8.3.2.5 is invoked with mbPartldx as the in
butput being the luma motion vectors mvFst, mvSnd, the reference indices refldxFst, ref
he prediction utilization flags predFlagFst, predFlagSnd:

Dtherwise, for X being replaced by either ‘Fst’ or ‘Snd’inthe variables predFlagX, mvX, 1
n Pred_X and in the syntax elements ref_idx_X and mvd_X, and the following applies.

['he variables refldxX and predFlagX are derived as follows.
— If MbPredType (mbPartldx) is equal g0”Pred_Fwd’,
refldxFst = reference_frame_index

predFlagFst=1

— Otherwise,

refldxFst = -1

predFlagFst =0

— If MbPredType (mbPartldx) is equal to ‘Pred_Bck’,
refldxSnd = 0

predFlagSnd = 1

for B-Skip i Bframres imsubctause 8:3:2-3 Ts invoked with mbPartidxasthe inmputamng the output
being the luma motion vectors mvFst, mvSnd, the reference indices refldxFst, refldx§nd, and the

uma motion
put and the
IdxSnd, and

uma motion
put and the
IdxSnd, and

efldxX, and

Otherwise;
refldxSnd = -1
predFlagSnd = 0

When predFlagX is 1, the derivation process for luma motion vector prediction in subclause 8.3.2.6 is
invoked with mbPartldx, and list suffix X as the input and the output being mvpX. The luma motion
vectors are derived by:

mvX[0] = mvpX][0] + mv_diff_x;
mvX[1]=mvpX[1]+ mv_diff_y.

© ISO/IEC 2019 - All rights reserved

53

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

For the derivation of the variables for the chroma motion vectors, the following applies. When predFlagX
is equal to 1, the derivation process for chroma motion vectors in subclause 8.3.2.8 is invoked with mvX
as input and the output being mvCX.

8.3.2.2 Derivation process for luma motion vectors for skipped macroblock in P frame

This process is invoked when MbPartType is equal to P_16x16 and MbPredType is equal to ‘Pred_Skip’.

Outputs of this process are the motion vector mvFst and the reference index refldxFst.

The referen
refldxFst =
For the deri

The procesy

input and th
If mbA(

Otherw
is 0, thd

Otherw
is invoK
83.23 D

This proceg
MbPredTyp

Inputs to th

Outputs of
mvSnd, and

Forward an
reference f1

refldxFst =
refldxSnd =
Both forwai

predFlagFst

ce index refldxFst for a skipped macroblock is derived as follows.

D
[vation of the motion vector mvFst, the following applies.

specified in subclause 8.3.2.7 is invoked with mbPartldx set equal to 0, and Jist suffix K
e outputis assigned to mbAddrA, mbAddrB, mvFstA, mvFstB, refldxFstAyand refldxFs

drA or mbAddrB is marked as “not available”, mvFst is a zero vectori

n mvFstis a zero vector.

ise, the derivation process for luma motion vector prediction’as specified in subclause 8.]
ed with mbPartldx = 0 and list suffix Fst as input, and the output is assigned to mvFst.

privation process for luma motion vectors forB_Skip

s is invoked when MbPartType is equal to*B’skip’, or MbPartType is equal to B_8x8
e(mbPartldx) is equal to ‘Pred_Skip’.

iis process is mbPartldx.

this process are the reference indices refldxFst, refldxSnd, the motion vectors mvFst
the prediction list utilization flags, predFlagFst and predFlagSnd.

d backward reference frames of the current block are the default reference framej
ames with reference indices 0.

D
0
'd and backward prediction lists are used.

=1

stas
tB.

ise, if mvFstA is a zero vector and refldxFstA is 0, or if mvFst B is@zero vector and refldxFstB

B.2.6

and

and

predFlagSn

1
e §

je)m

If the mb_part_type of the collocated macroblock of current macroblock in backward reference

frame is ‘I_Block’, the forward and backward motion vectors (given by mvFst and mvSnd) of the
current block are the predicted forward and backward motion vectors of the macroblock containing
current block.

The predicted forward and backward motion vectors are obtained according to motion vector
prediction method as specified in subclause 8.3.2.6. mvFst is derived with mbPartldx and list suffix
Fst as input, and mvSnd is derived with mbPartldx and list suffix Snd as input.

Otherwise,

The frame_distance of the forward reference frame of current macroblock partition is assigned
to DistancelndexFw, and the frame_distance of backward reference frame of current macroblock

54

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

partition is assigned to DistancelndexBw as shown in Figure 11. The frame_distance of current
frame is assigned to DistancelndexCur. The reference index of the collocated macroblock partition
in backward referene picture is assigned to refidxCol.

BlockDistanceFw = (DistancelndexCur - DistancelndexFw + 256) % 256
BlockDistanceBw = (DistancelndexBw - DistancelndexCur + 256) % 256

The motion vector of the collocated macroblock partition in backward reference frame is mvRef.
Letibe a variable being set equal to 0 and 1, respectively.

f (BlockDistanceFw + BlockDistanceBw) is less than 5,

mvFst[i] = (mvRef[i] * MvWeightNum / MvWeightDen) / pfactor
mvSnd[i] = -(((mvRef[i] * (MvWeightDen - MvWeightNum)) / MvWeightDen)’/ pfactor)
where MvWeightNum and MvWeightDen are specified in Table 24, and
pfactor = (refidxCol==0)?1:2

Dtherwise,

mvFst[i] = mvRef]i]

mvSnd[i] = -mvRef]i]

Table 24 — Look-up table fordemporal MV prediction

BlockDistanceFw | BlockDistanceBw | MvWeightNum | MvWeightDen
1 1 1 2
1 2 1 3
2 1 2 3
1 3 1 4
2 2 1 2
3 1 3 4
Forward Reference Current B Backward Referencp
mvRef

mvFw block corresponded by
current block in direct mode
0\

current block in direct mode / |: mvBw

BlockDistanceRef

A
A 4

BlockDistanceFw BlockDistanceBw

A
A

A
A 4

v

Figure 11 — Derivation process of motion vectors in B skip mode

© ISO/IEC 2019 - All rights reserved 55

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

8.3.2.4 Derivation process for luma motion vectors for B_Sym

This process is invoked when MbPredType is equal to ‘Pred_Sym’.

Inputs to this process is mbPartldx.

Outputs of this process are the reference indices refldxFst and refldxSnd, the motion vectors mvFst and

mvSnd, and

the prediction list utilization flags predFlagFst and predFlagSnd.

Reference frame indexes are derived as follows.

refldxFst=0

refldxS
Both forwali
predFlg
predFla
The forwar

The derivat

and list sufffix Fst as input, and the output being mvpFst. The mvFst is@derived by:

mvFst[
mvFst[
The backwsa
— If(Bloc
mvSnd|
mvSnd|

where
BlockD

— Otherw
mvSnd|

mvSnd|

nd =0

'd and backward prediction lists are used.

gFst=1

gSnd =1

1 motion vector of block in symmetrical mode mvFst is obtained s follows.

on process for luma motion vector prediction in subclause 8.3:2.6 is invoked with mbPat

D | = mvpFst[0] + mv_diff_x;

1] = mvpFst[1]+ mv_diff_y.

rd motion vector mvSnd is derived based on.mvFst as shown in Figure 12 by:
kDistanceFw + BlockDistanceBw) is lessthan 5,

0] = -(mvFst[0] * (MvWeightDen — MyWeightNum) / MvWeightNum)

1] = -(mvFst[1]) * (MvWeightDen - MvWeightNum) / MvWeightNum)

MvWeightNum and MvWeightDen are specified in Table 24, and BlockDistanceFw|
stanceBw are defined in'8:3.2.3.

ise,
0] = -mvFst[0]
1] = -mvESt[1]

rtldx

and

56

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

8.3.2.5 Derivation process for luma motion vectors for P_Mh
This|process is invoked when MbPredType is equalito‘Pred_Mh’.
Inpults to this process is mbPartldx.

Outputs of this process are the reference iridices refldxFst and refldxSnd, the motion vector

mvS

refldxFst is determined by the syntax element of reference_frame_index, and

Both Fst and Snd lists are used.

The
and

The

ISO/IEC 14496-3

3:2019(E)

Forward Reference Current B Backward Reference

mvFw

current block in symM” mvBw

BlockDistanceFw BlockDistanceBw

A
A
A 4

Figure 12 — Symmetricalinede

nd, and the prediction list utilizatiofiflags predFlagFst and predFlagSnd.

refldxSnd = refldxFst

bredFlagFst =1
bredFlagSnd-=*1

suffix Fst, and the output being mvpFst. The mvFst is derived by:

v

s mvFst and

lerivation/process for luma motion vector prediction in subclause 8.3.2.6 is invoked with mbPartldx

MyFst[0] = mvpFst[0]+ mv_diff x;

mvFst[1] = mvpFst[1] + mv_diff_y.

motion vector mvSnd is set equal to mvpFst:
mvSnd[0] = mvpFst[0];

mvSnd[1] =mvpFst[1].

8.3.2.6 Derivation process for luma motion vector prediction

Inputs to this process is the macroblock partition index mbPartldx and list suffix X.

Output of this process is the prediction mvpX of the motion vector mvX.

© ISO/IEC 2019 - All rights reserved

57

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

The derivation process for the neighbouring blocks for motion data in subclause 8.3.2.7 is invoked with
mbPartldx and list suffix X as the input and with mbAddrN\mbPartldxN, reference indices refldxXN
and the motion vectors mvXN with N being replaced by A, B, or C as the output.

The following rules are applied in sequential order to determine the motion vector predictor mvpX.

— Ifonly one of refldxXA, refldxXB, and refldxXC is available, and the motion vector of that block with
available reference frame is mvXN,

mvpX[0] = mvXN][O]
mvpX[1] = mvXN[1]

— Otherwise,
To deriye mvpX][0]:

— If mvXA[0] < 0 and mvXB[0] > 0 and mvXC[0] > O, or if mvXA[0] > 0 and mVXB[0] < 0] and
mv[[0] <O,

mvpX[0] = (mvXB[0] + mvXC[0]) / 2

— Otherwise, if mvXB[0] < 0 and mvXA[0] > 0 and mvXC[0] > 0, or ifmivXB[0] > 0 and mvXA[(] <0
and mvXC[0] <0,

mvpX[0] = (mvXA[0] + mvXC[0]) / 2

— Otherwise, if mvXC[0] < 0 and mvXA[0] > 0 and mvXBfQ} > 0, or if mvXC[0] > 0 and mvXA[(] <0
and mvXB[0] <0,

mvpX[0] = (mvXA[0] + mvXB[0]) / 2

— Otherwise, calculate the distance between every two candidates, namely ABSVAB[0], ABSVEC[0]
and ABSVCA[0], where,

ABPVAB[0] = | mvXA[0] - mvXB[0] |

ABPVBC[0] = | mvXB[0] - mvXC{#] |

ABBVCA[0] = | mvXC[0] - muXA[O0] |

— | If ABSVAB[0] < ABSVBC[0] and ABSVAB[0] < ABSVCA[0], then,

mvpX[0] = (mvXA[0] + mvXB[0]) / 2

— | Otherwise, if ABSVBC[0] < ABSVAB[0] and ABSVBC[0] < ABSVCA[0], then,
mvpX{0] = (mvXB[0] + mvXC[0]) / 2

— LOtherwise

mvpX[0] = (mvXA[0] + mvXC[0]) / 2
To derive mvpX[1]:
— IfmvXA[1] < 0 and mvXB[1] > 0 and mvXC[1] > 0, or if mvXA[1] > 0 and mvXB[1] < 0 and mvC[1] <0,
mvpX[1] = (mvXB[1] + mvXC[1]) / 2

— Otherwise, if mvXB[1] < 0 and mvXA[1] > 0 and mvXC[1] > 0, or if mvXB[1] > 0 and mvXA[1] < 0 and
mvXC[1] <0,

mvpX[1] = (mvXA[1] + mvXC[1]) / 2

58 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Otherwise, if mvXC[1] < 0 and mvXA[1] > 0 and mvXBJ[1] > 0, or if mvXC[1] > 0 and mvXA[1] < 0 and
mvXB[1] <0,

mvpX[1] = (mvXA[1] + mvXB[1]) / 2

— Otherwise, calculate the distance between every two candidates, namely ABSVAB[1], ABSVBC[1]
and ABSVCA[1], where,

ABSVAB[1] = | mvXA[1] - mvXB[1] |
ABSVBC[1] = | mvXB[1] - mvXC[1] |

ABSVCA[1] = | mvXC[1] - mvXA[1] |

— 1f ABSVAB[1] < ABSVBC[1] and ABSVAB[1] < ABSVCA[1],

mvpX[1] = (mvXA[1] + mvXB[1]) / 2

— Otherwise, if ABSVBC[1] < ABSVAB[1] and ABSVBC[1] < ABSVCA[1},
mvpX[1] = (mvXB[1] + mvXC[1]) / 2

— Otherwise,

mvpX[1] = (mvXA[1] + mvXC[1]) / 2

8.3.2.7 Derivation process for luma motion vectors

Inpufts to this process are:

— the macroblock partition index mbPartldx;

— the list suffix X.

Outputs of this process are (with N beingreplaced by A, B, or C)

— mbAddrN\mbPartldxN specifying neighbouring partitions,
— the motion vectors mvXN-of-the neighbouring partitions, and
— the reference indices.refldxXN of the neighbouring partitions.

The [partitions mbAddrN\mbPartldxN with N being either A, B, or C are derived in the following
ordered steps.

1) Let mbAddtD\mbPartldxD be variables specifying an additional neighbouring partition.

2) The(process in subclause 6.12.8.4 is invoked with mbPartldx as the input and the output is
mbAddrN\mbPartldxN with N being replaced by A, B, C, or D.

3) When the partition mbAddrC\mbPartldxC is not available, the following applies
mbAddrC = mbAddrD

mbPartldxC = mbPartldxD

The motion vectors mvXN and reference indices refldxXN (with N being A, B, or C) are derived as
follows.

— If the macroblock partition mbAddrN\mbPartldxN is not available or mbAddrN is coded in intra
prediction mode or predFlagX of mbAddrN\mbPartldxN is equal to 0, both components of mvXN are
set equal to 0 and refldxXN is set equal to -1.

— Otherwise, the following applies.

© ISO/IEC 2019 - All rights reserved 59

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

The motion vector mvXN and reference index refldxXN are set equal to MvX[mbPartldxN] and RefldxX|
mbPartldxN], respectively, which are the motion vector mvX and reference index refldxX that have

been assign

83.28 D

Inputs to th

ed to the macroblock partition mbAddrN\mbPartIdxN.

erivation process for chroma motion vectors

is process are a luma motion vector mvX.

Outputs of this process are a chroma motion vector mvCX.

A chroma motion vector is derived from the corresponding luma motion vector. Since the accuracy

of luma moffom vVectors 15 one-quarter Sampie and chroma nas naif resotution compared to mumg, the

accuracy of|chroma motion vectors is one-eighth sample, i.e., a value of 1 for the chroma motion-v¢ctor

refers to a gne-eighth sample displacement.

The horizor{tal and vertical components of the chroma motion vector mvCX are derivedby-dividing the

correspondjng components of luma motion vector mvX by 2,
mvCX[P]=mvX[0] /2
mvCX[L]=mvX[1]/2

8.3.3 Dedoding process for inter prediction samples

8.3.3.1 General

Inputs to thfs process are:

— amacrg@block partition mbPartldx;

— variables specifying partition width and height;(partWidth and partHeight;

— luma mption vectors mvFst and mvSnd andchroma motion vectors mvCFst and mvCSnd;

— referenfe indices refldxFst and refldxSnd;

— predictjon list utilization flags, prédFlagFst and predFlagSnd.

Outputs of this process are:

— the intgr prediction samples predPart, which are a (partWidth)x(partHeight) array predParnty, of
predictjon luma samples, and two (partWidth/2)x(partHeight/2) arrays predPartcp, predParfc; of
predictjon chromasamples, one for each of the chroma components Cb and Cr.

Let predPartFst;, and predPartSnd], be (partWidth)x(partHeight) arrays of predicted luma sample

values and| predPRartFstcp, predPartSndcp, predPartFstcy, and predPartSndcr be (partWidth/2)

x(partHeight/2) arrays of predicted chroma sample values.

For X being replaced by either ‘Fst’ or ‘Snd’ in the variables predFlagX, RefPicListX, refldxX, refPicX,
predParty, the following is specified.

When predFlagX is equal to 1, the following applies.

— The reference frame consisting of an ordered two-dimensional array refPicXL of luma samples
and two ordered two-dimensional arrays refPicXCb and refPicXCr of chroma samples is derived by
invoking the process specified in subclause 8.3.3.2 with refldxX and RefPicListX given as input.

The arrays predPartXy, predPartXcp, and predPartXcrare derived by invoking the process specified

in subclause 8.3.3.3 with the current partition specified by mbPartldx, the motion vectors mvX,
mvCX, and the reference arrays with refPicXL, refPicXCb, and refPicXCr given as input.

60

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

For C being replaced by L, Cb, or Cr, the array predPartc of the prediction samples of component C is
derived by invoking the process specified in subclause 8.3.3.4 with the current partition specified by
mbPartldx and the array predPartFstC and predPartSndC as well as predFlagFst and predFlagSnd
given as input.

8.3.3.2 Reference frame selection process
Input to this process is a reference index refldxX.

Output of this process is a reference frame consisting of a two-dimensional array of luma samples
refPicXL and two two-dimensional arrays of chroma samples refPicXCb and refPicXCr.

Refefence frame list RefPicListX is a list of previously decoded reference frames.
The reference frame list RefPicListX is derived as specified in subclause 8.6.

The refldx is mapped to another variable refldx_2 by the following process:

If refldx < 2

refldx_2 = refldx

else
refidx_2 =4 *refldx - 5

The putput is the reference frame referred to by RefPickist [refldx_2].

The putput reference frame consists of a (PicWidth) (PicHeight) array of luma samples refPicXL and
two [PicWidth/2) x (PicHeight/2) arrays of chromasamples refPicXCb and refPicCr.

The |reference frame sample arrays refPicXL; refPicXCb, refPicXCr correspond to decoded sample
arrays S’1,,S’ch, S'cr derived in subclause 8.5 for previous decoded frames.

8.3.3.3 Fractional sample interpolation process

8.3.3.3.1 General

Inpults to this process are:

— the current partifion given by its partition index mbPartldx;

— the width and height partWidth, partHeight of this partition in luma-sample units;
— g luma motion vector mvX given in quarter-luma-sample units;

— 3 chroma motion vector mvCX given in eighth-chroma-sample units; and

— the selected reference frame sample arrays ref PicXL, refPicXCb, and ref PICXCr.
Outputs of this process are:
— apartWidth x partHeight array predPartXy, of prediction luma sample values; and

— two (partWidth/2) x (partHeight/2) arrays predPartXcp, and predPartXcy of prediction chroma
sample values.

Let (xAL, YAL) be the location given in full-sample units of the upper-left luma sample of the current
partition given by mbPartldx relative to the upper-left luma sample location of the given two-
dimensional array of luma samples.

© ISO/IEC 2019 - All rights reserved 61

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Let (xIntg, yInty,) be a luma location given in full-sample units and (xFracy, yFracy,) be an offset given
in quartersample units. These variables are used only inside this subclause for specifying general
fractional-sample locations inside the reference sample arrays refPicXL, refPicXCb, and refPicXCr.

For each luma sample location (0 <= x|, < partWidth, 0 <=y, < partHeight) inside the prediction luma
sample array predPartXy, the corresponding predicted luma sample value predPartXy[xi, yL] is
derived as follows.

xIntL =

yIntL =

XAL+ (mvX[0]>>2) +x|,
yAL+ (mvX[1]>>2)+yL

xFracL
yFracL

The pre
subclau

Let (xInt, y
in one-eight
fractional-s

For each ch
chroma san
values pred

xInt; =
yInt. =
xFrac 3
yFrace 3

The pr¢
subclau

The pre¢
subclau

8.3.3.3.2
Inputs to th
aluma

aluma

IS process.are:

=mvX[0] &3
EmvX[1] &3

diction sample value predPartXy[xL, yL] is derived by invoking the process specifis
se 8.3.3.3.2 with (xIntL, yIntL), (xFracL, yFracL) and refPicXL given as-input.

Int;) be a chroma location given in full-sample units and (xFracc, yErae.) be an offset g

hmple locations inside the reference sample arrays refPicXCb, and tefPicXCr.

foma sample location (0 <= x; < partWidth/2, 0 <= y. < partHeight/2) inside the predi
hple arrays predPartXcp and predPartXcy, the corresponding prediction chroma sa
PartXcp| X, yc] and predPartXcy[xc, yc] are derived asfollows.

[XAL>>1)+ (mvCX[0]>>3) +x
[VAL>>1)+ (mvCX[1]>>3) +yc
EmvCX[0] &7
EmvCX[1] &7

bdiction sample value predPartXcp[Xc, V] is derived by invoking the process specifie
se 8.3.3.3.3 with (xIntg, yInt.)-(xFrac, yFracc) and refPicXCb given as input.

bdiction sample value predPartXcr[Xc, y¢] is derived by invoking the process specifie
se 8.3.3.3.3 with (xInt, yInt,), (xFrac, yFracc) and refPicXCr given as input.

l.Luma sample interpolation process

ocationnin full-sample units (xInty, yInty,);

bd in

iven

h sample units. These variables are used only inside this subclause for specifying gemeral

ction
mple

bd in

ed in

ocation in fractional-sample units (xFracL, yFracL);

— the lum

areference sample array refPicXL.

Output of this process is a predicted luma sample value predPartXy[xp, yL]

62

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-3

3:2019(E)

A1 Ao-1| ao-1 | bo-1| co-1 A1 Az,
A-1,0 Aoo | aoo | boo | coo [A10 A2,
d-1,0 do,o | eoo | fo,0 go,0 d10 di0
h-1,0 hoo | ioo | joo | koo | h10 h1o
n-1,0 no,o | P00 | qo,o | ro,0 f n1,0 Nn1,0
A-11 Ao, | @01 | bo,1 | co1 | A1 Az
A2 Aoz | ao2 | bo2{| coz2 | A12 Az2

FiFure 13 — Integer samples (shaded blocks with upper-case letters) and fractiond
p¢sitions (un-shaded blocks with lower=case letters) for quarter sample luma inter

In Figure 13, the positions labelled-with upper-case letters A; j within shaded blocks rep
samples at full-sample locations inside the given two-dimensional array refPicXL of lun
Thede samples may be used for.generating the predicted luma sample value predPartXy[
locations (xAj, j, yAj, j) for each of the corresponding luma samples A; j inside the given arj
of luma samples are derived as follows:

KAj, j = clip3(0, PicWidth - 1, xInty, +i)
VA, = clip3(:0,"PicHeight - 1, yInty, +j)

1 sample
polation

resent luma
ha samples.
kL, VL |- The
ay refPicXL

The [positions’ labelled with lower-case letters within un-shaded blocks represent luma samples

at quarter*pel sample fractional locations. The luma location offset in fractional-s3

mple units
bnal-sample

(xFraéy, yFracy,) specifies which of the generated luma samples at full-sample and fracti
locati tsasstened-to-the predictedtumasamplevaltepredPar ;
according to Table 25. The value of predPartXy,[xi, yL] is the output.

Table 25 — Assignment of the luma prediction sample predPartXy[xi, yL]

xFracy, 0 (0 [0 (0 |1 |1 |1 |1 {2 |2 (2|2 (3 |3 |3 |3
yFracy, 0(1(2(3|0|1|2|3|0(1|2|3|0(1]2]|3
predPartXy[x,,yL]|A|d|h|n|a|e|i|p|b|f|j|lq|lc|g|k]|T

© ISO/IEC 2019 - All rights reserved

hent is done

63

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Given the luma samples Aj j at full-sample locations (xAj,j, yAj,j), the luma samples from ‘ag,¢’ to ‘ro,0’ at
fractional sample positions are derived by the following equations.

— If PicHeight is larger than or equal to 1600,

The samples labelled ag,0, bo,0, 0,0, do,0, ho,0, and ng o are derived by applying the 4-tap filter to
their nearest integer position samples, respectively, as follows.

a'0,0=-6%*A10+56*A00+15*A10-A20

b'oo=-4*A10+36*Ap0+36*A10-4*A20

c'00=-]A-1,0+15*%Ap,0+56 *A1,0-6*A2,0
d’0,0=-6*Ao-1+56*Apo+15*Ap1 - Ao,
h'o,0 = -|4*Ag -1 + 36™A¢,0 + 36%*Ag,1 — 4*A¢,2
n'o,0 = —|Ao,-1 + 15*A¢,0 + 56*Ag,1 - 6*A0,2
ap,0=2a'g,0>>6

bo,0 =b’p,o>>6

C0,0=C90>>6

do,o=dpo>>6

hpo=h'po>>6

no,0 =n’po>>6

The samples labelled ed,0,) 10,0, P0o,0, f0,0, j0,0, 90,0, 80,0, Ko,0 and ro o are derived by applying the
4-tap fiJter to the samples a’gj, b’o,i and co; where i = -1..2 in the vertical direction, respectively, as
follows

e0,0 = (-6 *a'gxp+ 56 *a'p,0 + 15 *a’p,1 — a'p,2) >> 12

ipo=(-K*do1+36*a'gg+36*a' g1 -4*ago)>>12
poo=(-2a'0-1+15*a' g0+ 56*a’p,1 —6*a'p,2) >> 12
f0.0= (- 6 *bo1 + 56 * oo+ 15 * b1 - bg2) >> 12
jo,0=(-4*bg-1+36*b'go+36*bg1-4*b2)>>12
qo,0=(-b'o,-1+15*b’p,0+ 56 *b’,1 - 6 *b’p,2) >> 12

80,0=(-6*c’0,-1+56* 0,0+ 15 *c’o,1 - C’0,2) >> 12

64 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-3

koo=(-4*co-1+36*c’00+36*c’01-4%cp2)>>12

r

0,0=(-Cc0-1+15*cp0+56*C’g1-C_2)>>12

Otherwise, if PicHeight is larger than or equal to 720,

3:2019(E)

The samples labelled ag 0, bo,o, c0,0, do,0, ho,0, and ng,o are derived by applying the 6-tap filter to
their nearest integer position samples, respectively, as follows.

a'0,0=2%A20-9%A1,0+57*Ap0+17 *A10-4%Az0+A3)

Q)

=

q

1i

'00=2*A20-9%A1,0+39%Ap0+39%A10-9%A20+2%A30
"0,0=A20-4*Aq0+17*Ap0+57*A10-9%A20+2%A3p
'0,0=2%A0-2-9%Ag,—1+57*Ag0+ 17 *Ap1-4*Ap2 +Ap3
'0,0=2%A0-2-9%Ag,—1+39%Ag,0+39%Ap1-9*Ap2+2*A)3
'0,0=A0,-2-4%A0,-1+17* Ag,0 +57 *Ap,1 -9 * Ao,2 + 27403
0,0=20,0>>6

0,0=b00>>6

0,0=C0,0>>6

00=d00>>6

00=hp0>>6

0,0=1'0,0>> 6

[he samplesabelled eg,o, i0,0, P0,0, 0,0, j0,0, 90,0, 80,0, k0,0 and rg,p are derived by applyi
ilter to the'samples @’g j, b’o,; and co; where i = -2..3 in vertical direction, respectively,

0,0=(2*ag2-9%a'g-1+57*ago+17 *a'p1 -4 *a'p +a’p3)>>12

hg the 6-tap
s follows.

ipo=(2*ag-2-9*a'p,-1+39™*a'p,0+39*a'p1 -9 *ap2+2*a'p3)>>12

poo=(@0-2-4%ag-1+17*a' g0+ 57 *ap1-9*ap2+2*ap3)>>12

f

00=(2*b92-9*b'g-1+57*b'g,0+ 17 *b’g1-4*b’g2+b’p3)>>12

jo,0=(2*b’0-2-9*b’g-1+39*b'90+39*b'g1-9*bg2+2*bg3)>>12

qo,0=(bo-2-4*bo-1+17*b9o+57*b'p1-9*bg2+2*bg3)>>12

© ISO/IEC 2019 - All rights reserved

65

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

66

800=(2%c0-2-9*C-1+57*Cc00+17*cp1-4*C92+Cp3)>>12

0=(2*c0-2-9%c’0-1+39*c’00+39*Cp1-9*Cp2+2*Cp3)>>12

10,0 = (C'o—2=4*cC’o-1+17 * 0,0+ 57 *c’91-9*c’92+2*c’p3)>>12

Otherwise,

The samples labelled 20,0, bo,0, €0,0, do,0, ho,0, and ng o are derived by applying the following 10-tap

filter t

halr manrnct intngni oot nlac racnnctionly Ao Fnl]num
ectver OV

a00=Al40-2%*A30+4*A20-10*A1,0+57* Ao 0+19*A10-7*A20+3*A30-Agp
b’0.0 =Al4,
c0,0=-P30+3%A20-7*A10+19%Ap0+57*A1,0-10*Az0+4*A30-2% A0+ A5
d’'o,0=Ap,-4 -
ho,0=Ap,-

n'0,0=-A0-3+3*Ag-2-7*Ag-1+19%Ap,0+57 *Ap1-40*Ap2+4*Ap3-2%Ap4+A0s5

apgop=a

bo,0 =b’p0>>6

co0=C
doo=d
hoo =N
npo=n’

The sa
the foll

£ 1 el
CIICTTTIICoOTrTsST IAALUB\'A l.l\.ldl\.l\.lll uulnxl.lu,a, TCSP ¥ Ao TOTT

40-2%A30+5*A0-12*A10+40%*Ag0+40*A10-12%A20+5*A30 2% Ag

2%A0,3+4*Ag-2-10%Ag-1+57*Apg0+19*Ap1 -7 &e2+3%Ap3-A04

4=2%Ag-3+5%A0-2-12%Ag-1+40*Ap,0+40*Apg ~12*Ap2+5%Ap3-2%Ap4+

0>>06

0>>6
D,0 >> 6
p,0 >> 6
D,0 >> 6

mples ,labelled eg,0, i0,0, P0,0, f0,0, j0,00 90,0, 80,00 Ko,0 and rg, are derived by app

respect

a 1 £.11
IVEly, d5 1TU1IOWS.

As

Ao,s

ying

bwing 10-tap filter to the samples a’g;, b’o; and co; where i = -4..5 in vertical diredtion,

eo,0=(a0-4-2%ag-3+4%a'g-2-10%a’g-1+57 *a'g0+19*a'p1-7*a'p2+3*a’y3-a'04) >>12

ino=(2a0-4-2%ap-3+5%ap2-12*a’g-1+40 *a'p,0 +40 *a'g1 - 12*a’g2 + 5%*a’p,3 - 2*a'04
+a'g5)>>12

po,0 = (

-a'0,-3 + 3%a'0,-2 — 7*a’p,-1 + 19*a’p,0 +57*a’0,1 — 10*a’g,2 + 4*a’p,3 - 2*a’p 4 + a'0,5) >> 12

fo,0=(b'0,-4 - 2*b’g,-3 + 4*b’0,-2 = 10*b’p,-1 + 57*b’0,0 +19*b’,1 — 7*a’p,2 + 3*b’0,3 — b'0,4) >> 12

© ISO/IEC 2019 - All rights res

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-3

3:2019(E)

joo = (bo~4 — 2*b’9-3 + 5*b'o2 - 12*b’9-1 + 40*b’90 +40*b’o,1 — 12*b’02 + 5*b’0,3 — 2*b'o4
+b'o,5) >> 12

qo,0 = (-b’0,-3 + 3*b’0,-2 = 7*b’0,-1 + 19*b’0,0 +57*b’0,1 — 10*b’0,2 + 4*b’,3 — 2*b’0,4 + b'p,5) >> 12

80,0=(C"0-4—2%Cp,-3 +4*c’9,—2 — 10*c’p,—1 + 57*C’0,0 +19%*C’p,1 — 7*C’9,2 + 3*C’9,3 — C'0,4) >> 12

ko,0=(c'0,-4 — 2*C’p,-3 + 5*C’0,—2 — 12*c’p,-1 + 40*C’9,0 +40*C’9,1 — 12*C’p,2 + 5*C’0,3 = 2*C’0,4 + C'0,5) >> 12

8.3.3

Inpufts to this process are:

Outp

In Figure 14, the positions labelled with upper-case letters A; j within shaded blocks repres
bles at full-sample locations inside the given twa-dimensional array refPicXC of chroma samples.

samj]
Thes
The
refP

0,0=(—C'0,-3 + 3*C’0,-2 = 7*C’0,-1 + 19%C’9,0 +57*C’0,1 — 10*C’p,2 + 4*C’0,3 = 2*C’0,4 + C'0,50;

.3.3 Chroma sample interpolation process

h chroma location in full-sample units (xIntg, yInt.);
h chroma location offset in fractional-sample units (xFrac, yFrace);
Chroma component samples from the selected reference frame refPicXC.

ut of this process is a predicted chroma sample value predPartXc| xc, yc |-

e samples may be used for generating the predicted chroma sample value predPar
Jocations (XAj, j, yAj,j) for each of the copresponding chroma samples Aj j inside the
cXC of chroma samples are derived as follows:

KAj j = clip3(0, PicWidth /2 - 1, xInfg* i)
YA, = clip3(0, PicHeight / 2 -1, yIntc +j)

> 12

ent chroma

XC[Xer YC]'
given array

A(} Ao,-1 A1.-1 A2
A0 Aoo —5—1 A1p0 A2,
yFracc
XETace
A1 Ao,1 A1 1 A2 1
A2 Ao2 A12 A22

Figure 14 — Relation between variable positions and reference samples

© ISO/IEC 2019 - All rights reserved

67

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

A two-dimensional array C is defined as:

C[8, 4] ={

{0,64,0,0},

{-4,62
{-6,56

1610}1
) 15; _1 };

{-5,47,25,-3},

{-4,36

,36,-41},

{-3,29
{-1,15

{0,6,60, -4}

}

The elements of interpolated sample matrix predPartXc[X, y¢] are calculated as:

if(xFrace ==

predPartXc[Xc, yc] = (C[yFrac][0] * Ag,-1 + C[yFracc][1] * Ag,6-+

else if(yFra

pre

else

pr¢

where a’g -1
a’0,-1(xH
a’0,0(xFy

a’0,1(xFy

a 4'7; _5 };
56, -6,

0)

ClyFracc][2] * Ao,1 + C[yFrac(][3] * Ap) + 32) >> 6
e ==0)
pdPartXc[X¢, yc] = (C[xFracc][0]) * A-1,0 + C[xEpacc][1] * Ag,0 +

C[xFracc][2] * A1,0 + €[xFracc][3] * Az,0 + 32) >> 6

pdPartXc| xc, yc| = (ClyFracc][09¥a’o -1(xFracc,0) + C[yFracc][1] * a'o,o(xFracc,0) +
ClyFracelf2] * a’o, 1(xFracc,0) + C[yFracc][3] * a0, 2(xFracc,0) + 2048) >> 12
(xFracg, 0), a'o,0(xFracc,0), a'0,1(xFracc, 0) and a’g 2(xFrace, 0), are calculated by

racc, 0) = C[xFracsl{0] * A_1,-1 + C[xFrac¢][1] * Ag -1 + C[xFracc][2] * A1,-1 + C[xFracc][3] * Az,-1
ace, 0) = CfkFracc][0] * A-1,0 + C[xFracc][1] * Ao,0 + C[xFracc][2] * A1,0 + C[xFracc][3] * AZ,0

ace, 9 = C[xFrace][0] * A-1,1 + C[xFracc][1] * Ap,1 + C[xFracc][2] * A1,1 + C[xFracc][3] * Aj1

a’,2(xFrace, 0) = C[xFrace][0] * A-1,2 + C[xFracc]|[1] * Ao,z + C[xFracc][2] * A1,2 + C[xFracc][3] * Az,2

8.3.3.4 Combining predictions

Inputs to this process are:

— mbPart

Idx: the current partition given by the partition index;

— predFlagFst and predFlagSnd: prediction list utilization flags;

— predPartXy: a partWidth x partHeight array of prediction luma samples (with X being replaced by
‘Fst’ or ‘Snd’ depending on predFlagFst and predFlagSnd);

68

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— predPartXcp and predPartXcy: two (partWidth/2) x (partHeight/2) arrays of prediction chroma
samples, one for each of the chroma components Cb and Cr (with X being replaced by ‘Fst’ or ‘Snd’
depending on predFlagFst and predFlagSnd).

Outputs of this process are:

— predParty: a partWidth x partHeight array of prediction luma samples;

— predPartcp and predPartcy: (partWidth/2)x(partHeight/2) arrays of prediction chroma samples,
one for each of the chroma components Cb and Cr.

Dep

nding on the component for which the prediction block is derived, the following applies.

The

8.4

8.4.1

This
debl

Inpults to-this process are quantized transform coefficients for luma and chroma comp

avai

pqual to L, x set equal to 0 .. partWidth - 1, and y set equal to 0 .. partHeight - 1.

bartHeight / 2 - 1.

Dtherwise (the chroma Cr component sample prediction values predPartc [X,y] are d

bartHeight / 2 - 1.
brediction sample values are derived as follows.
f predFlagFst is equal to 1 and predFlagSnd is equalto O for the current partition,

bredPartc| x, y | = predPartFstc[x, y |

bredPartc| x, y]= predPartSndc[x,y |
Dtherwise (both predFlagFst and preédFlagSnd are equal to 1 for the current partition)

predPartc[x, y] = (predPartFstc[%,y] + predPartSnd¢c[x,y]+1)>>1
Transform coefficiént decoding process and frame reconstruction process

General
bcking filterprocess.

able-Inter or Intra prediction sample arrays for the current macroblock for the

com

bonént predy, predcy, or predcy.

f the luma sample prediction values predParty|[X, y] are derived, the following appligs with C set

Dtherwise, if the chroma Cb component sample prediction values predPartch[X; y | are derived, the
following applies with C set equal to Cb, x set equal to 0 .. partWidth / 21, and y setlequal to O ..

erived), the

following applies with C set equal to Cr, x set equal to 0 .. partWidth / 2 - 1, and y setfequal to O ..

Dtherwise, if predFlagFst is equal to 0 and predFlagSnd is equal to 1 for the current partition,

subclause _specifies transform coefficient decoding and frame reconstruction prior to the

onents, and
applicable

Outputs of this process are the reconstructed sample arrays prior to the deblocking filter process for
the applicable component Sy, Scp, or Scr-

When the MbPredType of current macroblock is 'Pred_Skip’ or the MbPartType of current macroblock
is ‘B_Skip’, all values of quantized transform coefficients are set equal to 0 for the current macroblock.

© ISO/IEC 2019 - All rights reserved

69

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

8.4.2

Inverse scanning

This subclause specifies the inverse scanning process for block coefficients in Zigzag order.

the

If MbTransformType is ‘Trans_8x8’ and SubMbTransformType is ‘Trans_4x4’,

array are Q[n], with 0 <=n <= 15.

elements of the array are QuantCoeffMatrix([i, j], with 0 <=i1<=3,0 <=j <= 3.

Input of this process is an array Q (derived from subclause 9.3) with size of 16. The elements of

Output of this process is a two-dimensional array QuantCoeffMatrix with size of 4x4. The

The conver
relationship
[VC_SCAN4
0,1,438,
52,3,6,
912,13
7,11, 14,

}
i=IVC_SCA
j=1VC_SCA
— Otherw
the
— Out
elel

The conver

Table 26 shgws the mapping from the'index n of Q to the indices i and j of the array QuantCoeffMat

Inpjut of this process is an array Q (derived from subclause 9.3) with size of 64. The elemer]

bion between the array Q and QuantCoeffMatrix is: QuantCoeffMatrix[i,j] = Q[n], anc
between i, j and n is defined as follows.

16] ={

10,
15

N4[n] / 4,
N4[n] % 4

ise, if MbTransformType is ‘Trans_8x8" and SubMbTransformType is ‘Trans_8x8’,

array are Q[n], with 0 <=n <= 63.

put of this process is a two-dimensional array QuantCoeffMatrix with size of 8x8.
ments of the array are QuantCoeffMatrix[i,j], with 0 <=i<=7,0<=j<=7.

sion between the array.Qvand QuantCoeffMatrix is: QuantCoeffMatrix[ij] = Q[n],

Table 26 — Inverse scanning order of 8x8 block

| the

ts of

The

and
rix.

I fo ez |3 |4 [5 6 [7 [8 [9 |10 11 |12 |13 |14 |15
i [0, 44 1 2 [3 [2 1 0 |1 3 |4 |5
li 0 1 o o [1 |2 4 |3 1 o o
16 [17 [18 |19 |20 |21 [22 [23 [24 [25 [26 [27 |28 [29 [30 [31
Ij 4 3 2 1 0 0 1 2 3 4 5 6 Z A 8 4
i ot 2 3 J4 |5 6 |5 [4 |3 1 o Jo |1 [2 |3
n |32 [33 [34 [35 [36 [37 [38 [39 [40 [41 |42 |43 [44 [45 [46 [47
i 3]2 1 Jo n 4 [5 [6 |7 |7 |6 |5 |4 |3
i J4 |5 | |7 |7 4 2 2 3 4 |5 |6
n |48 [49 [50 [51 [52 [53 [54 [55 [56 [57 |58 |59 |60 |61 [62 |63
i 3 |4 |5 |6 7 l6 [s |4 |5 |6 |7 |7 |6 |7
j 7 16 |5 |4 |3 |4 |5 |6 |7 7 6 |5 |6 |7 |7

Otherw

ise(the MbTransformType is ‘Trans_16x16"),

of the array are Q[n], with 0 <=n <= 255.

70

© ISO/IEC 2019 - All rights res

Input of this process is an array Q (derived from subclause 9.3) with size of 256. The elements

erved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Output of this process is a two-dimensional array QuantCoeffMatrix with size of 16x16. The
elements of the array are QuantCoeffMatrix[i,j], with 0 <=i<=16, 0 <=j <= 16.

The conversion between the array Q and QuantCoeffMatrix is: QuantCoeffMatrix][i,j] = Q[n], and the
relationship between i, j and n is defined as follows.

IVC_SCAN16[256] = {
0,1,16,32,17,2,3, 18, 33, 48, 64, 49, 34,19, 4, 5,

20, 35, 50, 65, 80, 96, 81, 66, 51, 36, 21, 6, 7, 22, 37, 52,

£7,82,97,112, 128,113, 98, 83, 68, 53, 38, 23, 8, 9, 24, 39,

64, 69, 84, 99, 114, 129, 144, 160, 145, 130, 115, 100, 85, 70, 55, 40,

D5, 10, 11, 26, 41, 56, 71, 86, 101, 116, 131, 146, 161, 176, 192, 177,

162, 147,132,117,102,87,72,57,42, 27,12, 13, 28, 43, 58, 73,

88, 103, 118, 133, 148, 163, 178, 193, 208, 224, 209, 194, 179, 164,149, 134,
119, 104, 89, 74, 59, 44, 29, 14, 15, 30, 45, 60, 75, 90, 105, 120;

135,150, 165, 180, 195, 210, 225, 240, 241, 226, 211, 196, 181, 166, 151, 136,
121, 106, 91, 76, 61, 46, 31, 47,62, 77,92, 107, 122,437, 152, 167,

182,197, 212, 227, 242, 243, 228, 213, 198, 183,168, 153, 138, 123, 108, 93,
78, 63,79, 94, 109, 124, 139, 154, 169, 184499, 214, 229, 244, 245, 230,
215,200, 185, 170, 155, 140, 125, 110;95, 111, 126, 141, 156, 171, 186, 201,
216, 231, 246, 247,232, 217,202, 187,172,157, 142, 127, 143, 158, 173, 188,
203, 218, 233, 248, 249, 234,219, 204, 189, 174, 159, 175, 190, 205, 220, 235,
250, 251, 236, 221, 206,191, 207, 222, 237, 252, 253, 238, 223, 239, 254, 255

i = IVC_SCAN16[n}/T6,
j = IVC_SCANT®6[n] % 16

8.4.3 {Anverse quantization

8.4.3.1 Quantization parameter

The range of quantization parameters for the luma component is 0..63, inclusive, and the range of
quantization parameters for the chroma components is 0..51, inclusive.

The variables CurrentQP and PreviousDeltaQP for the current macroblock are first derived as follows.
PreviousDeltaQP is initialized to 0 if the current macroblock is the first macroblock in the current frame.
— Iffixed_frame_level_gpis 1,

SliceQP = frame_qgp

© ISO/IEC 2019 - All rights reserved 71

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Otherwise, if fixed_slice_level_gqpis 1,

SliceQP

=slice_qp

— Otherwise, if mb_qp_delta is not present in the bitstream for the current macroblock,

SliceQP

mb_qp_

= slice_qp
delta=0

CurrentQP = clip3(0, 63, SliceQP + mb_qp_delta)

Previoy
— Otherw
SliceQP
Current
Previoy

If the curre
of the macr
chroma blo

sDeltaQP=mb_gp_deita

ise, mb_qp_delta is parsed from bitstream as specified in subclause 9.4,
= slice_qp

QP = clip3(0, 63, SliceQP + mb_qp_delta)

sDeltaQP = mb_qp_delta

ht block is a luma block, quantization parameter QP of the blo¢k is set equal to CurrentQP
bblock which it belongs to. Otherwise, CurrentQP is used asan,index to get the QP values of
'ks, respectively, from Table 27.

Table 27 — CurrentQPCb, CurrentQPCr and’QP-of chroma blocks

72

CurrentQP Chroma QP
<43 CurrentQP
43 42
44 43
45 43
46 44
47 44
48 45
49 45
50 46
51 46
52 47
53 47
54 48
55 48
56 48
57 49
58 49
59 49
60 50
61 50
62 50
63 51

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

8.4.3.2 Inverse quantization process

This clause specifies the process to transform a two dimensional quantized transform coefficient array
QuantCoeffMatrix (derived from subclause 8.4.2) to a two dimensional transform coefficient array D
using quantization parameter QP.

Two dimensional transform coefficients array D is obtained by:
D[i,j] = (QuantCoeffMatrix[i,j] * DequantTable(QP) + (1 << (ShiftTable(QP)-1)) >> ShiftTable(QP), i,j=0..7
DequantTable and ShiftTable are defined in Table 28.

Table 28 — DequantTable and ShiftTable
QP DequantTable(QP) ShiftTable(QP)
0 32768 14
1 36061 14
2 38968 14
3 42495 14
4 46341 14
5 50535 14
6 55437 14
7 60424 14
8 32932 13
9 35734 13
10 38968 13
11 42495 13
12 46177 13
13 50535 13
14 55109 13
15 59933 13
16 65535 13
17 35734 12
18 38968 12
19 42577 12
20 46341 12
21 50617 12
22 55027 12
23 60097 12
% 3Z20U7 11
25 35734 11
26 38968 11
27 42454 11
28 46382 11
29 50576 11
30 55109 11
31 60056 11
32 65535 11
33 35734 10
34 38968 10

© ISO/IEC 2019 - All rights reserved 73

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

Table 28 (continued)
QP DequantTable(QP) ShiftTable(QP)
35 42495 10
36 46320 10
37 50515 10
38 55109 10
39 60076 10
40 65535 10
4t 35744 9
42 38968 9
43 42495 9
44 46341 9
45 50535 9
46 55099 9
47 60087 9
48 65535 9
49 35734 8
50 38973 8
51 42500 8
52 46341 8
53 50535 8
54 55109 8
55 60097 8
56 32771 7
57 35734 7
58 38965 7
59 42497 7
60 46341 7
61 50535 7
62 55109 7
63 60099 7
8.4.4 Inverse transform process
8.4.4.1 Inverseitransform for 4x4 block

This proceSs—of tramsfornm s —applied to4x#¢ blockwhem MbTransformtype s Trams—8x8" and

SubMbTransformType is ‘“Trans_4x4’.
Inputs of this process are:

— the variables of BitDepth;

— atwo-dimensional array D (derived from subclause 8.4.3.2) with size of 4x4. The elements of the
array are Djj, with0 <=i<=3,0<=j<=3.

Output of this process is

— atwo-dimensional array R with size of 4x4. The elements of the array are Rjj, with 0 <=i<=3,0
<=j<= 3.

74 © ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

The 4x4 DCT transform core Ty is defined as:

T4[4][4] = {

{128,128, 128, 128},
{167, 69, -69, -167},
{128, -128, -128, 128},
{69, -167, 167, -69}

The

8.4.4
This

SubNIbTransformType is ‘Trans_8x8".

Inpults of this process are:

Output of this process is

The

}

nverse transform process is specified as follows.

btepl, horizontal inverse transform for the array D:

H' =D * TyT

Here, H’ is the temporary result, T4T is the transpose of T4
btep2, vertical inverse transform on H’ :

H=T,T*H

btep3, shift operation on H:

Ri j = sign(abs(Hjj) + (1<<16)) >> 17

.2 Inverse transform for 8x8 block

process of transform is applied te 8x8 block when MbTransformType is ‘Trar

'he variables of BitDepth;

h two-dimensional array D (derived from subclause 8.4.3.2) with size of 8x8, the elen
array are dij, withO<=i<=7,0<=j<=7.

h two-dimlensional array R with size of 8x8, the elements of the array are rjj, with 0
K= j <=7

nverse transform process is specified as follows.

s_8x8’ and

hents of the

<=i<=70

First, horizontal transform for the array D:
Step 1, withi=0,1, ..., 7

ejo = (djp + dja) * 181 >>7

ei1 = (djo — djg) * 181 >>7

ei2 = (dj2 * 196 >> 8) - (dje * 473 >> 8)

ej3 = (di2 * 473 >> 8) + (dj6 * 196 >> 8)

tig = di1 - di7

ti7 = dj1 + di7

© ISO/IEC 2019 - All rights reserved

75

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

tis =dj3 *181>>7

tig = dij5 * 181 >> 7

ei4 = tia + tie
eis = ti7 - tis
ei6 = i — tie
ei7 = tj7 + tis
Data in[the bitstrean shali ensure that any etement djj, G and e 1S {11 the range of IMteger va

from -2
Step 2,
fio = eio
fiz = ejo
fi1 = ej1
fiz = ej1
fia = (e

f17 = (elz
fis = (e
fie = (ei

Data in

(BitDepth+7) to 2(BitDepth+7)—1 inclusive.
ithi=0,1,...,7

+€j3

K]

+ €2

- €i2

1 301 >> 8) - (ej7 * 201 >> 8)

1 ¥201 >>8) + (ej7 * 301 >> 8)

*710 >>9) - (eje * 141 >>9)

*141 >>9) + (eje * 710 >> 9)

the bitstream shall ensure that any “element fjj is in the range of integer values

-2(BitDgpth+7) tg 2(BitDepth+7)-1 jnclusive.
Step 3, withi=0,1,...,7

gio = fio+ fiz

gi7 = fio|- fi7

gi1 = fi1|+ fie

gie = fi1|- fie

gi2 = fig|+ fis

gis = fiz[- fi§

gi3 = fiz+z

gi4 = fiz — fis

lues

from

Data in the bitstream shall ensure that any element gj; is in the range of integer values from
-2(BitDepth+7) tg 2(BitDepth+7)-1 jnclusive.

— And then, vertical transform is invoked for the resulting matrix:

76

Step 1, withj=0,1, ...,7

h()]' = (g()]' + g4j) *181>>7

hlj = (g()]' - g4j) *181>>7

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

hoj = (g2j * 196 >> 8) - (g6 * 473 >> 8)
hsj = (g2j * 473 >> 8) + (g6} * 196 >> 8)
t4j = 81j ~ 87j

t7j = 81 + 87j

tsj = g3; *181>>7

tej= g5 * 181 >>7

4= Uj ¥ G
15j = t7j — ts;j
l6j = t4j ~ Lo
17 = t7) + ts;

Data in the bitstream shall ensure that any element hjj is in thertange of integer yalues from
-2(BitDepth+7) tg 2(BitDepth+7)—1 inclusive.

btep 2, withj=0,1,...,7

mo;j = hoj + hs;

m3;j = hoj - hg;

m1j = hij + hy;

m2;j = h1j — hy;

my;j = (hgj * 301 >> 8) - (hy; * 201 >> 8)
m7j = (hgj * 201 >> 8) + (h7; * 301 >>8)
ms;j = (hsj * 710 >> 9) - (hg; * 141>> 9)
mej = (hsj * 141 >> 9) + (hg*710 >> 9)

Data in the bitstream shall ensure that any element mjj is in the range of integer yalues from
-2(BitDepth+7) to 2(BitDepth+7)—1 inclusive.

btep 3, with j% 0,1, ..., 7
10j = Moj ¥ My7j

17i,~1N0j — M7j

Ty = 1y)
Nej = mlj - m6j
nzj = mg;j + ms;
Nsj = myj - mg;
Nn3j = m3j + My,
n4j = mgj - m4]'

Data in the bitstream shall ensure that any element nj is in the range of integer values from
-2(BitDepth+7) tg 2(BitDepth+7)-1 inclusive.

© ISO/IEC 2019 - All rights reserved 77

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

ISO/IEC 14496-33:2019(E)

— Atlast, after horizontal and vertical transform, the final reconstructed values are derived as:

rijj = sign ((abs(nj) + 16) >> 5, njj), with i=0,1...,7,j=0,1,...,7

8.4.4.3 Inverse transform for 16x16 block

This process of transform is applied to 16x16 block when MbTransformType is ‘Trans_16x16’

Inputs of this process are:

— the variables of BitDepth;

— atwo-d
array a

Output of th

— atwo-d
<=] <=

The inverse
The 163
T16[16]
{32,32
{45, 43
{44, 38
{43, 29
{42,17
{40, 4,1
{38,-9
{35,-21
{32,-31

re djj, with 0 <=i<=15,0<=j<=15.

is process is

15.

transform process is equivalent to the following.

16 DCT transform core T1g is defined as:

16] = {
32,32,32,32,32,32,32,32,32,32,32,32,32,32},
40, 35, 29, 21, 13, 4, -4,-13,-21,-29,-35,-40,-43/ 45},
25,9, -9,-25,-38,-44,-44,-38,-25, -9, 9, 25,38, 44},
4,-21,-40,-45,-35,-13, 13, 35, 45, 40, 21, -4,-29,-43},

-17,-42,-42,-17,17,42,42,17,-17,<42,-42,-17, 17, 42},
35,-43,-13, 29, 45, 21,-21,-45;~29, 13, 43, 35, -4,-40},
-44,-25, 25, 44, 9,-38,-38,.9, 44, 25,-25,-44, -9, 38},
,—43, 4,45, 13,-40,-29,:29, 40,-13,-45, -4, 43, 21,-35},
,—32,32,32,-32,~32, 32, 32,-32,-32, 32, 32,-32,-32, 32},

{29,-40,-13, 45, -45=43, 21, 35,-35,-21, 43, 4,-45, 13, 40,-29},

{ 25,~41
{21,-41

L, 9, 38,38, -9, 44,-25,-25, 44, -9,-38, 38, 9,-44, 25},
b, 29,13,-43, 35, 4,-40, 40, -4,-35, 43,-13,-29, 45,-21},

imensional array D (derived from subclause 8.4.3.2) with size of 16x16, the elements)gf the

imensional array R with size of 16x16, the elements of the array are rjj, with 0 <=i<=15,0

{17,-42,42,-17,-17,42,-42,17,17,-42, 42,-17,-17,42,-42, 17},

{13,-35, 45,-40, 21, 4,-29, 43,-43, 29, -4,-21, 40,-45, 35,-13},

{9,-25,
{4,-13,
}

The inverse

38,-44, 44,-38, 25, -9, -9, 25,-38, 44,-44, 38,-25, 9},
21,-29, 35,-40, 43,-45, 45,-43, 40,-35, 29,-21, 13, -4}

transform process is specified as follows.

— Stepl, horizontal inverse transform for the array D:

H'=D*

78

T16T

© ISO/IEC 2019 - All rights reserved

https://iecnorm.com/api/?name=da77de59b64e29c0554bbaeee1374a96

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviations
	5 Conventions
	5.1 Arithmetic operators
	5.2 Logical operators
	5.3 Relational operators
	5.4 Bitwise operators
	5.5 Assignment
	5.6 Order of operation precedence
	5.7 Mathematical functions
	5.8 Variables, syntax elements and tables
	5.9 Text description of logical operations
	5.10 Processes
	5.11 Description of bitsteam syntax parsing process and decoding process
	5.11.1 Method of describing bitstream syntax
	5.11.2 Syntax functions
	5.11.3 Syntax descriptors
	5.11.4 Reserved, forbidden and marker bit
	6 Source, coded, decoded and output data formats
	6.1 Source
	6.2 Colour format
	6.3 Coded bitstream format
	6.4 Sequence header
	6.5 Frame
	6.6 Frame types
	6.7 Slice
	6.8 Macroblock
	6.9 Block
	6.10 Frame re-ordering
	6.11 Reference frames
	6.12 Inverse scanning processes and derivation processes for neighbours
	6.12.1 General
	6.12.2 Inverse macroblock scanning process
	6.12.3 Inverse macroblock partition scanning process
	6.12.4 Inverse 8x8 luma block scanning process
	6.12.5 Inverse 4x4 luma block scanning process
	6.12.6 Derivation process of the availability for macroblock addresses
	6.12.7 Derivation process for neighbouring macroblock addresses and their availability
	6.12.8 Derivation processes for neighbouring macroblocks, blocks, and partitions
	6.12.9 Derivation process for neighbouring locations
	7 Syntax and semantics
	7.1 Bitstream syntax
	7.1.1 Start codes
	7.1.2 Video sequence
	7.1.3 Frame
	7.1.4 Slice
	7.1.5 Macroblock
	7.1.6 Block
	7.2 Video bitstream semantics
	7.2.1 Start code
	7.2.2 Video sequence
	7.2.3 Frame
	7.2.4 Slice
	7.2.5 Macroblock
	7.2.6 Block
	8 Decoding process
	8.1 General
	8.2 Intra prediction
	8.2.1 General
	8.2.2 Intra_4x4 prediction process for luma samples
	8.2.3 Intra_8x8 prediction process for luma samples
	8.2.4 Intra_16x16 prediction process for luma samples
	8.2.5 Intra prediction for 8x8 chroma block
	8.3 Inter prediction
	8.3.1 General
	8.3.2 Derivation process for motion vector components and reference indices
	8.3.3 Decoding process for inter prediction samples
	8.4 Transform coefficient decoding process and frame reconstruction process
	8.4.1 General
	8.4.2 Inverse scanning
	8.4.3 Inverse quantization
	8.4.4 Inverse transform process
	8.4.5 Reconstruction
	8.5 Loop filtering
	8.6 Reference frame buffer management
	9 Parsing process
	9.1 General
	9.2 ue(v)
	9.3 Parsing process for transform coefficient levels
	9.4 ae(v)
	9.4.1 General
	9.4.2 Description
	9.4.3 Initialization
	9.4.4 Binarization process
	9.4.5 Parsing binary string
	10 Profiles and levels
	10.1 General
	10.2 Profiles
	10.3 Levels

